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Abstract

The joint analysis of vital signs is presently used for risk stratification and as an aid to clinical
diagnosis of the related organs and systems. In particular, the joint study of the arterial blood
pressure (ABP) and the electrocardiogram (ECG) allows to assess the baroreceptor reflex
sensitivity (BRS), as a measure of the activity and the integrity of the autonomic nervous
system (ANS). BRS quantification has been shown useful in the study of cardiac-pathological
states, with lower BRS values being associated with increased morbidity and mortality.
Also, BRS has been shown to have a prognostic value independent of better recognized
measures of cardiovascular outcome. The BRS prognostic value has been assessed with the
gold standard and invasive “Oxford” protocol, involving intravenous bolus of phenylephrine.
Nowadays, the generally accepted possibility of studying the ANS function with spontaneous
methods (without induced BRS-stimulation), turns the BRS into a non-invasive and more
widely applicable analysis. Previous comparisons between drug-induced and spontaneous
estimates evidence that they are different although correlated and, therefore, spontaneous

BRS estimates can potentially have similar predictive power as the invasive ones.

The BRS is quantified from the joint analysis of the beat-to-beat series of systolic blood
pressure (SBP) values and RR intervals, extracted respectively from the ABP and the ECG
signals. The sequences technique is a popular method for time domain BRS estimation
in spontaneous conditions, thanks to its ease of interpretation and implementation: the BRS
estimate is the average of the slopes obtained from the SBP and RR values in each identified
baroreflex sequence (BS). However, this technique fails to provide an estimate for low BRS
patients, depending of the thresholds used. As a result, this analysis is considered to have
limited value in ANS dysfunction cases, which are the crucial cases to identify. Furthermore,
BSs have typically 3-beat length even for the normal ANS function cases, which questions

the validity of a regression analysis over each BS.

The first step for BRS quantification is the detection of ABP and ECG reference points
used to compute the SBP and RR series. For that purpose, a multimodal beat detector is
presented in this thesis. This system is based on independent ABP and ECG analysis with
subsequent fusion of the results, and makes use of a wavelet based ECG beat detector. The

performance of the system is illustrated with real data.



The main contribution of this thesis is on time domain methods for spontaneous BRS
assessment. The events technique is proposed to improve BRS analysis: the BRS estimate
is the global slope obtained from the SBP and RR values in all identified baroreflex events
(BEs). On one hand, the use of global slope estimators increases robustness and decreases
dispersion in slope estimation. On the other hand, the number of beats in BEs is higher than
in BSs and, thus, the use of BEs increases the probability of obtaining an estimate. Also, the
increased number of beats in BEs further improves robustness and dispersion, because the
influence of one beat in slope estimation is reduced. If BSs are identified, BRS estimates from
BEs and BSs are highly correlated; for the cases of BSs absence, BRS estimates from BEs
are the lowest and exhibit similar reproducibility and dispersion to those of the remaining
cases. The absence of BSs in a record, and the inherent impossibility to assess the BRS,
is not synonymous of an absent BRS, but rather a limitation of the sequences technique to

provide an estimate. These difficulties are overcome with the events technique.

The validation of the novel technique is carried out with a comparison with BRS methods

traditionally accepted to distinguish the sympathetic and parasympathetic ANS modulations.

First, the novel method is validated with drug-induced data following the “Modified
Oxford” protocol, involving sequential boluses to stimulate the ANS modulations. The results
indicate that spontaneous BRS estimates from BEs (instead of BSs) hold smaller differences
and higher correlation with invasive estimates. The dispersion in BRS estimation is a trade-
off between the number of beats for slope estimation (N) and the correlation between SBP
and RR (r). In comparison with spontaneous, drug-induced data exhibits increased r (due to
the drug effect) and diminished N (limited to the time window of the bolus effect). However,
the possibility to increase N at the expense of slightly decreasing r in spontaneous recordings
(by acquiring stationary recordings longer than the invasive ones) evidences that spontaneous

BRS assessment is more advantageous than invasive in terms of dispersion.

The novel technique is finally compared with frequency BRS estimators in spontaneous
data. This comparison also includes information extracted from respiration and sympa-
thetic activity, the latter measured from the muscle sympathetic nerve activity signal with
an automatic burst detector. The sympathetic ANS branch presents oscillations of lower
frequency than the parasympathetic one and, consequently, longer data segments are needed
to capture sympathetic activity. The sequences technique provides a BRS estimate that
reflects only the parasympathetic activity, because BSs are typically of short length. On
the contrary, as the events technique is able to provide long BEs, besides BEs of the same
length as BSs, BEs are more likely to also capture the sympathetic modulation than BSs.
The results indicate that BRS estimates from short and long BEs are able to distinguish
the parasympathetic and the sympathetic ANS activities and evidence that BEs of different

length carry different information on ANS modulations.



Resumo

A anadlise conjunta de sinais vitais é actualmente utilizada para estratificacao de risco e como
auxiliar ao diagnostico clinico. Em particular, o estudo conjunto da pressao arterial (ABP) e
do electrocardiograma (ECG) permite aceder a sensibilidade do reflexo dos baroreceptores ar-
teriais (BRS), como uma medida da actividade e da integridade do sistema nervoso auténomo
(SNA). A quantificacdo do BRS tem-se mostrado ttil no estudo de patologias cardiacas:
valores de BRS mais baixos estao associados a um aumento da morbilidade e da mortalidade.
Adicionalmente, o BRS demonstrou ter um valor de progndéstico independente em comparacao
com outras medidas cardiovasculares melhor reconhecidas. O valor prognéstico do BRS foi
avaliado em dados seguindo o protocolo invasivo de “Oxford”, envolvendo boélus intravenoso
de fenilefrina. Hoje em dia, a possibilidade geralmente aceite de estudar a fungdo do ANS
com métodos espontaneos (sem estimulagao induzida do BRS), transforma o BRS numa
analise nao-invasiva e mais amplamente aplicivel. A comparagao entre estimativas obtidas
por inducao de farmacos e as espontaneas mostra que sao diferentes embora correlacionadas,

e portanto as estimativas espontaneas podem ter o mesmo valor predictivo que as invasivas.

O BRS ¢é quantificado a partir da anélise conjunta dos valores batimento-a-batimento da
pressao arterial sistolica (SBP) e dos intervalos RR, extraidos dos sinais ABP e ECG,
respectivamente. O método das sequéncias ¢ um método popular para estimacao do BRS
em condigdo espontanea e no dominio do tempo: a estimativa do BRS é a média dos declives
obtidos dos valores de SBP e RR identificados em cada sequéncia barorreflexa (BS). Apesar
da sua simplicidade, essa técnica nao consegue fornecer uma estimativa para pacientes com
baixo valor de BRS, dependendo dos limiares utilizados. Assim, esta andlise é considerada ter
um valor limitado em casos de disfun¢ao do ANS, que sao os casos fundamentais a identificar.
Além disso, as BS tém normalmente 3 batimentos mesmo em casos de fun¢ao normal do ANS,

0 que questiona a validade de uma anélise de regressao sobre cada BS.

O primeiro passo para avaliagio do BRS é a obtencdo das séries SBP e RR a partir de
pontos de referéncia detectados no ABP e ECG. Neste trabalho é apresentado um sistema
multimodal para deteccao desses pontos, baseado na fusao dos resultados decorrentes de
analises independentes do ABP e ECG. Este sistema utiliza o detector de batimentos no
ECG, anteriormente proposto neste grupo de trabalho. O desempenho do sistema ¢ ilustrado

com dados experimentais.



Nesta tese, o método dos eventos é proposto para melhorar a avaliacdo espontanea do BRS
no dominio do tempo: a estimativa do BRS é o declive global obtido dos valores de SBP e
RR em todas os eventos barorreflexos (BE) identificados. Por um lado, o uso de estimadores
globais aumenta a robustez e diminui a dispersao na estimacao do declive. Por outro lado, o
numero de batimentos em BEs é maior do que em BSs e, portanto, o uso de BEs aumenta,
a probabilidade de obter uma estimativa. Além disso, o maior nimero de batimentos em
BEs aumenta a robustez e a dispersao, porque a influéncia de um ponto na estimacao do
declive é menor. Se forem identificadas BSs, as estimativas do BRS apartir de BEs e BSs
sao correlacionadas e, para os casos de auséncia de BSs, as estimativas baseadas nos BEs
sdo menores e exibem reprodutibilidade e variabilidade semelhante as dos restantes casos. A
auséncia de BSs num registro, bem como a impossibilidade de avaliar o BRS, nao é sinénimo
de uma funcdo de BRS ausente, mas sim uma lacuna do método das sequéncias para fornecer

uma estimativa. Estas dificuldades sao superadas com o método dos eventos.

O método dos eventos é validado a partir da comparacao com outros métodos mais corrente-

mente aceites em distinguir as modulagoes simpética e parasimpética do ANS.

Por um lado, o método dos eventos é validado com dados invasivos, obtidos através do
protocolo “Modified Oxford”, que involve bolus sequenciais para estimular as modulagoes
do ANS. Os resultado indicam que as estimativas espontaneas a partir de BEs (em vez de
BSs) exibem menor diferenga e maior correlacao com as estimativas invasivas. A dispersao
na estimacao do BRS é um compromisso entre o niimero de batimentos para estimacao do
declive (N) e a correlagao entre os valores de SBP e RR (r). Em comparagido com os dados
espontaneos, os dados invasivos apresentam maior r (devido ao efeito da droga) e menor N
(limitado ao tempo de duracao do efeito da droga). No entanto, a possibilidade de aumentar
N em contrapartida de diminuir r em registros espontaneos (fazendo a aquisi¢ao de registros
estacionarios mais longos do que os invasivos), evidencia que a estimagao espontanea do BRS

é mais vantajosa do que a estimacao invasiva, em termos de dispersao.

O método dos eventos ¢é finalmente comparado com estimadores do BRS no dominio da
frequéncia em dados espontaneos, incluindo informacao da respiracao e da actividade
simpatica. A modulacao simpética apresenta oscilacoes de frequéncia mais baixa em com-
paracao com a modulagao parasimpética e, por isso, sao necessarios segmentos mais longos
para estimar a actividade simpéatica. O método das sequéncias estima um valor para o BRS
que reflete predominantemente a actividade parasimpéatica, uma vez que os BSs sdo segmentos
de duragao curta. Pelo contrario, o método dos eventos identifica BEs longos, além dos BEs
com a mesma durac¢ao dos BSs. Assim, os BEs devem permitir estimar também a modulagao
simpética. Os resultados indicam que os valores do BRS estimados a partir de BEs curtos e
longos permitem distinguir as actividades parasimpética e simpética, evidenciando que BEs

de diferentes duracoes contém informacao diferente acerca das modulacoes do ANS.
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Résumé

L’analyse simultanée des signes vitaux est actuellement utilisée pour la stratification du risque
cardiovasculaire et comme aide au diagnostic clinique. En particulier, I’analyse conjointe des
variations de la pression artérielle (PA) et du rythme cardiaque (RC) permet d’évaluer la
sensibilité du baroréflexe (BRS), laquelle refléte I'intégrité et Pactivité du systéme nerveux
autonome (SNA). L’évaluation de la sensibilité du baroréflexe artériel s’est avérée utile dans
de nombreuses pathologies cardio-vasculaires, dans lesquelles une diminution de la BRS est
associée a une morbi-mortalité accrue. La BRS présente également une valeur pronostique
indépendante des mesures connues des facteurs de risque cardio-vasculaire. L’évaluation de
la BRS se fait classiquement par la méthode d’Oxford, considérée comme le gold standard,
qui implique 'administration intraveineuse et séquentielle de bolus de phényléphrine et de
nitroprussiate. Il est & présent possible d’évaluer la BRS d’une maniére non invasive, ce
qui rend son évaluation davantage accessible. Les études ayant comparé la technique non
invasive & la méthode d’Oxford révelent des résultats différents mais corrélés I'un & 'autre.
C’est pourquoi, I’évaluation de la BRS par la méthode non invasive pourrait avoir une valeur

prédictive au moins égale a la méthode d’Oxford.

L’estimation de la BRS est réalisée par I'analyse battement par battement des variations
de lintervalle RR par rapport aux variations de la pression artérielle systolique (PAS),
obtenus a partir de I’électrocardiogramme (ECG) et de I'enregistrement continu de la pression
artérielle (PA) par un finomeétre. La technique des séquences est une technique populaire
d’estimation de la BRS dans le domaine temporel grace & sa facilité d’interprétation et
d’application. L’estimation de la BRS correspond & la moyenne des pentes des relations
PAS-intervalle RR dans chaque intervalle identifié, appelé une séquence baroréflexe (SB).
Cependant, cette technique est limitée dans l’évaluation de BRS basse. C’est pourquoi
cette technique est considérée comme ayant peu de valeur dans I’évaluation des dysfonctions
autonomes. De plus, les SBs couvrent habituellement trois battements cardiaques, ce qui

reléve la question de la validité d’une analyse de régression sur chaque séquence.

La premiére étape dans I’évaluation de la BRS est la détection des points de référence dans
les tracés A’ECG et de PA. Dans ce travail, un systéme plurimodal de détection des points

de référence est présenté. Ce systéme repose sur I’analyse indépendante des signaux ECG et
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PA, et sur la fusion subséquente des résultats. L’efficacité de cette analyse est soutenue par

la présentation de données réelles.

Dans ce travail, la méthode des événements est proposée afin d’améliorer 1’évaluation
spontanée de BRS dans le domaine du temps. L’estimation de la BRS correspond a la
moyenne des pentes obtenues a partir des variations de PAS et d’intervalle RR dans chaque
événement baroréflexe (EB) identifié. L’utilisation d’une pente globale accroit la pertinence
de l'estimation de la BRS ainsi qu’elle diminue la dispersion des résultats. De plus, le nombre
de battements cardiaques étudiés dans un EB est plus important que dans une SB, ce qui
augmente la probabilité d’obtenir une estimation valable de la BRS, mais augmente également
la pertinence et diminue la variance de ’estimation BRS en raison de I'influence moindre d’une
pente d’un événement sur le résultat final. Si des SBs sont identifiées, I'estimation de la BRS
a partir des SBs et EBs est hautement corrélées; dans les cas ol les SBs ne sont pas identifiés,
les estimations de la BRS a partir des EBs sont inférieures et présentent une reproductibilité
et une dispersibilité similaires. L’absence de SB dans un enregistrement et 1'impossibilité
apparente d’évaluer la BRS ne signifient pas que la BRS est nulle, mais correspond plutot
a une limitation de la technique des séquences. La technique des événements baroréflexe

permettrait de pallier & cette limitation.

La validation de cette nouvelle technique est réalisée par la comparaison aux méthodes tradi-
tionnelles d’estimation de la BRS, permettant de distinguer les influences parasympathiques
et orthosympathiques sur le SNA. D’une part, la technique des EBs est comparée a la
méthode d’Oxford modifiée, qui a recours & 'administration intraveineuse séquentielle de
bolus de phényléphrine et de nitroprusside afin de moduler I'activité du SNA. Les résultats
démontrent que la méthode spontanée d’évaluation de la BRS a partir des EBs présente
une meilleure corrélation avec les résultats obtenus par la méthode invasive. Les variations
dans I'évaluation de la BRS est un compromis entre le nombre de battements cardiaques
utilisé pour lestimation de la pente (N) et la corrélation entre la PAS et 'intervalle RR
(r). La méthode d’Oxford modifiée permet d’obtenir un r élevé (lié aux effets des drogues)
et un N bas (lié a la courte période de temps étudiée, restreinte a U'injection des drogues).
Cependant, la méthode spontanée permet une évaluation de la BRS en augmentant le NV
pour une faible diminution de r (en raison de l'obtention d’enregistrements stationnaires plus
longs que par la méthode invasive), ce qui démontre que I’évaluation spontanée de la BRS

est plus avantageuse que la méthode d’Oxford modifiée en termes de dispersion des résultats.

D’autre part, la technique des EBs est comparée & 'estimation de la BRS par la méthode
des SBs aves données comprennent également des informations de l'activité respiratoire et
orthosympathique. L’activité orthosympathique est mesurée a partir du signal de ’activité
nerveuse sympathique & destinée musculaire, obtenue par la technique de microneurographie,
et analysée par un programme de détection de bursts automatique. L’activité nerveuse

orthosympathique présente des oscillations de plus basse fréquence que 'activité parasym-
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pathique; c’est pourquoi des enregistrements de longue durée sont préconisés. La technique
des séquences fournit une estimation de la BRS qui refléte uniquement 'activité parasympa-
thique. En effet, les SBs sont par définition de courte durée alors que les EBs sont de bien
plus longue durée. Cependant, pour une durée de EB ou de SB équivalente, les EBs sont
plus & méme de détecter les modulations orthosympathiques du SNA. Les résultats indiquent
que l'estimation de la BRS au départ de courts ou de longs EBs permettent ’appréciation
des modulations para- et ortho-sympathiques du SNA, et que les EBs de diverses longueurs

apportent des informations différentes quant aux modulations du SNA.
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Chapter 1

Introduction

This chapter comprises the motivation for the work presented in the thesis. The functional
aspects of the cardiovascular system are reviewed. In particular, the role of the ANS and the
baroreceptors reflex in the regulation of the cardiovascular variables is described, as well as
the mechanisms of respiration, and the parasympathetic and sympathetic ANS contributions
to the regulation of the cardiovascular variability. A brief introduction to cardiovascular

signals is presented, including their physiological interpretation.

This chapter also describes the steps carried out for the analysis of the baroreflex sensitivity
(BRS). In particular, the setup for the acquisition of the cardiovascular signals is presented,
as well as, the way the cardiovascular series are constructed from beat-to-beat reference
points, identified in the acquired signals. The BRS is then estimated from the extracted
cardiovascular series. An overview of the existing methods for BRS estimation is also

included, with special focus on spontaneous methods.

Finally, the objectives of this work and the outline of the thesis are presented.

27
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1.1 Rationale to study the Cardiovascular System

Following recent statistics, cardiovascular disease is the major cause of premature death in
Europe (EHN, 2008), and Portugal is no exception (Macedo et al., 2008). In Europe, it ac-
counts for almost half of all deaths causing over 4.3 million deaths every year. Cardiovascular
disease is also among the top causes of burden of disease: in EU countries 12 million DALYs!
are due to cardiovascular disease, accounting for 19% of the total of DALYs, and in Europe

the numbers rise up to 34 million DALYS, representing 23% of the total.

Cardiovascular disease has major economic costs (EHN, 2008), apart of the immeasurable cost
of a human life. In 2008, it was estimated to cost the EU economy around €192 billion /year
- almost half more than €129 billion, the EU’s annual budget in 2008. Of the total cost, 60%
is due to direct health care costs, 20% due to informal care costs and 20% due to productivity

losses, which accounts for the premature deaths and illness of those in working age.

The numbers justify the concern of the EU governments and political changes are in progress.
As an example, the Lisbon Treaty? introduced amendments to the public health article of
the Treaty on EU, which is a clear sign that health protection and disease prevention are

imperative to promote. Article 152 states that:

“Union action, which shall complement national policies, shall be directed towards improving
public health, preventing physical and mental illness and diseases, and obviating sources of
danger to physical and mental health. Such action shall cover the fight against the major health
scourges, by promoting research into their causes, their transmission and their prevention, as
well as health information and education, and monitoring, early warning of and combating

serious cross-border threats to health.”

Early Diagnosis of Cardiovascular Disease

The prevention and reduction of cardiovascular disease can be achieved through active sup-
port and education for healthier lifestyles and the reduction of associated risk factors, e.g.,
smoking and excessive consumption of alcohol, lack of physical activity, overweight, diabetes
mellitus (DM) and high arterial blood pressure. In particular, DM control is of major im-
portance, because DM substantially increases the risk of cardiovascular disease and amplifies
the effect of other risk factors. Over 48 million adults in Europe and 23 million adults in the
EU have DM, has a prevalence is 7.8%, with tendency to increase (EHN, 2008).

The early diagnosis of cardiovascular disease is required to prevent the occurrence of sud-

den and often catastrophic events, such as coronary heart disease, stroke and myocardial

!The Disability Adjusted Life Years (DALYs) index is the sum of the number of years of life lost due to
mortality (YLL) and the number of years of healthy life lost due to disability (YLD).
2The Lisbon Treaty was signed in Lisbon on 13 December 2007 and amends the EU Treaty and the Treaty

establishing the European Community.
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infarction. Additionally, when the risk factors are present, the detection of cardiovascular
dysfunction at a stage when intervention is still possible, is crucial to treat lesions, prevent
expected serious and incapacitating cardiovascular injuries and, ultimately, to cure the disease

or to halt its progression.

1.1.1 Monitoring the Cardiovascular function

The electrocardiogram (ECG) and the arterial blood pressure (ABP) supply important
information to interpret the regulation of the cardiovascular system and its interrelation
with the autonomic nervous system (ANS). In particular, it is currently accepted that the
spectral analysis of heart rate variability (HRV) reflects the autonomic modulation (Akselrod
et al., 1981) and the respiratory activity (Brown et al., 1993). Also, the joint study of ECG
and ABP variability allows the quantification of the baroreceptor reflex sensitivity (BRS) as a
measure of ANS integrity (Mancia and Mark, 1983; La Rovere et al., 2008). Because HRV and
BRS characterize different aspects of the ANS activity (modulation and reflex, respectively),
it is not surprising that measures extracted from the HRV and BRS analyses have shown to
correlate moderately (Klingenheben et al., 2008), or even to have non significant correlation
(Farrell et al., 1991), indicating that HRV and BRS indexes are measures of autonomic

function which provide complementary information.

The study of HRV is based on the beat-to-beat variations in heart rate, measured from the
time series of the heart cycle’s length, i.e. the RR intervals extracted from the ECG. The BRS
measures the relationship between the RR intervals and the systolic blood pressure (SBP)
extracted from the ABP. The evaluation of the RR and SBP values on a beat-to-beat basis
provides distinct information on the heart condition and, therefore, the integration of this
information may yield a better ability to assess the condition of the cardiovascular system
and ANS function. As a matter of fact, studies have shown that BRS indexes provide clinical

and predictive power, even beyond that provided by HRV indices:

e BRS is reduced in patients with life-threatening ventricular arrhythmias, long after

myocardial infarction (De Ferrari et al., 1995);

e BRS allows identification of patients with chronic heart failure conditions at high risk

of nonsustained ventricular tachycardia (Mortara et al., 1997);

e low BRS is a strong risk factor in patients with prior myocardial infarction, and BRS is
a prognostic value independent of better recognized measures of cardiovascular outcome
(La Rovere et al., 1998);

e BRS is a predictor of arrhythmic events in patients with nonischemic dilated cardiomy-
opathy (Klingenheben et al., 2008).
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More recently, an expert consensus document on risk stratification to identify patients at
risk for Sudden Cardiac Death — SCD (Goldberger et al., 2008), reports that some studies
associate impaired short-term HRV to increased risk and that reduced long-term HRV is a
risk factor for mortality, although not being specific for SCD. Some authors point out that
low BRS is a risk factor for SCD, nevertheless the clinical utility of HRV and BRS parameters
to guide selection of therapy is still to be tested (Goldberger et al., 2008).

1.1.2 Clinical relevance of BaroReflex Sensitivity (BRS) estimates

Over the past years, BRS quantification has been useful in the study of other pathological
states, including myocardial infarction, congestive heart failure, hypertension and diabetes
(Sleight, 2007; La Rovere et al., 2008). Overall, lower levels of BRS have been associated

with an increased cardiovascular disease-related morbidity and mortality.

The ATRAMI study was aimed to assess the predictive value of BRS and HRV in patients with
a prior myocardial infarction (MI) and demonstrated that a low BRS is a strong risk factor
for cardiac death (La Rovere et al., 1998). The study concluded that the BRS analysis yields
a significant prognostic value independent of better recognized measures of cardiovascular
outcome, such as Left Ventricular Ejection Fraction — LVEF?. Moreover, it has been shown
that BRS analysis complements the LVEF prognostic value, indicating the BRS as a new
index for risk stratification. More recently, even among the large number of low-risk post-
MI patients with preserved LVEF, depressed BRS has been found to identify a subgroup at
long-term high risk for cardiovascular mortality (De Ferrari et al., 2007). The complementary
prognostic value of BRS to that of LVEF to prevent arrhythmic events has also been confirmed
in patients with nonischemic dilated cardiomyopathy (Klingenheben et al., 2008).

BRS quantification has not only been useful to prevent serious cardiovascular events when the
cardiovascular disease is already present, but also useful for early detection of cardiovascular
dysfunction when risk factors are present. One example is the ANS dysfunction related
with diabetes, which is associated with increased mortality (Rathmann et al., 1993). Several
studies have shown that BRS is impaired in diabetes and that BRS analysis provides early
detection of ANS dysfunction (Frattola et al., 1997; Ziegler et al., 2001). Another example is
the high arterial blood pressure (hypertension), where a diminished BRS has been reported
since long (Bristow et al., 1969; Takeshita et al., 1975). More recent studies indicate that
reduced BRS appears to characterize not only patients with established hypertension, but
also normotensive offspring of hypertensive parents, who may display a slight blood pressure
increase (Lénard et al., 2005).

3LVEF is the percentage of blood ejected from the left ventricle in a heartbeat. An LVEF of 50% indicates
that the left ventricle ejects half its volume each time it contracts. A normal LVEF is 50% or higher, whereas

a reduced LVEF indicates the presence of abnormal heart function (Guyton and Hall, 2000).
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1.2 Physiological Background

In this section the relevant physiological background is resumed. In particular, it comprises
a brief description of the electrical and mechanical activity of the heart during a cardiac beat
and their connection with the acquired cardiovascular signals. Additionally, it is summarized
the role of the ANS and the baroreceptors reflex, responsible for the regulation of the heart
rate by the blood pressure.

1.2.1 The heartbeat: electrical/mechanical activity and waveforms

The dynamics of the heartbeat is concerned with the mechanisms by which the heart transfers
the blood from the venous to the arterial side, under sufficient pressure to ensure proper
circulation in the body. Electrical changes in heart tissue cause mechanical changes, i.e.,
heart muscle contractions and relaxations: the electrical action potential excites the muscle
cells and forces mechanical contraction of the heart chambers (atria and ventricles). The
mechanical activity of the heart includes blood flow, vibrations of the chamber walls and
opening/closing of the heart valves. It results in the flow of blood to the arteries, returning

to the heart through the veins.

The mechanical activity of the heart is controlled by its electrical conducting system. Fig-
ure 1.1 outlines a schematic representation of the heart, illustrating the cardiovascular anatomy.
The cardiac cycle starts with depolarization at the sinoatrial (SA) node leading to atria
contraction and, then, the electrical current is transmitted throughout the ventricles. The
contraction of the ventricles (systole) causes the closure of the atrioventricular (AV) valves
mitral and tricuspid and causes isometric contraction until intraventricular pressures are
sufficient to open the pulmonary and aortic valves, when the blood ejection begins. The blood
is forced out from their chambers into the arteries leaving the heart: the left ventricle empties
into the aorta (and the rest of the body) and the right ventricle into the pulmonary artery
(and lungs). The increased pressure due to the contraction of the ventricles is called systolic
pressure. Ventricular relaxation (diastole) occurs at the end of systole and the pulmonary
and aortic valves close. After the isometric relaxation, the ventricular pressures fall to less
than atria pressures. This leads to the opening of the atrioventricular valves and to the start
of ventricular diastolic filling with the blood from the atria. The decreased pressure due to
the relaxation of the ventricles is called diastolic pressure. The whole cycle then repeats

following another impulse from the sinoatrial node.

Besides the contraction of the heart muscle, the elasticity of the artery walls also helps in
the performance of the heartbeat. Hence they become distended by increased blood volume
during systole, or contraction of the heart. During diastole, or relaxation of the heart, blood

volume in the arteries decreases and the walls contract, propelling the blood farther along



32 1. INTRODUCTION

the arterial pathway. The effect is that of a pressure wave initiated by the heartbeat and

travelling from the aorta along the walls of all the other arteries.
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Figure 1.1: Representation of a heart illustrating the cardiovascular anatomy and the heartbeat
electrical events reflected in the ECG signal: P, QRS and T waves. Reproduced from Malmivuo and
Plonsey (1995).

Electrocardiogram and Arterial Blood Pressure signal

The different phenomena occurring during the heartbeat provide distinct information on the
cardiac activity and the integration of this information may yield a better ability to assess
the condition of the cardiovascular system. The heart electrical activity can be measured at
the skin level with the ECG. Changes of the blood pressure in the walls of the arteries (e.g.

aorta), being consequence of the mechanical contraction, are reflected in the ABP signal.

When the heart muscle is completely polarized or depolarized, the ECG signal is presented as
a flat line, whereas, after depolarization, the heart muscle undergoes repolarization to return
to its electrical state at rest and an ECG wave is recorded. As illustrated in Fig. 1.1, the
ECG in a normal cardiac cycle consists of a P wave, a QRS complex and a T wave. The P
wave represents the sequential depolarization of the right and left atria which causes atria

contraction. The QRS complex corresponds to the simultaneous right and left ventricular
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depolarization, which causes ventricular contraction. Finally, the ST segment and the T wave

correspond to ventricular repolarization.

As illustrated in Fig. 1.2, the ABP signal exhibits two typical phases: the anacrotic limb
(i.e., the rising edge of the pulse) and the dicrotic limb (i.e., the falling edge of the pulse).
The first phase is primarily concerned with systole, and the second phase with diastole and
wave reflections from the periphery. The ventricular contraction following the R wave in
the ECG causes a steep rise in the left ventricular pressure. When the ventricular pressure
exceeds the atria pressure the mitral valve closes and, when it exceeds the aortic pressure,
the aortic valve opens. Consequently, the blood flows from the ventricle to the aorta. This is
the time when the ABP reaches the maximum value (the systolic peak). At the end of blood
ejection, the pressure in the ventricle falls below the aortic pressure and the aortic valve
closes. The ventricular pressure drops steeply, and when it falls below the atria pressure,
the mitral valve opens, and the rapid filling phase begins. This is the time when the ABP

reaches the minimum value (the diastolic peak).

A dicrotic notch is usually seen in dicrotic phase of subjects with healthy compliant arteries.
The notch is observed as a consequence of the closing of the aortic valve to prevent the
backward flow of blood from the aorta, following left ventricular injection, indicating the

beginning of the diastolic cycle.
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Figure 1.2: ABP and ECG signals with annotation of the most relevant events of the heartbeat
reflected in these signals: (a) AV valves opening, (b) aortic valve opening, (c) aortic valve closing and
(d) AV valves opening. The time between (b) to (c¢) corresponds to the ejection time.
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1.2.2 Autonomic Nervous System and Baroreflex Mechanism

The autonomic nervous system (ANS) is responsible for the control of the internal organs
and of many involuntary human body functions. With respect to the cardiovascular system,
the ANS controls the heart rate, the contraction/relaxation of the heart muscle and its force

of contraction, constriction/dilatation of blood vessels and glands secretions.

The ANS is predominantly an efferent system transmitting impulses from the central nervous
system (CNS) to the peripheral organs and vice-versa (Guyton and Hall, 2000). Figure 1.3
schematizes the anatomy of the ANS concerning the control of the cardiovascular system
and of circulation. Autonomic nerves, such as the vagus, constitute almost all of the efferent
fibers leaving the CNS and their task is to transmit information on the current state of the
system from the periphery to the CNS. The sensory information from the vagus is redirected
to the hypothalamus, a higher order CNS structure localized in the brain (Vasomotor center).
From there, compensatory changes are initiated, if anything drifts out of the normal function.
To complete the required adjustments, the parasympathetic and sympathetic ANS divisions

assume a major role.

Most organs are innervated by fibres from both ANS branches. With respect to the cardio-
vascular system, Fig. 1.3 illustrates that sympathetic nerve fibers are connected directly to
the heart, and also to blood vessels. Sympathetic stimulation markedly increases the activity
of the heart, both increasing the heart rate and enhancing its strength and the volume of
pumping. Parasympathetic stimulation has the opposite effect of sympathetic stimulation.
The parasympathetic information is transmitted through the vagus nerve, directly to the
heart, and the parasympathetic system has little or no effect on blood vessels. However, an
increased parasympathetic activity is associated with a reduced sympathetic stimulation to

the vasodilatation of the peripheral vessels.

The parasympathetic and sympathetic systems present functional differences, and their influ-
ence is typically opposite: e.g., the parasympathetic slows the heart rate and the sympathetic
increases the heart rate and contractility. For the cardiovascular control, the mutual effects
of these two systems on the heart rate and on the arterial blood pressure are most significant
(Robertson et al., 1996), as following summarized. A fall in blood pressure causes reduced
stimulation of the baroreceptors, and consequently reduced discharge from the barorecep-
tors to the vasomotor centre. This causes an increase in sympathetic discharge leading to
vasoconstriction, increased heart rate and contractility, and secretion of adrenaline. The
sympathetic constriction of the small arteries and the large arterioles increases the resistance
and therefore reduces the blood through the vessels. Sympathetic stimulation of the veins
decreases the volume of these vessels and transfers the blood to the heart, forcing increased
cardiac activity. Conversely, rises in blood pressure stimulate the baroreceptors, what leads

to increased parasympathetic activity, causing slowing of the heart.
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Figure 1.3: Scheme of the anatomy of sympathetic nervous control of the circulation. The full
lines represent the sympathetic nerves, while the dotted line represents a vagus nerve that carries
parasympathetic signals to the heart. The figure also includes a scheme of the sympathetic innervation
of the systemic circulation. Reproduced from Guyton and Hall (2000).

Receptors, Baroreceptors and Baroreflex

To accomplish its task, the ANS actively interprets incoming sensory stimuli from the recep-
tors, and produces electrochemical impulses that are distributed to generate responses to the
environment and internal conditions. The receptors are a collection of sensory nerve endings
that detect the state of the body in the periphery and transmit the corresponding autonomic

information.

An example of receptors are the baroreceptors, which are the receptors specialized to monitor
changes in blood pressure. The main receptors lie strategically in the carotid sinus (neck)
and the aortic arch (just outside left ventricle, see Fig. 1.1) to ensure proper blood supply to
the brain and periphery; others are found in the walls of other large arteries and veins and
some within the walls of the heart. While the arterial baroreceptors found in carotid arteries

monitor the pressure of the blood being delivered to the brain, the arterial baroreceptors
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localized within the aortic arch allow to monitor the pressure of the blood delivered to all
other parts of the body .

The barorefler, i.e. the reflex of the baroreceptors, is considered the feedback loop in the
control of blood pressure: an elevated blood pressure reflexively causes blood pressure to
decrease and, then, decreased blood pressure depresses the baroreflex, so that the blood
pressure rises. The impulses from the baroreceptors reach centers in the medulla, a part of
the brain; from there autonomic activity is redirected to the hypothalamus, so the adjustment
process is initiated. The heart rate and resistance of the peripheral blood vessels are then
adjusted by the ANS, through its parasympathetic and sympathetic divisions, so that the

appropriate blood pressure is maintained.

Cardiovascular variables and baroreflex mechanism

Figure 1.4 presents a block diagram schematizing the interactions between cardiovascular
variables (SBP and RR), baroreflex mechanism and respiration (Saul et al., 1991). The
interaction between blood pressure and heart rate is regulated by means of the baroreflex,
which can be seen as a feedback of this control system and represents the amount of change

in heart rate attributable to changes in blood pressure.
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Figure 1.4: Block diagram illustrating the interactions between the cardiovascular variables,
baroreflex mechanisms and respiration. The constants Ag and Ap represent the modulation depth of
the sympathetic and vagal efferent activity, respectively. Reproduced from Saul et al. (1991).

The baroreflex is mainly involved in the control of short-term blood pressure: changes in blood
pressure are sensed by the baroreceptors that transmit these changes to brainstem structures,
leading to activation/inhibition of parasympathetic and sympathetic ANS afferents in order

to adjust the various systems involved in the control of blood pressure e.g., heart rate,

“Besides arterial baroreceptors, the cardiovascular rhythms are modulated by the central mechanisms and

afferent input from chemoreceptors, cardiac receptors, and pulmonary and thoracic stretch receptors.
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heart contractility, peripheral resistance and venous blood volume. The parasympathetic
and sympathetic nerves are connected to the SA node in order to continuously regulate the
function of the heart. Therefore, the heart rate response is the result of a balance between the
antagonist functions of the sympathetic and the parasympathetic regulation. In this closed-
loop system, the blood pressure determines the heart rate through the baroreflex sensitivity,
and the heart rate influences the blood pressure through contraction and dilatation of the

ventricles and vasculature.

The faster the blood pressure changes, the more pronounced becomes the baroreceptors reflex,
or its sensitivity to the external stimulation. In this way, the baroreflex system attempts to
maintain an equilibrium which helps the prevention of cardiac disturbances. In the absence

or damage of arterial baroreceptors, this regulation is not possible.

Respiration is one mechanism that can be considered as voluntary and autonomic, being
also under the ANS control. Parasympathetic afferents induce constriction inside the lungs,
whereas sympathetic activation provokes dilation of the lungs. These interactions are reg-
ulated by means of the pulmonary stretch receptors, which are mechanoreceptors found in
the lungs. The capacity of the breathing activity and the respiratory system to produce
systematic variation in heart rate is referred to respiratory sinus arrhythmia - RSA (Hirsch
and Bishop, 1981). Typically, heart rate accelerates during inspiration and decelerates during
expiration. Also, respiration influences blood pressure, due to both the mechanical thoracic
coupling between respiration and the vasculature and the effects of respiration induced
fluctuations of heart rate (Saul et al., 1991).

1.2.3 Cardiovascular Signals

Figure 1.5 shows the cardiovascular signals acquired from a subject in supine position and
during the “Modified Oxford” protocol (Gujic et al., 2007), illustrating the baroreflex mecha-
nisms. This protocol consists in a 3 minutes recording: first, the subject is in a spontaneous
condition during the initial 60 seconds of the recording, after which follows the successive
bolus administration of a vasodilator (nitroprusside) and a vasoconstrictor (phenylephrine).

More details about this protocol can be found in Sec. 4.3.1.

The ECG is the recording of the electrical activity of the heart over time and the ABP
signal is the recording of the pressure exerted by the blood circulation on the walls of the
blood vessels. Their interactions are directly related with the relation between the electrical

and mechanical phenomena occurring in a heart beat, as already described in Sec. 1.2.1.

Breathing occurs by the cyclical contraction of the respiratory muscles, in particular the
diaphragm, and can be represented with the respiration - RESP signal. As illustrated in

Fig. 1.5, the consecutive increasing and consecutive decreasing amplitudes of respiration
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signal reflect the breathing phases, respectively, inspiration and expiration. The breathing
pattern is also characterized by the frequency of the RESP signal, with a faster breathing
being reflected in a RESP signal with higher frequency content. In Fig. 1.5, the breathing
cycle is completed in 10 sec and, therefore, the respiratory frequency is close to 0.1 Hz. The
figure also illustrates that the amplitude of the ECG and inter-heartbeat interval (RR) are

modulated at a rate corresponding to the respiratory rate.

The sympathetic function can be assessed by recording the muscle sympathetic nerve activity
- MISNA signal, which is characterized by synchronous neuronal discharges separated by
periods of neural silence. The MSNA is a direct and invasive recording of autonomic activity,
with each burst corresponding to the sum of nerve action potential. Increases in sympathetic
activity can be evidenced by more frequent occurrence of MSNA bursts (Wallin, 2007;
Beloka et al., 2009) and/or increased MSNA burst intensity (Halliwill, 2000). The first
case corresponds to neuron firing during higher percentages of cardiac cycles (more bursts),
whereas the second case is the output of additional neuron recruitment and /or multiple firings

of recruited neurons during a cardiac cycle (larger area or amplitude).

50 55 60 120 180
Record time (sec)

Figure 1.5: ECG, ABP, RESP and MSNA signals from a representative subject in spontaneous
condition (first 10 sec) and after the successive boluses of nitroprusside/phenylephrine (bold/light
lines). The figure presents a different time scale before and after the bold line, to allow both a
detailed visualization of the waveforms and the overall subject’s response to the drug administration.
Data from the SP/NT/PH dataset.
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As illustrated in Fig. 1.5 for the spontaneous condition, the respiratory sinus arrhythmia
is reflected by physiological modulation that respiration induces in the SBP values and RR
intervals. When ABP decreases as a result of expiration, the baroreceptors increase MSNA
and, as a response, the RR values increase. The reverse occurs during inspiration. Thus
the respiratory oscillations in BP translate into oscillations in MSNA and RR, as a result
of baroreflex activity. The MSNA bursts are typically initiated in diastole, as systole elicits
baroreceptor afferent inputs that cause the cessation of a sympathetic burst (Wallin and
Charkoudian, 2007).

Nitroprusside administration provokes vasodilatation and an acute drop of ABP, into a
higher range of amplitudes than of that related with expiration. Therefore, the baroreflex is
forced to promote sympathetic activation in order to the ABP to return to its normal levels,
which is evidenced by the higher MSNA activity. When the MSNA activity is triggered to
high activity levels, the respiratory modulation in the SBP and RR is reduced.

After the phenylephrine bolus the effect is reversed. Phenylephrine is an antagonist of
nitroprusside, which causes vasoconstriction and forces ABP to increase acutely. The sym-
pathetic activity lowers when the ABP is recovering to its normal level and parasympathetic
activity increases. At the end of the drug-induced protocol, the ABP and the sympathetic

and parasympathetic balance is returning to its normal functioning levels.

1.3 Assessment of the BRS function

It is currently accepted that the joint analysis of SBP and RR interval series allows BRS
assessment, as SBP decreases and increases produce correspondent baroreflex mediated short-
ening and lengthening of the RR interval, respectively (La Rovere et al., 2008). Therefore,
the first step for BRS quantification is the acquisition of the ABP and ECG signals and
the detection of the beat-to-beat reference points in each signal, to compute the SBP and
RR series. In this section, the main stages for BRS assessment are described in each of the
following subsections: the acquisition of the ABP and ECG signals, the extraction of the
SBP and RR series from the acquired signals and finally an overview of methods for BRS
assessment. Additionally, current acquisition protocols to record RESP and MSNA are also

included.

1.3.1 Acquisition of Cardiovascular signals, RESP and MSNA

Figure 1.6 presents a schematic representation illustrating the anatomical position of the
ECG electrodes, the finger-cuff and arm-cuff to acquire the ABP signal, the belt to acquire
the RESP signal and the MSNA electrodes.
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Figure 1.6: Setup for acquisition of the cardiovascular, RESP and MSNA signals, showing anatomical
position of the ECG electrodes, the finger-cuff and arm-cuff for ABP acquisition, thoracic belt for
RESP acquisition and MSNA electrodes. The signal ABP shows a return-to-flow calibration episode.

Electrocardiogram (ECG)

The ECG can be obtained non invasively via skin electrodes: the heart is triggered to contract
by electrical activity and, like any other muscle, produces detectable voltages at the skin level.
The ECG shows the changes in the voltage per time, between pairs of electrodes placed at
certain points on the skin. The different possibilities to position the ECG electrodes in the
thorax determines the lead, i.e. the spatial viewpoint from which the electrical activity of
the heart is observed (Guyton and Hall, 2000). Figure 1.6 shows two electrodes positioned
in the frontal plane of the thorax, left and right arm, which corresponds to the acquisition of
the traditional ECG lead 1.

Arterial Blood Pressure (ABP)
The ABP can be recorded continuously either directly from the radial/brachial artery by
means of an intra-arterial catheter or indirectly and noninvasively from peripheral blood

vessel e.g., on ears, toes or fingers by making use of a plethysmograph sensor®.

There are several devices that can be used for the ABP measurement at the finger level,

including the Finapres™ system that was introduced in the early 1980s. Nowadays, alter-

®Plethysmography is a simple and low-cost optical technique that is often used non-invasively to make
measurements at the skin surface. The finger ABP is measured using a finger cuff and an inflatable bladder
in combination with an infrared plethysmograph, which consists of an infrared light source and detector. The
infrared light is absorbed by the blood, and the pulsation of arterial diameter during a heart beat causes
a pulsation in the light detector signal. Therefore, the acquired waveform comprises a pulsate waveform

attributed to cardiac synchronous changes in the blood volume with each heart beat (Allen, 2007).
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native acquisition devices with the same acquisition principle are commercially available, in
particular, the Portapres and Finometer systems (Finapres Medical Systems BV, Holland).
These devices use an inflatable finger-cuff with a built-in plethysmograph sensor (Penaz,

1973), to measure the pulsate vascular unloading of the arterial walls in the finger.

The ABP signal is known to change in shape as it moves towards the periphery and undergoes
amplification and alterations in its shape and temporal characteristics®. To correct the
distortion in the finger pressure relative to the brachial artery pressure, the acquisition system
makes use of software and an arm-cuff (Wesseling et al., 1995; Guelen et al., 2003, 2008). The
distortion in finger pressure relative to brachial artery pressure is diminished by real time
filtering (with 1 sec delay). The ABP level is corrected by return-to-flow calibration, with
an arm-cuff wrapped around the same arm as the finger-cuff. From time to time, the system
automatically inflates and deflates the arm-cuff. When the arm-cuff inflates, no pulsations

can be sensed in the finger and a flat line is observed in the ABP signal (Fig. 1.6).

Even with distortion correction, ABP measurements at the finger level may differ from
invasive ABP. With respect to the BRS quantification, it has been shown that noninvasive
ABP measurements accurately reflect intra-arterial pressure (Parati et al., 1989; Hartikaninen
et al., 1995; Langewouters et al., 1998). Additionally, the results from the ATRAMI study
(La Rovere et al., 1998), showing that the BRS is an independent prognostic value of cardiac
death with invasive ABP acquisition, were corroborated in the study of Pinna et al. (2000).
In that study, using a subset of the ATRAMI data, the BRS obtained from Finapres ABP
signals was found to be highly correlated with that of the invasive ABP and to provide

equivalent prognostic value.

Respiration (RESP)

Breathing can be monitored in many ways (Folke et al., 2003). Airflow can be measured with
a mask over the mouth and nose or by a thermocouple under the nose, measuring the change
in temperature of air as it is inhaled and exhaled. Also, airflow can be evaluated by a thorax

belt or by electrical impedance.

The impedance of the thorax is affected by several parameters and changes substantially
during the respiratory and the cardiac cycle. The impedance changes in a respiratory cycle
are due to the changes of air volume in the lungs, and the impedance changes during the
cardiac cycle are due to the changes in blood perfusion of the lungs. Additionally, the
expansion and contraction of the chest, which accompanies respiration, results in motion of
the chest electrodes/belt.

Different ABP waveforms can be recorded at different sites of the body: peripheral waveforms are delayed
with respect to the ascending aortic ABP waveform (taken as the reference ABP waveform) and present a
different contour (Karamanoglu, 1997). Additionally, the pulse propagation in arteries is subjected to a

frequency dependent phase distortion, as described in O’Rourke and Gallagher (1996).
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The ECG signals recorded from the surface of the chest are influenced by motion of the
electrodes/belt with respect to the heart and by changes in the distribution of the electrical
impedance in the thoracic cavity. Therefore, changes in the ECG that reflect the filling and
emptying of the lungs can be used as an indicator of the respiratory activity. As illustrated
in Fig. 1.5, respiration induces an amplitude modulation of the observed ECG. This effect
is enhanced in deep breathing, because deep breathing is usually associated with maximal
filling and emptying of the lungs, which is reflected in a wider expansion and contraction of
the thorax, and larger changes in thoracic impedance. Therefore, when a respiratory signal
is not available, the respiratory information can be estimated from ECG signal itself using
signal processing techniques (Gouveia et al., 2001; Rocha et al., 2002; Bailon et al., 2006).
Yet, these methods do not supply a calibrated respiration signal; only its time evolution and
frequency is important. Any automated system for ECG and ABP analysis can use this

technique to produce significant and previously unavailable information of clinical value.

Muscle sympathetic nerve activity (MSNA)

The sympathetic activity can be acquired following the micrographic technique, as described
in van de Borne et al. (1997). The MSNA signal is determined continuously by obtaining
multiunit recordings of postganglionic sympathetic activity, measured from a nerve fascicle
in the peroneal nerve posterior to the fibular head (localized in the knee) of each subject.
Electric activity in the nerve fascicle is measured with the use of tungsten microelectrodes
(shaft diameter 200 pm, tapering to a non-insulated tip of 1 to 5 um). A subcutaneous
reference electrode is inserted 2 to 3 cm away from the recording electrode, which is inserted
into the nerve fascicle. The neural signals are amplified, filtered, rectified, and integrated to
obtain a mean voltage display of sympathetic nerve activity. If a signal-to-noise ratio higher

than 3 is achieved, the MSNA recordings are considered for further processing.

1.3.2 Reference points in signals and cardiovascular series

As pointed out in Sec. 1.2.2, the interactions between the beat-to-beat blood pressure and
heart rate are regulated by means of the baroreflex and, that is why, traditionally the BRS
is quantified from the joint analysis of SBP and RR interval series (La Rovere et al., 2008).
Therefore, after the signals acquisition, the timing of the QRS complex in the ECG and
the timing of the SBP value in the ABP signal are identified in each cardiac beat, and the
corresponding variability series are obtained from those reference points.

The use of automatic systems for the detection of reference points in signals avoids inter and
intra observer variability, and facilitates the computation of the SBP and RR series to be
used for BRS analysis. For the automatic identification of reference points in the ECG and
ABP signals, a multimodal beat detector is presented in Chapter 2. This system is based on
independent ABP and ECG analysis with subsequent fusion of the results, and makes use of

a wavelet based QRS detector previously evaluated by our group (Martinez et al., 2004).
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1.3.3 Overview of methods for BRS assessment

After the acquisition of the cardiovascular signals and the extraction of the SBP and RR

series, the BRS can be estimated.

The baroreflex mechanisms exhibit nonlinear characteristics and to characterize the BRS over
its entire range, the BRS has to be acutely stimulated (Di Rienzo et al., 2009). As illustrated
in Fig. 1.7, the SBP and RR relation over the entire baroreflex range is well described by
a sigmoid function (Hunt and Farquhar, 2005). The sigmoid curve includes a lower and a
higher plateau and, in between, a range of SBP and RR values exhibiting an approximately
linear relation. The SBP changes occurring in the linear part of the sigmoidal produce a
more pronounced RR response in comparison with comparable SBP changes occurring in the
plateau regions (Di Rienzo et al., 2009; Mancia and Mark, 1983).

As illustrated in Fig. 1.7, the sigmoid function do not exhibit systematic asymmetries and it
is likely that the operating point of the subject (i.e., the mean baseline SBP and RR values)
is localized in the approximately linear portion of the sigmoid (Hunt and Farquhar, 2005).
The BRS can be evaluated as the slope of a tangent line to the curve, e.g. at the operating
point of the subject, or evaluated separately for the lower and upper arches (Parlow et al.,
1995). As illustrated in Fig. 1.7, the sigmoidal shape for BRS failure patients (Group III)
is characterized by having a lower RR range and a lower slope in the middle portion of the

function in comparison with normal BRS subjects (Mancia and Mark, 1983).
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Figure 1.7: Relation between mean arterial pressure (MAP) and RR in normotensive (I), moderately
hypertensive (II) and severely hypertensive subjects (IIT). The curves were constructed by increasing
and decreasing MAP from the operating point (large circle), administrating a vasoconstrictor and
a vasodilator, respectively. Data correspond to mean values obtained from several young subjects.
Reproduced from Korner et al. (1974).
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There are different classifications of the BRS methods in the literature, e.g., “traditional”
versus “modern” (Di Rienzo et al., 2001) or “invasive” versus “noninvasive” (La Rovere et
al., 2008). In this work, the distinction of interest is between induced-stimulation versus

spontaneous techniques.

Several methods have been suggested for BRS assessment in induced-stimulation conditions,

e.g., pharmacological methods and the neck pressure method.

The pharmacological methods make use of vasoactive drugs which change arterial pres-
sure, while having minimal direct effect on the sinus node. Therefore, these drugs induce
negligible direct effects on the RR interval, so that the observed RR changes are mediated
reflexively via the baroreceptors. The acquisition protocol can include the administration
of drugs to provoke either vasoconstriction, vasodilatation or both in the same experimental
setting. The lower part of the baroreflex arc in Fig. 1.7, corresponding to the SBP values lower
than the SBP operating value, is obtained by bolus injections of a vasodilator administrated
at a spontaneous condition, causing the SBP values to acutely decrease to values lower than
spontaneous SBP values. Contrarily, the higher part of the baroreflex arc is obtained by
the administration of a vasoconstrictor, provoking acute increase of the SBP values and

correspondent RR increase mediated via baroreflex.

While the pharmacological methods induce perturbations in the ABP, the neck pressure
method induces perturbations directly in the carotid baroreceptors, by means of a neck
chamber apparatus. The neck chamber allows to create mechanical alteration of transmural
carotid sinus pressure stimulating, by suction, the carotid baroreceptors and mimicking ABP

changes (Ernsting and Parry, 1957).

Previous comparison between the pharmacological methods (injections of Phenylephrine) and
the neck pressure method have reported that both protocols can create artificial SBP ramps,
with larger amplitude than that in a spontaneous recording (Ebert et al., 1984). Although
the induced-stimulation methods can produce changes across a range of SBP necessary to
observe the nonlinear nature of the BRS, the induced SBP range cannot be controlled in such
a way as to ensure engagement of the reflex across the entire reflex range. The consequence
is that these methods present high failure and, usually, the unsuccessful experiments are
discarded and repeated (Davies et al., 1999).

Methods for spontaneous BRS assessment

The drug induced experiments make use of intravenous intubation for the drug administra-
tion, what limits the applicability of such techniques besides contributing for the discomfort
of the patient. In contrast, the spontaneous techniques are by principle non invasive and
do not require drug administration or the use of a neck chamber apparatus. Therefore, the
use of spontaneous methods simplifies the test procedure and allows the BRS measurement
under a broad range of daily life conditions, with potential applications in ambulatory BRS

assessment.
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Spontaneous methods provide BRS estimates in a normal physiological range over a time
period, rather than in a brief and extreme perturbation, as the BRS induced-stimulation
methods. However, they require stationary acquisition conditions and fairly longer periods

of recording in comparison with induced-stimulation to provide a steady state BRS estimate.

Most of the spontaneous methods assume that the SBP and RR relation is linear when
it is in fact sigmoidal (see Fig. 1.7). However, the relatively reduced SBP changes under
spontaneous conditions limit the BRS analysis to a smaller portion of the entire sigmoid
reflex arc, in a neighbourhood of the subject’s baseline operating point. In this interval, the
linear assumption is reasonable to consider because the spontaneous range of SBP and RR
amplitudes is much smaller than the entire baroreflex range. Also, the subject’s baseline
operating point is most likely to lie in the middle portion of the sigmoid function, even for
BRS failure patients (Mancia and Mark, 1983). These evidences have been corroborated by
studies showing that spontaneous BRS methods are able to provide similar values of BRS to
those obtained by the drug-induced methods, within the physiological range of SBP under

resting conditions (Parlow et al., 1995).

Table 1.1 presents an overview of the methods that have been proposed for spontaneous BRS
assessment, most assuming a linear SBP and RR relation in the operating point. The most
recent extensive comparison between spontaneous methods is included in the work of Laude et
al. (2004), making use of spontaneous data from the EuroBaVar dataset. Besides the methods
included in Table 1.1, other methods have been proposed to analyze the nonlinearities of the
SBP and RR interactions in spontaneous condition; comprehensive literature reviews of such
methods can be found in Porta et al. (2009) and Nollo et al. (2009).

The sequences technique was introduced in the study of Di Rienzo et al. (1985), with the
complete description of the methodology presented in Bertineri et al. (1988). A more recent
and complete review of the sequences technique is presented in Di Rienzo et al. (2001). The
sequences technique is based on a regression analysis over the SBP and RR values occurring
during short segments called “baroreflex sequences” (BSs). These segments consist of SBP
and RR values characterized by simultaneous and consecutive decreases (or increases) of
amplitude. Following studies confirmed these spontaneous SBP increases and decreases to
elicit baroreflex mediated RR responses, due to the similarity of the baroreflex responses
measured in such segments to the baroreflex responses provoked experimentally by drug
injections (Fritsch et al., 1986; Parlow et al., 1995).

Improvements on time domain BRS assessment have been proposed with the Dual sequence
method (Malberg et al., 2002), the “xBRS” estimate (Westerhof et al., 2004) and the events
technique (Gouveia et al., 2009).
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Method Brief description

Time domain

Sequences technique
Di Rienzo et al. (1985)
Bertineri et al. (1988)

BRS as the average of the slopes between SBP and RR
values in each identified baroreflex sequence, considering
SBP with one beat lag with respect to RR.

Dual sequence method

Malberg et al. (2002)

Equivalent to the sequences technique, allowing the identification
of baroreflex sequences considering the SBP and RR
with a shift up to 3 beats.

xBRS
Westerhof et al. (2004)

BRS as the slope between the SBP and RR. values over 10 sec
windows, choosing the shift (up to 5 beats) that maximizes the
SBP and RR cross—correlation. SBP and RR series resampled at 1 Hz.

Events technique
In this work
Gouveia et al. (2009)

BRS as one global slope between the SBP and RR
values in all identified baroreflex events, considering
SBP with one beat lag with respect to RR.

Frequency domain

Transfer Function

Robbe et al. (1987)

BRS as the mean value of the transfer function magnitude between
SBP and RR in the LF frequency band.

Alpha Technique
Pagani et al. (1988)

BRS as square root of ratio between RR and SBP powers
in the LF frequency band.

Model based

Closed-loop Bivariate

Barbieri and Saul (1999)

Quantification of the feedback/feedforward SBP and RR pathways,
assuming a closed-loop SBP and RR system.

Closed-loop Trivariate
Barbieri et al. (1997)

Quantification of the feedback/feedforward SBP and RR pathways,
considering two-way pathways between SBP, RR and RESP.

xAR
Porta et al. (2000)

Quantification of the feedback/feedforward SBP and RR pathways,
considering RESP as an exogenous input in the SBP and RR loop.

Causal analysis
Nollo et al. (2001)

Quantification of the BRS assuming an exogenous input model, able

to separate the RR variability into SBP related and unrelated parts.

Others

TRS method
Riidiger et al. (1999)

Quantification of the open-loop SBP and RR interactions using
trigonometric regressive spectral analysis instead of Fourier analysis.

Complex Demodulation
Orr and Hoffman (1974)
Kim and Euler (1997)

BRS as the ratio between SBP and RR amplitude

oscillations estimated by complex demodulation.

Z-analysis
Ducher et al. (1994)
Cerutti et al. (1995)

Statistical evaluation of the relationship between SBP
and RR based on the calculation of the Z-coefficient.

Table 1.1:
indication of comprehensive references with further details of the methods.
completed from Di Rienzo et al. (2001).

Overview of methods for spontaneous BRS assessment, with brief description and
Table adapted and
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The Dual sequence method is an extension of the sequences technique, by allowing an SBP
and RR shift up to 3 beats to identify baroreflex sequences. Because the SBP and RR
series are studied in synchronous and shifted modes, this method also considers the delayed

baroreflex effects for the BRS estimation.

The xBRS method is more recent than the sequences technique, and is commercially available
with the Portapres and Finometer systems (Finapres Medical Systems BV, Holland) for ECG
and ABP acquisition. To obtain the xBRS estimate, the regression is performed over 10 sec
windows of the SBP and RR series resampled at 1 Hz, considering the delay between the
SBP and RR that maximizes their cross—correlation (up to 5 sec). The BRS estimates are
accepted if positive valued and statistically significant (p < 0.01). Finally, the BRS estimate
from an entire recording is obtained by geometric averaging of the local estimates. As pointed
out in Parati et al. (2004), this method provides a higher number of local estimates than the
sequences technique because it allows a non-constant SBP-RR delay. However, as the BRS
is estimated in relatively long time windows, different effects such as arterial baroreceptor

stimulation and deactivation can occur and cannot be separated.

The events technique, the contribution in this thesis, provides a time domain BRS estimate as
a global slope computed from the SBP and the RR values in all identified “baroreflex events”
(BEs), i.e. segments of high SBP and RR correlation. The use of BEs is introduced as an
alternative to BSs, to improve time domain BRS assessment, allowing its quantification in
cases of BS absence. Also, global slope estimators combined with BEs are proposed to increase
robustness, to increase reproducibility and to decrease dispersion in the BRS estimation. The
xBRS method and the events technique provide a time domain BRS estimate that is based
on the analysis of data identified by only imposing a criterion based on the SBP and RR
correlation. However, the xBRS method is constrained to the analysis of 10 sec segments,

while the events technique is based on the analysis of variable length BEs segments.

BRS is also currently estimated from the joint frequency-domain analysis of SBP and RR
spontaneous variability, either by Transfer function method or the Alpha technique. The
frequency domain methods allow to distinguish baroreflex effects of different frequencies:
high frequencies (HF: 0.15-0.4 Hz) are more associated with parasympathetic ANS effects
and respiration, if the respiratory frequency remains within the normal limits, whereas low
frequencies (LF: 0.04-0.15 Hz) are more associated with sympathetic ANS effects (van de
Borne et al., 1997). The Transfer Function method is based on the modulus (or gain) of
the transfer function between the SBP and RR series, considering the SBP as the input and
the RR as the output of the system, and the BRS estimate is taken as the average of the
transfer function values, considering the frequency values in which the SBP and RR series
are coupled (expressed by the squared coherence magnitude function). A simplified approach
to compute a frequency BRS estimate has been proposed by the Alpha Technique (Pagani
et al., 1988), by calculating the square root of the ratio between the RR and SBP spectral
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powers and, thus, only making use of the RR and SBP spectra and avoiding the estimation
of the transfer function between SBP and RR. Previous comparisons between frequency BRS
methods have pointed out that the Transfer Function method provides lower BRS estimates in
comparison with the Alpha Technique, and the BRS estimates obtained by the two methods
exhibit greater differences when computed for frequencies presenting lower levels of coherence
(Barbieri and Saul, 1999).

Frequency domain BRS methods were first based on non parametric estimation of SBP and
RR spectra and cross-spectra, assuming SBP and RR in an open-loop system (Robbe et al.,
1987). Therefore, these techniques cannot distinguish between negative and positive feedback
interactions or causality between the effects, and cannot account for other influences, e.g.,
respiration. Extensions of the frequency domain methods assume a closed-loop system, with
the SBP and RR relationships parameterized to distinguish the BRS (feedback) from the RR
to SBP feedforward pathways. The closed-loop analysis is based on the identification of the
model coefficients (e.g. AR or ARMA) and the BRS is then estimated either by the Transfer
Function method or by the Alpha technique. The inclusion of respiration (RESP) can also
be considered in the closed-loop SBP and RR relation, either assuming feedback /feedforward
pathways between RESP and SBP and RESP and RR (Barbieri et al., 1997) or assuming
RESP as an exogenous signal (Porta et al., 2000). Finally, the causal SBP and RR dependence
has been studied with a model with exogenous input, able to separate the RR variability into
SBP related and unrelated parts (Nollo et al., 2001).

Both time and frequency domain methods have been evaluated in sinoaortic denervated
conscious cats. Regarding the sequences technique, the BSs appeared to reflect the baroreflex
mechanisms as their number (and mean slope) was drastically reduced after denervation
(Bertineri et al., 1988). Regarding the frequency domain analysis, denervation increased
overall SBP variability and reduced RR variability (Mancia et al., 1999). Also, it was reported
that the frequency domain method specifically reflects baroreflex modulation of the RR in
the region around 0.1 Hz only, due to the decreased spectral coherence observed only in this

frequency band after denervation.

1.4 Objectives and Outline of the Thesis

The first extensively described methods for assessing the BRS were invasive methods involving
bolus intravenous injections of phenylephrine or nitroprusside, namely the Oxford technique
(Smyth et al., 1969) and the Modified Oxford technique (Ebert and Cowley Jr, 1992; Parlow
et al., 1995). Nowadays, the possibility of assess ANS function using spontaneous methods,
turns the BRS assessment into a non-invasive test, more convenient and more widely appli-
cable. Previous comparisons between drug induced and spontaneous BRS estimates evidence
that they are correlated (Davies et al., 1999) and, therefore, spontaneous BRS estimates can

potentially have the same predictive power as the invasive ones.
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Several non-invasive methods have been proposed for BRS assessment, including time domain
and frequency domain methods. Among these, the sequences technique is a frequently used
time domain method for spontaneous BRS estimation, thanks to its ease of implementation
(Di Rienzo et al., 2001). This method is based on the identification of baroreflex sequences
(BSs) and linear regression over the corresponding SBP and RR values. An overall estimate

is obtained by averaging the slope estimates from all BSs identified in a record.

In spite of its simplicity, this technique sometimes fails to provide an estimate for low BRS
patients, depending of the parameters used. As a result, this method is considered by some
authors to have limited value for the BRS evaluation/quantification in ANS dysfunction cases,
which are crucial to identify (Oka et al., 2003). Therefore, critical reviews of the existing

methods and performance improvements that preserve simplicity are well-justified.

Given the popularity of the sequences technique among the spontaneous methods for BRS
assessment, it is surprising that few methodological studies have been reported. The major
part of these studies is simply comparative. For example, the spontaneous and drug-induced
BRS analysis are reported to provide different estimates, but those differences can be either
due to the use of different experimental protocols or due to the use of different BRS estimators.
This fact demands a better comparison between the different BRS estimators and the different
protocols, in order to assess the limitations of the BRS estimators as well as the limitations

of the measured data as representative of the BRS function.

The main purpose of this work is the improvement of time domain methods for spon-
taneous BRS assessment and to contribute to their validation as reliable methods to assess
the autonomic reflex function. In particular, this work aims at establishing more accurate
BRS methods, offering a higher ability to provide a reliable BRS estimate in ANS dys-
function cases. The aspects evaluated in this study include the ability of the methods to
provide a BRS estimate and to discriminate conditions in which the BRS is expected to
be modified. Also, the study of reproducibility and of dispersion in the BRS estimation is
used to compare the methods. An important objective of the thesis is the validation of the
improved methods and to further explore the BRS dependencies with respect to respiration
and sympathetic/parasympathetic ANS effects. This validation is carried out from the
comparison of the improved estimators with time domain BRS estimators developed for the
analysis of drug-induced data and frequency domain estimators developed for the analysis of
spontaneous data, both conventionally more accepted to distinguish the respiratory and the

sympathetic/parasympathetic ANS effects.

1.4.1 Thesis synopsis

The introduction and the motivation for this work is presented in Chapter 1. The functional

aspects of the cardiovascular system are reviewed. In particular, the role of the ANS
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and the baroreceptors reflex in the regulation of the cardiovascular variables is described,
as well as the mechanisms of respiration and parasympathetic/sympathetic ANS effects.
A Dbrief introduction to cardiovascular signals is presented, including their physiological
interpretation. This chapter also comprises the description of the steps carried out for the
evaluation of the baroreflex sensitivity (BRS). In particular, the setup for the acquisition of
the signals is described, as well as the extraction of the beat-to-beat variability series from the
acquired signals. Finally, a short review of existing methods for BRS estimation is presented,

with focus on “spontaneous methods”.

Chapter 2 describes the automatic system developed to extract the representative beat-to-
beat variability from the cardiovascular signals, the first step to perform the BRS quantifica-
tion and explore the BRS dependencies. The performance of the methods is illustrated with

experimental data.

The improvement and validation of the time domain methods for spontaneous BRS assess-
ment is the central contribution of this thesis, being extensively explored in Chapter 3. The
limitations of the traditional time domain BRS analysis are discussed and the improved BRS
analysis is presented and justified. Finally, the traditional and improved BRS analyses are

compared in spontaneous data.

Chapters 4 and 5 are dedicated to the validation of the improved methods and to further
explore BRS dependencies with respect to respiration and sympathetic activity. In Chapter
4, BRS estimators are compared in drug-induced data, obtained by an experimental protocol
involving the drug-stimulation of the sympathetic and parasympathetic ANS activity. In
Chapter 5, the BRS methods are further compared with respect to respiration and sympa-
thetic activity. In particular, the improved time domain BRS estimation is compared with
frequency domain methods, more conventionally accepted to distinguish the respiratory and
the sympathetic/parasympathetic ANS effects. Finally, Chapter 6 summarizes the results

and presents the most important conclusions of this work.

The characteristics of the datasets used in this work are summarized in Table 1.2 and are

further described in the corresponding Chapters/Sections of the thesis.

Table 1.2: Description of the datasets used in this thesis.

Dataset || # files Signals Ref

EuroBaVar || 46: 23 Lying, 23 Standing | ECG, ABP Laude et al. (2004)

SP/NT/PH || 30: 15 Spont, 15 Invasive | ECG, ABP, RESP, MSNA | Gujic et al. (2007)

The EuroBaVar dataset consists of 46 spontaneous recordings acquired from 23 subjects in
Lying and Standing positions. This dataset is available on the internet for the comparison

of BRS estimation procedures and, in this thesis, it was used to compare the BRS methods
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in spontaneous conditions (Chapter 3 and 5).

The SP/NT /PH dataset consists of paired spontaneous and drug-induced recordings and
it was used for the comparison between spontaneous and invasive BRS analysis, described in
Chapter 4. The spontaneous recordings of the SP/NT/PH dataset were also used, together
with the RESP and MSNA signals, to further explore the BRS dependencies with respiration
and sympathetic activity in Chapter 5.

Additionally, one recording from the Bisoprolol dataset was used to illustrate the perfor-
mance of the automatic MSNA burst detector described in Sec. 2.3.2. This recording consists
of the simultanenous acquisition of ECG, ABP, RESP and MSNA signal, after one week of
bisoprolol treatment (Beloka et al., 2009). This recording includes manual annotations of the
localization of the MSNA bursts (Beloka et al., 2009).

The drug induced experiments were carried out in the Erasme University Hospital, Brussels,
Belgium, in the scope of a protocol approved by the Ethics Committee of hospital and with

written consent of the participants.






Chapter 2
Series of beat-to-beat variability

The first step for BRS estimation is the detection of the ABP and the ECG heartbeat reference
marks, to compute the SBP and RR series. For that purpose, a multimodal beat detector
is presented in this chapter. This system is based on independent ABP and ECG analysis
with subsequent fusion of the results, and makes use of a wavelet based ECG beat detector,
previously evaluated by our group (Martinez et al., 2004). The performance of the system is

illustrated with real data.

In this thesis, the BRS analysis was also studied with respect to the respiration (RESP) and
sympathetic activity. In this chapter, the methods used to automatically extract measures
from the RESP and MSNA signals are described. With respect to respiration, the BRS
analysis will be associated with the respiratory frequency of the subject. The BRS estimates
will also be associated with measures of sympathetic activity, measured with the muscle
sympathetic nerve activity — MSNA signal. The quantification of ANS sympathetic activity
is based on burst countings and computation of bursts area, which imply prior identification

of the MSNA bursts. The performance of the methods is illustrated with experimental data.

23
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2.1 Reference marks and series of variability

The localization of a heartbeat is identified by a reference mark, usually chosen as the time of
the most prominent feature of the ECG and ABP signals occurring during the cardiac cycle.
As illustrated in Fig. 2.1, the time of the maximum QRS amplitude, denoted by tqrs(n), is
the mark considered to localize the n'® heartbeat in the ECG signal. Similarly, the time of the
SBP value, denoted by tsgp(n), is the mark referencing the heartbeat in the ABP signal. The
series of values expressing the beat-to-beat variability of the cardiovascular signals are then
obtained from these reference marks. Figure 2.1 also illustrates that the RESP and MSNA
signals do not exhibit variability on a beat-to-beat basis. Therefore, the beat-to-beat RESP
and MSNA series are extracted with the use of the heartbeat reference marks previously
identified in the ECG and/or ABP signals.

This procedure allows to obtain variability series from the acquired ECG, ABP, RESP and

MSNA signals, which are synchronous with each other on a beat-to-beat basis.

ECG (mV)
o

|
137 138 139 140 141 142 143
Record time (sec)

Figure 2.1: Reference marks in the ECG, ABP, RESP and MSNA signals, associated with the
nt" heartbeat. Data showing a long RR interval and evidencing the ECG, ABP and MSNA phase
dependencies. Notation in accordance with Pagani et al. (1997).
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For an adequate cross-analysis of the variability series, it is crucial to reproduce in the
series the phase relationships that the cardiovascular signals exhibit. These dependencies
are evident in Fig. 2.1, with the longer interval between two QRS complexes in the ECG
and following longer interval between two systolic ABP peaks. This is accompanied by a
lower amplitude diastolic ABP value, what triggers a MSNA burst that contributes for the
ABP to return to its normal levels. The notation adopted in this work, and presented in
Fig. 2.1, follows the expected physiology (Mancia and Mark, 1983) and is in accordance with
the studies of Pagani et al. (1997), van de Borne et al. (1997) and Baselli et al. (1988)".

In this work, the ECG, ABP, RESP and MSNA denote sampled signals, i.e., signals function
of a discrete time t;41 = t; + Ay, i > 0 with Ay = F, ! and Fy their sampling frequency.
Accordingly, ty refers the time of the occurrence of E, e.g., tqrs denoting the time of the

occurrence of a QRS complex in the ECG signal.

Figure 2.1 illustrates how the variability series are obtained from the heartbeat reference
marks identified in a recording. The tachogram xzgg(n) is obtained after beat detection
in the ECG signal, as the series of successive time duration between two consecutive QRS

complexes, i.e.,
Trr(n) = tqrs(n + 1) — taqns(n), (2.1)
with #qrs(n) denoting the time of the occurrence of the n'* QRS complex in the ECG signal.

The systogram zggp(n) is the series of the successive systolic/maximum ABP values. Each
Zspp(n) value can be obtained as the maximum ABP value after its corresponding QRS

complex and delimitated by the current heart beat interval, i.e.,

zspp(n) = maz ABP(t) for t € [tqrs(n),tqrs(n + 1)]. (2.2)

The diastogram zpgp(n) is the series of successive diastolic/minimum ABP values. Each
Zpep(n) value can be obtained as the global minimum ABP value in between each consecutive

occurrences of the SBP values tggp(n) and tsgp(n + 1), i.e.,

zpep(n) = min ABP(t) for t € [tsgp(n),tssp(n + 1)]. (2.3)

In this work, additional series of interest are obtained from the ECG and/or the ABP signal,

in particular, the zp;(n), zpr(n) and zprr(n) series, defined as follows.

The Pulse Interval series zp(n) is defined as the series of time duration between two

'Other notations were proposed in the literature. As an example, with respect to the notation in the
figure, deBoer et al. (1987) denotes zspp(n) and zpep(n + 1), Korhonen et al. (1996) denotes zspp(n — 1)
and zppp(n) and Almeida et al. (2006) considers zrr(n + 1).
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consecutive SBP values in the ABP signal, i.e.,

Zp1(n) = tsgp(n + 1) — tspp(n) (2.4)

and it constitutes a surrogate series of the xrgr(n) extracted from the ECG signal.

The Pulse Fluctuation series xpp(n) is defined as
pr(n) = xSBp(n) - ZEDBp(n - 1) (25)
and it represents the beat-to-beat ABP amplitude range.

Finally, the Pulse Transit Time series zppr(n) represents the time taken for the pulse
wave to travel from the aortic valve to the periphery (Smith et al., 1999). Due to the ease of
measurement, Zppr(n) is usually approximated by the time duration between the R wave of

the ECG and the corresponding systolic peak in the ABP signal?, i.e.,

Tppr(n) & tspp(n) — tqrs(n). (2.6)

In this work, a multimodal system is used for the detection of the heartbeat reference marks
in the ECG and ABP signals, taking advantage of the redundancy presented in the ECG
and ABP signals (e.g., the fact that zgg(n) and xp(n) series provide similar information on
the heart function). The system makes use of a method developed for QRS detection in the
ECG signal, previously implemented and validated by our group (Martinez et al., 2004). The

overall multimodal system is described in Sec. 2.2.

Because the RESP signal does not exhibit variability on a beat-to-beat basis, it is usually
analyzed with the use of the heartbeat reference mark tqgrs(n), identified in the ECG signal.
The respirogram zggsp(n) is obtained by sampling the RESP signal at the time of the

occurrence of a QRS complex in the ECG signal, i.e.,
J?RESP(H) — RESP (tQRs(n)) . (2.7)
As previously referred, respiration is reflected by the breathing phase (inspiration and expi-

ration), but also by the respiratory frequency. Section 2.3.1 details the methods to estimate

the respiratory frequency from the xgpsp(n) series.

’By definition, zppr(n) should be measured from a plethysmograph signal collected with the finger-cuff
(periphery), before the correction of the distortion in the finger pressure relative to brachial artery pressure
(see Sec. 1.3.1). In this work, the zppr(n) interval is approximated with the ABP wave after correction, with
no consequences for the purpose that it is used. Some authors consider a more robust zppr(n) estimation,
as the distance from tqrs(n) to the time that the ABP amplitude reaches a fraction of the zpr(n) value,
instead of tspp(n). This definition avoids the introduction of spurious variability in the zppr(n) series due

to the inherent variability of the peak localization in a flat wave (Foo and Lim, 2006).
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The MSNA signal is composed by a succession of bursts, which might occur on a beat-to-
beat basis: in a condition of increased sympathetic activity it is expected a larger number
of bursts, with occurrence of up to 100 bursts per 100 cardiac beats (Wallin, 2007). A
higher sympathetic activity can also evidenced by higher burst area (Halliwill, 2000). This
is why the beat-to-beat series of sympathetic activity, the neurogram zysxa(n), is obtained
by numerical integration of the MSNA signal in the time window corresponding to a cardiac
beat. The MSNA signal is usually integrated between two DBP values because this interval
contains one existing MSNA burst (Halliwill, 2000) and also because sympathetic activity
correlates closely with diastolic but not with systolic pressure (Sundloéf and Wallin, 1978).

The amplitude of the MSNA signal is not calibrated and not restricted to be positive, which
might have effects in the computation of the MSNA area. Therefore, in this work, the

neurogram =ysya(n) is computed as

mMSNA(n) = Ti[/lMc(t)dt’ (2-8)

where T7 is the width of the MSNA integration interval I = [tpgp(n—1),tpep(n)] and M is a
baseline corrected signal obtained from the acquired MSNA signal, as described in Sec. 2.3.2.

Interval MSNA measures able to account for increases/decreases of sympathetic activity in a
recording are also considered (Table 2.1). These measures are based on burst countings and
burst area calculation. For the computation of such measures, the MSNA bursts have to be
identified and the reference mark for the MSNA burst was taken as the time of the burst
peak t,(n). To allow the use of the index n, associated with the n'® heartbeat, the notation
t,(n) = 0 was adopted to denote the absence of a MSNA burst in the n'* beat.

The method developed for MSNA processing is presented in Sec. 2.3.2. The MSNA signal
is first subjected to noise reduction: in this step, M is obtained after baseline correction
and background noise reduction from the acquired MSNA signal. The M, signal is then
used to automatically identify the MSNA bursts and to compute the zysxa(n) series. The
performance of the methods is illustrated with experimental data including manual burst

annotations, in this thesis, referred as bisoprolol recordings (Beloka et al., 2009).

2.2 Multimodal system to identify ECG/ABP reference marks

QRS detection is a well-studied problem and several methodologies have been proposed since
the 80s (Kohler et al., 2002; Sérnmo and Laguna, 2005). The continuous improvement of
signal processing techniques together with the advancement of signal acquisition technology
and the growth of computer resources have allowed the development of QRS detection
methodologies not only to become more efficient/effective but also more robust to noise

sources of physiological and nonphysiological origin.
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Although many beat detection algorithms have been developed for ECG signals, there are
only a few proposed for ABP (Kinias et al., 1981; Antonelli et al., 1994 a,b; Karamanoglu, 1997;
Navakatikyan et al., 2002; Aboy et al., 2005). This is one of the reasons why the ABP beat-
to-beat information is usually obtained either manually or after performing QRS detection
in the ECG signal (Pagani et al., 1997). Specifically, the QRS complex is first identified and
then the maximum and minimum ABP values are evaluated in the time interval between
two consecutive QRS complexes. Obviously, these approaches for ABP processing are highly
dependent on the accuracy of the ECG processing stage.

For the purpose of BRS assessment, the development of an ABP beat detector independent
of the ECG is well-justified, because it is possible to extract from the ABP signal the two
required series to accomplish it. However, in the cases that the ECG is acquired together with
the ABP, a more robust beat detection can be achieved if the ECG and ABP information is
combined. As is illustrated in Fig. 2.1, the ECG and ABP signals show variability on a beat-
to-beat basis. Consequently, the zgg(n) series obtained from the ECG has surrogate series
that can be obtained from the ABP, e.g., the zp;(n) series obtained as the time difference
between two consecutive systolic values. These series provide redundant but independent
measures of the heart rate. Therefore, parallel analysis of the ECG and ABP signal with
following fusion of the results allows a more robust beat detection, taking advantage of
the multimodal acquisition usually carried out for the BRS analysis. As a matter of fact, in
intensive care monitoring, the use of ECG and ABP relationships have already been proposed
for the reduction of ABP false alarms (Zong et al., 2004) and the independent analysis of
multilead ECGs and an invasive ABP waveform has been recently proposed for robust heart
rate estimation (Li et al., 2008).

The fusion of the results obtained from independent ECG and ABP analysis is expected
to minimize the effects of the noise sources. This is because the noise likely to occur in
the ECG and ABP signals are typically uncorrelated, mainly due to the different technical
principles underlying the signals acquisition. For example, it is expected that the ECG signal,
measuring the electrical activity of the heart at the skin level, is more susceptible to electrical
activity of other origin rather than of the heart, such as electrical activity of skeletal muscles
during periods of contraction (electromyographic — EMG noise) and powerline interference?.
The methods for QRS detection are typically based on the analysis of the bandpass filtered
ECG. Such filtering enhances the QRS complex while attenuating the P and T waves as
well as certain types of noise and artifacts. These methods are naturally more susceptible

to noise with frequency range overlapping with that of the QRS complex, such as EMG

30ther examples of contaminated ECG records can be found in Pahlm and Sérnmo (1984), including
artifacts of physiological and of technical origin, such as beat-to-beat changes in QRS morphology, occurrence
of ventricular extrasystoles, drastic changes in QRS amplitude due to technical problems and situations where

P and T waves can be misinterpreted as QRS complexes.
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noise? and electrode motion artifacts. Figure 2.2(a) shows an excerpt of an ECG signal
corrupted with noise of muscular origin and the corresponding ABP signal, evidencing that
with independent systems for ECG and ABP processing, the ABP processing errors due to
errors in ECG processing can be avoided and that beat detection can be enhanced.

(a)

1 T

m 100 | | | | | | |
< 42 43 44 45 46 47 48 49 50

Record time (sec)

Figure 2.2: ECG and ABP signals with (a) EMG noise contamination in the ECG and (b) ABP
signal lost due to automatic calibration of the acquisition device. The excerpt in (a) is from the
EuroBaVar file “B010LC” and in (b) is from the Bisoprolol dataset.

The effects of other types of ECG artifacts can be diminished with the independent ABP
analysis and subsequent fusion of the results. At least, independent ABP analysis would avoid
the repercussion of ECG detection errors in an ECG-dependent method for ABP analysis,
allowing a more robust beat detection. Besides the EMG noise contamination, other noise
sources in the ECG signal include movement artifacts, improper lead contact and improper
lead connection, likely to occur in ambulatory recordings, sleep apnoea studies or intensive

care unit monitoring.

“The frequency range of EMG noise and electrode motion artifacts considerably overlaps the QRS complex
frequency range (Sérnmo and Laguna, 2005), what limits the utility of linear techniques for noise removal.
Recent studies indicate that independent component analysis (ICA) and nonlinear filtering seem to offer
some potential in removing EMG contamination from the ECG (He et al., 2006) and removing the ECG
contamination from the EMG signal (Liang et al., 2005). Typical shapes of EMG spectrum depending on
contraction levels can be found in Jones and Lago (1982). For moderate levels, a narrow peak can often
be detected above the 15 Hz and often also at twice this frequency. With increasing contraction force, the

frequency at which the peaks occur increases up to 40 Hz.
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The noise sources influencing ABP signals are commonly mechanical, including improper cuff
size or position, cuff compression and hand/cuff movement. The finger cuff technology for
ABP acquisition is immune to muscular noise and powerline interference, although being as
susceptible as the ECG to movement artifacts. For both the ECG and the ABP signals,
motion artifacts constitute a problematic situation to deal with, because also in this case
the noise spectral content overlaps that of the ECG/ABP information. However, it is less
probable for the ECG and ABP signals to be simultaneously corrupted, even less with
movement artifacts that have different origins: electrodes movements in the case of the ECG

and finger cuff motion in the case of the ABP.

The difficult problems to deal with in ABP processing are motion artifacts and calibration
episodes®. Figure 2.2(b) presents an ABP excerpt in a calibration episode, showing that the
ABP signal is completely lost. If the calibration mode is switched on, the Finapres device
interrupts the ABP measurement for a few seconds, approximately every 80 heart beats, in
which the ABP signal appears to be a staircase signal with steps around the mean ABP
value of the subject. In these cases, the correction can be resolved with the use of proper
interpolation techniques (Keselbrener and Akselrod, 1995), if possible, keeping the total time-
duration of the corrected signal equal to that of the original signal. Another approach to
deal with this problem is to simply ignore/remove the unwanted parts of the ABP signal
containing artifacts or other random-like physiological disturbances, as it is advised for the
ECG signal (Task Force of ESC & NASPE, 1996).

In addition to a more robust beat detection, an independent system for ECG and ABP anal-
ysis is able to discard possible time delays between them due to the setup of the acquisition
machines, if the time delay exceeds the length of one cardiac beat. This can be verified, e.g.,

from cross-correlation analysis of zgg(n) and zp(n) series.

Multimodal system to detect reference points in ABP and ECG signals

Figure 2.3 outlines the multimodal system for automatic identification of beat-to-beat ECG
and ABP reference marks. The ECG beat detection is performed by means of a wavelet
based methodology previously proposed (Li et al., 1995; Martinez et al., 2004) and its main
features are summarized in Sec. 2.2.1. The ABP beat detection developed in this work is
detailed in Secs. 2.2.2 and 2.2.3. The ECG and ABP beat detection is followed by the time
alignment of the QRS and SBP marks identified by the independent analyses, as described
in Sec. 2.2.4. In this step, the time alignment of the QRS and SBP marks is carried out and

possible misdetections are corrected.

®Examples of contaminated ABP records can be found in Moody and Mark (1996) and Zong et al. (2004).
Other examples can be found in Navakatikyan et al. (2002), including irregular position of the systolic peak,

arrhythmia and a large dicrotic peaks, chaotic ABP waveform with rapid changes of amplitude and interval.
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Figure 2.3: Block diagram schematizing the steps of the system developed to jointly detect reference
points in the ECG and ABP signals. Indexes i and j denote the order numbers of the QRS and
SBP marks obtained by the independent ECG and ABP beat detectors. Index n denotes the order
number of the marks after time alignment of the QRS and SBP marks.

2.2.1 QRS detection in the ECG signal

The QRS detector used in this work is a part of the Wavedet system, a fully automatic
system for ECG waves delineation based on wavelet analysis (Li et al., 1995; Martinez et
al., 2004). This system has as a first step the identification of each QRS complex, taken as
the reference for the location of the cardiac beat, for further delineation of the ECG waves,
namely delimiting the onset/peak/end of each QRS complex, T and P waves, see Fig. 2.4.
This system has been used, e.g., to extract the zzg(n) and zqr(n)® series from the ECG in

order to explore the interactions between their variabilities (Almeida et al., 2006).

ECG M_, QRS L\.JA . ECG

| - | detection | ¢pq(i) | delineation
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Figure 2.4: Block diagram displaying the two major steps of the Wavedet system for ECG waves

detection/delineation.

The beat detector implemented in this system is a detector of singularities on wavelet
transforms of the original signal, combined with posterior rules/conditions adjusted to the
inherent characteristics of the ECG signal. These rules enhance the performance of the

system, avoiding the detection of false positive/negative cardiac beats in this signal.

A prototype wavelet is a fast-decaying oscillating waveform W, which is scaled in amplitude
by a factor of @ € R and translated by a factor of b € R, in order to produce a wavelet ¥,
at the scale a and centred at time b (Mallat, 1999). A wavelet transform (WT) provides a

description of a signal in the time-scale domain, allowing the representation of its temporal

®The zqr(n) is the series of successive distances between the Q wave onset to the T wave offset (QT

interval). It includes the total interval of ventricular depolarization and repolarization of the cardiac muscle.



62 2. SERIES OF BEAT-TO-BEAT VARIABILITY

features at different resolutions according to their frequency content. The discrete wavelet
transform (DWT) is obtained by using discrete values for @ and b. One of the most popular
choices for these parameters follows a dyadic grid in the time-scale plane, by constraining the

parameters values to a = 2™ and b = 2™[, with m € Nand [ € Z.

As illustrated in Fig. 2.5, the shift parameter b adjusts the time resolution whereas the scale
parameter a adjusts the WT frequency content: a larger value of a produces a wider wavelet
and therefore the WT will contain the lower frequencies of the signal. Also, as is possible
to observe from the tiling pattern, smaller scales decrease the time spread but increase the
frequency support. Therefore, higher temporal resolution is achieved at high frequencies

whereas higher frequency resolution is achieved at low frequencies.

ap

a]

Figure 2.5: Time-frequency boxes of a wavelet, defining the resolution tiling of the time-frequency
plane (¢ and w axis, respectively). The variable 5 represents the fundamental /central frequency of ¥.
Adapted from Mallat (1999).

The prototype wavelet used in the Wavedet system corresponds to the derivative of the
convolution of four rectangular pulses, i.e., a lowpass differentiator filter (Li et al., 1995;
Martinez et al.,2004). In the first step/scale, the signal is decomposed into approzimation and
detail, which include the low and the high frequency content of the input signal, respectively.

In the next scale, only the approzimation is considered to be once more decomposed into its
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approrimation and detail. This procedure is repeated m times to achieve the a = 2™ scale.
For its practical use, the dyadic DW'T is implemented as a cascade of FIR filters with varying
cutoff frequencies (Mallat, 1999), presenting a shorter bandwidth (approximately half of the

previous) and a lower central frequency for increasing WT scales (Fig. 2.6(b)).

Figure 2.6 presents the power spectral density of the main ECG waves and the DWT
equivalent frequency responses at the various scales. It can be observed that most of the
ECG power goes up to 50 Hz, the QRS complex energy extends to a frequency of 40 Hz
and the smoother P and T waves have most of their power only up to 10 Hz (Fig. 2.6(a)).
Also, most of the ECG energy lies within scales 2! to 2°, with the QRS complex being
more visible in scales 2! to 2%, whereas the P and T waves are more perceptible in scales 24
and 2° (Fig. 2.6(b)). Therefore, the identification of the QRS complex is carried out across
the scales that maximize its power, avoiding artifacts and other ECG waves that can lead to
misdetections. Finally, it is worthwhile to refer that the DW'T equivalent frequency responses
represented in Fig. 2.6 were obtained assuming a sampling frequency of the signal F; = 250
Hz. For other F§ values, the coefficients of the new set of filters are obtained by resampling

adequately the equivalent filter impulse responses at Fs = 250 Hz (Martinez et al., 2004).
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Figure 2.6: (a) Indicative power spectral density (PSD) of the main ECG waves. Reproduced from
Sérnmo and Laguna (2005). (b) DWT equivalent frequency responses at scales a = 2™, m < 5 for
Fs; = 250 Hz. Reproduced from Martinez et al. (2004).

Figure 2.7 shows simulated waves, similar to those in the ECG signal, together with the
corresponding first five DWT scales. It can be observed that the WT at the scale a is
proportional to the derivative of the filtered signal with the smoothing impulse response at
scale a (Mallat and Zhong, 1992). In this way, signal peaks correspond to WT zero crossings,

whereas maximum /minimum slopes correspond to WT maximum/minimum values.

As illustrated in Figs. 2.7(e-f), the QRS complex is characterized by a pair of values with
opposite polarity and largest amplitude. The fiducial mark of each QRS complex (or any other
ECG wave) is determined as the zero crossing between these WT paired values, evaluated at

scale 2!, which is the WT scale that presents better temporal resolution (see Fig. 2.5).
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Figure 2.7: WT scales of simulated shapes (a—d) and ECG beats (e-g), showing the correspondence
between the characteristic points of the simulated waves and those of their Wam, m < 5 scales.
Shapes: (a) squared, (b) asymmetric, (c) symmetric and (d) QRS like; ECG beats: (e) clean, (f)
with HF noise and (g) with baseline wandering. Adapted from Martinez et al. (2004).

All details of the QRS detection methodology and its evaluation can be found in Li et al.
(1995) and Martinez et al. (2004). The signal is processed in windows of 2!¢ samples, following
the generic steps after the WT computation:

1. Identify candidate peaks by searching across the WT scales 2! to 2* for maximum

modulus peaks exceeding a constant threshold;

2. Identify significant peaks, i.e., 2 or more peaks presented in all scales (starting from
2% and moving to 2' to save computational time), that satisfy an apriori defined time

neighbourhood;

3. Remove isolated peaks in 2' scale, i.e., peaks with distance’ to its closest neighbour

longer than 150 msec;

4. Remove redundant peaks, keeping the pairs of peaks with different polarity that satisfy

apriori defined amplitude and time distance thresholds;

"The 150 msec value corresponds to the maximum QRS complex width (Hamilton and Tompkins, 1986).



2.2. MULTIMODAL SYSTEM TO IDENTIFY ECG/ABP REFERENCE MARKS 65

5. Search for the fiducial mark of the QRS complex in 2! scale, as the zero crossing between

each pair of significant peaks;

6. Remove false positives, if the distance® between 2 consecutive fiducial marks is shorter
than the refractory period of 275 msec. This rule excludes prominent T waves detected

shortly after a QRS complex;

7. Correct false negatives. If there was no detection during the time window of 1.5 times
the median difference between the last 3 consecutive fiducial marks, a search back

procedure in that time window is performed by starting (1) with lower thresholds.

Wavelet based QRS detection restricts the analysis to scales 2! to 24, which include the
highest frequencies of the ECG signal in each scale (Fig. 2.6). Therefore, it is expected that
QRS detection is more sensitive to HF noise, while being more robust to VLF noise sources,
which are more noticeable in WT scales higher than W54 (Fig. 2.7(e-g)).

Typical HF contamination sources of the ECG signal include powerline interference and EMG
noise. The PSD of powerline interference is characterized by a narrow band frequency content
centred around 50/60 Hz which do not overlap the QRS complex indicative frequency band
(Fig. 2.6(a)). However, it is expected that the effects of this type of noise will be present in
scales 2! and 22, which are the scales with frequency content higher than 50 Hz (Fig. 2.7(f)).
Nevertheless, the effects of powerline interference will not be present in scales 2% and 2%,
which contain the frequencies of the signal lower than 50 Hz. Consequently, false positive
detections due to this type of noise are unlikely to occur, because the beat detection obliges
the identification of significant pairs of peaks simultaneously in scales 2! to 2%.

The EMG noise contamination is a more difficult problem to deal with than the powerline
interference. This is because the frequency content of the EMG noise overlaps with that of
the QRS complex, as already pointed out and discussed in Sec. 2.2. Figure 2.8 shows the
WT scales for the EMG contaminated ECG excerpt presented in Fig. 2.2(a). As can be
observed, the EMG noise contamination is present in scales 2 to 2* used for QRS detection

and, therefore, false positive ECG detections can occur.

2.2.2 SBP detection in the ABP signal

In general, QRS detectors make use of the higher frequency content of the QRS complex
with respect to the other ECG waves. Transformations are applied to the ECG in order
to enhance the QRS complex characteristics and finally a threshold-dependent detection
scheme is applied. The ABP beat detectors also rely on similar features of the ABP signal,
by enhancing the anacrotic limb, which contains the higher frequency content with respect
to the other ABP waves.

8The threshold value of 275 msec was set as the minimum distance between 2 consecutive QRS complexes,

which corresponds to a heart rate of 210 bpm, unlikely to occur in human adults.
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Figure 2.8: ECG presenting EMG contamination and its corresponding WT scales a = 2™, m < 4.
The white circles in each WT scale localize the identified significant peaks and the dashed lines
indicate the position of an identified beat. Same data as in Fig. 2.2(a).

The ABP signal exhibits different morphology in comparison to the ECG signal. In particular,
the ABP waves are smoother than the ECG ones and the ABP signal contains typically lower
frequencies than the ECG: the highest frequency segment is the anacrotic limb, which is less
steep than the QRS complex (Fig. 2.1). It has been reported that the ABP frequency content
is typically concentrated below 10 Hz (Aboy et al., 2005), although presenting significant
frequencies up to 20 Hz (Lee and Wei, 1983).

Because the ABP signal presents detectable peaks and contains frequencies in the interval
5-15Hz, considered as the suitable passband for QRS detection (Thakor et al., 1983), it
is reasonable to expect that a beat detector suitable for QRS detection may be functional
in ABP signals. However, it is not straightforward that a QRS detection method can be
successfully applied to the problem of ABP beat identification. The reasons include the shape
dissimilarities of the ECG and ABP waves, in particular, the fact that the anacrotic limb is

less steep than the uprising slope of the QRS complex and the ABP signal is more asymmetric
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than the QRS complex. Also, QRS methodologies usually include thresholds/criteria based
on known durations and distances between the ECG waves (such as the steps in Sec. 2.2.1).
These rules are set to avoid beat misdetections in the ECG signal and may not be suitable

for the same purpose in the ABP signal.

In the literature, few attempts have been presented in which a QRS detector has been adapted
to the purpose of ABP beat detection. For example, the ABP beat detector in Zong et al.
(2003b) is an adaptation of the QRS detector described in Zong et al. (2003a). In both
detectors, the ABP and ECG signals are enhanced using the same filter. Also, the following
processing steps are the same, but using different threshold values, which for the ABP detector
were tuned to an experimental dataset. Both studies were inspired by previously proposed
QRS methodology (Nygards and Sérnmo, 1983; Pan and Tompkins, 1985), also studied by
our group (Gouveia et al., 2000).

For the purpose of SBP detection, either an already existing ABP beat detector can be used
or a QRS detector can be adapted to the characteristics of the ABP signal, e.g., the one
described in Sec. 2.2.1. In this work, the approach that has been considered for ABP beat
detection consists of using the wavelet based QRS detector exactly as described for ECG beat
detection (Sec. 2.2.1). However, to avoid false negative detections and enhance the ABP beat

detection, the ABP signal is first preprocessed with a lowpass differentiator.

The combined use of differentiation and wavelet transforms has already been proposed for
dicrotic notch detection in ABP signals (Antonelli et al., 1994a,b). In those studies, the
Haar, Morlet, Shannon and Spline wavelet functions were tested to process the ABP signal,
and the authors reported that the best results were obtained with a cubic spline wavelet
function. The method described in those studies allows to obtain a low pass version of an
approximation of the ABP first derivative (see Fig.1 from Antonelli et al. (19940)), in which
the dicrotic peak is accentuated with respect to the other ABP waves. In this work, the
cascade use of differentiation and Wavedet beat detector allows to obtain filtered versions of
the approximations of ABP second derivative, because the prototype wavelet used in Wavedet

exhibits derivative characteristics (see Fig. 2.6(b)).

System for beat detection/delineation in the ABP signal

The steps of the ABP beat detector developed in this work are resumed in Fig. 2.9, being
detailed in the following sections. First, the ABP signal is preprocessed using the lowpass
differentiator (LPD) presented in Sec. 2.2.2.2. Beat detection is then carried out with the
QRS detector described in Sec. 2.2.1 and further delineation of the ABP signal in each cardiac
beat is performed, as detailed in Sec. 2.2.2.3. Finally, Sec. 2.2.3 describes the outlier rejection

rules employed to avoid beat misdetections in the ABP signal.

The need of the LPD before ABP beat detection is motivated in Sec. 2.2.2.1. This step
essentially transforms the problem of ABP beat detection to the well-known problem of QRS
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Figure 2.9: Block diagram displaying the steps of the system developed for ABP waves detec-
tion/delineation. LPD stands for lowpass differentiator filter.

detection. The QRS detector described in Sec. 2.2.1 is based on a lowpass approximation of
the first derivative of the input signal. Therefore, the cascade of the LPD and Wavedet beat
detection is comparable to the analysis of an approximation of the second derivative of the
input signal. In this way, the ABP beat detection proposed in this work corresponds to the
problem of searching zero crossings in the ABP second derivative, which correspond to peaks

in the ABP first derivative and inflection points in the ABP signal.

2.2.2.1 SBP detection using the QRS Wavedet detector

The Wavedet beat detector performs successfully when applied directly to ABP signals
exhibiting sharp anacrotic and dicrotic limbs, see Fig. 2.10. In such signals, all the ABP
beats are correctly identified because pairs of significant WT maximum and minimum values
are identified in all WT scales and the following steps are satisfied, so that fiducial marks are

provided.

However, the morphology of ABP waves depends on several variables and less sharp/steep
waves are more likely to occur. Also, ABP waves can exhibit a longer distance between the
maximum and minimum derivative values in each heartbeat, see Fig. 2.11. Although in these
cases, significant WT maximum and minimum values can be still identified, the distance
between them is higher than the temporal threshold of 150 msec (step 3 in Sec. 2.2.1).
Consequently, no fiducial marks are identified because these values are considered as isolated

peaks and removed from the analysis.

Analysis of Wavedet beat detection in ABP signals

The Wavedet beat detector searches across WT scales for significant peaks in order to identify
pairs of values with different polarity. The amplitude thresholds to consider a WT peak as
significant are set regardless if the peak is a maximum or a minimum, being evaluated in
terms of a modulus. This is because the QRS complex is expected to have a symmetric shape,
leading to WT shapes with similar absolute amplitude maximum and minimum values, see
Fig. 2.7(c) and (d). In contrast to the QRS complex, the ABP waveform has an asymmetric
shape, exhibiting a much steeper anacrotic limb than dicrotic limb. Therefore, the WT

of an ABP signal presents prominent maxima and less perceptible minima (Fig. 2.7(b))
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Figure 2.10: ABP waves exhibiting a sharp shape and the corresponding WT scales. The white
circles in each scale localize the identified significant peaks and the dashed lines indicate the position
of an identified beat. Same data as in Fig. 2.2(a).

and, consequently, false negative detection of minima or false labelling as non—significant are

expected to occur.

After the identification of significant peaks, amplitude/temporal conditions are imposed to
avoid misdetections (steps 3 to 7 in Sec. 2.2.1). In particular, the maximum distance between
two consecutive significant peaks of 150 msec allows to remove isolated peaks. For each
significant peak 4, dp,in (i) is defined as the distance of the peak i to its closest neighbour.
Figure 2.12(a) presents an ECG signal with its W1 scale, in which significant minima were
identified due to a steep T wave. As presented in Fig. 2.13(a), these values have 0y, (7) >
150 msec and, therefore, are removed from subsequent analysis. If the T wave would also
present a steep ascending limb, significant maxima would be identified and, together with a
significant minima, would form significant pairs of WT peaks. Consequently, fiducial marks in
the T wave would be provided. However, they would be finally discarded because its distance
to the fiducial mark of the previous QRS complex would be shorter than the refractory period
of 275 msec (step 6 in Sec. 2.2.1).

Figure 2.12(b) presents the ABP signal for the same time window as in Fig. 2.12(a). For
the beats in which the WT minima are not identified (or not labelled as significant), the

dmin (1) values associated with the maxima are naturally longer than 150 msec. When such
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Figure 2.11: ABP waves exhibiting a less sharp shape and the corresponding WT scales. The white
circles in each scale localize the identified significant peaks and the dashed lines indicate the position
of an identified beat. In this recording, only one ABP beat was identified. Same data as in Fig. 2.2(b).

minima are identified, the WT maxima and minima do not satisfy a maximum distance of
150 msec. The histogram in Fig. 2.13(b) shows that more than 80% of the significant peaks
have dpin(7) > 150 msec, being 205 msec in median. As a consequence, these values are

discarded from subsequent analysis and no fiducial mark is provided.

How to use the QRS Wavedet detector in ABP signals

There are several ways to use a QRS detector to ABP signals, depending on the QRS detector
considered. Regarding the Wavedet beat detector, one intuitive way is to revise the proper
WT scales to analyze the ABP signal and tune all the thresholds values to the characteristics
of the ABP waves instead of the ECG ones. Additionally, some of the rules/steps in Sec. 2.2.1

would have to be removed and other rules would have to be introduced.

Regarding the proper scales to analyze the ABP signal, possibly only the scales higher than
Ws2 should be considered to avoid ABP noise with frequency content higher than that of the
anacrotic limb (Figs. 2.6, 2.10 and Fig. 2.11). However, the WT scales a = 2™,m = 1,...,4
considered for QRS detection are also suitable for ABP beat detection, because the highest
frequency of the ABP signal is the anacrotic limb and, therefore, it is presented across these
scales (Figs. 2.10 and Fig. 2.11). Also, other adjustments in the QRS Wavedet detector
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should be considered for its use in ABP signals. In particular,

e to increase the mazimum distance between two consecutive maz/min WT values (step

3 in Sec. 2.2.1) to allow the detection of significant pairs (See Fig. 2.11),

e to lower the threshold to identify a significant minimum WT value (step 1 in Sec. 2.2.1),
to avoid false negatives (See Fig. 2.12(b)),

e to adjust the refractory period (step 6 in Sec. 2.2.1) to avoid the misdetection of dicrotic

peaks as systolic peaks (See Fig. 2.13(b))?.

Another way to apply the Wavedet detector to ABP signals is to find an ABP transformation
to reduce the dissimilarities between the ECG and the ABP signals, in particular, to transform
the asymmetric ABP signal into a succession of prominent waves with a more symmetrical
shape and shorter distance between two corresponding consecutive significant WT peaks.
The fulfilment of such conditions will identify significant WT maxima and minima (with
equal probability) and significant pairs of peaks so that, ultimately, fiducial marks can be

provided.

One of such transformations is the differentiation of the ABP signal. Figure 2.12(c) shows
the differentiated ABP signal in Fig. 2.12(b), accomplished with the lowpass differentiator
(LPD) described in Sec. 2.2.2.2. As can be observed, the LPD enhances the anacrotic limb,
transforming the ABP signal into a symmetric-like signal. Also, an adequate choice for the
LPD bandpass shapes the ABP signal to have similar frequency content to that of the QRS

complex, making the analysis of the WT scales 2! to 24 suitable for the new purpose.

The restriction of the ABP analysis to the time window of the anacrotic limb has also the
advantage of shortening the maximum distance between two consecutive significant WT
peaks. As previously referred, this distance is constrained to be shorter than 150 msec,
which is reported as a value corresponding to the maximum width of a QRS complex (Pan
and Tompkins, 1985; Hamilton and Tompkins, 1986). As presented in Fig. 2.13(c), all beats
exhibit (i) < 150 msec. Although there seems to be no well-established relationship
between the QRS width and the duration of the anacrotic limb in the literature, the duration
of the anacrotic limb was found to be lower than 150 msec for all files considered in this
study. This result is in accordance with the anacrotic limb duration of 128 msec reported in
the study by Zong et al. (2003b). Nevertheless, it is worthwhile to say that the shape of the
ABP waveforms change from subject to subject depending, e.g., on age and clinical condition
(O’Rourke, 2009).

9The refractory period of 275 msec is imposed to avoid the misdetection of T waves as QRS complexes.
The distance between systolic and following dicrotic peaks is higher than the distance between the peaks
of the QRS complex and T wave and, therefore, this threshold value should be increased for ABP signals.

However, dramatic increases of this value might lead to the removal of systolic peaks at high heart rate.
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Figure 2.12: Plot of (a) ECG, (b) ABP and (c) ABP and dagp signals, with corresponding 2! scale.
The white circles localize the WT significant peaks and the black circles identify the final fiducial
marks. Notice that the ABP beats were not identified in (b).
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Figure 2.13: Histograms of 0,,;,(7) for the entire (a) ECG, (b) ABP and (c) dagp signals in Fig.
2.12. The dashed line locates the 150 msec threshold value. Horizontal axis zoomed from —50 to 500.
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2.2.2.2 Lowpass differentiator to preprocess the ABP signal

The lowpass differentiator (LPD) used in this work to preprocess the ABP signal was origi-
nally designed for the purpose of QRS detection in the ECG signal (Laguna et al., 1990). In
this context, its main feature is to enhance the fast amplitude changes in the QRS frequency
band to improve detection. The filter was designed bearing in mind real-time signal processing
and its use in long term recordings. Therefore, low order, linear phase and integer filter
coefficients were some of the restrictions in its design. Since it was not possible to directly
design the LPD with such restrictions, the LPD is implemented as a cascade of two filters: a
differentiator filter and a lowpass filter to reduce the high frequency noise amplified by the
differentiator. The system function of the LPD is given by the product G(z) = G1(2)G2(z)

where

Gi(z)=1—275 (2.9)
and o
1—2"

with z7¥ representing the delay operator z=¥z(n) = x(n—Fk). Figure 2.14 shows the frequency
response of G1(z), Ga2(z) and their product G(z). The first derivative is usually approximated
by the difference between successive samples, i.e., a filter with system function 1 — z~ L.
However, the frequency response of G1(z) approximates that of the true derivative in the
range up to approximately 20 Hz, which is the important frequency range to keep since
frequencies higher than 30 Hz are attenuated by G2(z). Additionally, G1(z) has the advantage

over 1 — 2z~ 1 of further attenuate HF noise.

e
o

2 -G
& G
272 —G |
w0
<]
=
z
= 4.4 b
<]
=
g _
=~ 1.6 D -7 i
R N i - . N
I I - 1 - I N L
0 16 25 31 50 75 100 125

Frequency (Hz)

Figure 2.14: Frequency response of the LPD for Fy = 250 Hz. The filter coefficients for other Fy
values were obtained by interpolation (Martinez et al., 2004).

Figures 2.15 and 2.16 present the approximation of the ABP first derivative (d,gp) obtained
by the LPD and the corresponding WT scales for the same ABP signals in Fig. 2.10 and
Fig. 2.11, respectively. The use of the LPD helps to shape the ABP signal so that its
frequency content resembles to that of the QRS complex (Fig. 2.15(b) and Fig. 2.16(b)).

Even if the frequency content of the anacrotic limb is lower than that of the QRS complex,
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both are the highest frequency content of the ABP and ECG signals, respectively. Therefore,
the scales 2! to 2* considered for QRS detection are also suitable for ABP beat detection
because, similar to the QRS complex, the anacrotic limb is enhanced across all these scales
(Fig. 2.15(b) and Fig. 2.16(b)). The LPD, in particular its differentiation characteristic,
changes the morphology of the anacrotic limb, transforming the ABP signal into a more
symmetric signal. In this way, the scales of the dxpp signal (Wg., m = 1,2,3,4) present
significant maxima and minima with similar amplitude. Additionally, the restriction of the
ABP analysis to the anacrotic limb shortens the distance between the significant maxima

and minima to a value shorter than 150 msec so that, finally, fiducial marks are identified.
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Figure 2.15: Plot of (a) ABP, (b) dagp and (c) dagp WT scales (Wi, m = 1,2,3,4). The grey
circles localize the detected fiducial marks. Same data as in Fig. 2.10.

Figures 2.15 and 2.16 additionally show the beat detection output, illustrating that the use
of the LPD continues to return a successful output for the ABP signals exhibiting sharp
anacrotic and dicrotic limbs (Fig. 2.10), while for the ABP signals exhibiting less sharp

waves the beat detection is now correctly carried out (Fig. 2.11).
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Figure 2.16: Plot of (a) ABP, (b) dagp and (c) dagp WT scales (Wgn, m = 1,2,3,4). The grey
circles localize the detected fiducial marks. Same data as in Fig. 2.11.

2.2.2.3 Beat delineation in ABP signals

The cascade use of the LPD filter and the QRS detector in the ABP signals allows to obtain
fiducial marks that localize the heartbeat. These fiducial marks correspond to the peaks in
the d,gp(t) signal, around which further delineation of the cardiac cycle can be carried out.
In particular, the maximum and minimum ABP values in each beat, respectively, zsgp(n)

and zpgp(n) are obtained.

As referred in Sec. 2.2.1, the QRS detector allows the detection of positive and/or inverted
QRS complexes in the same recording and, therefore, the fiducial marks can be either positive
or negative amplitude, as is illustrated in Fig. 2.17. A positive fiducial mark is associated
with an ABP shape presenting a steeper slope in the anacrotic limb than in the dicrotic limb
(Fig. 2.17(a)). In these cases, zsgp(n) and zpgp(n) are the dygp(t) zero crossings localized

to the right and left of the fiducial mark n, respectively. By other hand, a negative mark
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is associated with an ABP signal presenting a steeper slope in the dicrotic limb than in the
anacrotic limb (Fig. 2.17(b)).

For this case, zsgp(n) and zpgp(n) are identified as the first

and second d,gp(t) zero crossings anterior to the fiducial mark n, respectively.
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Figure 2.17: Tllustrative example of ABP heartbeat delineation for (a) positive and (b) negative

fiducial marks (grey circles). The white and black circles localize respectively the zppp(n) and

zspp(n) values obtained after delineation.

2.2.3 Rejection of outlier SBP marks

Figure 2.18 presents two ABP recordings illustrating the SBP detection in ABP signals with
prominent dicrotic peaks following the systolic peaks and calibration episodes. These artifacts
are likely to produce false positive detections, thus motivating the development/inclusion of

rules able to identify and reject outlier SBP marks.
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Figure 2.18: Delineation in ABP signals exhibiting (a) calibration episodes and (b) prominent
dicrotic peaks following the systolic peak. To notice that in (b) two dicrotic peaks were not identified.
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The SBP outlier rejection rules considered in this work were specifically developed to remove
prominent dicrotic peaks and peaks in calibration episodes, by this order. Other outlier cases
in SBP detection will be corrected together with the output of the QRS detection, in the
step of time alignment of the QRS and SBP marks described in Sec. 2.2.4.

2.2.3.1 Removal of prominent dicrotic peaks

The Wavedet detector includes a refractory period of 275 msec set as the minimum acceptable
distance between two consecutive peaks (step 6 in Sec. 2.2.1). As highlighted in Fig. 2.18(b)
some dicrotic peaks are not detected, because its time distance to the previous systolic peak
is lower than 275 msec. The histograms in Fig. 2.19 present the distribution of the distances
between each detected peak to its closest neighbour before the verification of step 6, for the
ABP signals in Fig. 2.18. In the case of detected prominent peaks (Fig. 2.19(b)), around
90% of the distances are above 275 msec and, therefore, this value is not sufficient to avoid
the detection of prominent dicrotic peaks in ABP signals. However, increasing excessively
the refractory period might lead to the removal of systolic peaks at high heart rates and, by

this reason, alternative rejection rules have to be considered.
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Figure 2.19: Histogram of the distances between each peak to its closest neighbour before the
verification of step 6 of the Wavedet system. The dashed line localizes the threshold value of 275
msec. Same data as in Fig. 2.18(a) and 2.18(b), respectively.

The rejection rules to avoid the detection of prominent dicrotic peaks are conservative rules,
which are based on complementary amplitude and temporal conditions, such as the beat-to-
beat statistics zpp(n) and zp(n) values associated with each cardiac beat n. As illustrated in
Fig. 2.20, the dicrotic peaks are characterized by their shorter zp,(n) and lower zpp(n) values
when compared with the systolic peaks. In practice, the candidate marks to remove are the
ones that present short zp(n) and low xpp(n) values, following the time-variant threshold
described in Sec. 2.2.3.3. These fiducial marks are removed only if their removal does not

introduce an updated zp;(n) identified as long, following the same definition.

The systematic detection of dicrotic peaks might affect the thresholds considered to label

a fiducial mark as long/short and large/small. Therefore, the first marks considered to be
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remove are the marks that with more confidence correspond to prominent dicrotic peaks:
besides short zp;(n) and low zpp(n) values, these marks additionally present long zp (n — 1)
and large zpp(n—1). After threshold update, fiducial marks with short zp;(n) and low zpp(n)

values were then considered to be removed.
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Figure 2.20: ABP delineation in a case of prominent dicrotic peaks (a) before and (d) after outlier
rejection. In (b—c), the xpi(n) and zpp(n) estimates are plotted together with the time-variant
thresholds (horizontal dotted lines) to label a beat as longer/shorter and larger/smaller, respectively.
Same data as in Fig. 2.18(b).

2.2.3.2 Removal of peaks in calibration episodes

As observed in Fig. 2.18(a), ABP calibration episodes are characterized by the lower ampli-
tude variance in comparison with the ABP signal. Therefore, dispersion measures on ABP

amplitude can be used to identify such episodes.

In an early attempt to develop and implement a rule to exclude peaks in calibration episodes,
the series zpp(n) was considered together with a threshold (either constant or time variant, as
the one described in Sec. 2.2.3.3). This approach would serve for signals in which the zpp(n)
is low for the peaks in calibration episodes, such as the example in Fig. 2.21(a). However,

in more challenging signals, such as data acquired in sleep studies (Fig. 2.23(a)), the zpp(n)
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statistics can be similar in smaller variance ABP waves and very steep calibration stairs
occurring in the same recording. Therefore, an alternative approach had to be developed
to avoid, by one hand, removing peaks in ABP waves and, by the other, keeping peaks in

calibration episodes.

In this work, the detection of the calibration episodes was based on the standard deviation
of the ABP amplitudes, s,pp, and it was performed in two steps to save computational load.
Briefly, in the first step the candidate peaks to remove are identified based on a beat-to-beat
variability statistics sapp(n). In the second step, a more refined delineation of the calibration
episode (onset/end) is carried out based on a sample-to-sample statistics s pp(t). Finally, the

peaks to be removed are chosen based on the onset/end of the identified calibration episode.

Figure 2.21 illustrates the two steps to remove fiducial marks in calibration episodes, which
are detailed below. For illustration purposes, Figs. 2.21(a) and 2.21(d) show the peaks before

and after outlier removal.
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Figure 2.21: Plot of (a) ABP and the identified marks, (b) sapp(n) estimates and time windows for
its computation, (c) sapp(t) estimates and sliding window for its computation, (d) ABP and marks
after outlier rejection. In (c), the thick vertical lines delineate the onset/end of the episode. Same
data as in Fig. 2.18(a).
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Identification of the candidate marks to remove — Fig. 2.21(b)

The candidate peaks to remove are the ones that have lower s,pp(n) in comparison with the
remaining peaks, based on the time-variant threshold presented in Sec. 2.2.3.3. The beat-to-
beat s,pp(n) estimates are computed as the standard deviation of the ABP values at the time

window w(n), centred in each mark n with variable width I, = min {zpi(n), zpi(n + 1)}, i.e.,

sapp(n) = std ABP(w(n)) where w(n) € [tsgp(n) — %n,tSBp(n) + %n] (2.11)

Refined delineation of the beginning/end of the calibration episode — Fig. 2.21(c)
The sample-to-sample s,pp(t) values are calculated in the neighbourhood of the candidate
marks t € [tsgp(k1 — 3),tspp (k2 + 3)], where k1 and ky are the order number of the first and
the last mark of a set of consecutive candidates. The s,pp () estimates are computed as the
standard deviation of the ABP values at a sliding time window w(t), centred in each ¢ and

with fixed width [/2 for each calibration episode, i.e.,

sapp(t) = std ABP(w(t)) where w(t) € [t — —, ¢t + =] (2.12)

where | = mean {zp;(k1 — 3), zp1(k1 — 2), xp1(k2 + 1), zp (k2 + 2)}. The onset of the calibra-
tion episode is the first zero crossing of the s,gp(t) derivative (approximated by its successive
differences), after s gp(t) decreasing to values lower than 1 mmHg (dotted line in Fig. 2.21(c)).
From this position, the onset of the episode is corrected taking into account the width of the
time window wy, i.e., % (thick line in Fig. 2.21(c)). The end of the episode is found in the

same way by reversing the time order.

2.2.3.3 Robust thresholds to label a mark

In this work, z(n) is labelled as “long/large” if z(n) exceeds 1.25%(n), where Z(n) is a statistics

based on the moving average of the neighbouring z(n) values, obtained as follows

n+5

. 1
zZ(n) = 3 g z(k), (2.13)
k=n—4
k#{n,n+1}

i.e., mean of 8 neighbour values of z(n) (4 samples before and 4 samples after). Analogously,
z(n) is labelled as “short/small” if z(n) falls below 0.75 Z(n).

The zero coefficients for samples n and n + 1 allow to increase the robustness in teh com-
putation of Z(n), to occurring patterns of shorter/longer and smaller/larger values in x(n),

e.g., smaller/larger zpr(n) due to the detection of dicrotic peaks as systolic peaks.

The computation of Z(n) is more critical if outliers of very small or very large amplitude occur.

As illustrated in Fig. 2.22(a) and 2.22(b), very large amplitude z(n) lead to overestimation of



2.2. MULTIMODAL SYSTEM TO IDENTIFY ECG/ABP REFERENCE MARKS 81

Z(n), so that neighbour values can be mislabelled as “short”. In this work, Z(n) is recomputed
to obtain a robust threshold to larger amplitude outliers Z%(n), if outlier values are found, i.e.,
if z(k) > 1.25%(k) or x(k) < 0.75%(k), for some k. In this case, Z(k) is updated by replacing
the previously identified outliers x(k) by Z(k), obtained by cubic spline interpolation from

the non outlier z(n) values. The Z(n) is updated until one of the following conditions is met:

e the identified outliers are the same in two consecutive steps,

e more than 10% updated higher threshold values are larger than the previous higher

threshold values,

e more than 10% updated lower threshold values are smaller than the previous lower

threshold values.

The two latter conditions were imposed to avoid update errors: if outliers are not included in
the computation of Z(n), it is expected that the updated confidence band [0.75 Z(n), 1.25 Z(n)]
is narrower than the previous. In this work, updated confidence bands wider than the previous
were associated with recordings exhibiting outlier values in the beginning/end of the files,

and the use of spline interpolation lead to misleading estimates.

Figure 2.22(c) shows the same excerpt of data as in Fig. 2.22(a) and 2.22(b), illustrating that
the use of robust thresholds offers a more correct identification of the longer/shorter xp(n)

values, in particular for the beats close to higher amplitude outliers.
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Figure 2.22: Plot of (a) ABP and (b—) zp;(n) series. In (b), #(n) and [0.75 £(n), 1.25 Z(n)] are
represented by the full and dotted lines. The same representation is presented in (c), for 2%(n) and
[0.75 2% (n), 1.25 2% (n)]. In (b—c), the grey dots identify the values inside each confidence band, while
the white and the black dots identify the shorter and larger xpr(n) values, respectively.
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2.2.3.4 TIllustrative example of SBP outlier rejection

Figure 2.23(a) presents the identified marks for an excerpt of data from a sleep Apnoea study,

showing false positives, smaller variance ABP waves and very steep calibration stairs.
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Figure 2.23: (a) Excerpt of ABP signal from a Sleep Apnoea study (Leit001), presenting prominent
dicrotic peaks, a period of decreased ABP variance and very steep stairs in the calibration episode.
(d) Same excerpt after removing the prominent dicrotic peaks and (g) after removing also the marks
in calibration episodes. Figures (b—c) and (e-f) illustrate the evaluated statistics used for removal of

prominent dicrotic peaks and calibration episodes, respectively.
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After beat delineation, the identified dicrotic peaks are removed, based on zp;(n) and xpp(n)
values, as illustrated in Fig. 2.23(b—c) and described in Sec. 2.2.3.1. The output of this step
is presented in Fig. 2.23(d), where it is possible to observe that these false positive marks
are correctly removed. The identified peaks in ABP calibration episodes are then removed,
based on the beat-to-beat s pp(n) and sample-to-sample s gp(t) values, as illustrated in
Fig. 2.23(e-f) and described in Sec. 2.2.3.2. As can be observed in Fig. 2.23(g), this step
removes correctly the marks in calibration episodes, while keeping the fiducial marks the

unexpected lower variance ABP waves.

Figure 2.23(a) also shows that there were systolic peaks of very low variance that were not
identified by the beat detector. These false negative detections could be solved by changing
the threshold in the beat detector, from constant in a window of 2!6 samples (step 1 in
Sec. 2.2.1), e.g., to a constant threshold based on a more robust statistics. In this work, the
missing marks are introduced by interpolation, after the time alignment of the QRS and the
SBP marks, as described in Sec. 2.2.4.

2.2.4 Time alignment of QRS and SBP marks

The fusion of the QRS and SBP marks obtained from the independent ECG and ABP beat
detectors is carried out by time alignment of the marks and correction of eventual time
alignment errors. If there are no misdetections, it is expected that for the n'* cardiac beat,

the condition

tspp(n — 1) < tqrs(n) < tspp(n) < tqrs(n +1) (2.14)

is satisfied, i.e., the identified QRS and SBP marks alternate, each QRS complex matches

one (and only one) SBP value and a SBP value occurs after its corresponding QRS complex.

If misdetections occur, the obtained QRS and SBP marks will not be orderly matched and
have to be time aligned. Figure 2.24 presents two examples of misdetections, showing a
different numbering in the QRS and SBP marks. In Fig. 2.24(a) is possible to observe that
tors(677) matches tspp(673) after the noisy ECG episode. In Fig. 2.24(b), the QRS and SBP
matching is quite obvious, apart of the different QRS and SBP numbering.

Based on the condition (2.14), the i® QRS complex and j* SBP value are said to be time
aligned if tqrs(i) and tspp(j) satisfy

tspp(J — 1) < tqrs(?) < tspp(d) < tqrs(i+ 1), (2.15)

where ¢ and j represent the order number of the QRS and SBP marks obtained by the

independent systems. If the condition (2.15) is not satisfied there is a time alignment error.
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Figure 2.24: Same data as in Fig. 2.2 showing the order number of the identified QRS and SBP
marks by the independent ECG and ABP beat detectors. The QRS and SBP marks in (b) do not
start with the same numbering due to prior misdetections.

For the time alignment verification, the tqrs(7) and tspp(j) values are sorted in ascending
order and renumbered, to maintain the QRS and SBP matching after an eventual noisy
episode. The following examples illustrate how the sorting and renumbering is carried out

and the indexes (i,7) are replaced with a common index n' both QRS and SBP marks.

Figure 2.25 shows the same examples as in Fig. 2.24 after sorting and renumbering the values
tors(?) and tgpp(7). The figure illustrates that in the case of misdetection in the ECG and/or
in the ABP detection systems, the cumulative errors due to previous misdetections will be
avoided and the resulting QRS and SBP values will be still orderly matched after a noisy

interval.

Figure 2.25 presents two distinct situations in which the condition (2.15) is not satisfied, i.e.,

there are time alignment errors. For both cases, the following condition

is satisfied for some n/ and k. This condition indicates that there are more QRS than SBP
marks. In Fig. 2.25(a), there are three false positive detections in the ECG signal identified
for the pairs of values (n', k)=(669,1),(671,2), (675,1). For each misdetection, only one of
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Figure 2.25: Same data as in Fig. 2.24 with the numbers above each mark representing the order
number of the marks after sorting and renumbering.

the tqrs(n'), tors(n’ + 1), ... tors(n’ + k) has to be chosen while removing the remaining
marks, so to keep the time alignment of the QRS and SBP marks. In Fig. 2.25(b) there are
false negative detections in the ABP signal for the pair of values (n’, k)=(60,3) and three
SBP values have to be inserted to satisfy condition (2.14).

For illustration purposes, Fig. 2.26 shows the same data as in Fig. 2.25, with indication of the
marks after correction of the time alignment errors. The procedure for detection/correction

of time alignment errors is following described.

Figure 2.27 schematizes the procedure for the detection of time alignment errors. An error
occurs in one of the two situations: either a tqrs(n’) or a tsgp(n') does not exist. The
distinction between the situation of a false positive (FP) or false negative (FN) in each signal
is performed from the evaluation of the zgg(n') and zp(n') values. For example, Step (2)
corresponds to the detection of a FN in the ECG signal, which is identified by a missing
tors(n') mark and a zgg(n') labelled as long (see Sec. 2.2.3.3 for methods to label a mark).

The remaining situations are detected in a similar way.

The detections/corrections of the time alignment errors are performed by the order indicated
in the flowchart of Fig. 2.27. Step (1) consists of the correction of FN in ABP, due to

calibration episodes. The heartbeat n’ is in an ABP calibration episode if the tggp(n') is
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Figure 2.26: Same data as in Fig. 2.25, showing the QRS and SBP marks after the correction of
time alignment errors.

missing, the zp (n’) is labelled as long and s,gp(n') is labelled as low. The correction due to
calibration episodes is the first one to be carried out because the ABP signal is lost from time
to time, if the calibration mode is switched on, and the occurrence of many of these episodes
might affect the accuracy of the Zyg(n’) labelling as short/long intervals. Next, steps (2)
and (3) consist of the detection of FN in the ECG and ABP signals, respectively. Regarding
step (3), it comprises the detection of FN in the ABP signal due to other reasons besides
the occurrence of calibration episodes (e.g., due to unexpected lower variance in the ABP
amplitudes, see Fig. 2.23). Finally, steps (4) and (5) are related with the detection of FP in
the ECG and ABP signals, respectively.

After the detection of time alignment errors, FN detections are corrected by inserting marks
and FP detections of FP are corrected by removing marks, as detailed ahead. After the
execution of each step of detections/corrections, the tqrs(n') and tsgp(n') are renumbered and
the zrr(n'), Tpi(n') and s,pp(n’) series are updated. Finally, the time alignment condition

(2.14) is verified between the execution of each step.

Correction of FN detections: inserting marks
Missing SBP marks are inserted such that the condition (2.14) is satisfied. A missing tsgp(n)

mark obliges the computation of both fgpp(n) and Zssp(n) values. First, the timing of the



2.2. MULTIMODAL SYSTEM TO IDENTIFY ECG/ABP REFERENCE MARKS

87

!

Is Eq. (1.14)

satisfied for n?
yes no
tars(n) tgpp(n)
does not exist does not exist

xRR(n) Zpy(n) xRR(n) xpi(n)

is long is short is short is long
sapp(n) Sapp(1)

is low is not low
(2) (5) (4) (3) (1)
No FN FP FP FN FN

errors in ECG in ABP in ECG in ABP in ABP

Figure 2.27: Flowchart providing an overall view of the procedure implemented to detect time
alignment errors. The numbers indicate the execution order of the detections/corrections: FP stands
for False Positives and FN stands for False Negatives.

mark is estimated as

fSBP(n) = tqrs(n) + Zppr(n), (2.16)
where Zppr(n) is obtained by cubic spline interpolation from the existing zppr values. After,
the corresponding Zsgp(n) is obtained by cubic spline interpolation from the existing zsgp
values. The missing tsgp(n) marks are inserted by interpolation if the episodes are up to 12

beats length. In the case of the ECG, the procedure is the analogous with

tAQRS(n) = tsgp(n) — Zppr(n). (2.17)

This way of inserting marks maintains the tendency in xppr(n) series and preserves the
cumulative sum of the distances between consecutive peaks, expressed in the Zgzgr(n) and

Zpi(n) series, equal to the overall record time.

Correction of FP detections: removing marks

The correction of false positive assume that the true marks were detected by one of the
beat detection systems. The tspp(n’) marks to be removed are chosen such as their removal
does not introduce an updated zp;(n') value labelled as long. In the case of the ECG, the

procedure is the same.
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2.3 Measures extracted from RESP and MSNA signals

As previously referred, the BRS estimate is computed from the SBP and RR beat-to-beat
series. In this thesis, the BRS analysis was also associated with respiration and sympathetic
activity. The methods used to extract measures from the beat-to-beat RESP and MSNA
series are described in the following sections. With respect to respiration, the BRS analysis
was studied with respect to the respiratory frequency, estimated with the use of the methods
described in Sec. 2.3.1. On the other hand, the quantification of the sympathetic activity in

a recording was based on an automatic detector of MSNA bursts, presented in Sec. 2.3.2.

2.3.1 Estimation of the respiratory frequency

The respiratory signal reflects the breathing phases, inspiration and expiration. The breath-
ing pattern is also characterized by the frequency of the RESP signal (f,), with faster
breathing being reflected in a RESP signal with a higher frequency content. In a stationary
breathing condition, the RESP signal is similar to a sinusoidal of a certain amplitude and
frequency f,, and this value can be estimated from the power spectral density (PSD) function
of either the RESP signal itself or the zgpsp(n) series (see Fig. 2.1).

There are nonparametric and parametric methods for PSD estimation (Manolakis et al.,
2000). The basic idea of parametric methods is that if a z(n) series depends on a finite set
of parameters, then all of its statistical properties can be expressed in terms of the model,
including its autocorrelation and PSD function. Additionally, parametric methods for PSD
estimation allow to automatically identify the central frequency of each spectral component
(Zetterberg, 1969). This property facilitates the estimation of the respiratory frequency in a
recording once, in stationary breathing conditions, the RESP signal and the zgpsp(n) series

exhibit one dominant frequency.

In this work, the estimation of the respiratory frequency f, was carried out from the PSD
of the respirogram zppsp(n), which was computed from autoregressive (AR) modelling. The

AR order p model of a series z(n) can be written as

p
z(n) ==Y ap(k)z(n — k) + b(0)w(n), (2.18)
k=1

where w(n) is a zero-mean stationary white noise process with unit variance, and the PSD

function of an AR model is estimated by



2.3. MEASURES EXTRACTED FROM RESP AND MSNA SIGNALS &9

5 (2.19)

P
‘1 + Y ap(k)e—Tkw
k=1

where d,(1),d,(2), ..., d,(p) and b(0) are the estimates of the model coefficients in Eq. (2.18).
In this work, the coefficients of the model were estimated by solving the Yule-Walker equations

via Levinson-Durbin algorithm (Marple, 1987).

If the model order p is not known a priori, the optimal model order can be estimated using
an automatic criteria, such as the Akaike Information Criterion (Akaike, 1974). In the case
of stationary respiration, only one spectral component will be exhibit in the PSD of the
Zrpsp(n) series. Therefore, a fixed model order of p = 2 can be used. In this work, p = 4 was
used to avoid errors in f, estimation due to, e.g., the presence of two breathing frequencies
in the same recording (non stationary respiratory frequency). The respiratory frequency is

then taken as the central frequency of the component that exhibits the largest variance.

Figure 2.28 shows an excerpt of the Zgpsp(n) obtained from a 5 minute recordings together

with the corresponding PSD, computed from AR modelling and p = 4. It is possible to
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Figure 2.28: RESP series xrrsp(n) (a), spectra (b) and correspondent zero-pole representation (c).
Spectra computed from AR modelling, Yule-Walker equations and p = 4. The time axis in (a) was
obtained by multiplication of the sample number by RR mean. Frequency axis in (b) was normalized
by RR mean, i.e., f = 2 -1
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observe in Fig. 2.28(b-c) that one of the spectral components exhibits much higher variance
than the other (in linear scale, the component of lowest variance is not perceptible). The
central frequency of the largest variance component is f, = 0.2 Hz, and is taken as the
respiratory frequency for that recording. Figure 2.28(c) shows the zero-pole representation in
the unit circle, illustrating that the poles associated with f,. are closer to the unit circle, thus,
indicating a sharp component in the spectra. This evidences that the respiratory frequency

is stable along the recording.

One possible drawback of estimating the respiratory frequency from the zgpsp(n) series is
that, unlike the RESP signal, it exhibits non uniform sampling and its values are indexed
to the heartbeat occurrence. However, as the PSD estimation method assumes that the
discrete series are wide-sense stationary, the frequency axis in the spectra can be normalized
assuming a uniform sampling period equal to the mean RR interval, i.e., the mean duration
of a heartbeat. The approximation Fy =~ 1/Zgzg for the sampling frequency of the xgrgsp(n)
series allows to estimate a respiratory frequency from the zrpsp(n) series similar to that of

the RESP signal, in stationary recordings.

2.3.2 Measures extracted from the MSNA signal

As already referred, the MSNA signal is characterized by synchronous neuronal discharges
separated by periods of neural silence, see Fig. 2.29(a), and increases in sympathetic activity
can be evidenced by greater MSNA burst occurrence and/or increased MSNA burst intensity,
see Fig. 2.29(b).
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Figure 2.29: ECG and MSNA signals from one subject in (a) spontaneous and in (b) increased

sympathetic activity condition by a nitroprusside bolus. Same data as in Fig. 1.5.

In this work, the sympathetic activity in a recording was quantified with measures based on
bursts counting (N') and bursts area (A). As summarized in Table 2.1, the burst incidence
and burst frequency are computed as the number of MSNA bursts normalized by the number

of heart beats (M) and the recording length in min (A7), respectively. The burst incidence
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determines the number of multiunit sympathetic discharge over a given number of cardiac
cycles, and provides an index of sympathetic activity that is independent of changes in heart
rate (Wallin, 2007). The burst intensity is calculated by integrating the MSNA signal over
the entire experimental recording and, analogously to N, the area A is normalized for either

the number of heart beats (Ayg) or the recording length in min (Ar).

Table 2.1: Summary of MSNA variables evaluated for each recording (HB stands for heartbeat).

Var Description Units

Nus  burst incidence  # bursts/100HB
Ni  burst frequency # bursts/min
Agr  burst intensity — area/100HB

Ar  burst intensity  area/min

The estimation of the variables Nys and N+ in Table 2.1 requires the counting of the bursts
and, indirectly their detection. Additionally, the burst delineation is required to estimate
the variables Ayg and Ar. Traditionally, the detection of MSNA bursts is done by careful
visual inspection of a trained observer (van de Borne et al., 1997; Beloka et al., 2009). Semi-
automatic algorithms have been proposed for the same purpose, with a MSNA burst being
recognized on the basis of an apriori user-defined voltage (Pagani et al., 1997) and time
thresholds (Hamner and Taylor, 2001). In particular, the algorithm proposed by Hamner
and Taylor (2001) requires the apriori user definition of burst latency with respect to the
QRS complex in the ECG signal to obtain a search time window for the MSNA burst.

The method developed in this work for automatic MSNA burst identification, was inspired
in the description of a MSNA burst provided in the work of Hamner and Taylor (2001):

“The generally accepted criteria for burst identification are based mainly on morphology to
discriminate sympathetic activity from background noise (i.e., a relatively gradual rise followed
by a similarly sloped fall with a peak amplitude at least two times greater than random

fluctuations).”

Figure 2.30 outlines the method developed from MSNA burst detection and delineation. The
MSNA signal is first subjected to noise reduction: in this step, M, is obtained after baseline
correction and background noise reduction from the acquired MSNA signal. The M, signal

is then used to automatically identify the MSNA bursts and to compute the xysna(n) series.

MSNA Noise M LF Burst detection M C

. e . .
reduction and delineation

Figure 2.30: Block diagram displaying the two major steps of the method developed for MSNA
burst detection and delineation.
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The stages of the method are also illustrated in Fig. 2.31: from the acquired MSNA signal
(a), the My signal is obtained by noise reduction, i.e., removal of the zero nerve activity
level and the baseline. Once the MSNA bursts are identified and delineated (b), the sections
of signal between the offset of bursts and the onset of the next burst are set to zero, providing
a clean M, signal for further analysis (¢). The xysya(n) beat-to-beat series and the interval

measures given in Table 2.1 are then estimated.
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Figure 2.31: MSNA processing steps illustrated with experimental data. The black circles localize
the peak of the identified burst, while the white circles delimitate the beginning/end of each burst.
Same data as in Fig. 2.29.

2.3.2.1 Noise reduction

Before burst detection and delineation, the MSNA is subjected to noise removal, in particular,

removal of the zero nerve activity and baseline.

Estimation and removal of zero nerve activity level

In manual burst detection, the background noise (or zero nerve activity level) is usually
determined from the mean voltage during a period of neural silence between sympathetic
bursts. As an example, Halliwill (2000) found manually in each recording a period in which
sympathetic bursts were absent for >5 sec and used it to estimate the zero nerve activity
level. In automatic burst identification, algorithms based on apriori user-defined voltage have

been proposed (Pagani et al., 1997).

However, to determine periods of neural silence, the MSNA bursts have to de identified,
what is by turn, the purpose of the method. Nevertheless, the zero nerve activity level can

be estimated by means of signal processing techniques. As a matter of fact, the zero nerve
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activity level corresponds to the HF content of the MSNA signal and, therefore, it can be
obtained by means of high pass filtering of the MSNA signal. The frequency response of
the filter used is represented in Figure 2.32. The cutoff frequency of 4 Hz was chosen in
accordance with the work of Hamner and Taylor (2001) and the non constant delay of the
filter was corrected by processing the input data in both the forward and reverse directions,
such as the output of these operations has zero-phase distortion and double the filter order

(Sérnmo and Laguna, 2005).
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Figure 2.32: Frequency response of the filter used for the estimation of the zero nerve activity level:
Butterworth high pass filter with order 7 and cutoff frequency of 4 Hz (F;=1000Hz).

Figure 2.33 shows the output of the high-pass filter which represents the zero nerve activity
level Myp. The background noise free signal M, vr is obtained by subtraction of the My
to the original MSNA signal.
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Figure 2.33: Example of MSNA noise reduction due to background noise. Same data as in Fig. 2.31.
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Estimation and removal of MSNA baseline

The MSNA baseline corresponds to the very low frequency content of the MSNA signal and,
therefore, it could be obtained by means of low pass filtering of the MSNA signal. The work
of Hamner and Taylor (2001) proposes the cutoff frequency of 0.05 Hz for signals sampled at
500 Hz and no further details on the type of the filter are provided. However, the choice of a
suitable cutoff frequency is quite difficult, because it is dependent on the sympathetic activity
present in the recording. Figure 2.34 shows the Mg,y signal superimposing a baseline
obtained by filtering, illustrating that, in a condition of increased sympathetic activity, the

baseline estimated by low pass filtering overestimates the baseline of the signal.
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Figure 2.34: My r,vrr signal superimposing the baseline estimated by filtering: Butterworth low
pass filter with order 7 and cutoff frequency of 0.05 Hz (F;—100Hz). Same data as in Fig. 2.29.

An alternative approach, independent of the amount of sympathetic activity in a recording,
is here presented. The method is based on the observation that after the removal of the

background noise, the minimum values of the M. yrr can be used to estimate the baseline.

As illustrated in Fig. 2.35, the identification of the local minimum in My v is performed
by searching the zero crossings in its first derivative. As the Mz v is @ smooth signal, the
first derivative was approximated by its successive differences. The baseline My is then
obtained by linear interpolation using the identified minimum values as the anchor points.

The signal M, is finally obtained by subtracting Myrr to Mpyp.vre.

2.3.2.2 Burst detection and delineation

After noise reduction, the peaks of the burst candidates are identified between each pair of
the Myp,vor local minimums, previously identified for the purpose of baseline removal (see
Fig. 2.35). From the candidates, only the significant bursts are chosen. MSNA bursts are
characterized by a gradual rise and fall that is usually constrained by a cardiac cycle and

exhibits at least twice the amplitude of random fluctuations (Hamner and Taylor, 2001).

The amplitude of random fluctuations was quantified from the standard deviation of the
estimated zero nerve activity level Myp. The cutoff threshold for the identification of

significant peaks was considered to be s, where v represents a constant value and s estimates
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the My standard deviation. To achieve a more robust estimate for s, only the Myp negative
values were considered and s is computed as the square root of the mean square difference of
each negative amplitude to zero (the expected value of the noise). This procedure avoids bias
introduced by the positive My values, which are more likely to be associated with MSNA
bursts than the negative ones. In this work, v = 3 was considered, because 3s includes more

than 99% of the distribution of the noise values assuming a normal distribution.

After the identification of the significant candidates, as is illustrated in Fig. 2.36, the burst
onset and offset are delineated as the nearest local minima on either side of the peak of the

detected burst in the second derivative of M.
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Figure 2.35: Example of MSNA noise reduction due to baseline. Same data as in Fig. 2.31.
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Figure 2.36: Illustrative example of the MSNA burst detection and delineation. The black circles
localize the peak of the identified burst, while the white circles delimitate the beginning/end of each
burst. Same data as in Fig. 2.31.
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2.3.2.3 Illustrative examples

The performance of the MSNA burst detector is illustrated with experimental data that
included manual burst annotations in bisoprolol recordings (Beloka et al., 2009). As is
illustrated in Fig. 2.37 for one MSNA recording, the automatic MSNA burst detector identifies

most of the manually annotated burst, except the bursts exhibiting very low amplitudes.

80 82 84 86 88 920 92 94 96 98 100
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Figure 2.37: MSNA signal showing marks provided by manual burst identification (black stars) and
by automatic burst detection/delineation (black circles, v = 3). The white circles delimitate the
beginning/end of each burst provided by the automatic delineation.

2.4 Concluding remarks

In this chapter, the methods used to extract series of beat-to-beat variability from the

acquired signals are described. By one hand, the series extracted from the ABP and ECG



2.4. CONCLUDING REMARKS 97

signals (SBP and RR series, respectively) are used to compute the BRS. By the other
hand, the series extracted from the RESP and MSNA signals are used to evaluate the BRS

interactions with respiration and ANS sympathetic activity.

The parallel ECG and ABP analysis with following fusion of the results allows a more robust
beat detection. As a matter of fact, this approach is expected to minimize the effects of
the noise sources, because those likely to occur in the ECG and ABP signals are typically
uncorrelated. Also, the development of methods to process the ABP signal independently of
the ECG is well-justified in the scope of this work, because it is possible to extract from the
ABP signal the two beat-to-beat series required to compute a BRS estimate. The performance
of the multimodal beat detector is illustrated with experimental data including periods of

EMG noise contamination in the ECG and ABP calibration episodes.

The ECG beat detection is carried out with the Wavedet beat detector, i.e., the QRS detector
previously implemented and evaluated by our group (Martinez et al., 2004). This detector
is based on the Wavelet multiscale decomposition of the input signal and processing of the
wavelet scales that exhibit most of the QRS energy. This system was validated using several
standard annotated databases and has been shown to be robust to noise non overlapping
the QRS complex frequency band, outperforming other algorithms (Martinez et al., 2004).
The ABP beat detection is carried out with the Wavedet beat detector, as well. However,
because the ABP exhibits different frequency content in comparison with the ECG, the ABP
signal is first preprocessed with a LPD filter. The use of the Wavedet beat detector in ABP
signals highlights the properties of this system as a versatile tool for peak detection. Finally,
the fusion of the QRS and SBP marks obtained from the independent ECG and ABP beat
detectors is carried out by time alignment of the marks and correction of eventual time

alignment errors.

In this work, the interactions between the BRS analysis (carried out from the SBP and
RR series) were also explored with respect to respiration and ANS sympathetic activity.
On one hand, the BRS analysis is associated with the respiratory frequency of the subject.
The RESP frequency is estimated from parametric spectral analysis of the RESP beat-to-
beat series, which allows to automatically identify the central frequency of each spectral
component of the series. On the other hand, the BRS analysis is associated with measures of
ANS sympathetic activity. The quantification of the sympathetic activity is based on burst
countings and computation of bursts area, which imply prior identification of the MSNA
bursts. The MSNA signal is first subjected to noise reduction and then the bursts are
identified with a constant threshold based on the MSNA background noise. The performance
of the methods is illustrated with experimental data, showing that the automatic MSNA

burst detector identifies most of the manually annotated bursts.






Chapter 3

Time Domain BRS Estimation from

Spontaneous Data

This chapter comprises the description and the study of the time domain methods for

spontaneous BRS assessment.

The limitations of the well established sequences technique are discussed. In a first study,
a sensitivity analysis on the thresholds used for the identification of baroreflex sequences is
carried out, what motivated and justified the use of the improved BRS analysis proposed in

this thesis (the events technique).

The traditional BRS analysis by the sequences technique and the improved BRS analysis by
the events technique are then compared in spontaneous data from the EuroBaVar dataset.
It is discussed the ability of the methods to provide a BRS estimate and to distinguish
conditions in which the BRS is expected to be changed, as well as the reproducibility and
the dispersion in the BRS analysis. The sequences and events technique estimates are finally

compared with other time domain methods.

99
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3.1 Motivation to improve time domain BRS assessment

The sequences technique is a frequently used time domain method for spontaneous BRS
estimation, thanks to its ease of interpretation and implementation (Di Rienzo et al., 2001).
This method is based on the identification of baroreflex sequences (BSs) and linear regression
over the corresponding SBP and RR values. An overall estimate is obtained by averaging the
slope estimates from all BSs identified in a record. In spite of its simplicity, this technique fails
to provide an estimate for low BRS patients, depending of the parameters used. As a result,
this method is considered by some authors to have limited value for the BRS quantification
in autonomic dysfunction cases (Oka et al., 2003), which are the crucial cases to identify.

Therefore, performance improvements that preserve simplicity are needed.

The sequences technique was first used in sinoaortic denervated cats (Di Rienzo et al., 1985;
Bertineri et al., 1988). The spontaneous BSs appeared to reflect baroreflex mechanisms
as their number (and mean slope) was drastically reduced after denervation. Studies in
humans confirmed the existence of such BSs and reported similar results in subjects with
poor BRS function (Frattola et al., 1997). In practice, several thresholds are imposed for BSs
identification and no consensual opinion about their values can be found in the literature.
Slight modifications in threshold values can change the number of BSs and the BRS estimate
(Davies et al., 2001), and the elimination of certain thresholds has also been suggested (Davies
et al., 2001; Westerhof et al., 2004). Moreover, the need of establish reference threshold
values is evident, because the threshold values originally derived for cats are most likely non-
optimal for humans. Literature studies argue that changes should be made to the sequences
technique, to optimize its validity in conscious humans, particularly when applied to patients
with attenuated BRS (Davies et al., 2001) and also to establish reference BRS values to

evaluate impaired baroreflex function in individual patients (Tank et al., 2000).

In normal cases, the overall number of beats in BSs is approximately one fourth of the total
number of beats (Bertineri et al., 1988) and, consequently, a large part of the acquired data is
discarded from BRS analysis. Also, more than half of the BSs have 3-beat length (Parlow et
al., 1995), implying that the BRS estimate is more likely to be influenced by outlier values. In
cases of BRS dysfunction, the number of BSs is further reduced so that the slope estimate will
exhibit higher dispersion. In cases of BSs being unavailable, the BRS cannot be quantified.
The validity of BRS estimates obtained from short and few segments remains to be addressed
(Laude et al., 2004).

The sequences technique already benefits from its use in many clinical trials and in many
experimental settings (Parati et al., 2000): the full description of the sequences technique was
first published in the work of Bertineri et al. (1988) and since then it has been used in many
clinical studies in baroreflex field of research. However, given the popularity of this method

among the spontaneous methods for BRS assessment, it is surprising that few methodological
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studies have been reported. The major part of these studies are simply comparisons of the
BRS estimates obtained by different methods (Laude et al., 2004) or the use of different
thresholds (Davies et al., 2001), and studies of BRS reproducibility (Davies et al., 1999),

either using datasets of recordings acquired from normal subjects or patients.

In this work, reference threshold values are established to identify alternative baroreflex
related segments, here referred as baroreflex events (BEs). The use of BEs is introduced
as an alternative to BSs, to improve time domain BRS assessment in normal conditions
and to allow its quantification in cases of BS absence. Also, alternative slope estimators
combined with BEs are proposed to increase robustness, to increase reproducibility and to
decrease dispersion in the BRS estimation. The joint use of BEs and global slope estimators

constitutes the events technique.

The BRS estimation methods are presented in Sec. 3.3. In this work, there was an effort to
formalize the methods for time domain BRS assessment and to explain the differences between
the BRS estimators and the data transformations involved. The illustrative comparison of
the different BRS methods is also provided. The sensitivity analysis on the thresholds used
for BSs identification is the first study carried out (Sec. 3.4). The results obtained further
motivate and justify the use of the BEs instead of the BSs, for an improved BRS analysis. The
novel methods are then compared to the traditional methods for BRS estimation in Sec. 3.5.
The BRS methods were compared regarding their ability to provide a BRS estimate able to
distinguish conditions in which the BRS is expected to be changed (e.g. lying and standing
positions). Besides the quantification of the BRS reproducibility with the novel methods,
the time domain BRS estimators are additionally studied with respect to dispersion, which
is usually disregarded in BRS analysis. Finally, the results obtained are discussed in Sec. 3.6

and the main conclusions are resumed in Sec. 3.7.

3.2 Experimental protocol and data: the EuroBaVar dataset

The EuroBaVar dataset consists of spontaneous recordings, available for the comparison of

BRS estimation procedures.

This dataset has 46 paired records of spontaneous ECG and ABP recordings, acquired from
21 subjects in lying and standing positions (Laude et al., 2004). The data is provided in
10 minute records of ABP and ECG signals, acquired at 500 Hz. The data is additionally
provided on a beat-to-beat basis, with the length of the RR and SBP series ranging from 553
to 1218 beats. For illustration purposes, Fig. 2.2 shows an excerpt of one of the files included
in the dataset.

The recordings were acquired in stationary conditions: quiet room, constant temperature and

luminosity; only one person in the room besides the subject; disturbance, such as noise or
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entry in the room, was avoided. Fach subject was first recorded in standing position and the
recording started after 5 min standing. After followed the supine position and the recording
started after 5 min supine. In between conditions, there was a 10 min rest period, when the
ABP finger cuff was removed and patients could speak. The ABP and ECG signals were

acquired following the acquisition protocol presented in Sec. 1.3.1.

The EuroBaVar dataset is non-homogenous: one subject is diabetic with evident cardiac
autonomic neuropathy and another is recently heart transplanted, both classified as cardiac
baroreflex failure patients by the Ewing score. The remaining 19 subjects are 12 normotensive
outpatients, 1 untreated hypertensive, 2 treated hypertensive and 4 healthy volunteers. In
addition, replica records of two subjects were incorporated to test reproducibility. There is

no information about the match of each subject to its corresponding records.

3.3 The Sequences and the Events techniques

The time domain methods for BRS assessment are based on 2 steps: first the identification
of baroreflex related segments (sequences or events) and then BRS estimation from SBP-RR
slope. The sequences technique is based on BSs identification and on the average of the
slopes computed at each BS (Di Rienzo et al., 2001), here referred as local approach for slope
estimation. The events technique, proposed as an alternative to the sequences technique to
improve BRS assessment, introduces the baroreflex events (BEs) and the use of global/total

slope estimators.

The BRS analysis is performed over the SBP and RR series, denoted here as zsgp(n) and
Zrr(n) respectively, with n = 1,2,..., Np,4, indicating the beat number. The BRS analysis
is carried out considering the series with one beat lag, i.e., zggp(n — 7) is paired with zgg(n)
for 7 = 1. The lag 7 = 1 is in accordance with the baroreflex physiology (see SBP and RR
phase dependencies in Sec. 2.1 and Fig. 2.1) and with the SBP and RR lag considered in
previous BRS studies (Di Rienzo et al., 2001).

In this section, the methods for BRS estimation are illustrated with the EuroBaVar “A001LB”
file, using the first N,,q,=512 beats.

3.3.1 The Sequences technique

A diversity of threshold values is used in the literature for BS identification (Davies et al.
(2001) and references therein included). In general, the £ BS must have a minimum length
in beats (Ng > Nyn), with the composing beats satisfying a minimum SBP and RR beat-
to-beat changes in the same direction (A°" > APPP and AF® > AR% ), and a minimum

correlation between the SBP and RR values in BSs (75 > 7). In this work, the threshold
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SBP
min

RR

values A = 1 mmHg, A = 5 msec and 7, = 0.8 were chosen as referred by group

that originally proposed the sequences technique for BRS estimation (Di Rienzo et al., 2001).

Figure 3.1 displays zsgp(n — 1) and zgg(n) in BSs identified in a record, illustrating that BSs
are simultaneous SBP and RR ramps over time and that BSs are short segments, typically

with length up to 5 beats.
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Figure 3.1: Values of zsgp(n — 1) and zrr(n) for BS identified in the EuroBaVar “A001LB” file.

After SBP and RR segmentation, each identified BSg, k = 1,2,..., K is characterized by Ng

pairs of values (x¥,,,x%.) beginning at index ny, that is,

X];BP = |:xSBP(nk - 1) $SBP(nk) $SBP(nk + Nj, — 2)]
XIICKR = [xRR(nk) zre(ng +1) - zre(ng + N — 1)] .

The local approach provides a local BRS measure by, associated to the k** baroreflex related

segment, assuming the linear regression

ko =bext iy, e, E=1,2,... K (3.1)
where €, is a vector of residuals and 1y, is a vector of ones with length Nj. The parameters
br and ¢ are estimated by ordinary least squares (OLS) minimization. Finally, an overall

estimator is obtained from the mean of the K local slopes

1 K
Bio= % ]; by.. (3.2)

However, the arithmetic average of the local slopes may not be the most suitable measure
to describe the location of the distribution of the BRS slopes. As a matter of fact, as
is illustrated in Fig. 3.2, the distribution of by is not symmetric and presents a positive
skewness, so evidencing the inadequacy of the mean to obtain an overall BRS slope. Because
of the positive skewness, the By o value is affected by the by, values in the longer tail of
the distribution and tends to provide a higher value than other robust measures of location
(Wilcox, 2005).
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Figure 3.2: Dispersion diagram of the SBP and RR range around the mean SBP and RR value in
each BS, represented by the 0 value, together with the regression lines with slope by and passing
through the origin. (b) Histogram of the estimated local slopes with the dashed line locating the
average slope Z’S’L,o. Same data as in Fig. 3.1.

3.3.2 The Events technique

As previously referred, the events technique is based on baroreflex events (BEs), instead of

BSs, and it makes use of global/total slope estimators, instead of a local estimator.

In this section, the analysis of the methods is illustrated simultaneously for BSs and BEs,
in order to provide an illustrative comparison of the different BRS estimators and the data

transformations involved.

3.3.2.1 Identification of Baroreflex Events

The new criterion for SBP-RR segmentation consists of the identification of segments that
exhibit positive and high correlation between the zggp(n — 1) and zgg(n) values. That is,
for the identification of each baroreflex event BEy only the thresholds Ny, and 7, are

enforced, as pointed out in Table 3.1.

Table 3.1: Lower thresholds values for BS and BE identification.

Threshold (Units) || BS | BE

Npin (beats) 3 3

AZPP (mmHg) 1 -
AR (msec) || 5 -
Tmin (no units) || 0.8 | 0.8
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Since no minimum values for Ay®" and AR® are required, the SBP and RR values in a BEs
may not be consecutively increasing or decreasing on a beat-to-beat basis as in BSs. Instead,
by only imposing the r,,;, threshold, BEs are characterized by having a similar xggp(n — 1)
and zgg(n) trend over time. Therefore, for such clear conceptual differences and potentially
different clinical information between BSs and BEs, it is reasonable to use a different name

for the new segments.

Figure 3.3 displays the SBP and RR values in BSs and BEs identified in a record, illustrating
that BEs are not necessarily simultaneous zggp(n — 1) and zgg(n) ramps over time, as BSs.
Instead, BEs are segments characterized by having similar zggp(n — 1) and zgg(n) trend over
time. Also, it can be observed that BEs usually achieve a longer length than BSs and that
the SBP and RR values in BEs exhibit higher dispersion as a consequence of less restrictive

identification thresholds.
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Figure 3.3: Values of zggp(n — 1) and zgg(n) for the identified (a) BS and (b) BE in the EuroBaVar
“A001LB” file. There are 171 beats in 52 BSs and 448 beats in 57 BEs, in the first 512 beats of the
record. Thresholds for BS and BE identification given in Table 3.1.

3.3.2.2 Global approach for slope estimation

The global approach is an alternative method for the BRS computation that has been used by
our group. This approach is based on a global regression slope over the local mean detrended

baroreflex related segments (Gouveia et al., 2005).

After the segments identification, the corresponding pairs of values can be represented in a
dispersion diagram with x*_, displayed against x£ . as in Fig. 3.4(a-b). The k** local mean

detrended segment (d%,,,d% ) is obtained from the original segment (x%,,,x%.) by
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df =xb — 781y, 9= {SBP,RR} (3.3)

where i§ represents the mean value of xg, ie.,

o= < S0, (3.4)

A global BRS measure Bg o can be considered as the slope obtained from the SBP and RR

values in the identified segments, after local mean detrending, i.e.,

drr = BG,O dsppr + €, (3-5)

where dy = [d}, --- dk] are vectors concatenating the ¥ = {SBP,RR} detrended values and

€ is a vector of residuals. The parameter Bg o is estimated by OLS minimization.

Regarding the local mean detrend, since the mean value (z%,,, Z% ) is naturally not the same
for all K segments, each segment is moved to the origin by a different factor. Therefore, the
relative position of points in the same segment is not altered, but the relative location of all
segments is changed. As illustrated in Fig. 3.4(c—d), the local mean detrending allows the
correction of the differences in SBP and RR baselines, emphasizing their fluctuations around
their local mean value. Also, from the comparison between Figs. 3.4(a-b) and 3.4(c-d), local

mean detrending enhances the global linear relationship between SBP and RR.

The local mean detrend of the data before global slope estimation is of major importance.
This transformation allows to put together the pairs of SBP and RR values identified in
BSs and BEs (and slopes) obtained at different operating points of the sigmoidal SBP and
RR relation (Fig. 1.7). Therefore, the underlying hypothesis of local mean detrend is that
the BRS slopes obtained along a stationary recording are of similar value, i.e., the BRS is
stationary in spontaneous condition. As a matter of fact, the BRS slopes can be considered
as similar, because the operating point of one subject is more likely to lye in the SBP range in
which the SBP and RR sigmoidal relation is approximately linear, rather than in the plateau
range (Hunt and Farquhar, 2005). Moreover, the different operating points occurring in a
spontaneous recording exhibit small changes and therefore, even if the operating point of the

subject is not lying in the central portion of the sigmoidal, the slopes are likely similar.

Erroneous conclusions can be drawn if local mean detrend is not carried out before a global
regression. As a matter of fact, the global slope estimation without local mean detrended has
already been applied in rats data (Moffitt et al., 2005). In that study, the BRS estimate was
taken as the global regression slope computed from all beats identified in BSs without local

mean detrending (i.e., in this thesis from the data represented in Fig. 3.4(a)). The authors
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concluded that the BRS assessment was not reliable, due to the lower correlation that the
SBP and RR data exhibited. The authors later clarified that the negative conclusion was
due to the misinterpretation of the computational algorithm of the sequences technique, and
confirmed the usefulness of the sequences technique (mean of the local slopes) to provide a

BRS estimate (Stauss et al., 2006).
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Figure 3.4: Dispersion diagram of zggp(n — 1) and zgrgr(n) for (a) BSs and (b) BEs. Dispersion
diagram of dggp and dgg for (c) BSs and (d) BEs. The dashed line has slope BL,O and passes
through the origin. The solid line is the global regression line with slope BG,O, estimated by OLS

minimization. Same data as in Fig. 3.3.

3.3.2.3 Total approach for slope estimation

Figure 3.5 shows the distribution of the slopes by, k = 1,2, ..., K, computed for each identified
BE. Comparing to Fig. 3.2, it is possible to observe that the distribution of b, computed from
BEs exhibits more skewness than that evaluated for BSs. Also, Fig. 3.5(b) illustrates that
the use of a global slope (instead of the mean of the local slopes) provides an overall BRS

estimate more robust to the by values in the longer tail of the distribution.
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Figure 3.5: Dispersion diagram of the SBP and RR range around the mean SBP and RR value in
each BE, represented by the 0 value, together with the regression lines with slope b, and passing
through the origin. (b) Histogram of the estimated local slopes with the lines locating the average
slope By o (dashed line) and the global slope Bg o (full line). Same data as in Fig. 3.3.

In this work, a robust global approach was also considered for BRS estimation: the total
approach. This approach consists of an outlier rejection rule combined with the slope

estimation in Eq. (3.5) using total least squares (TLS) minimization (Gouveia et al., 2006).

The total approach avoids the effect of outlier segments on global slope estimation. On one
hand, to achieve more robustness in BRS estimation, the outlier segments are removed before
global slope estimation. On the other hand, to allow a better identification of the outlier
segments (since errors in both SBP and RR series can occur), the slope is estimated by TLS
minimization, instead of OLS minimization. In linear regression, the OLS method attributes
all errors to the dependent variable and the solution minimizes the sum of squared vertical
direction errors (see Fig. 3.6(a)). On the contrary, the TLS method minimizes the sum of
squared orthogonal direction errors (van Huffel and Vandewalle, 1991), accounting for errors
in both the dependent and independent variables (see Fig. 3.6(b)).

Ti Ti

Figure 3.6: (a) OLS and (b) TLS slope estimation: OLS minimizes the sum of squared vertical

errors (y; — 9;)? and TLS minimizes the sum of squared orthogonal errors (y; — ;)% + (z; — #;)2.
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The outlier segments are removed from BRS analysis as follows. The influence of the k"
segment is evaluated by gj, as the ratio between the TLS slope estimated when the k" segment
1s omitted from BRS analysis and the TLS slope estimated when all segments are used for
BRS analysis. A value of g, near 1 indicates no excessive influence of that segment in the
BRS estimation. The k' segment is an outlier if g; exceeds the median value more than
twice the median absolute deviation (MAD) divided by 0.6745 (Wilcox, 2001). As illustrated
in Fig. 3.7, the rejection criteria allows the identification of BSs and BEs with unusual high
influence on the slope estimation. Also, as there are more BEs with influence near 1, the 95%
robust acceptance band associated with BEs is narrower. This indicates more homogeneity

between the influences of BEs in the slope estimation.

(a)

1.05

gk

0.95

1.05

0 10 20 30 40 50 60
k (segment number)

Figure 3.7: Influence function for (a) BSs and (b) BEs, with 95% robust acceptance band, assuming
a normal distribution (Wilcox, 2001). Same data as in Fig. 3.3.

The total slope Bg r is estimated after the removal of outlier segments, with the remaining
pairs (dsppa,drr.a.).- As the TLS approach is sensitive to scale changes in the data (van
Huffel and Vandewalle, 1991), the use of a multiplicative factor in one of the variables will
not produce a proportional slope. To deal with this shortcoming, dsgp, and drg . must be
normalized and to guarantee the same order of magnitude in dggp, and dgg,. errors, the
correction factors are defined by the corresponding MAD values. The slope ar is estimated

using TLS minimization over the normalized values from

dRR,oc _ dSBP,a
MAD(dnn) - “"MAD(degp.) | (3.6)

where €, is a vector of residuals and the total approach estimator is

MAD (dRR,a )

Bor = MAD(dssr..)

Qr. (3.7)
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Figure 3.8 illustrates the dispersion of dggp, and dgrgr . together with the corresponding total
regression line. Comparing to Fig. 3.4(c—d), it can be observed that the identified outlier

segments have their extreme points outside the mass center of the data.

(a) 142 beats (b) 270 beats
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Figure 3.8: Dispersion diagram of dsgp, and drg, for (a) BSs and (b) BEs. The solid line is the
total regression line with slope BG,T. Same data as in Fig. 3.3.

3.3.3 Variables extracted from the BRS analysis

Besides the B values obtained by the different approaches, the variables in Table 3.2 can be
retrieved from time domain BRS analysis. For the comparison of the methods, the upper
index S or E was added to each variable according to its evaluation in BSs or BEs, e.g., N*®

and N® indicate the number of beats available for BRS analysis using BSs and BEs.

Table 3.2: Summary of BRS variables evaluated for each recording.

Var || Description Units
N || # of beats beats
K || # of segments segments

N/K || segments mean length | beats per segment

r || dsgp — dgrgr correlation | no units

Bio || local BRS estimate sec/mmHg
Beo || global BRS estimate sec/mmHg

Ber | total BRS estimate sec/mmHg

The Sequences and Events techniques are evaluated and compared using the recordings of
the EuroBaVar dataset (Sec. 3.2). As the recordings length range from 553 to 1218 beats, the
BRS analysis was based on the first N,,,,=512 beats of each file, to set comparable results

for all recordings.
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3.4 Threshold sensitivity analysis: from Sequences to Events

This section includes the sensitivity analysis on the thresholds used for BSs identification.
The results here reported further motivate and justify the use of BEs instead of BSs, to

achieve an improved BRS estimation.

The analysis presented in Sec. 3.4.1 corroborates the previous studies that the simultaneous
use of APBP W ARR and 7y, thresholds is redundant (Davies et al., 2001). One alternative
to solve the thresholds redundancy would be to remove the r,,;, threshold, as already been

SBP
min

suggested in the literature (Davies et al., 2001). However, the setting of the optimum A
and AR values is still dependent on the subjects BRS condition, being expected that
lower optimal values would be obtained for low BRS cases (Davies et al., 2001). It would
be desirable to consider thresholds which could be set independently of the subjects BRS

condition.

The other alternative to solve the thresholds redundancy is to remove the A>"" and ARR
thresholds and keep the r,,;, threshold, as in the case of BEs. The results presented in
Sec. 3.4.2 point out that r,;,=0.8 for BEs identification is an optimum trade-off between
NE and rE, for normal BRS subjects. Moreover, the results obtained for the BRS dysfunction
cases indicates that r,;,=0.8 is also an optimum value for these cases, so suggesting that the

optimum 7,,;, value can be set independently of the BRS condition of the subject.

Finally, in Sec. 3.4.3 the BEs segmentation is compared with other segmentation strategies,
based on 7, threshold. In particular, the need of including a statistical significant threshold

on BEs identification is discussed.

3.4.1 Effect of changing A’?" and A% threshold values

min min

The distribution of the BRS variables in Table 3.2 was first studied as a function of A>™" and
AR values. Figure 3.9 shows the distribution of the median values obtained considering
Fmin=0.8, as in BSs. As evidenced in Figs. 3.9(a—b) by the light colors, N and K are small for
any combination of threshold values considered: N<200 and K<50 (in files with Ny,q,=512
beats length). The similar color pattern of N and K distributions indicates that N/K is
fairly constant and lower than 4 beats/segment (ratio of N and K majorant values). As
presented in Fig. 3.9(c), 7>0.8 for all A’E" and ARE  values, probably due to the small N

min min
and N /K values.

The BRS estimates are highly sensitive to changes in the ASPP and the AR® values. As is
illustrated in Figs. 3.9(d—f), the lower ASBP and higher ARE values lead to higher median B,

min min

whereas the higher A" and lower A" values lead to lower median B values. The similar

but darker color pattern in Fig. 3.9(d) when compared to Fig. 3.9(e) evidences that By o are
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higher than [;’G,O and correlated. The [;’G,T values have similar pattern as the previous, except

SBP RR M 3 15
for A" or ARt around zero, which present more variability.
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Figure 3.9: Distribution of BRS variables as a function of ASEP and AR with setting r,,i,, = 0.8.
The ASPP values range within the interval [-10:0.25:10] mmHg and ARR  changes cover the interval
[-50:0.5:50] msec. The figures show the median of the values obtained for each EuroBaVar record.

Darker indicates higher density.

Figure 3.10 shows the same representation as in Fig. 3.9 considering r,;,=-1, instead of

Tmin=0.8. The comparison between Figs. 3.9 and 3.10 shows the similarity of the distributions

SBP RR : : : o o SBP
for some AP”" >0 or ARR >0 either considering ry,;,=0.8 or rp,=—1. For such AP”" and
e, values, the identified segments are the same either considering r,;,=0.8 or rpy,=—

1, what indicates that the corresponding SBP and RR values present correlation exceeding
Tmin=0.8. With the setting of 7,,;,=0.8 (Fig. 3.9), decreasing ASP" and ARY  values lead

min min
to increasing N and decreasing K values, so that ]\7/12 increases (up to Npuqp=512). The 7

values decrease almost to 0 because the negative APPP and AR? ~values allows the identifi-

cation of the entire SBP and RR series as one valid segment. The median B values also tend

to 0 with decreasing AZP" and ARY  values.

The threshold sensitivity analysis indicates that for some ASPP >0 or ARR >( values, the

min min

simultaneous use of the ASBP "R and 7, thresholds can be avoided (Gouveia et al.,

min’ min
2007). One alternative to solve the thresholds redundancy would be to remove the 7,
threshold, as already been suggested in the literature (Davies et al., 2001). However, even
by removing 7y, if restrictive ASP" or AR values are considered, N and N /K would still

be diminished and so it would the probability of obtaining a BRS estimate. But then, the
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(b) K

50 128

25 96

30

-50 0 -50

710 5 0 5 10 70 5 5 10 0 5 5 10
ASBP

0
ASBP
min min min

e
ASBP
Figure 3.10: Distribution of BRS variables as a function of AS2P and AR with setting ry,:,, = —1.

Darker indicates higher density. Same caption as in Fig. 3.9.

APPE and ARR - values could neither be foo unrestrictive: as illustrated in Figs. 3.10(a-c),

the use of low AP" and AR?  values would increase N up to Ny, and decrease r down
to zero. Therefore, the adequateness of the linear regression model in such data would be

questionable.

The optimum APP" and AR values could be set as a trade-off between N and r, using
experimental data. However, these optimum values would highly depend on the subject
condition, being expected that lower optimum values would be obtained for attenuated BRS
subjects. In normal cases, the optimum values obtained for the low BRS cases would lead
to higher IV at the expense of a lower r value. Therefore, it would be desirable to consider

thresholds (and threshold values) which could be set independently of the subjects condition.

3.4.2 Effect of changing the r,,;, threshold value

The other alternative to solve the thresholds redundancy is to remove the A>P" and ARR

thresholds instead of r,;,, as is the case of BEs.
Figure 3.11 shows the distribution of the BRS variables as a function of 7, values, either
evaluated for BSs or BEs. For BSs, all variables are constant for r,,;, < 0.8 indicating that

the SBP and RR values in BSs present 7,,;, > 0.8. In median, N® is close to 128 of the
512 beats, N®/K? is lower than 4 beats/segment and r° is very high, probably due to the
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small values of N° and N°/K?®. Regarding BEs, as 7, increases, N® decreases and K"
increases such that N®/K" decreases and tends to Ny, = 3. As illustrated in Fig. 3.11(c),

r¥ increases linearly with r,;,, being approximately 7, for 0.2 < 7, < 0.8.

Regarding the BRS estimates, BE,O increases with increasing 7, (Fig. 3.11(d)), because
the mean of the local slopes estimate is calculated from more segments that exhibit shorter
duration (N®/KP®) and higher slope. As illustrated in Fig. 3.11(e), the Bg,o values also
increase with increasing 7, because the BEs with lower SBP and RR correlation (and
slope) are more unlikely to be identified for higher 7, values and B‘é,o tends to l;’é,o.
Finally, as presented in Fig. 3.11(f), the robust estimates B’gT do not seem to be much

affected by rp,in, mainly due to the outlier rejection rule.
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Figure 3.11: Distribution of BRS variables as a function of rp,;, (in the interval [0:0.05:1]) showing
lower /upper quartiles and median values. Values obtained from BSs (grey) and BEs (black). The
white circles localize the files without BSs and with BEs.



3.4. THRESHOLD SENSITIVITY ANALYSIS: FROM SEQUENCES TO EVENTS 115

The four EuroBaVar files without BSs present BEs; these files, identified by circles in Fig. 3.11,
show the same trend in N®, N®/K® and B® as for the remaining files, although presenting
lower values. As illustrated in Fig. 3.11(c), the files without BSs have " values similar to the
remaining files, indicating that the choice of the r,,;, value is not dependent of the subjects

condition, as desirable.

The optimum 7,,;, value can be set as a trade-off between N® and r®. Since NF® decreases
and 7P increases when 7,,;, increases, 7y, can be set to a value that maximizes the product
NF® 7P, Alternatively, the product N®(r*)? can be considered, once the squared correlation
coefficient 2 corresponds to the fraction of dgry variance accounted for the dsgp and dgy linear
regression. For both optimization functions considered, Figs. 3.11(d) and 3.11(e) suggest that

rmin = 0.8 for BEs identification is an optimum trade-off between N® and rF.

As remarked in Fig. 3.11, the threshold values AJP" =1 mmHg and A} = 5 msec used for

min
BSs identification led to difficulties in providing a BRS estimate. These values were chosen to
follow the most recent publication with focus on the methodological aspects of the sequences
technique (Di Rienzo et al., 2001). Also, the values (lmmHg, 5msec) are similar to the values
(ImmHg, 4msec) originally proposed for cats data (Di Rienzo et al., 1985; Bertineri et al.,
1988). Because these threshold values are the most used in the literature, the comparison

presented in Fig. 3.11 is the imperative to present.
Nevertheless, other ASPP and ARRE  values could have been considered for the BS identi-

mn min

fication. As a matter of fact, the sequences technique has been applied considering other

threshold values, with ASP" ranging from 0 to 2 mmHg and ALY varying from 0 to 6 msec

(Davies et al. (2001) and references therein included), and it has been shown that both the
BSs number and the BRS estimate are sensitive to changes in these threshold values (Davies et
al., 2001; Gouveia et al., 2007). In particular, by decreasing the A>P" and ARR  values down

mn min
to 0, it is expected an increased number of identified BSs and, consequently, an increased

probability of the sequences technique to provide a BRS estimate. Therefore, the comparison
between the BRS variables obtained from BSs identified by imposing ASPP = ARR = () and

mn mn

the variables obtained from BEs is well justified.

Figure 3.12 presents the same representation as in Fig. 3.11, considering AS>" = AR? =0

in BSs identification instead of A" =1 and A} = 5. As is possible to observe, lowering
the threshold values for BSs identification, increases N° and N*, without introducing major
changes in the distribution of the B as a function of 7. However, the four files without
BSs for A" = 1 and AR® = 5 present BSs if AP>" = AR = 0 is considered instead.
As illustrated by the grey circles, the N, the N/K and the B values for these four files are
lower than those evaluated for the remaining files. Also, the B values are lower for these files
in comparison with the remaining. The BRS analysis from BEs provides comparable BRS
estimates. However, the results indicate that the N® values are still higher than N5, the K*

are similar to K*® values, and N®/K" are still higher than the N%/K*.
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Figure 3.12: Distribution of BRS variables as a function of rp,;, (in the interval [0:0.05:1]) showing

lower /upper quartiles and median values. Values obtained from BSs considering AJPP =ARR —0

(grey) and BEs (black). The white circles localize the files without BSs and with BEs.

3.4.3 The r,,;, value and related statistical significance

As previously referred, the k' baroreflex segment is identified by imposing ri > Fmin,
regardless of its statistical significance pi'. In this section, it is discussed the utility of a

statistical p; based criterion for BEs identification and its non inclusion is justified.

As presented in Table 3.3, 60% of the BSs identified in the EuroBaVar files present a 7
value considered as not statistically significant (pr > 0.05). For BEs, the corresponding
proportions are 61% and 38%. That is, the results evidence that the majority of identified

Tn this work, py is defined as the probability of having a correlation between the SBP and RR values in

the k" segment as large as the observed value rj, by random chance, when the true correlation py, is zero.
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segments, both BSs and BEs, do not exhibit statistically significant correlation. However,
the majority of points in with the BRS analysis from BEs is based (N¥) is from BEs that
present significant correlation. The inclusion of non-significant segments in the BRS analysis
can turn into a disadvantage if By o is used, because BL,O considers slopes estimated from
non-significant segments to compute the average slope. If the Bf , and B ; estimators are
used instead, the BRS estimate is obtained as a global slope based on data that presents r®

close to 0.8, being obviously statistically significant due to the large N* value (see Fig. 3.11).

Table 3.3: Countings and percentage of K and N evaluated for BSs and BEs, distinguishing the
segments with p, > 0.05 and with p; < 0.05.

pr > 0.05

P < 0.05

Total

S K*
SNS

903
2786

60%
54%

611 (40%
2369 (46%

1514
o155

100%
100%

100%
100%

1464
4969

918
7982

2382
12951

61%
38%

S K

)
)
)
2N )

(60%) (40%) (
(54%) (46%) (
(61%) (39%) (
(38%) (62%) (

Figure 3.13 presents the distribution of the number of segments identified in the FuroBaVar
dataset, as a function of the segments length (Nj). As illustrated in Fig. 3.13(a~b), the
non-significant BEs are typically 3-beat segments that have their beats located around the
origin of the dsgp and dgrg dispersion diagrams (see Fig. 3.4(b) and Fig. 3.8(b)). Therefore,

it is expected that these short segments have small weight in the global slope estimation.
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Figure 3.13: Distribution of > K by segment length (N},) evaluated for BSs and BEs, distinguishing
the segments with (a—b) pr > 0.05 and with (c—d) p, < 0.05. Values obtained for the entire EuroBaVar
dataset.

To illustrate that non-significant BEs have small weight in BRS estimation, Fig. 3.14(a—)
present the comparison between the BRS analysis from BEs and from segments satisfying

simultaneously 7, > 0.8 and p; < 0.05 (segments P1, a subset of BEs). It can be observed
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that N® is higher at the expense of a lower 7® in comparison with those evaluated for segments

B

3P1 ;
ao and BElo values is

P1, without changing the BG,O value: the correlation between the B

0.98 and their median paired differences is not significantly different from zero (p > 0.35).
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Figure 3.14: Dispersion diagrams comparing N, r and Bg o evaluated from BEs (index E), from
segments satisfying 7, > 0.8 and pr < 0.05 (P1) and from segments satisfying 7, > 0 and p;, < 0.05
(P2). The black circles localize the files without BSs and with BEs.

Patients with a weak baroreflex response are expected to present a lower SBP and RR coupling
in comparison with the normal cases. Figures 3.14(d—f) present the comparison between the
BRS variables evaluated from BEs and from segments satisfying r, > 0 and p; < 0.05
(segments P2), illustrating that both N¥? and r*? are much lower than those evaluated for
BEs, inclusive for normal cases. Therefore, in comparison with BEs, the BRS analysis from
segments P2 has a diminished ability to provide a BRS estimate (due to the lower N*?), as
well as, a diminished ability to provide an adequate BRS estimate (due to the lower rF?).
Moreover, BRS analysis from BEs and from segments P2 provide distinct BRS estimates
that, although presenting a correlation of 0.87, their median paired differences is significantly
different from zero (p < 0.001). As presented in Fig. 3.11, the normal and BRS dysfunction
cases in the EuroBaVar dataset present r® close to 0.8, which is statistically significant due
to large NE. For the BRS dysfunction cases, the expected lower SBP and RR coupling is not
reflected in lower ", and instead it is reflected in lower N®/K" values, i.e., shorter segments

of high correlation.
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Figure 3.15 shows the dispersion diagrams of the data used for global BRS estimation, in a
normal and a BRS dysfunction case. The use of BEs, i.e., the unique setting of r, > 0.8,
allows to maximize N® while keeping r" sufficiently high, making the global linear regression
suitable to use in this data (Figs. 3.15(a) and 3.15(d)).

With the additional setting of pr < 0.05, N*' decreases and r"' slightly increases in compari-
son with BEs (Figs. 3.15(b) and 3.15(¢)). However, the similarity between B® and B** remark
that there is no need of considering the p < 0.05 criterion in BEs identification. Finally, the
setting of r, > 0 and pg < 0.05 leads to different results depending on the subject’s condition.
In the normal case, N¥? is maintained while NF' is drastically reduced in comparison with
BEs (Fig. 3.15(b—)). The l’;’g,zo is much lower than [S’g,o and BE?T is similar to Bg,T, because
Bg.r is a more robust estimator than Bgo. In the BRS dysfunction case, N*? is reduced
whereas r"* is increased and the global/total BRS estimates are maintained (Fig. 3.15(f)).
Therefore, the data obtained segments P2 may not be suitable for global regression analysis.
Finally, from the comparison between Figs. 3.15(e) and 3.15(f), it can be observed that
segments P1 and P2 are the same for the BRS dysfunction cases. This result points out that,
for the BRS dysfunction cases, the segments presenting a statistically significant correlation
are short segments of correlation higher than 0.8, highlighting once more that the inclusion

of a threshold based on p;. is not needed.
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Figure 3.15: Dispersion diagram of dsgp and drg for BEs, P1 and P2 segments. The solid/dashed
line is the global /total regression line. Figures (a—c) are from the “A001LB” file, while (d—f) are from
the “BO05LB” file, which does not present BSs.
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3.5 Results

The methods were compared with respect to the variables given in Table 3.2 and their ability
to discriminate Lying (L) and Standing (S) positions for each subject (Secs. 3.5.1 and 3.5.2).
Also, the reproducibility of the novel BRS estimators is quantified and compared with that
evaluated for the traditional BRS methods (Sec. 3.5.3). The time domain BRS estimators
are additionally studied with respect to their dispersion, which is usually disregarded in BRS
analysis (Sec. 3.5.4).

As before, the upper index S or E was added to each variable according to its evaluation
in BSs or BEs. With respect to the display of results, in a dispersion diagram representing
x versus y, e.g., Fig. 3.16, the percentage C is defined as the ratio #(z > y)/#x where #

stands for the counting numbers, is indicated at the lower right corner of the figure.

The results here reported are based in the first N,,,,—512 beats of each EuroBaVar file. The
BRS analysis of the EuroBaVar files “B005”, “B010”, “B013”, “B014” and “B015” produced
results which deserves a comment. In the paired L and S evaluations of “B005” and “B010”
files, it was not possible to identify BSs and, therefore, these files may correspond to the
cardiac baroreflex failure subjects. File “B013” resulted in very high B estimates for the
L position. Files “B014” and “B015” were found to be replicas of files “A003” and “A008”,

respectively, giving the same results for every analyzed variable.

3.5.1 Number of beats and segments in BRS analysis

As illustrated in Fig. 3.16, N® is highly correlated with N® and is always higher than N¥,
because BEs are in larger number for most of the files (open circles in the figure) and are
longer than BSs. The files that exhibit K5>K" (filled circles) are the files that present the
highest N* and N® values and still satisfy N®>N® because, in these cases, BEs are much
longer than BSs. As displayed in Fig. 3.16(c) for BSs, N® is fairly proportional to K with
N®/K? between 3 and 4 beats/segment. As shown in Fig. 3.16(d) for BEs, there is a linear
relation between N® and K" for files with N*<3/4 Nyjez (384 in the figure), with N®/K"®
higher than the corresponding N°/K?. In addition, there are 14 files with N®*>3/4 N4 As
illustrated with the filled circles in Fig. 3.16, the files satisfying K5>K?" are associated with
NF values close to Nyqz, therefore, indicating mean N®/KF values between 8 and 9 beats.
These files also exhibit the highest N® and K® values of the dataset.

Figure 3.17 shows the distribution of the median of K and the number of EuroBaVar records
(out of 46) as a function of N, (the segments length in beats), evidencing that BEs are longer
segments than BSs. For BSs, 12 records have one 6-beat BS and none present BSs longer
than 8 beats, whereas 24 records have one 10-beat BE and 21 records one 15-beat BE.
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Figure 3.16: Dispersion diagrams comparing N and K produced by BS and BE. Values equal to
0 correspond to the files without BSs and with BEs. The filled circles localize the files that satisfy
K3 > K®. The dotted line is the identity line and the dashed line represents 3/4 of the N, value.

(a)

- n
© £
T T

Median of K

o W o

O 1

L |
! i i I I I I !

?
3 6 9 12 15 18 21 30 40 50

0 | Lo | | L L %% ®e. e e
0 3 6 9 12 15 18 21 30 40 50

Ny, (segments length)

Figure 3.17: Distribution of (a) median of K and (b) number of EuroBaVar files (out of 46) as a
function of Ny, for BS/BE (grey/black). There are 5 files with BEs longer than 50 beats.
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3.5.2 BRS estimates and L from S discrimination

Regarding the BRS estimates, Fig. 3.18 presents the comparison between the different B
values and r produced by BS and BE. Figures 3.18(a-b) illustrate the comparison between
B values: the results evidence that BY , > BS ., due to the fact that the global approach
emphasizes BSs with lower slopes; also, there are no significant statistical differences between
the mean of paired BE,O - BE}T values and zero (p > 0.7). Figures 3.18(c-d) show the
comparison of [S’g,o and z’S’gT with the traditional [;’E,O: [;’E,O > [S’g,o is observed in 34/42 of
the files and 26/42 of the files exhibit BE . > B , so that BE . > Bf ,>BE  is observed in
18/42 of the dataset files.

With the use of BSs, all approaches produce B values with pairwise correlations exceeding
r = 0.97. With the use of BEs instead of BSs, the pairwise correlations between estimates are
lower, but still exceeding r = 0.8. Figure 3.18(e) shows the dispersion of BE}T and BE,T, which
attained the highest correlation between estimates using BSs and BEs (r = 0.94). Finally, as
illustrated in Fig. 3.18(f), r° > r® for all files that present BSs.
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Figure 3.18: Dispersion diagrams comparing different B and r produced by BSs and BEs. Values
equal to 0 correspond to the files without BSs and with BEs. The filled circles localize the files that
satisfy K > K™. The dotted line is the identity line.



3.5. RESULTS 123

The empirical distribution of B obtained from the EuroBaVar files is presented in Fig. 3.19(a).
The BA'E,O values are higher than BE,O and show larger interindividual differences. With the

use of the global/total approaches, B and B® have similar distributions.

The BRS analysis based on BEs is also capable of providing a BRS estimate when BSs
cannot be identified. The 4 files without BSs correspond to the paired L and S evaluations of
2 subjects (B005 and B010) and, therefore, these files may correspond to the BRS dysfunction
cases. For these files, identified in Fig. 3.19(a) with the open circles, the BE values are lower

than the 5" percentile of the BRS estimates empirical distribution of the remaining files.
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Figure 3.19: Boxplots of (a) B and (b) L to S ratio of B (Rrs). Median and mean 95% confidence
intervals represented by the notch and by the interval displayed at the left of each boxplot. Values
estimated with BSs (grey) and BEs (black). The circles localize the files without BSs and with BEs.

For the discrimination between L and S, it is expected that the L to S ratio of B (Ryg) is
above 1 (Laude et al., 2004). As shown in Fig. 3.19(b) there is strong evidence that both
the mean and median of Ryg are above 1 for all approaches, being approximately twice
greater in L than in S. Of the 23 pairs of records, 21 present BSs in both positions and Ris
from local/global /total approach is above 1 in 18/20/20 of the pairs, respectively. All 23
pairs present BEs, and Ryg is above 1 in 20 /23/23 of the pairs, respectively. The use of
global /total approach combined with BEs is able to distinguish L from S also for the files

without BSs, but not able to differentiate them from the remaining files.
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Table 3.4 resumes the additional comparison between the events technique and other time
domain BRS methods, including the sequences technique used with the thresholds referred
in Laude et al. (2004) and the xBRS method Westerhof et al. (2004). The effect of changing
the threshold values in the sequences technique was already discussed in Sec. 3.4 and, in
this comparison, the sequences technique is used with the following thresholds Laude et al.
(2004): method [13] AP =1, ARY =4 and ry,;, = 0.7, method [15] ASPP = A =0
and rp,i, = 0.85 and method [18] Ny = 4, 7 =0, A" =1, AR = 5. The comparison
with the xBRS method is also included (See Sec. 1.3.3 for details on the methodology).

The results in Table 3.4 point out that all techniques are able to differentiate L from §
positions in most of the subjects (mean Rrs > 1), with the B! and z’S’gT estimates achieving
a higher Ry,¢ mean value (better discrimination). The Ry s values obtained from BgT present
a similar dispersion and lower amplitude range in comparison to that evaluated for the xBRS

estimates. Both B’g,o and B’gT are able to distinguish L and S conditions for all subjects.

Table 3.4: Events technique compared with other time domain BRS methods (description in the
text). The xBRS values were taken from Table 2 of Westerhof et al. (2004). The mean, SD (standard

deviation) and range (in msec/mmHg) were computed over the non-repeated 21 EuroBaVar files.

gl Bl B BRS  BE,  BE,

Lying

n 20 21 16 21 21 21

Mean 11.5 18.5 134 124 10.5 15.3

SD 7.8 14.8 6.7 12.1 9.4 11.1

Range 2.3-38.9 3.1-64.6 5.5-30.6  2.0-60.0 1.4-49.8 2.6-55.4
Standing

n 19 21 19 21 21 21

Mean 5.7 8.2 8.0 6.2 5.4 7.3

SD 2.6 6.1 3.1 3.9 3.1 4.3

Range 1.7-128  1.4-26.6 2.9-141 0.8-16.3 0.57-11.8 0.99-15.8
Rps

n 19 21 16 21 21 21

Mean 2.20 2.49 1.80 1.96 2.05 2.24

SD 0.97 1.16 0.77 0.92 0.94 0.92

Range 0.77-3.95 0.80-5.31 0.81-3.57 0.85-4.20 1.08-4.20 1.17-4.31
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3.5.3 BRS reproducibility

The intra-method reproducibility relates to the concordance of the results obtained from
different experimental data, acquired from the same subject and in the same conditions. In
this work, the BRS reproducibility was evaluated from the paired comparison between the
BRS analysis obtained from different recordings of the same subject. As the EuroBaVar data
was collected in stationary conditions, it is expected that smaller parts of the original file
are still distinctive of that subject. Therefore, each of the 512 beats recordings was divided
into two consecutive and non-overlapping spontaneous test recordings of 256 beats, [SP1] and
[SP2|. Subsequently, the BRS analysis was carried out in each test recording and the results

were paired /compared within subject.

Figure 3.20 shows the comparison between the variables given in Table 3.2 evaluated from
BSs for the two test recordings [SP1] and [SP3]. As is possible to observe, N° and K® in the
recording tests are correlated, as well as the B estimates, with the larger B values exhibiting

larger differences between their evaluation in the two test recordings.

(a) (b) (c)
256 64 1 ,Obﬁj,
o
08 ——— —— —— — — %99 o -
192 _ 48 o ol
— o — o %o —_— !
a .00 o « |
n ° % n - A
2128 . 232 o .o 4, 05 \
0 o d n o 8 .0 n |
Z ° o o M . . 0D ~ |
o
64l o B 16| o % 0.25 !
Oo -DOO O-CD Co I
o :
B C=21/42 Rood C=20/42 - l
0 0 ok
0 64 128 192 256 0 16 32 48 64 0 025 05 08 1
NS[spy] KS[spy] rS[se,]
(d) (e) (f)
o ° . °
0.02 . o 0.02 0.02 °
o o o .
O» . o
= o 0 - 00 =
X o N ° e | E o
w3 0.01 %3 0.01 o ° | w001 - °
iie) ° od o Q o %) ° (o) o 00’ °
£ . B
o - DB
@0 ° o %ﬁooo
o o .
o C=26/42 o C=24/42 o C=26/42
ok ok ok
0 0.01 0.02 0 0.01 0.02 0 0.01 0.02
2S 23S 2S
BL,O[Spl] BG,O[SPI] BG,T[Spl]

Figure 3.20: Comparison between the BRS variables from BSs, obtained for the two test recordings
[SP1] and [SP5]. The dotted line is the identity line.

Figure 3.21 shows the same comparison as in Fig. 3.20 for the variables evaluated from BEs.
The N® and K" obtained in the test recordings are correlated, as well as the B values.

In comparison with the BRS analysis from BSs (Fig. 3.20), the larger B values show less
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differences between their evaluation in the two test recordings. Also, the BRS analysis from
BEs for the files that do not exhibit BSs, was found to provide comparable values for both

test recordings.
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Figure 3.21: Comparison between the BRS variables from BEs, obtained from the two test recordings
[SP:] and [SP»]. The dotted line is the identity line. The white circles localize the files without BSs
and with BEs.

The BRS reproducibility was quantified from the distribution of the difference between the

B values evaluated from the two test recordings, i.e.,

D;; = B[SP,] — B[SP1]. (3.8)

As the EuroBaVar dataset includes a wide range of B values and the different BRS estimators
provide different mean B values, the reproducibility was also quantified from the B coeffi-
cient of variation, here denoted by CV;, which quantifies the intra-method dispersion as a

percentage of the B mean value.

The distributions of the D and CVy values obtained for each BRS estimator are presented
in Fig. 3.22. As illustrated in Fig. 3.22(a), all approaches present 95% confidence intervals
over the median/mean Dy values including zero and, therefore, the hypothesis of the true
median/mean intra-method difference being equal to zero cannot be rejected (at a significance
level of 5%). The estimates B’g,o and B’gT achieve the lowest ‘DB values (Fig. 3.22(a)) and the
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lowest CV 3 values (Fig. 3.22(b)) in comparison with the remaining estimates. Figure 3.22(b)
shows that around 75% of the files exhibit a CV value below 25%, for 85,07 B‘é,o and l;’gT

values. This percentage increases to values above 30% for the remaining estimates.

The 4 EuroBaVar files without BSs and with BEs have smaller ‘DB‘ values in comparison
with the ‘DB‘ values for the files with BSs (Fig. 3.22(a)), mainly due to their smaller B values
(Fig. 3.19(a)). The CV values are comparable to that of the remaining cases (Fig. 3.22(a)),
indicating that the estimators reproducibility may not be dependent on the BRS condition.
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Figure 3.22: Boxplots of (a) Dy and (b) CVy evaluated from the B obtained in the two test
recordings. Median and mean 95% confidence intervals represented by the notch and by the interval
displayed at the left of each boxplot. Values estimated with BSs (grey) and BEs (black). The circles
localize the files without BSs and with BEs.

The reproducibility study of the sequences technique (l;’fo) has already been carried out in
two homogenous datasets, one of 21 patients with chronic heart failure and another of 16
control subjects (Davies et al., 1999). It is reported in Davies et al. (1999) that CV 3=30.7%
in the patients and CV;=40.4% in the control subjects, with the CV, being calculated
as one value for all the dataset files. In this study, for the EuroBaVar files presenting
BSs, CV;=38.6% and for the files not presenting BSs (i.e., patients) the CV; could not

be calculated, because no BRS estimate was provided.
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The EuroBaVar is a non-homogenous dataset and, therefore, the analysis of the CV 5 empir-
ical distribution carries much more information than a single statistics. The reproducibility
limits for the BRS estimators, quantified from the D4 range and CV 4 percentiles, are provided
in Table 3.5. The [;’E,O estimates provided a median CVy value lower than 20% and, of the
six estimators, the Bg , and B presented the highest reproducibility for all files, either

presenting or not BSs.

Table 3.5: Reproducibility limits for the BRS estimators in spontaneous condition, quantified from
Dy and CVy. The variable Py, k = {50,75,95} is the value below which k% of the observations fall,
and n indicates the # of files from which the statistics were computed.

D (msec/mmHg) CVg (%)
n  [Pos, Prs| [Pas, Pors| Pso Prs  Pos
BS, 42 [13,20] [-77,116] 161 261 465

B, 42 [15,1.2] [10.2,13.6] 158 30.1 56.8
BS. 42 [1.9,1.9] [10.2,11.6] 19.1 349 53.4

BE, 46 [25,1.5] [-66.3,20.3] 16.1 323 63.0
BE, 46 [1.0,1.0] [188,6.0] 114 219 457
BE. 46 [1.0,0.7] [29.0,6.4] 102 247 59.4

3.5.4 Dispersion in time domain BRS estimation

Regardless of the slope estimator, the BRS analysis from BEs has shown to be advantageous
as it provides a larger number of beats for slope estimation, allowing BRS analysis in cases
where BSs cannot be identified. However, the higher number of beats (N) is obtained at
the expense of a lower SBP-RR correlation (r) although remaining close to 0.8, with possible
repercussion on the dispersion of the BRS estimator. In this study, the dispersion in BRS

estimation was quantified from the estimated B standard deviation (64) as follows

5= 7B « 100. (3.9)
B

Regarding the global approach, standard parametric confidence intervals (CIs) over the
regression slope could have been considered to quantify the dispersion in BRS analysis.
However, these CIs can only be applied if the regression residues (€) satisfy the classic
assumptions of zero mean, normal distribution, non correlation and homoscedasticity. In this
work, the € analysis did not support these assumptions, either considering BSs or BEs, except
for a zero mean normal distribution (with 95% confidence). Therefore, these parametric Cls

were not considered for global approach.
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The heteroscedasticity exhibited by the data can over/underestimate 64, depending on the
heterocedasticity pattern. In the case of the BRS analysis, the higher concentration of points
lies near the origin and the residuals of the global regression analysis show larger dispersion
for more extreme SBP values (like a “butterfly” pattern, as illustrated in Fig. 3.4(c—d)).
Therefore, more points exhibit a lower dispersion, leading to ¢;; underestimation. The lack
of homoscedasticity in the residuals could be overcome either by changing the regression
model (if the heterocedasticity pattern is known) or by using weighted least squares regression
instead of OLS (Wilcox, 2005). Because the aim of this work is to quantify the dispersion
in the BRS analysis from more conventional slope estimators, an alternative simulation-
based methodology was considered for such purpose. Similarly, the same technique was used
to evaluate the BRS variability when using the local and total approach, attending to the

specificities of each slope estimator.

Bootstrap-based methodology to quantify the BRS variance

Bootstrapping is a general approach to perform statistical inference. It is based on building
a sampling distribution for a statistic, by resampling with replacement the data (Efron and
Tibshirani, 1993). The advantage of bootstrapping over analytical methods is its great
simplicity, because it does not require any apriori knowledge about the sample besides its
values, and they have been shown to be useful in the resolution of several signal processing
problems (Zoubir and Boashash, 1998).

The method produces the bootstrap replicas, mimicking the original data, by resampling
with replacement the original data?. Each bootstrap replica is taken from the original sample
and, therefore, it is considered to be independent and identical distribution (i.i.d.), i.e., it
is assumed that the bootstrap replica come from the same distribution of the population
and that each replica is drawn independently from the other replicas. The statistics in
study is then recomputed for each bootstrap replica and the mean value of the bootstrapped

recomputations is taken as an estimate of the statistics.

There are several ways to carry out a bootstrap simulation, including nonparametric boot-
strapping of the observation pairs, nonparametric bootstrapping of the residuals, and para-
metric bootstrapping of the residuals (assuming a distribution in the regression residuals).
With respect to the BRS analysis, there is the question to carry out the bootstrap by
resampling over the segments or over the beats. For example, if the bootstrap is carried
out by segments it is not guaranteed that the bootstrap replicas have the same number of
beats and, therefore, the bootstrap by segments is not suitable for the evaluation of the BRS
dispersion in global and total slope estimators. On the other hand, resampling by beats is

not suitable for the analysis of the local slope estimator, because the segments unit is lost.

2The bootstrap replicas are created by random selection of the elements in the original set. The elements
of the original set have equal probability of being chosen, even if previously chosen. Therefore, a bootstrap

replica of the same size as the original set likely has repeated elements from the original set.
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In order to attend the specificities of each estimator and to mimic the size of the original
data in each bootstrap replica, the bootstrap technique has to be used differently for each
slope estimation approach. In this application, the original sample size should be used in
each bootstrap replica, reproducing also the length of the original data. This is because the
lower BRS estimates are associated with reduced number of beats in the identified segments;

therefore, the number of beats for slope computation also characterizes the BRS function.

Figure 3.23 shows the dispersion diagrams of one generated bootstrap replica for one subject,
considering BSs and BEs and the different slope estimators. The bootstrap replicas were
generated by resampling with replacement the segments (BSs or BEs) or the beats in those

segments, depending on the slope approach:

e for the local approach, the replicas were composed by resampling the segments

presented in Fig. 3.4(c-d) for BSs and BEs, respectively;

e for the global approach, the replicas were composed by resampling the beats

presented in Figs. 3.4(c-d) for BSs and BEs, respectively;

e for the total approach, the replicas were composed by resampling the beats after the

removal of outlier segments presented in Figs. 3.8(a~b) for BSs and BEs, respectively.
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Figure 3.23: One Bootstrap replica for each BRS estimator: (a,d) bootstrapped segments and line
with slope BL,O, (b,e) bootstrapped beats and line with slope BG,O and (c,f) bootstrapped beats and
line with slope Be 1. Replicas for (a—c) BSs and for (d-f) BEs. Same data as in Fig. 3.3.
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The choice of the number of replicas B is crucial, depending on the sample length and the
distribution of the data (Efron and Tibshirani, 1993). Because the bootstrap technique is
based on an asymptotic result, at a formal level, the bootstrap requires an infinite B. However,
the bootstrap statistics converges in terms of B, and so having a finite B is good enough,
assuming the number of replications chosen is large enough. The larger the B, the more
reproducible the results will be when a different set of samples is used. So if redoing the
bootstrap analysis, it is more likely to see the same results if a high number of bootstrap

replicas is used.

For illustration purposes, Fig. 3.24(a) shows the estimated ¢, , as a function of B, varying
B from 20 to 2000. For B lower than 500, J¢ , is variable, while for B higher than 500 the
0o stabilizes. Similar analysis was performed for the remaining BRS estimators, leading
to similar results. Therefore, in this work B=1000 was considered. Figure 3.24(b) presents
the histogram of the bootstrapped B 6.0 values considering B=1000, from which the d¢ , in
Eq. (3.9) is computed.
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Figure 3.24: Bootstrap computation of ¢ o: (a) 830 as a function of B=[20:5:2000]; (b) histogram
of the bootstrapped BE (, for B=1000 with the dashed line locating the BE , value.

Figure 3.25 presents the distribution of § obtained for each BRS estimator, illustrating that
the [S’G,O and [;’G,T are the estimates that achieve the lowest § values. Around 50% of the
files present 07 , below 10%, while only 25% of the files exhibit 67, lower than 10%. This
percentage increases considerably for dq o and dq 1, indicating that the use of global and total
approaches for slope estimation is clearly an advantage over the use of the traditional local
approach, in terms of dispersion. In particular, the [;’f‘;T values achieve the lowest variability,
with around 50% of the files presenting dg, . lower than 5%. However, the BRS analysis
from BSs is not able to provide a BRS estimate for all subjects. Considering the B’g,o and
Bg,T values, the § values obtained for the 4 EuroBaVar files without BSs and with BEs are
comparable to that of the remaining files, indicating that the estimators variability may not
be dependent on the subject’s BRS condition. Finally, the median dg , and J¢, . values are

slightly higher than the median d¢, . value for the files presenting BSs.
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Figure 3.25: Boxplots of § evaluated for each BRS estimator. Median and mean 95% confidence
intervals represented by the notch and by the interval displayed at the left of each boxplot. Values
estimated with BSs (grey) and BEs (black). The circles localize the files without BSs and with BEs.

The dispersion limits for the BRS estimators, quantified from the percentiles of the § empirical
distribution are provided in Table 3.6. As already referred, the [;’E,O estimates provide a
median ¢ value around 10% and, of the estimators able to provide a BRS estimate for all
subjects, the B¢, , and B ;. yield the lowest dispersion attending the entire distribution: more
than 75% of the EuroBaVar files present a ¢ value below 10%.

Table 3.6: Dispersion limits for the BRS estimators in spontaneous condition, quantified from 4.
The variable Py, k = {50, 75,95} is the value below which k% of the observations fall, and n indicates

the # of files from which the statistics were computed.

§ (%)
n Py Prs P

B, 42 102 155 208
B, 42 69 117 21.1
B, 42 50 72 195

BP, 46 13.6 21.2 385
BE, 46 68 89 147
BE, 46 6.6 81 17.0

Figure 3.26 presents the comparison between the different ¢, illustrating that the use of l';’f‘},o
instead of BE,O reduces the BRS dispersion in the majority of the cases (Fig. 3.26(a)). The
BRS estimation from B‘é,o instead of Bé,o is advantageous for the files that do not present BSs
and for the files that exhibit higher J¢, , values (open circles in Fig. 3.26(b)). The comparison
between the [S’go and BgT (Fig. 3.26(c)) indicates that the mean paired differences between
the 6¢, o and ¢, . values do not significantly differ from zero (p > 0.9).
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Figure 3.26: Dispersion diagrams comparing § evaluated for different BRS estimators. The white
circles localize the files without BSs and with BEs.

Figure 3.26(b) illustrates that the BRS estimation from BEs instead of BSs leads to df, o, <
0¢ o for the files exhibiting the highest 0 .

these files present the lowest N° values, although presenting similar 5 values to that of

As illustrated in Figs. 3.27(a) and 3.27(c),

the remaining files. This result indicates that the decreased N® is the main reason for an
increased 07, . As illustrated in Figs. 3.27(b) and 3.27(d), these files also exhibit the lowest

NF values and present " similar to that of the remaining files.
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Figure 3.27: Plot of ¢ as a function of N and r for Bé,o (grey) and Bg,o (black). The white circles
localize the files without BSs and with BEs.
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As previously referred, the less restrictive thresholds for BE identification lead to N® > N®
and r® < r® for all EuroBaVar files (Fig. 3.16 and Fig. 3.18). Therefore, with the used of BEs
instead of BSs, the increased N® obtained at the expense of a lower 7", not only increases
the probability of providing a BRS estimate, but also compensates in terms of dispersion,
because 0¢ o, & 0g, o, for the files with higher N*® and dg o, < d¢, o, for the files with lower N°.

3.6 Discussion

The thresholds regarding the minimum beat-to-beat changes (A" and AR ) and minimum
correlation (7,,:y) required for SBP and RR segmentation are chosen to increase the reliability
of the identified BS to be a segment clearly baroreflex related. In this way, there is an
increased assurance that the corresponding slope is quantifying a real baroreflex effect. How-
ever, their use may also reduce the ability of providing an individual estimate, particularly if

the thresholds values are very restrictive and/or the analyzed subject has poor BRS function.

Thresholds and threshold values to identify baroreflex related segments

SBP RR
min’ —min

In fact, SBP and RR segments satisfying restrictive AS2P and AEFR  values present high

min min

The simultaneous use of the A and 7, can be avoided (Gouveia et al., 2007).
correlation between the SBP and RR values. The correlation is usually higher than rp;,,
suggesting that the simultaneous use of these 3 thresholds is redundant. This fact is in
accordance with results in cats data (Bertineri et al., 1988), where it is reported that the
correlation between SBP and RR values that fulfill A’®" = 1 mmHg and A} = 4 msec
exceeds 0.92; the authors state that such a high correlation supports a true baroreflex nature
of BSs rather than random coupling. However, the high correlation is clearly a consequence

of BSs being chosen as to satisfy restrictive values on ASP" and AR . In the EuroBaVar

data, 85% of the SBP and RR segments that fulfill Ny,;, =3, A’P" =1 and ALY =4 also
satisfy rmin = 0.92. This percentage increases to 99% for 7, = 0.8, either setting AR =4
or AR =5 msec.

As a matter of fact, it is more adequate to remove APP" and A" thresholds and only impose

the ry,i, threshold. Removing AP and ARY for SBP and RR segmentation (as in BEs),
there are more beats available for the slope estimation in the files that present BSs. It also
enables to identify segments in cases of BSs absence and, therefore, it is possible to provide a
BRS estimate. The results of the r,,;, sensitivity analysis show that r,,;,, = 0.8 is an adequate
value for BEs identification, achieving a trade-off between N* and r® and maximizing " (see
Figs. 3.11(c—e)). Also, the stationarity of BRS over segments in this dataset (a priori setting
of rmin = 0.8 leading to r® close to 0.8) supports the use of global/total approach for BRS

estimation, which implicitly assume stationarity.
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BRS estimates obtained from the use of different approaches

Regarding the BRS values, it was shown that local estimates from BEs are higher and present
higher dispersion than local estimates from BSs. The higher inter-subject dispersion in BEs
estimates simply indicates that, in the EuroBaVar dataset (a heterogeneous dataset), the
inter-subject variability measured by BEs analysis is greater than the inter-subject variability
measured by BSs analysis. These results can be explained by the weight of 3-beat BEs in the
slopes averaging, once they present higher slopes than the 3-beat BSs (as a result of avoiding
APPP and ARR - thresholds). This fact was corroborated by recalculating local estimates from
BEs considering N,,;, = 4 and observing that the differences disappear (both in median and
dispersion). Concerning the global/total approach with N,,;, = 3, the median and dispersion

differences in the BSs/BEs estimates are smaller (see Fig. 3.19).

In general, local estimates are higher than global estimates (both with BSs and BEs) and
there are no significant statistical differences between local and total estimates. All estimates
present pairwise correlation with the sequences technique estimates exceeding 0.8. With
the use of the global/total approaches, BRS estimates from BSs and BEs have similar
distributions and the total approach presents the highest correlation between BSs and BEs

estimates with no significant statistical differences.

The fact that BRS estimates from BSs and BEs are correlated, though in the latter case
obtained from a higher number of beats, indicates that both are measuring the same phe-
nomenon but with a more visible expression in BEs. The absence of BSs in a record, and the
impossibility to assess the BRS, is not synonymous to an absent BRS function, but rather a
shortcoming of the sequences technique to provide a BRS estimate. In EuroBaVar recordings
without BSs, the number of beats in BEs is around 200 out of 512 beats with r® exceeding

5 percentile of the BRS estimates

0.75. The corresponding BRS estimates are lower than the
empirical distribution for the remaining files, therefore indicating a poorer BRS function of

these subjects.

BRS estimates and ability to discriminate between Lying and Standing positions
The ratio RLS obtained from BEs allows the discrimination of L and S positions in all
subjects, whether obtained with the global or the total approach. However, the median of
the ratios is higher when the total approach is used. In general, the total approach is preferred
since it is more robust than the global approach and can handle nonstationary data. It should
be noticed that for the single purpose of L and S discrimination, simpler statistical measures
over the whole zgg(n) series can be considered. For example, the L to S ratio of zgg(n)
mean value (or any quartile) discriminates 22/23 of the cases and the L to S ratio of xgrg(n)

maximum value (or minimum) discriminates 21/23 of the cases.

The use of BEs in BRS analysis also allows L and S discrimination for the subjects without
BSs and it is not possible to differentiate these cases from the remaining ones. The location

of the ratio Ryg for these files in separate tails of the overall distribution could be explained
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by the fact that the ratio of two small values is more sensitive to a small variation in one
of the values. Another explanation could be the different origins of the baroreflex failure
(one diabetic with cardiac neuropathy and another after heart transplantation). This work
suggests that clinical interpretation studies facing pathological /control cases should be carried

out in order to further investigate this behavior.

Reproducibility in spontaneous BRS analysis

The reproducibility of the BRS analysis was studied from the comparison between the BRS
analysis carried out in two different recordings of the same subject in the same condition. The
BRS variables obtained from the two test recordings were found to be more correlated when
the BRS analysis was carried out from BEs instead of BSs. Regarding the BRS estimates, the
global/total estimates from BEs in the two test recordings were found to be more correlated

and holding the highest reproducibility.

Dispersion in spontaneous BRS analysis

The dispersion in BRS analysis was studied from a simulation-based methodology. A shorter
length of BSs leads to a higher dispersion in the BRS estimate when the sequences technique
is used (local approach with BSs), since each slope is typically estimated from 3 points. This
shortcoming can be reduced if BEs are used together with global /total approach. First, with
the global/total approach the slope is estimated from the overall number of SBP and RR
pairs in all of the identified segments. Second, as BEs are longer segments and usually in
higher number than BSs, the overall number of beats in BEs is higher than in BSs. The
higher N® obtained at the expense of a slightly lower r®, not only increases the likelihood
of providing a BRS estimate, but also provides a lower dispersion in the BRS analysis, in
particular for the files presenting lower N® values. For the files without BSs, the dispersion
of the global/total estimator combined with BEs was found to be similar to that for the files
with BSs. The BRS analysis from BEs provides a larger N® obtained at the expense of a
lower r® in comparison with that evaluated from BSs, leading to a decrease in the dispersion
of the BRS estimator based on BEs (see Fig. 3.25). In spontaneous condition, 75 is higher
than 0.8 and r® is will tend to be 0.8 in stationary recordings. In contrast, the longer the
recordings the higher is the difference between the N® and N® values. Therefore, if the
SP stationary conditions are satisfied (i.e., r® remain close to 0.8), it is expected that B‘é,o

outperforms B, , in terms of dispersion.

3.7 Conclusions

The events technique is proposed in this work to improve time domain BRS assessment.
This novel technique consists of the joint use of baroreflex events (BEs) and global/total

slope estimators.
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The performance of the methods is compared with the recordings from the FuroBaVar
dataset, including two subjects with autonomic dysfunction. These subjects were expected

to exhibit lower BRS estimates in comparison with the remaining subjects.

With the use of BEs instead of baroreflex sequences (BSs), the BRS analysis benefits from
more and longer segments of data, leading to a higher number of beats available for the
slope estimation. As a matter of fact, the higher number of beats in BEs allows to provide
a BRS estimate for all EuroBaVar subjects, including for those recordings in which BSs
were not identified. The BRS estimates from BEs and BSs are highly correlated, if BSs
are identified. For the cases of BSs absence (the subjects with poor BRS function), BRS

5" percentile of the remaining BRS estimates

estimates based on BEs are lower than the
empirical distribution. This result indicates that in the case of BSs absence, the events
technique provides a BRS estimate in accordance with the autonomic dysfunction reported

for these EuroBaVar subjects.

The events technique also provides BRS estimates with higher inter-subject variability, which
allows to distinguish lying from standing positions in all EuroBaVar subjects, including for
those without BSs (23/23 against 18/23 for the sequences technique). Finally, the events
technique produces BRS estimates with higher reproducibility and lower dispersion than the
sequences technique estimates, as a result of the increased number of beats in BEs obtained
without decreasing the SBP-RR correlation. For the files without BSs, the reproducibility
and the dispersion in BRS analysis from BEs is similar to those of the BRS analysis from
BEs for the files with BSs.

The BRS estimates provided by the events technique are now going to be validated in the
following chapters. On one hand, the BRS methods are going to be further compared with
invasive data in Chapter 4. By the other hand, the time domain BRS methods are going to
be associated with respiration and ANS sympathetic activity in Chapter 5.






Chapter 4

BRS Estimation from Drug-induced
Data

The comparison between the BRS analysis from BSs and from BEs pointed out that the
estimates are different and exhibit a high pairwise correlation. However, without a reference
BRS value, it was impossible to quantify the bias of the methods. The drug-induced protocols
involve the stimulation of the BRS function, and are considered as a gold standard for BRS
quantification. Consequently, the spontaneous BRS estimates from BSs and from BEs were

further compared with invasive BRS estimates derived from drug-induced data.

The comparison between invasive and spontaneous BRS estimates considered the fact that
the invasive estimates are based on different estimators and different data comparing to
spontaneous ones. Therefore, it is possible that the reported differences between BRS

estimates are due to methodological and physiological differences between the methods.

Regarding the BRS dispersion, the results in the previous chapter indicate that spontaneous
BRS analysis from BEs provides larger N and lower 7 in comparison with BSs, leading to a
decrease in the BRS dispersion. In drug-induced data, the trade-off between N and r is more
unbalanced when compared with spontaneous data, because IV is diminished and constrained
to the time window of the drug effect, while r is increased due to the drug effect. Hence, the
dispersion in BRS estimation from drug-induced data was also studied and compared with

that evaluated in spontaneous condition.

The chapter starts with the motivation to study the BRS in invasive settings, including a
first comparison between the BRS analysis from BSs and BEs with the drug-induced. This
comparison is illustrated with the data published in the pioneer work of Smyth et al. (1969),
providing evidences that BEs should be used for BRS analysis, instead of BSs.

139
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4.1 Motivation to study the BRS in invasive settings

Time domain BRS is currently quantified as the regression slope obtained from the cross-
analysis between SBP and RR interval values, either using drug induced or spontaneous data.
The advantages and limitations of these techniques have been reviewed elsewhere (Parati et

al., 2000; La Rovere et al., 2008) and an overview is presented in Sec. 1.3.3.

The pharmacological methods allow BRS assessment under a controlled baroreflex stimula-
tion. The principle of these techniques is to make use of vasoactive drugs which change arterial
pressure by producing vasoconstriction (or vasodilatation) while having minimal direct effect
on the sinus node. Thus, these drugs induce negligible direct effects on the RR interval, so
that the observed RR changes are mediated reflexively via the baroreceptors. In comparison
with the spontaneous, drug induced techniques stimulate a larger and clearer SBP increase (or
decrease) in order to force a pronounced RR response (i.e., a clearer baroreflex activation).
Therefore, the pharmacological methods allow to explore the baroreflex function over the
entire range of SBP values, whereas the spontaneous methods allow the BRS assessment at

the subject’s operating point.

It is not clear which BRS method and experimental protocol (spontaneous or invasive) should
be considered as gold standard for BRS assessment and divergent opinions are found in the
literature. Some authors support that the spontaneous BRS assessment should not be used
in clinical practice as an alternative to pharmacological ones (Pitzalis et al., 1998a), whereas
others argue that spontaneous experiments are viable alternatives to the pharmacological
(Watkins et al., 1996). The drug induced protocols are considered a gold standard due to
the increase in control that can be obtained with the vasoactive drugs (Lipman et al., 2003).
However, drugs actions are complex and can exert influences on baroreflex function which are
independent of the ABP changes they provoke (Watkins et al., 1996; Pitzalis et al., 1998a).
Also, others debate which “quality of gold is that provided by forcing one mechanism probably
beyond its normal play” (Malliani and Montano, 2004). Nevertheless, because drug-induced
protocols allow the BRS stimulation, the comparison between invasive and spontaneous BRS

estimates cannot be avoided for the validation of a reference BRS method.

Experimental protocols for drug-induced BRS assessment

The pioneer method for invasive BRS assessment, known as the Ozford technique, used
bolus of angiotensin to provoke constriction of the blood vessels and increase the blood
pressure (Smyth et al., 1969). Following studies from the same research group have used

phenylephrine! to induce ABP rises (Gribbin et al., 1971) and amyl nitrite? combined with

!Phenylephrine is a vasoconstrictor with immediate onset of action and 2.5 hours of half-life elimination

(Brunton et al., 2007).
2Amyl nitrite is a vasodilator administered by inhalation. It is prepared in small ampoules that are

crushed, freeing the vapours to be inhaled. The effects are felt within 30 sec of inhalation and last for 2-3
min (Brunton et al., 2007).
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phenylephrine to provoke ABP decreases and increases (Pickering et al., 1972). Nowadays,
the BRS estimate obtained from Oxford technique refers to the slope of the SBP and RR

values after the administration of a phenylephrine bolus.

Other experimental BRS studies have used nitroprusside® to provoke ABP falls (Chen et
al., 1982) and sequential injections of nitroprusside and phenylephrine to stimulate acute
ABP falls and rises in the same experimental setting. The protocol consisting of sequential
injections of nitroprusside and phenylephrine is known as the Modified Oxford technique.
However, it is relevant to point out that there are several descriptions of this protocol, because
different studies make use of different dosages and consider different time intervals between
the successive injections. The time gap between injections is a characteristic particularly
important in the protocol. By only allowing 1 minute between injections, the second injection
is administrated when the subject is still under the effect of the first (Ebert, 1990; Ebert
and Cowley Jr, 1992). In this experiment, the SBP and RR values of the subjects are
acutely lowered (first nitroprusside, then phenylephrine) or raised (first phenylephrine, then
nitroprusside) with respect to the baseline values and, therefore, only one branch of the SBP—
RR sigmoidal relationship is determined. On the contrary, by allowing at least 5 minutes
between the boluses, the SBP and RR values return fully to their baseline values after the first
injection, and the second injection is given when the effect of the first is already diminished
(Parlow et al., 1995). Thus, a larger gap between injections allows to assess the 2 branches
of the SBP-RR sigmoidal.

Comparison between invasive and spontaneous BRS estimates

Time domain spontaneous techniques, in particular the sequences technique (Di Rienzo
et al., 1985; Bertineri et al., 1988), were introduced after the pharmacological methods.
Despite of their obvious advantages, the wide spread use of spontaneous protocols has been
limited because of their poor agreement with the invasive ones (Davies et al., 2001). Several
comparisons between spontaneous and drug induced BRS estimates obtained from bolus of
phenylephrine (i.e., Oxford technique) evidence that they are different although significantly
correlated (Davies et al., 1999; Pitzalis et al., 1998a; Watkins et al., 1996)%.

However, the spontaneous/invasive differences found in those studies can be due to the
experimental protocol used. As a matter of fact, the correlation between spontaneous BRS
estimates from the sequences technique and the slope of the SBP-RR sigmoidal tangent line
in the SBP rest level was found to be 0.96 for 21 normal subjects (Parlow et al., 1995).
Moreover, the authors found no statistically significant differences between the estimated

slopes and concluded that the invasive and spontaneous BRS estimates are in agreement at

*Sodium Nitroprusside is a vasodilator with onset of action within 30 sec and hypotensive effect occurring

within 2 min. Its effect disappears within 3 min after the end of the infusion. (Brunton et al., 2007).
“The correlation between the spontaneous and phenylephrine slopes was estimated as 0.67 in a dataset

combining normal and chronic heart failure (CHF) patients (Davies et al., 1999), 0.64 in post-myocardial

infarction patients (Pitzalis et al., 1998a) and 0.5 in hypertensive patients (Watkins et al., 1996).
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the operating point of the subject.

The comparisons between spontaneous and invasive BRS estimation methods have been
focused on the study of the information that spontaneous and invasive data carries out,
by comparing BRS estimates obtained from different data and from different estimators.
Obviously, it is possible that the reported differences between spontaneous and invasive
BRS estimates are due to physiological and methodological differences between the methods.
Consequently, the comparison between BRS analysis from spontaneous and invasive data

must consider these two aspects.

In this chapter, the methods for invasive BRS assessment are studied and compared with
spontaneous BRS analysis evaluated from BSs and from BEs. Moreover, the differences
observed between spontaneous and invasive BRS estimates are further studied. On one
hand, the invasive BRS estimates are compared with the spontaneous BRS estimates. On
the other hand, the BRS methods are compared from the evaluation of the different BRS

estimators in the same data and the evaluation of the same BRS estimator in different data.

The BRS estimators are then validated with respect to the ability to provide different
estimates in conditions of different BRS stimulations (either due to sympathetic or parasym-
pathetic activation). The obtained estimates are also compared with respect to the expected

relation between the BRS values and the mean RR interval.

Spontaneous BRS analysis from BEs has shown to provide larger N and lower r in comparison
with BSs, leading to a decrease in the BRS dispersion. The trade-off between N and r is
more unbalanced in drug-induced data, when compared with spontaneous data, because N
is diminished and constrained to the time window of the drug effect, while r is increased due
to the drug effect. Hence, the dispersion in BRS estimation from drug-induced data was also

studied and compared with results obtained in spontaneous condition.

The invasive BRS estimates are typically based on all the data provided by the experimental
protocol, either slope estimation as in Smyth et al. (1969) or sigmoidal estimation as in Parlow
et al. (1995), with the BRS estimates being obtained by OLS minimization. Therefore, the
global approach for slope estimation was considered for BRS evaluation, both in invasive and
spontaneous condition. Due to the diminished number of segments observed in the invasive
data and the expected repercussions in robustness of the local approach estimate (mean of
slopes) and in the performance of the outlier segments removal in the total approach, the

local and total slope estimators were not considered for BRS evaluation in drug-induced data.
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4.2 Literature evidences to use Events instead of Sequences

The pioneer study of Smyth et al. (1969) presented the results upon the SBP and RR
interaction after an intravenous bolus of a vasoconstrictor (angiotensin — AG). As illustrated
in Fig. 4.1 with the data retrieved from Table 1 of that study, the method was based in the
simple observation that a rise of arterial blood pressure following a vasoconstrictor bolus is
accompanied by cardiac slowing, as a reflex from the baroreceptors. It was found a strong
linear relation between zggp(n — 1) and zgg(n) during the drug induced changes, and the
slope estimated by OLS minimization was taken as the BRS index. The experiments were
discarded if a no statistical significant correlation was found between the zsgp(n — 1) and

Zrr(n) values in the chosen beats (p > 0.05).

The non consecutive beats used for BRS estimation were chosen from the time window of the
drug effect, extending from 20 to 30 sec from the start of the zsgp(n) rise to just before the
Zspp(n) peak (in the Fig. 4.1 example was 23 sec). In this time window, only the beats in
the expiratory phase of respiration were chosen, because it was observed that the zggp(n —1)
and xgg(n) correlation is higher in a concordant respiratory phase (because expiration is

associated with zggp(n — 1) and zgg(n) rises).
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Figure 4.1: SBP and RR response to an angiotensin injection [Smyth et al. (1969), Table 1], with
indication of the bolus period (*) and the beats chosen for BRS estimation (®). The dotted lines
delimitate the analysis window and the solid line is the global regression line with slope B (in
msec/mmHg), obtained by OLS minimization. Letters I and E in the Resp signal stand for Inspiration
and Expiration phases, respectively.
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One observation that can be depicted from Fig. 4.1 is that the beats chosen for BRS analysis
are not necessarily in zggp(n — 1) and zgg(n) ramps over time. As illustrated in Fig. 4.2, if
the beats were chosen regardless of the respiratory phase, N would be higher and r would be
slightly lower, but still close to 0.9. This segmentation procedure has been used in Watkins et
al. (1996), and the BRS estimate was considered as valid for the regressions exhibiting r>0.8.
It should be remarked that, the minimum r value was imposed only after the selection of
the beats for regression analysis and not stipulated as an apriori threshold for segments

identification, as it is with BEs.
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Figure 4.2: Plot of (a) the SBP and RR pairs from the first to the last beat within the BRS analysis
window considered in Smyth et al. (1969) and (b) corresponding dispersion diagram. The dotted
lines delimitate the analysis window and the solid line is the global regression line with slope B.

In spontaneous protocols there is no acute stimulation of the baroreceptors and, therefore, it
is natural to impose numerical thresholds for the identification of baroreflex related segments
(either BSs or BEs). These thresholds are set to increase the reliability of the identified
segment to be a real baroreflex related segment. However, their use may also reduce the
ability to perform the BRS analysis, particularly if the threshold values are very restrictive.
Figure 4.3 illustrates the application of the methodologies developed for the segmentation
of spontaneous Zsgp(n — 1) and zgr(n) series in the drug induced data from Smyth et al.
(1969), illustrating that the BSs threshold values are quite restrictive, even in a condition of
a clear baroreflex stimulation, with only 2 BSs being identified (N=6). In contrast, N—=48
for BEs is higher than for either BSs or for the zsgp(n —1) and zgr(n) segmentation initially
proposed by Smyth et al. (1969) (N=16). From the comparison between Figs. 4.1(b), 4.2(b)
and 4.3(b), it can be observed that 4.3(d) is a more populated version of the previous. The
slope obtained from the data plotted in Fig. 4.3(d) is lower than the slope evaluated for the
data in Figs. 4.1(b) and 4.2(b), because the beat corresponding to zgrr(n)=0.9 has less weight

in the OLS minimization when N increases.
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Figure 4.3: Plot of identified (a) BSs and (c) BEs after the bolus, with respective dispersion diagrams
(b,d). The solid line is the global regression line with slope B.

After the drug-stimulation of the BRS, it is expected that the beat-to-beat SBP changes
are greater and sustained for longer time. For normal baroreflex cases, it is also expected a
higher and longer sustained SBP and RR coupling in spontaneous condition, to be translated
in longer segments of high correlation. As a matter of fact, as illustrated in Fig. 4.4, it is
possible to identify baroreflex segments before the beginning of the bolus. The BS identified
before the drug injection has the same length as the BSs identified afterwards, whereas the
two BEs identified before are shorter than the following BEs.

The spontaneous BRS methods based on global slope estimators rely on local mean detrended
data. In spontaneous condition, the local mean detrend enhances the global SBP and RR
correlation (Sec. 3.3.2.2) and it is based on the assumption that the BRS is stationary on
the time window chosen for BRS analysis. On the other hand, the use of local mean detrend
in invasive data implicitly assumes that the operating point of each identified segment lies
in the approximately linear range of the SBP and RR sigmoidal relationship. A potential

disadvantage of local mean detrending invasive data is that the wide range in zsgp(n) and
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Figure 4.4: Plot of identified (a) BSs and (c) BEs for the entire recording, with respective dispersion
diagrams (b,d). The solid/dashed lines are the global regression lines obtained from the beats
identified after/before the bolus.

Zrr(n) values might decrease (in particular, if several segments are identified), with possible
decrease in the zggp(n) and xgg(n) correlation. However, if r,;, is apriori set as 0.8 and
stationarity is satisfied the correlation between the local mean detrended values dggp and

dyy is still close to 0.8, and so the linear regression analysis is suitable to use in the data.

Figure 4.5 represents the local mean detrended data, distinguishing the BSs and BEs iden-
tified before and after the bolus injection. The effect of local mean detrend the data can
be depicted from the comparison between Figs. 4.5(b,d) and Figs 4.3(b,d), respectively for
BSs and BEs: the B obtained after the bolus injection is lower when the local mean detrend
of the data is carried out. Nevertheless, the estimated BRS slopes vary more with the
SBP-RR segmentation procedure (Figs. 4.1(b), 4.2(b), 4.3(b)), rather than with introducing
a local mean detrending step in the BRS analysis. Finally, it can be observed that the
smaller differences between spontaneous and invasive BRS estimates are obtained for the
BRS estimation from BEs, rather than from BSs.



4.3. METHODOLOGIES FOR BRS ANALYSIS IN DRUG-INDUCED DATA

147

(a) BE o[sp]=11.5

(b) BE, o[ac]=7.10

0.1 0.1
1
0.05 0.05
E o0 E o
e o
-0.05 -0.05
N=4
r=0.99
-0.1 -0.1
-20 -10 0 10 20 -20 -10 0 10 20
0.1 0.1
0.05 0.05
E o E o0
e <
-0.05 -0.05
-0.1 -0.1
-20 -10 0 10 20 -20 -10 0 10 20
dssp dsgp

Figure 4.5: Dispersion diagrams for (a—b) BSs and (c—d) BEs after local mean detrend, distinguishing
the segments identified before (SP) and after the bolus (AG). The solid line is the global regression

line with slope BG,O. Same data as in Fig. 4.4.

4.3 Methodologies for BRS analysis in Drug-induced data

In this section, the methodological aspects involved in the BRS analysis from drug-induced
data are presented. In particular, in Sec. 4.3.1 the Modified Oxford protocol (OX) is described
and the experimental data analyzed in this work is presented. Next, the invasive BRS
estimator used to quantify the BRS from the OX data is described in Sec. 4.3.2. For a
more detailed BRS analysis in the invasive setting, the data obtained for each subject has
to be split into smaller intervals, according to the different BRS conditions occurring during
the OX protocol. In Sec. 4.3.3.1 the procedure used in this work to divide the OX data is
presented and illustrated with a different graphical display of the data, enhancing the time
intervals of the OX protocol corresponding to sympathetic ANS activation and deactivation.
Finally, the obtained BRS estimates were validated with respect to the expected relationship
between the BRS values and the mean RR interval, described in Sec. 4.3.3.2.
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4.3.1 Experimental protocol and data: the SP/NT/PH dataset

The SP/NT/PH dataset consists of 30 sets of ECG, ABP, RESP and MSNA signals collected
from 15 healthy male subjects (20-36 years) in supine rest condition (Gujic et al., 2007).
Each subject was monitored 5 minutes in spontaneous (SP) condition and during 3 min in
the Modified Oxford protocol (OX). The OX protocol described in Rudas et al. (1999) consists
of a 3 minutes recording in supine position: after 1 minute of acquisition, a bolus injection
of 150 pug sodium nitroprusside (NT) is administrated followed, one minute after, by a bolus
of 150 pug phenylephrine hydrochloride (PH). Figure 4.6 presents the data from one subject,
illustrating that the NT (vasodilator) bolus acutely decrease zsgp and produce a baroreflex
mediated shortening of the zzg interval. On the contrary, the PH (vasoconstrictor) bolus

acutely increase zggp and lengths the zyy interval.
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(5) “ nm_,\l,l«ﬁ L ‘\ L‘ I H“jLL“UUA J,lbu\ lfdt,d L
0 1 2 3

TMSNA

4 5
Record time (min)

Figure 4.6: Plot of zy with ¢ = {RR,SBP,RESP,MSNA} from one representative subject in SP
condition (grey) and during the OX protocol (black), to facilitate the comparison. The dotted lines
identify the timing of NT and PH bolus during the OX protocol. Same data as in Fig. 1.5.

The expected response to an acute ABP drop was a marked increased MSNA activity,
reflected by the larger, wider and more frequent zygya bursts after the NT bolus. As a
response to the PH bolus, it is observed a zsgp increase towards the baseline level and
expected sympathetic inhibition. Regarding zggsp, no changes were observed before, during
and after the drug administrations, in terms of mean, variance and frequency. Yet, there are
perceptible differences in zggsp from SP to OX condition that were found in this subject and

not for all patients of the dataset. For this subject, during the OX protocol, the zzgsp presents
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lower frequency which is accompanied with an expected higher variance. This observation
is in accordance with the fact that respiratory variance increases with decreasing respiratory

frequency (Brown et al., 1993).

Figure 4.6 also illustrates the short time gap between the successive NT and PH injections,
with the PH being administrated still under the NT effect, leading to a mixture of effects.
Therefore, this experimental setting allows to increase the range of SBP changes observed in

SP acquisition, but only by lowering the zsgp and zrg values with respect to the baseline.

Differences between OX protocols described in the literature

The Modified Oxford protocol (OX) is generally described in the literature as the admin-
istration of successive injections of NT and PH (or vice versa). However, the experimental
protocol followed in Parlow et al. (1995) has important differences to the OX protocol used in
this work (Gujic et al., 2007) and, therefore, the invasive data obtained by these two protocols
do not have the same characteristics.

In the work of Parlow et al. (1995), at least 5 minutes were allowed between the administra-
tions allowing the SBP and RR values to return fully to their baseline values. This longer
time gap between the successive NT and PH injections in comparison with the OX protocol,
indicates that the PH administration was performed from the baseline of the subject and not
in a time when the subject was still under the effect of the NT administration. Therefore,
unlike the OX protocol, the protocol followed by Parlow et al. (1995) allowed to increase
the range of SBP changes observed in SP condition, by both lowering and raising the zsgp
and zrp values with respect to the baseline. In this way, the entire sigmoidal function
that characterizes the BRS function could be obtained while, for the OX protocol, only the

downpart of that curve can be drawn.

4.3.2 Invasive BRS estimator

The previous comparison between the spontaneous and invasive BRS estimates have shown
that they are correlated and exhibit no statistically significant differences (Parlow et al.,
1995). In that work, the SBP and RR values obtained from the OX protocol were used to
estimate the sigmoidal function that characterizes the BRS function (Fig. 1.7) and the invasive
BRS estimate was computed as the tangent slope to the sigmoid at the point corresponding

to the mean pre-injection SBP value.

In this work, the sigmoidal tangent slope described in Parlow et al. (1995) was also considered
to obtain an invasive BRS estimate. However, because the OX protocol used in this work
differs from the one described in Parlow et al. (1995), adjustments in the estimation of the
sigmoidal model had to be introduced. The methods used in this work to obtain an invasive
BRS estimate are illustrated in Figs. 4.7 and 4.8.
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Figure 4.7(a) shows the same data as in Fig. 4.6, represented in the dispersion diagram of the
Zspp(n—1) versus the xgg(n) values. The high dispersion of the data, in particular around the
operating point of the subject, can lead to difficulties in a model estimation. This difficulty
was overcome in two ways. First, only the data in the time window from the NT bolus to the
maximal effect of the bolus, i.e., the minimum zggp(n — 1) value was considered (Fig. 4.7(b)).
Second, as proposed in Ebert and Cowley Jr (1992), by averaging the xggp(n —1) and zgg(n)
values across bins of 2 mmHg increments in the zsgp(n—1) values (Fig. 4.7(c)). The averaged

xspp and Xgg values were then used for the estimation of the sigmoidal model.
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Figure 4.7: Plot of xsgp(n — 1) versus xrgr(n) obtained from (a) the entire OX protocol and in (b)
the time window between the NT bolus and the minimum zggp(n — 1) value. Figure (c) represents
the data in (b), after data averaging across xsgp(n) bins of 2 mmHg width. The white dot localizes
the operating point of the subject (Zspp[BAs|,Zrr[BAs]). Same data as in Fig. 4.6.

As illustrated in Fig. 4.7(c), the relation between the mean Xggp and Xgp values can be
adequately described by the lower arch of a sigmoidal function. As presented in Fig. 4.8(a),
only the Xsgp and Xzy below the corresponding coordinates of the operating point of the
subject were considered for the estimation of the sigmoidal parameters. The BRS estimate
was then taken as the slope of the tangent line to the curve at the operating point of the
subject (Fig. 4.8(b)).
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Figure 4.8: Plot of Xsgp and Xgg, superimposing (a) the estimated sigmoidal function and (b) the
tangent line to the curve at the operating point of the subject (white circle). The black circles identify

the points used for the estimation of the sigmoidal parameters. Same data as in Fig. 4.6.
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The operating point of each subject corresponds to pair of values baseline mean SBP and
mean RR values, respectively Zgspp[pas] and Zgg[sas] and, in accordance with Ebert and
Cowley Jr (1992); Parlow et al. (1995), it was estimated from the SBP and RR values in the
first minute of the OX protocol, just before the NT bolus (see Fig. 4.6).

Due to the differences between the experimental protocol used in this work (Sec. 4.3.1) and
the one described in Parlow et al. (1995), here the parameters of the sigmoidal function
have to be estimated with the use of data localized in the lower arch of that sigmoidal
function. Therefore, in this work, the sigmoidal parameters were estimated assuming that
the inflection point of the sigmoidal function is the operating point of the subject. Hunt
and Farquhar (2005) reported that humans do not exhibit systematic asymmetries in the
BRS sigmoid, so supporting the use of a symmetric sigmoidal function for BRS assessment.
However, their approach did not make any assumption regarding the inflection point of the
curve. Nevertheless, in that study the operating points for young healthy subjects (22-38
years) were found to be evenly distributed around the midpoint of the sigmoidal and localized
in the approximately linear portion of the sigmoidal (defined by the SBP range in between

the zeros in the third derivative of the sigmoidal function).

Estimation of the sigmoidal model
The sigmoidal function is defined by

b

0 =1rewa

+m, (4.1)
where a, b, ¢ and m are the constants defining the f(x) shape. As illustrated in Fig. 4.9,
the sigmoidal curve has an S-shape with either a non-negative (a > 0) or non-positive first
derivative (¢ < 0) and exactly one inflection point. The function has two asymptotes for
x — +00, with m and m + b corresponding to the bottom and upper plateau values of f(x).
The variable a describes the steepness of the curve, with f(x) tending to the Heaviside step

function as a — Fo0.

Figure 4.9: Plot of the sigmoid function f(z) as a function of . The dashed line corresponds to the

tangent line to the sigmoidal curve at the inflection point of the function.
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For each subject, the parameters of the model were obtained by OLS minimization, using the
Levenberg-Marquardt method for nonlinear least-squares optimization (Nocedal and Wright,
1999). The estimation of the parameters of the sigmoidal function was carried out with the
“Isqcurvefit.m” function, from the Optimization Toolbox v.3.0.4 Matlab (R2006a). With the

constraint that the inflection point of the sigmoidal is the pair (Zspp[Bas]|, Zrr[pas]) then

b b
Cc = fESBp[BAS] a.nd m + 5 = .’ZRR[BAS] S m = ERRI:BAS] — 5 (42)
Therefore, the replacement of ¢ and m in Eq. 4.1 by the previous expression implies that
only a and b need to be estimated. Analogously to Parlow et al. (1995), the invasive BRS
estimator B' is taken as the slope of the tangent line to the sigmoidal curve evaluated at

jSBP[BAS], i.e.,

b a e~¥z—c) ba
I
— _ = 4.
B <(1 + e—a(x—c))2) ) 4 ( 3)
m:xSBp[BAS}
4.3.3 Validation of the estimated BRS values

For a more detailed BRS analysis in the invasive setting, the data obtained for each subject
has to be split into smaller intervals, according to the different BRS conditions occurring
during the OX protocol (NT and PH effect).

The BRS estimators based on BEs and BSs were then compared in these smaller time intervals
and in SP condition. The BRS estimates obtained in SP, NT and PH conditions were also
validated with respect to the expected relationship between the BRS values and the mean
RR interval. Finally, the BRS estimates obtained in NT condition were associated with
the amount of sympathetic activation produced by the administration of the nitroprusside
bolus. The amount of sympathetic activation was quantified from the methods described in
Sec. 2.3.2.

4.3.3.1 Data partition according to the BRS condition

Figure 4.10 represents the function fy with ¥ = {RR,SBP,RESP,MSNA}, defined as the

cumulative sum of the corresponding ¥ mean detrended series in Fig. 4.6, i.e.,

n

fo(n) = (zg(n) — 29), (4.4)

=1

with Zy denoting the mean of zy series and 9 = {RR,SBP,RESP,MSNA}. This representation
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allows a clearer visualization of small deviations from the mean and facilitates the comparison

between the data obtained by the spontaneous and the invasive protocol.

Figure 4.10 also illustrates the latency between the drug administration and the expected
changes in zggp, Tysna and zgy series. In this work, the BRS analysis under NT and PH
effect was computed from the time intervals delimitated in Fig. 4.10 with the dashed lines.
The analysis windows are consecutive 45 sec segments starting 30 sec after the NT bolus.
The 30 sec lag assures that the NT effect is present (Brunton et al., 2007), whereas 45 sec is
the time interval between the beginning of NT and PH effects.
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Figure 4.10: Plot of fg(n) = >.i_, (z¢(n) — Zy) with Zy denoting the mean of the zy(n) values,
9 = {RR,SBP,RESP,MSNA}. The dashed lines delimitate the time intervals for BRS analysis in NT

and PH conditions. Same data and caption as in Fig. 4.6.

Figure 4.11 shows fy(n) superimposing all subjects of the dataset, illustrating the wide range
of inter-subject responses obtained under the same stimulation. Several reasons can explain
such inter-subject differences. As an example, the amount of zssp reduction after a bolus
of nitroprusside has been reported to be inversely related with the subject age (Rudas et
al., 1999). Also, other factors, e.g. the weight of the subject, might be of importance
to explain the variability in the inter-subject responses. To overcome the difficulty of not
having homogeneous responses, the administration of different doses to different subjects
might be considered, e.g., consecutive small doses instead of one single bolus to provoke a

predetermined amount of SBP increase or decrease (Matsukawa et al., 1996).
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Figure 4.11: Plot of fy during the OX protocol, superimposing the data obtained from the 15
subjects of the dataset. Same caption as in Fig. 4.10.

4.3.3.2 BRS estimates and mean RR interval

In the pioneer study of phenylephrine-induced BRS estimation (Smyth et al., 1969), it
was observed that the BRS estimate is directly related to the baseline mean RR interval.
Generally, the BRS has been shown to increase with increasing mean RR interval (Smyth et
al., 1969; Mancia and Mark, 1983; Bertineri et al., 1988). The direct relationship between
B and Zrr might be at some extent due to the choice of zyy to compute the BRS estimate
(Mancia and Mark, 1983). However, there are physiological aspects that suggest that changes
in BRS triggered by SBP changes are the primarily cause of alterations in the mean RR

interval (Mancia and Mark, 1983), apart of others, e.g. respiration.

The indicative relationship between the B and the corresponding Zgrr values was inferred
from the study of Abrahamsson et al. (2003). In that study, the relationship between HR
and the B obtained by the sequences technique has already been investigated for normal
subjects, using an exercise protocol. In an exercise protocol, like in the OX protocol, it is
expected that the HR is increased in comparison to the HR in SP condition. Therefore, the
results from the work of Abrahamsson et al. (2003) are convenient for a comparison with the

results obtained from the BRS analysis in the drug-induced protocol.
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The work of Abrahamsson et al. (2003) evidences that the BRS estimates and HR follow the

exponential model

B(HR) =a e HR, (4.5)

with the parameters ¢ and A. In that work, the authors proposed to normalize the BRS
estimate of one subject to the fixed HR of 60 bmp, by regressing the B natural logarithm on
HR and predicting B (60). The authors justify the need of such normalization with the fact
that the HR differences from different BRS studies imply that the results from these studies
may not be comparable. For the purpose of this work, the indicative relationship between HR
and B reproduced from Abrahamsson et al. (2003) will be used. As illustrated in Fig. 4.12,
the B value decreases exponentially with the HR increases (Fig. 4.12(a)) and the relationship
appears to be linear if a logarithmic scale is used in the B axis (Fig. 4.12(b)).

a b c
50 (2) 100 (b) 50 (©)
o0 40 o0 40
E 10 i

30 & 30
8 S) g
[} 20 (&)
2 20 < 2 20
g ! )
«q 10 g 10

0 0.1 0

30 60 90 120 150 30 60 90 120 150 0.4 067 1 2

HR (bpm) HR (bpm) Trr (sec)

Figure 4.12: Dispersion diagrams illustrating the relationship between B and HR, in (a) linear and
(b) log scale. Figure (c) represents the data in (a) with the conversion Zrg = 60/HR in the horizontal

axis. Reproduced from Abrahamsson et al. (2003).

Figure 4.12(c) represents the same as in Fig. 4.12(a), with the horizontal axis HR converted
in Zyg by the transformation zrr = 60/HR. Figure 4.12(c) illustrates that the relationship
between B and Zrr, Observed in Abrahamsson et al. (2003) for an exercise protocol, cor-
roborates the previous findings of higher BRS values being associated with higher Zgpg for
drug-induced experiments (Smyth et al., 1969). The function represented in Fig. 4.12(c) will
be used as the indicative relationship between the B and the corresponding Tyy values, to
validate the obtained BRS estimates.

The parameters of the model in Eq. (4.5) were estimated as a = 383.273 and A = 0.047, using
the data {(58,26)(60,22), (75,12), (90,5), (105,3), (120, 1.5), (140,0.6)} that was retrieved
from Figs. 1(c) and 1(d) of Abrahamsson et al. (2003). The model estimates were obtained
by unconstrained nonlinear minimization, using the Nelder-Mead simplex method (Walsh,
1975), implemented in the “fminsearch.m” function from the Optimization Toolbox v.3.0.4
Matlab (R2006a).
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4.4 Results

The methods were compared with respect to the variables given in Table 3.2, evaluated for
BSs and BEs and, as before, the upper index S or E was added to each variable according to

its evaluation in BSs or BEs.

The methods were additionally compared in the different conditions: 5 min spontaneous
(SP), 3 min Modified Oxford protocol (OX) and the 45 sec length data segments under
nitroprusside (NT) and phenylephrine (PH) effects. Therefore, a right index was added to
each variable according to its evaluation in each condition, e.g., N®[sp] and N¥[~7| indicate

the number of beats available for BRS analysis using BEs in SP and NT conditions.

With respect to the display of results, in a dispersion diagram representing x versus y e.g.,
Fig. 4.13, the percentage C defined as the ratio #(z > y)/#x where # indicates the counting
numbers, is indicated at the lower right corner of the figure. If justified, the correlation
between the 2 and y values (r) is also presented at the top of each dispersion diagram, as
well as the number of values (n). The level of statistical significance was fixed at p < 0.05,

and indicated with the symbol *.

As previously referred, it is possible that the reported differences between spontaneous and
invasive BRS estimates are due to physiological and methodological differences between the
methods. Therefore, the BRS estimates were compared from the evaluation of the different
BRS estimators in the same data or the same BRS estimator evaluated in different data
(Sec. 4.4.1). Next, the BRS estimates evaluated in BSs and BEs were compared in the
different BRS conditions occurring during the OX protocol (Sec. 4.4.2). Additionally, the BRS
estimates are compared with respect to the expected relation between the BRS estimates and
the mean RR interval (Sec. 4.4.3) and with respect to the amount of sympathetic activation
produced by the administration of the nitroprusside bolus (Sec. 4.4.4). Finally, the trade-off
between N and r is studied in terms of variance in BRS analysis carried out from NT, PH
and SP conditions (Sec. 4.4.5).

4.4.1 Invasive and Spontaneous BRS estimates

Figure 4.13 shows the comparison between B and the spontaneous BRS estimates, evaluated
from BSs and BEs. As indicated in Fig. 4.13(a), in 1 out of the 15 subjects it was not possible
to obtain a Bf’;,o[sp] value, because BSs were not identified (Bf’;,o[sp] = 0). The overall results
indicate that the invasive and spontaneous estimates are correlated and exhibit no statistically
significant differences (p = 0.56, n = 14 for BSs and p = 0.5, n = 15 for BEs). Figure 4.13(b)
also shows that 5 out of the 15 subjects exhibit the largest [S’I—[S’g,o[sp] values. Not considering
these 5 subjects, the invasive and spontaneous BRS estimates are more correlated (r = 0.84*,
n = 10 for BSs and r = 0.97*, n = 10 for BEs).
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Figure 4.13: Dispersion diagrams comparing B" with B, o[sp] and BE ,[sp]. The crosses indicate the

subjects with the larger B' — BE,O[SP] values.

The larger B' — [S’g,o[sp] values observed in 5 of the 15 subjects can be due to dissimilarities
found in the invasive and spontaneous data. As a matter of fact, the baseline mean SBP
value Zsgp[sas] (i.e., the SBP operating value of B') and the spontaneous mean SBP value

Zspp[sp] show statistically significant differences (p = 0.004, Fig. 4.14(a)), whereas Zygr[pas]

and Zgg[sp] do not (p = 0.68, Fig. 4.14(d)).
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Figure 4.14: Dispersion diagrams comparing Z[sas] and Z[sp], and comparing B' — Bg.o[sp] as a
function of Z[sas] — Z[sp]. The crosses localize the subjects with the larger B' — Bg,o[sp] values.
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Regarding the BRS estimates, as is illustrated in Figs. 4.14(b—c), the subjects exhibiting the
lowest B' — Bg,o[sp] values present the largest Zsgp[ox] — Zspp[sp] values, with B' — Bg,o[sp]
showing significant correlation with Zsgp[sas] —Zsgp[sp]. Finally, as presented in Figs. 4.14(e—
f), there is a tendency for the lowest B' — Bg o[se] values to be associated with the lowest

Zrr[pas| — Trr[sp] values, although not exhibiting a significant correlation.

The results point out that the differences between the invasive and spontaneous BRS esti-
mates are associated with the differences found in the OX and SP operating points. However,
the obtained low pairwise correlations indicate that other factors, besides dissimilarities in
the data, might explain the differences between these estimates. To further evaluate these
differences, the BRS estimates were compared from the evaluation of the different BRS

estimators in the same data and the same BRS estimator evaluated in different data.

Evaluation of the different BRS estimators in OX condition

Figure 4.15 shows the comparison between the different B values evaluated in OX condition.
As presented in Fig. 4.15(a), the Bf’;,o[ox] and Bg,o[ox] values are highly correlated and show
the relationship Bé,o[ox] > Bg,o[ox] for most of the files. As illustrated in Figs. 4.15(b-c),
the B' values are correlated with [;’é,o[ox] and [S’g,o[ox], showing no statistically significant
differences (p = 0.82, n = 14 for BSs and p = 0.40, n = 15 for BEs).

As before, if the 5 out of the 15 subjects exhibiting the largest B' — Bg,o[ox] values would
not be considered in the analysis, the pairwise correlation between estimates would be higher
(r=0.87*, n=10 for BSs and r = 0.97*, n=10 for BEs). Also, the B' would still show significant
differences with B ,[ox] (p = 0.29, n = 10), whereas the differences between B' and BE [ox]

would be non significant (p = 0.04, n = 10).
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Figure 4.15: Dispersion diagrams comparing ' with 35‘;,0 and Bg,o evaluated in OX condition. The

crosses localize the subjects with the largest B — 38,0[9] values.

Because the pairwise correlation between B' and the [;’G,O[ox] estimates is higher than the
pairwise correlation between B' and the Bgo[sp] estimates (Fig. 4.13), it is possible to
conclude that some of the dissimilarities between the invasive and the spontaneous BRS

estimates are due to methodological differences between the corresponding BRS estimators.
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Evaluation of the same BRS estimator in OX and SP conditions
The spontaneous BRS estimators from BSs and BEs were also compared in OX and SP
conditions. The B' estimator was not evaluated in SP condition, because B' assumes that

the data follows a sigmoidal model, which is not a valid assumption for data in SP condition.

Figure 4.16(a) illustrates that again the relation Bé,o[sp] > B’g,o[sp] was found for most of
the files, corroborating the results obtained in OX condition in Fig. 4.15(a). As presented in
Figs. 4.16(b—c), Blox] and B[sp] values are correlated, with the highest correlation between
OX and SP estimates being obtained for Bg,o. The differences between BRS estimates are
not statistically significant for BE,O[SP] (p = 0.11, n = 14), and statistically significant for
Bg,o[sp] (p = 0.0004, n = 15). Nevertheless, without considering the 5/15 subjects exhibiting
the largest B' — Bg,o[sp] values, the pairwise correlation between estimates would be higher
(r = 0.94%, n = 10 for BSs and r = 0.99*, n = 10 for BEs), and the estimates would show
no statistically significant differences either for BSs and BEs (p = 0.06, n = 10 for BSs and

p = 0.1, n = 10 for BEs).
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Figure 4.16: Dispersion diagrams comparing BAE‘;,O and Bg,o evaluated in OX and SP condition. The

crosses localize the subjects with larger B' — BA(E},O[SP] values.

In conclusion, BRS estimates from BEs are more correlated with B'. Also, the BRS analysis
from BEs achieves the highest reproducibility in different data, because the correlation
between Bg o[ox] and Bg o[se] is higher for the BRS estimates evaluated from BEs against
BSs. Therefore, if the BRS analysis from BEs is able to provide a value that reflects the
physiology of the baroreflex, the BRS analysis from BEs is preferable, even to compute a
BRS estimate with data following the OX protocol.

4.4.2 Discrimination between NT, PH and SP conditions

Figures 4.16(b—c) show that 5 out of the 14 subjects of the dataset exhibit [;’é,o[sp] > l’;’é,o[ox],
whereas 12 out of the 15 files present BE ,[sp] > BE ,[ox]. Because there seems to be no well-
established relationship between the BRS estimates obtained from the OX protocol and the

BRS estimates evaluated in SP condition, this contradictory result motivated an additional
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comparison between the [;’f‘;,o and [S’g,o values. Therefore, the methods were further compared
with the additional evaluation of the BRS estimators in data representative of the NT and
PH effect, obtained from the data partition of the OX data, as described in Sec. 4.3.3.1.

In general, it is expected that the RR response to a falling SBP to be lower than of that
to a rising SBP (Pickering et al., 1972). The study of Rudas et al. (1999) reports the
relationship between BRS estimates obtained during the OX protocol and SP condition for
healthy subjects: B[xt] are lower than B[pu], B[xt] are lower than B[se] and B[ps] show no
statistically significant differences from B [sp], because the PH is administrated still under the
NT effect. If the PH injection would have been administrated after N'T recovery to baseline,
it would have been expected that B[xt]<B[sp|< Blpu| (Pickering et al., 1972).

Figure 4.17 shows the comparison of the BRS estimates evaluated from BSs and BEs in N'T,
PH and SP conditions, corroborating that Bxt]<B[se]~B[rs] (Rudas et al., 1999). Also, the
comparison between the results obtained for BS and B® indicates that the [S’g,o values are more
in accordance to what was expected, with the different BRS conditions being discriminated
for more subjects of the dataset. The B’g,o values also discriminate the different conditions

for the subjects exhibiting the highest Bg,o[sp], whereas the l';’é,o values cannot.
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Figure 4.17: Dispersion diagrams comparing different B evaluated for BSs and BEs in SP, NT and

PH conditions.
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Considering all subjects of the dataset, the BRS analysis from BEs indicated that the mean
paired differences Bg,o[sp] —Bg,O[NT] and Bg,O[PH] —Bg,O[NT] both differ from zero (p < 0.001),
whereas BE, — BE,; do not (p = 0.28), in accordance with the results in the study of Rudas
et al. (1999). Finally, the pairwise correlation between BRS estimates in SP, NT and PH

conditions is higher for the [S’g,o values.

4.4.3 BRS estimates and mean RR interval

Figure 4.18 shows the BG,O values evaluated in SP, NT and PH conditions superimposed with
the function plotted in Fig. 4.12(c), included for comparison purposes. For all conditions,
the BG,O values typically follow the relation depicted from Abrahamsson et al. (2003). In
SP condition, with Zyg[sp] between 0.75 and 1.25 sec, the [;’G,O[SP] and Zrg[sp] relationship is
approximately linear. The Bg o[vt] and Zgg[xt] are lower than when evaluated in SP condi-
tion, and also follow the indicative relation retrieved from Abrahamsson et al. (2003). In PH
condition, the Bg o[pn] and Zgg[pu] values are similar to the ones in SP condition. However,
the BG,O[pH] and Zgg[ru] relationship is less evident than that evaluated in SP condition,

probably due to the presence of the NT effect when the PH injection is administrated.

0.04 0.04 N 0.04

%.5 0.75 1 1.25 . . . . 1.5
fRR[NT] ,’Z‘RR[PH]

Figure 4.18: Dispersion diagrams showing the relationship between Zrg and BG,O, evaluated from
BEs and BSs in SP, NT and PH conditions. The solid line corresponds to the indicative relationship
for Zrr between 0.4 and 1 sec (Fig. 4.12), while the dotted line represents the same function for
Zgrr > 1. The white circles identify the subjects with highest Bg,o[sp] values.
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The SP recordings of the SP/NT/PH dataset have 5 min of duration and therefore, a subject
with a higher Zgg[sp] exhibits a lower N[se] for slope estimation with repercussions on the
BRS variance, in particular if the BRS is estimated from BSs (see results in Sec. 3.5.4).
Regarding the comparison between the BRS analysis from BSs and from BEs, the relationship
between BG,O and ZTrg is more evident for the BRS analysis from BEs, and the [S’g,o values
for the subjects exhibiting the highest Zyg[sp| values follow better the indicative relationship

in comparison with the Bg .

The results presented in Fig. 4.18 suggest that the observed inter condition changes in the B
values, can also be associated with changes in zyg values. Figure 4.19 shows the dispersion
diagrams of the ratios R and differences D between the [S’G,O and the Trg values evaluated
considering the paired conditions NT and SP, PH and SP, and PH and NT.
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Figure 4.19: Dispersion diagrams comparing the changes in l’;’f‘;,o (a-b) and Bgo (c—d) with the
changes in Zrg. The changes were quantified from the ratios (R) and the differences (D) between
pairs of conditions, being NT to SP (white), PH to SP (grey) and PH to NT (black).

The inter condition changes in [S’G,O are linearly associated with the Zrgr changes. From SP
to NT condition, the zgr and B’G,O values decrease, so that R o is smaller than 1 and DBG,o
is smaller than 0. From NT to PH condition, the Zry and BG,O values increase again, so
that RBG,o is above 1 and DBG,O is above 0. From SP to PH condition, the Ry can be
above or below 1, what emphasizes the similarity between the BRS analysis obtained from SP
and from PH after NT. Also, the PH to SP ratios present a higher inter subject variability



4.4. RESULTS 163

in comparison to the PH to NT ratios, stressing out the intra subject variability in the
responses to the consecutive NT and PH boluses. The results in Fig. 4.19 also indicate that
the association between the changes in BG,O and in Zyp is more evident for B’g,o. In particular,
the subjects exhibiting the largest Trg changes present Bg,o changes more aligned with those
observed for the remaining subjects (both for ratios and differences). The subjects exhibiting
the largest |Dzgp
the B’g,o of the remaining subjects (Figs. 4.19(c,f)).

| also exhibit the highest l;’g,o, being in a trend more in accordance with

4.4.4 BRS estimates and sympathetic activity

As illustrated in Fig. 4.6, the sympathetic activity in NT condition is higher than in SP and
in PH conditions, with the sympathetic activity in SP and PH being comparable.

Figures 4.20(a-b) show the relationship between the changes in BRS estimates and the
changes in Ay values (MSNA burst intensity per min, see Sec. 2.3.2), from one condition
to another. It can be observed that, in a condition of clear sympathetic activation (NT to
SP ratio corresponding to the white circles in the figure), the changes in l’;’g,o from NT to SP
conditions are more associated with the changes in Ay from NT to SP conditions, than that
evaluated for BE’;,O. As a matter of fact, the Rég,o and the R4, values exhibit significant
correlation (r = —0.55, p = 0.03, n = 15), whereas that correlation evaluated for RB%,O is
not statistically significant (r = —0.08, p = 0.76, n = 14). The sensitivity of the obtained r
value was studied with respect to 7, i.e., the constant threshold value used for the selection of
significant MSNA bursts (see Sec. 2.3.2). As it is possible to observe in Fig. 4.20(c), there is
a relatively wide interval around =3 (the threshold value chosen) for which the correlation

between Rég o and R 4, remains significant.
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Figure 4.20: (a-b) Dispersion diagrams comparing changes in the BRS estimates with changes in
Ar, quantified by the ratios of each variable R between pairs of conditions, being NT to SP (white),
PH to SP (grey) and PH to NT (black). (c) Correlation between R4, and RB’E o evaluated for NT

to SP conditions (white dots), as a function of .
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The results obtained point out that, in a condition of a clear sympathetic activation, the
BRS estimates from BEs are able to capture better changes in the sympathetic activity of
the subject in comparison with the BRS estimates from BSs. Also, the changes observed
in the BRS estimates from BEs are significantly correlated with the changes observed in

sympathetic activity.

4.4.5 Dispersion in invasive BRS estimation

In recordings of the same time length, the higher BRS values are estimated from a smaller
number of beats. As a matter of fact, from Fig. 4.18, the higher BRS estimates are associated

with the higher Zyg values.

Figure 4.21 illustrates that the Bg,o[sp] values decay with increasing N®[sp| and r®[sp| values
remaining close to 0.8. This relation is not so evident for the variables evaluated from BSs.
As the SP condition files have the same time length (5 min), but not the same number of
beats, Figs. 4.21(b) and 4.21(e) additionally present the dispersion diagram of Bg o[sp] with
N]sp] in % units. The results indicate that subject with higher Bg o, are associated with lower

percentage of points in BEs.
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Figure 4.21: Plot of Bg o as a function of N and r, evaluated for BSs (grey) and BEs (black) in
SP condition. The white circles identify the subjects with highest Bg,o[sp] values. The N[sp] in % is
obtained dividing NJsp] in beats by the recording beats length.
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There is one subject (out of the 15) in which no BSs were identified in SP condition and,
therefore, no Bé,o[sp] was obtained for that subject. All subjects presented BEs and the
BRS analysis from BEs was carried out for all subjects. In particular, there are 5 subjects
(out of the 15) presenting a noticeable higher Bg,o[sp] values in comparison with that of the
remaining subjects. These evaluations exhibit the lowest N* and the most extreme r® values

in comparison with the remaining evaluations.

Figure 4.22 shows the distribution of N and r evaluated in NT and PH conditions. The
N3[nt] and N®[pu| values show no statistically significant differences (p = 0.19, n = 14),
whereas N®[~t| are higher than N®[pu] (p = 0.002, n = 15). The r[~xt] values are similar to
those evaluated in PH condition (p = 0.80 for BSs and p = 0.69 for BEs). In comparison
with SP condition, N|[~t] and N|[ru] are much decreased, at the trade-off of increased r|~7]

and r[pu] values (with values typically higher than 0.8).
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Figure 4.22: Distribution of N and r, evaluated for BSs (grey) and BEs (black) in NT and PH
conditions. The white circles identify the subjects with highest Bg,o[sp] values.

Regarding the BRS dispersion in SP condition, the BRS analysis from BEs provided a larger
NE, obtained at the expense of a lower ¥, in comparison with that evaluated from BSs,
leading to a decrease in the dispersion of the BRS estimator based on BEs (see Fig. 3.25).
The results presented in Fig. 4.22 point out that, in drug-induced data, IV is diminished
with respect to the SP condition, whereas r is increased due to the drug effect. The BRS
dispersion in SP, NT and PH conditions was quantified through the computation of the
standard deviation of the slope B o, using the Bootstrap-based methodology described in
Sec. 3.5.4. Similarly, the dispersion in BRS estimation was quantified by ¢ as the estimated
B standard deviation divided by B and multiplied by 100 (Eq. 3.9).

Figure 4.23 shows the 0 o values as a function of N and r. The results for the SP condition
corroborate the results obtained for the EuroBaVar files (Fig. 3.27): d[sp| value decays with
increasing N|sp| and r[sp] remains close to 0.8, being higher than 0.8 for BSs and lower
than 0.8 for BEs (Figs. 4.23(a,d)). The subjects exhibiting the highest BE [sp] values also
exhibit the lowest N"[sp] and lowest r"[sp] values (Fig. 4.21). Consequently, these subjects
also exhibit the highest d¢, ,[sp] values of the dataset. Regarding the drug-induced conditions,
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N{~t] and Nru] are lower than N[sp|, and r[~r] and r[pu] are higher than r[sp] (Figs. 4.23(b—c)

and 4.23(e-f)), so that dq o[~T] and g o[pu] are in the same range of values than g o[sp].
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Figure 4.23: Plot of 0 o versus N and r for BS (grey) and B® (black) in SP, NT and PH conditions.

For the illustration of the overall results, Fig. 4.24 presents the distribution of d¢ o evaluated
for BSs and BEs in SP, NT and PH conditions. The results point out that around 50% of
the files present d¢ o[~ and dg o[pr] below 10%, while that percentage increases for d o [sp].
As a matter of fact, the distribution of the d¢ o[sp] is below 10%, if excluding the subjects
that exhibit the lowest N® of the dataset.
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Figure 4.24: Boxplots of dg o evaluated for BSs (grey) and BEs (black) in SP, NT and PH conditions.
Median and mean 95% confidence intervals represented by the notch and by the interval displayed at
the left of each boxplot. The white circles identify the subjects with highest Bg,o[sp] values.
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The dispersion limits for the Bg o estimator evaluated in SP, NT and PH conditions was also
quantified from the percentiles of the é empirical distribution, provided in Table 4.1. The
B’g,o[sp] estimates provided the lowest median and lowest Prs of the 0 values, indicating that
50% of the files present a d[sp| value below 7.8% and 75% of the files exhibit a J[sp] value
below 11.1%. Attending the entire distribution of the ¢ values, the lowest 0 values where

obtained from Bg,O[PH], with 95% of the files exhibiting a d[pu| value below 16.4%.

Table 4.1: Dispersion limits for the BRS estimators in spontanecous and invasive conditions,
quantified from 0. The variable Py, k = {50, 75,95} is the value below which k% of the observations

fall, and n indicates the # of files from which the statistics were computed.

da.o (%)
Pso Pz Pgs n

BSs)] 8.6 158 568 14
BP[se] 7.8 11.1 379 15

BS[xt] 103 122 302 15
BP[xr] 103 122 18.7 15

BS[pn] 112 17.4 345 15
BP[pu] 11.6 155 164 15

Finally, Fig. 4.25 presents the comparison of the dq o evaluated in SP, NT and PH conditions.
The results indicate that no precision improvement is achieved with the BRS analysis from
the drug-induced data, in comparison with the BRS analysis from SP condition: for BEs, 8
out of the 15 files exhibit d[nt] < §[sp] and 4 out of the 15 files present d[pu] < d[sp]. From the
comparison between SP and NT condition, the lower N|nt] is balanced by the increased r[~t]
in comparison with the SP condition, and the number of files presenting either d[xt] < d[sp]
or §[nt] > d[sp| is similar (Figs. 4.25(a) and 4.25(d)). The comparison between SP and PH
conditions, indicates that d[sp] is lower than d[ru| for more than half of the files (Figs. 4.25(b)
and 4.25(e)), which is likely due to the variable response of the subjects to the cumulative
effect of the NT and PH boluses. Finally, the d[pn] are typically higher than the d[xt] probably
because N|[~t| had the tendency to be higher than N[ru] (Fig. 4.22).

4.5 Discussion

The comparison between the invasive BRS estimates ([;’I) and spontaneous BRS estimates
(Bg.o[sp]) corroborates the previous findings that these estimates are correlated (Parlow et al.,
1995). However, the study of Parlow et al. (1995) also indicated that there were no statistical

significant differences between invasive and spontaneous estimates and, in this study, the B
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Figure 4.25: Comparison between the d¢ o obtained for BS (grey) and B® (black) in SP, NT and
PH conditions. The white circles identify the subjects with highest 3g,o[sp] values.

tend to be higher than spontaneous BRS estimates. The differences between invasive and
spontaneous BRS estimates were found to be significantly correlated with the differences
between the mean SBP values evaluated in the invasive and spontaneous recordings. However,
as this correlation was found to be moderated, other reasons to explain the differences between

the estimates were explored.

The differences between the invasive and spontaneous BRS estimates can possibly be due
to the methodological differences between the BRS estimators or due to the differences in
the physiological information that the invasive and spontaneous data carry. The effect of
using different data was removed by evaluating the different estimators in invasive data. The
results pointed out that the correlation between B' and Bg o[ox] is higher than that evaluated
from B' and Bg o[se], showing significant differences for BRS estimates evaluated from BEs.
The effect of using different estimators was removed by evaluating the same estimators in
invasive and SP condition. The results pointed out that the BRS analysis from BEs achieves
the highest reproducibility in different data, because the correlation between BG,O[ox] and
BG,O[SP] is higher for the BRS estimates evaluated from BEs against BSs. Therefore, if the
BRS analysis from BEs is able to provide a value that reflects the physiology of the baroreflex,
the BRS analysis from BEs is preferable, even to compute a BRS estimate with data following
the OX protocol.
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Validation of the BRS estimates obtained from BEs

The BRS estimates obtained from BSs and from BEs were further compared in drug-induced
data, in order to validate the obtained BRS values. The results obtained provided indirect
evidences that the BRS estimates from BEs are more suitable than the BRS estimates from
BSs to represent the BRS physiology. First, the BRS analysis from BEs offers an increased
ability to discriminate SP, NT and PH conditions (Fig. 4.17). Second, those estimates are
in accordance with the expected relationship between BRS estimates and mean RR interval
(Fig. 4.18). Finally, the inter condition changes in the [S’g,o values are more correlated with

the changes in Zpg, in comparison with the B ; (Fig. 4.19).

From the 15 subjects of the dataset, 5 exhibited the highest [S’g,o[sp] values in the dataset,
and were found to be associated with the highest Zgrg values (i.e., the recordings of smaller
beat length) and the lowest N"[sp| values. In one of these files, it was not possible to identify
BSs in SP condition and, therefore, a Bé,o[sp] for that subject could not be obtained. The
remaining 4 files were associated with the highest differences between the [S’g,o[sp] and Bé,o[sp]
values. This result indicates that nonexistent BSs in a recording is not necessarily associated
to BRS failure, because the analysed data is from normal subjects. Instead, this result is a
clear sign that for the lower HR cases, 5 minutes length recordings in SP condition are not
suffice to obtain a BRS estimate from BSs. Moreover, it was found that the BRS estimates
obtained for the files exhibiting the lowest N%[sp] values did not discriminate SP, NT and
PH conditions and did not follow the expected relationship between the BRS estimates and
the mean RR interval. On the other hand, the BRS analysis from BEs provides a larger
NF[sp| and, therefore, it holds an increased likelihood of providing a BRS estimate for all
files. Moreover, for the cases exhibiting the lowest N¥[sp] values, the BRS estimates from
BEs discriminated SP, NT and PH conditions and followed the expected relationship between
the BRS estimates and the mean RR interval. Therefore, the BRS analysis from BEs provide

suitable BRS estimates, even for the subjects exhibiting the lowest N¥[sp| values.

Dispersion in spontaneous and invasive BRS analysis

The BRS analysis from BEs provides a larger N¥[sp| value obtained at the expense of a
lower r"[sp] value in comparison with that evaluated from BSs, leading to a decrease in
the dispersion if the BRS is estimated from BEs (see Fig. 3.25). In drug-induced data,
N is diminished and r is increased with respect to that evaluated for SP condition. The
comparison between the BRS analysis from SP recordings of 5 minutes length and from
invasive recordings of 45 seconds length indicated that no precision improvement is achieved
if the BRS is estimated from drug induced data. In SP condition, there is no time span
constrain as in drug-induced experiments (in particular if using a bolus instead of a continuous
infusion). Therefore, the possibility of increase N in SP condition is an advantage in terms of
dispersion over increase r with a drug-induced protocol, because higher N[sp] simply requires
longer recordings, whereas higher r requires higher zggp(n) and zgg(n) correlation (only

obtained with BRS stimulation). Thus, if the SP stationary conditions are satisfied (i.e.,
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rE[sp] close to 0.8) in recordings longer than 5 minutes, it is expected that spontaneous BRS

estimates will achieve an even lower dispersion.

4.6 Conclusions

In this chapter, the BRS analysis from baroreflex events (BEs) and baroreflex sequences

(BSs) were further compared with spontaneous and drug induced data.

The results in the SP/NT/PH dataset corroborate that BRS estimates obtained from spon-
taneous and drug induced data are correlated. In particular, if BRS analysis is carried out
from BEs, the correlation between invasive and spontaneous BRS estimates is higher and

their differences are smaller.

The BRS analysis from BEs is also able to provide BRS values that reflect better the
physiology of the baroreflex, against the BRS analysis from BSs. First, the BRS estimates
from BEs discriminate between spontaneous, nitroprusside and phenylephrine conditions for
more subjects of the dataset. Second, the BRS estimates from BEs are more in accordance
with the expected relationship between the BRS estimates and the mean RR interval. Finally,
the BRS estimates from BEs are more correlated with the amount of sympathetic activity
in a condition of sympathetic activation. Therefore, BRS analysis from BEs is advantageous
in comparison with BRS analysis from BSs, being also suitable to compute a BRS estimate
with data following the Modified Oxford protocol.

With respect to the dispersion in BRS analysis, no decrease in the BRS dispersion is achieved
if the BRS is estimated from drug induced data, thus, pointing out other advantages of

spontaneous BRS analysis over invasive BRS analysis.



Chapter 5

BRS Estimation from Short and Long

Events

The results in previous chapters evidence that baroreflex changes, associated with posture
changes and drug induced BRS stimulation, can be adequately detected using the BRS
estimates from the events technique. Nevertheless, time domain BRS estimates are overall
estimates that account for both parasympathetic and sympathetic ANS modulations. On
the other hand, frequency domain BRS estimates provide separate BRS estimates for low
frequency (LF) and high frequency (HF) bands, more associated to sympathetic and to
parasympathetic ANS modulations, respectively (Pagani et al., 1986). Because the sequences
technique provides a slope based on short segments of data, it is accepted that BRS estimates

based on BSs essentially reflect the parasympathetic activity (Persson et al., 2001).

The sympathetic ANS branch presents oscillations with lower frequency than the parasym-
pathetic branch (Pagani et al., 1997), and longer SBP and RR data segments are needed to
detect and quantify this modulation. As the events technique is able to provide longer
BEs, besides the BEs of the same length as BSs, BEs are more likely to also capture
the sympathetic modulation than BSs. In this chapter, the BRS analysis from BEs is
further compared with the frequency domain BRS estimates, more conventionally accepted
to distinguish the sympathetic/parasympathetic effects. Furthermore, the BRS analysis from
short and long BEs is associated with the respiratory activity. The study focuses on data
acquired in spontaneous condition, with the objective to evidence the value of including the
long SBP and RR segments provided by the events technique, besides the short SBP and RR

segments of data already provided by the sequences technique.
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5.1 Time and frequency domain BRS estimation

Frequency domain analysis of the cardiovascular series has been used to analyse the SBP and
RR variabilities and to quantify the power of the series at specific frequency bands (Task Force
of ESC & NASPE, 1996). In the same way, frequency domain BRS analysis, based on cross
spectral analysis of the SBP and RR series, is able to provide BRS estimates in different
frequency bands, typically more associated to the sympathetic or to the parasympathetic
ANS modulations (Robbe et al., 1987; Pagani et al., 1988). Time domain BRS estimates,
by their turn, are overall estimates that account for both sympathetic and parasympathetic
ANS influences.

In power spectral analysis of short-term SBP and RR variabilities, three main frequency bands
can be distinguished: very low frequency (VLF), low frequency (LF) and high frequency (HF)
bands. Traditionally, the VLF band is defined in the 0-0.04Hz range, the LF band is defined
in the 0.04-0.15Hz range and HF is defined in the 0.15-0.4Hz range (Task Force of ESC &
NASPE, 1996). These frequency bands are associated with the physiological regulation of the
cardiovascular function related to thermoregulation, baroreflex and respiration. While there is
general agreement that the HF component is mostly derived by vagal activity, the mechanisms
inherent to the LF component are less consensual. The HF band reflects predominantly
oscillations related to respiration, which are partly mediated by parasympathetic modulation,
but also reflects mechanical influences. On one hand, the HF power in the RR series becomes
unnoticeable in apnoea condition (van de Borne et al., 2001) and, on the other hand, there
is still a reduced RR power in the HF band after pharmacological parasympathetic blockade
(Challapalli et al., 2007). Disagreement exists regarding the origins of the LF power in
the cardiovascular series. Some authors suggest that the LF component is an expression of
both sympathetic and vagal activity (Task Force of ESC & NASPE, 1996). Regarding the
sympathetic modulation, previous studies reported that during pharmacological sympathetic
activation (by a continuous infusion of nitroprusside) the LF powers of the SBP, RR and
MSNA series are increased in comparison with a baseline spontaneous condition, whereas
during sympathetic inhibition (by a continuous infusion of phenylephrine) the LF powers are
decreased and HF power is predominant (Pagani et al., 1997). Nevertheless, other factors,
such as thermoregulation and paced breathing, have also been reported to be associated with
the SBP and RR oscillations in the LF band (Parati et al., 1995). With the evidence that
LF and HF power components of RR spectral analysis are more associated with sympathetic
and vagal ANS activity, respectively, their ratio (LF/HF) has been suggested as an index of
sympatho-vagal balance (Pagani et al., 1986; Malliani et al., 1998).

The effect of respiration on the SBP and RR relation is a frequency-dependent phenomenon
that is independent of the sympathetic drive (Pitzalis et al., 19980). Different respiratory fre-

quencies and depths have major effects on SBP and RR oscillations and on their relationship
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(i.e., on baroreflex sensitivity). As a matter of fact, with increasing respiratory frequency,
SBP and RR powers tend to decrease in the entire frequency range, and SBP and RR powers
at a fixed respiratory frequency are increased for larger tidal volumes (Brown et al., 1993).
This is explained by the fact that a subject breathing slowly tends to perform deep breathing
as well (increase the range of lung volume variations), and the SBP and RR modulations due
to respiration are more perceptible: typically, there is an increase of the series variance with

deep breathing.

Due to the respiratory influence on SBP and RR, a BRS estimate obtained at different
frequency bands depends on the respiratory frequency and depth. As a matter of fact, it has
been shown that the BRS estimates increase in patients with Chronic Heart Failure (CHF),
if the respiration is paced at the LF band (Bernardi et al., 2002). Therefore, in a clear case
of baroreflex dysfunction, the BRS value can be overestimated, simply if the respiration is
paced at the same frequency as the baroreflex modulation. In this case, the BRS mechanisms
related and unrelated with respiration are more difficult to distinguish and the BRS analysis

should include the respiratory information to distinguish such effects (Tiinanen et al., 2008).

The use of deep breathing protocols can be an advantage for BRS estimation, if there is no
interest in distinguishing the BRS mechanisms related and unrelated with respiration. As a
matter of fact, deep breathing protocols have been proposed to enhance the BRS estimation
evaluated from frequency domain methods (Davies et al., 1999) and from the sequences
technique (Oka et al., 2003). With frequency domain BRS analysis, deep breathing protocols
have been shown to provide more reproducible BRS estimates and lowest failure rate in
controls and in CHF patients (Davies et al., 1999). With time domain BRS analysis, deep
breathing protocols have been shown to increase the probability of the sequences technique
to provide a BRS estimate (Oka et al., 2003). Also, the higher variance of the SBP and RR
series observed in deep breathing data is an advantage in the slope computation, because BSs
with wider SBP and RR ranges will be identified. As the SBP and RR ranges are increased,
it likely that the spontaneous slope estimated in deep breathing data is more similar to an
invasive slope obtained from sigmoidal function (Fig. 1.7), rather than a spontaneous slope

derived from shallow breathing data.

Previous comparisons between time and frequency domain methods for BRS estimation have
shown that time and frequency BRS estimates are correlated and able to provide comparable
information on BRS changes over time (Persson et al., 2001). The concordance between
time and frequency BRS estimates in the LF band has been shown to depend on the
threshold values apriori set for BSs identification (Davies et al., 2001). In healthy controls, the

correlation between the sequences technique estimates and the frequency domain estimates
SBP
min’

the threshold for the RR beat-to-beat changes (ARR ). Therefore, that concordance could be

min

increased with increasing threshold value for SBP beat-to-beat changes A regardless of

SBP

optimized by increasing A>"" above the standard value of 1 mmHg. Nevertheless, increase
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the AP2P value would result in decrease the number of identified BSs, because higher range
SBP ramps are more unlikely to occur for subjects with attenuated BRS in comparison with

subjects with normal BRS.

Regarding the sequences technique, there has been debate about the meaning of BSs and
the reasons why the SBP-RR analysis based on BSs reflects the BRS function (Bertineri et
al., 1988; Parlow et al., 1995). It is reported that the parasympathetic modulation may be
already active on the same RR interval or on the one immediately following a blood pressure
change, while sympathetic modulation usually becomes apparent after 5-6 beats (Bertineri
et al., 1988; Parlow et al., 1995). As illustrated in Fig. 3.17 for the EuroBaVar dataset, BSs
are typically of 3-beat length, 12/46 of the records have 6-beat BSs and none present BSs
longer than 8 beats. Therefore, BRS analysis from BSs mostly reflects the autonomic control
of the heart through parasympathetic neural afferents (Parlow et al., 1995). A previous
comparisons between time and frequency BRS estimates indicated that the BRS estimates
from the sequences technique are more correlated with the frequency estimates derived from
HF rather than with the frequency estimates derived from LF band (Watkins et al., 1996),
strengthening the hypothesis that the BRS estimates derived from the sequences technique

mostly reflect parasympathetic activity.

The sympathetic branch of the ANS presents oscillations of lower frequency than the parasym-
pathetic (Pagani et al., 1997) and, therefore, longer SBP and RR data segments are needed
to detect and quantify this modulation. The events technique is able to provide long
data segments, besides the short segments already identified by the sequences technique.
Therefore, BEs are more likely to also capture the sympathetic modulation than BSs. In
this chapter, the BRS analysis from BEs is further compared with the frequency domain
BRS estimates, with the goal of evidencing the value of including the long SBP and RR

segments provided by the events technique in time domain BRS estimation.

5.2 Methods for frequency domain analysis

Figure 5.1 shows the SBP, RR, MSNA and RESP series for one representative subject in
SP condition, from the SP/NT/PH dataset (described in Sec. 4.3.1). As it can be observed,
the series of beat-to-beat variability exhibit rhythmical oscillations that can be described as
the sum of elementary oscillatory components, defined by their frequency and amplitude.
This information can be represented with the power spectral density (PSD) function or
spectrum, describing how the power of a time series is distributed over frequency. Similarly,
the joint analysis of two distinct series allows the identification of common oscillations, and

the corresponding information can be represented with the cross-spectrum.
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Figure 5.1: Plot of zy with ¢ = {RR,SBP,RESP,MSNA} from one representative subject in SP
condition from the SP/NT/PH dataset. The 5 min recording corresponds to 320 heartbeats.

The methods here described are based in the notation considered by Manolakis et al. (2000),
and the definitions in this thesis follow the usual notation in signal processing theory, which

differs from time series analysis.

The PSD function of a wide-sense stationary time series x(n) with zero mean, is defined as

the Fourier transform of its auto-correlation function 7, (k), i.e.,

+00
Spu(e?¥) = Z rez(k)e 9k, —r<w<w (5.1)
k=—00
where 7, (k) is defined as
rzz(k) = E [x(n + k)z(n)] (5.2)

represents a measure of linear dependence between z(n + k) and z(n).

Similarly, the cross-power spectrum can be used to investigate if the oscillations of two distinct
series 2(n) and y(n) are linearly related. Considering z(n) as the input and y(n) the output of
the system, both jointly wide-sense stationary, their cross-spectrum is the Fourier transform

of the cross-correlation function ., (k), i.e.,
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+o0

SIy(ejw) = Z sz(k)eijwka (53)
k=—00
where 74, (k) is defined as
ray(k) = Ez(n + B)y(n)] (5.4)

The amount of linear coupling between z(n) and y(n) in the frequency domain can be

expressed by means of the normalized cross-spectrum, also called complex coherence function

Sxy(ejw) .
\/Syy(ejw) Sz (e7%)

K(e%) = (5.5)

The coherence is usually represented by its squared magnitude |KC(e/)|?, which exhibits the
property 0 < |KC(e/*)|? < 1. This function is comparable to the coefficient of determination
in regression analysis (i.e., squared correlation coefficient, r?), with zero indicating no linear
relation between the series at a given frequency, and one indicating that the series exhibit a
perfect linear relation at a given frequency within some fixed phase relationship (Challis and
Kitney, 1991). Therefore, this function reflects the degree of linear relation between the two

series as a function of frequency.

The relation between the output y(n) and input 2(n) of a linear and time-invariant system

can be expressed from the transfer function defined as

. S (eju))
Joy = Y2 5.6
H(e™) 5,0() (5.6)
Alternatively, using the input—output relation
Syy(e7%) = [H(e7)|? Spu(e?), (5.7)
the gain of the transfer function |H(e’“)| can be obtained as
: Syy (€39)
Jw == 7yy - . .
M) = 53)

From the use of Eq. (5.8) only |H(e/*)| can be determined, while the use of the Eq. (5.6)

allows to determine both the gain and the phase of H(e’), as Sy, (e’?) is a complex function.
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There are different methods for PSD estimation, which can be classified into two nonpara-
metric and parametric (model based) methods (Manolakis et al., 2000). In nonparametric
methods, a usual estimator for PSD function is the Welch periodogram (Welch, 1967). The
Welch method consists of dividing z(n) into (possibly overlapping) windowed segments,
computing a periodogram for each one and then averaging the estimates. If the original
data is divided into K segments with L — D points of overlap, then each segment can be
defined as z;j(n) = z(n +iD) with 0 <i < K —1 and 0 <n < L — 1. The Welch estimate is

R K-1|L-1
Jwy 7jnw
Syz(e?) = KLU sz ) (5.9)
1=0 |n=0
where U is a normalization factor related to the window w(n) characteristics
=
_ 2
U= 3_2;“’ (n). (5.10)
1=

Similarly, the cross-spectra Sy,(e/*) can be estimated using the Welch method (Manolakis
et al., 2000). The z(n) and y(n) series are both divided into overlapping windowed segments
and the Welch estimate is given by

K-1 L—-1 *
§;py(€jw) = KLU (Z z;i(n _jn“’> (Z%yi(n)w(n)e_jn“’> . (5.11)

=0 n=0

Averaging of the periodograms leads to a consistent and asymptotically unbiased PSD esti-
mator. Although overlap between segments tends to introduce some dependency in segments,
this effect can be diminished by the use of nonrectangular windows, which reduce the
importance or weight given to the samples that overlap in consecutive segments. Thus,
the overlapping between segments and the adequate window are two variables of the method
that can be balanced in order to achieve a reduction in the PSD estimator variance and an

increase in spectral resolution (Manolakis et al., 2000).

5.2.1 Spectral analysis of series of beat-to-beat variability

In many conditions, the SBP, RR, MSNA and RESP series are typically non stationary,
due to the physiological adaptation processes to external stimulations. However, if the ECG
and ABP acquisition is carried out in a stationary condition of the subject (e.g., lying and
minimizing any external perturbation) the series can be considered wide-sense stationary,

and the methods described in the previous section can be used.
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Discrete signals are, by definition, recorded at discrete time points. Consequently, the
oscillations of a signal occurring faster than the time interval between two consecutive samples
cannot be detected. The maximum frequency possible to analyse relates to the sampling
theorem and it corresponds to the Nyquist frequency, i.e., half of the sampling frequency
F of the signal (Manolakis et al., 2000). In order to introduce the time information in the

frequency analysis, the frequency axis w is normalized by F; as

f=5-Fs. (5.12)

Cardiovascular series exhibit non uniform sampling and are indexed to the occurrence of
each heartbeat. However, as the PSD estimation method assumes that the discrete series
are wide-sense stationary, the frequency axis in the spectra can be normalized assuming a
uniform sampling period equal to the mean RR interval, i.e., the mean distance between two

consecutive samples. In this case, the frequency axis w is normalized as

w 1
f= R (5.13)
The approximation Fy = 1/Zgg has been shown to be acceptable for low frequencies far from
the Nyquist frequency (Mateo and Laguna, 2000). Furthermore, with this normalization,
the respiratory frequency obtained from the respiratory signal is correctly reflected in the
spectra of the RESP series. Alternatives to this approximation can also be considered, e.g.,
interpolation/resampling of the series before spectral analysis or the use of Lomb method for

direct PSD estimation of the unevenly series (S6rnmo and Laguna, 2005).

Figure 5.2 shows the power spectra of the SBP, RR, MSNA and RESP series using the Welch
method. As illustrated in Fig. 5.2(a), three main spectral components can be distinguished
in the RR spectrum, located at very low frequency (VLF: 0-0.04 Hz), low frequency (LF:
0.04-0.15 Hz), and high frequency (HF: 0.15-0.4 Hz) bands. The MSNA spectral analysis
(Fig. 5.2(d)) evidenced the presence of two major components, one in LF and the other in
HF component, around the respiratory frequency of that subject (Fig. 5.2(c)). Due to the
sympathetic and respiratory influences in the RR oscillations, two similar components were
observed in the RR and SBP spectra (Fig. 5.2(a-b)).

The MSNA signal has been used to directly investigate sympathetic modulation to better
understand the SBP and RR oscillations. Therefore, the observation that the MSNA ex-
hibits power in both LF and HF frequency bands has been an issue of debate (Montano
et al., 2009). The RR oscillations around the respiratory frequency (RSA) are primarily
mediated by the parasympathetic ANS activity and, therefore, increased RSA indicates
increased parasympathetic activity. Because respiration also induces mechanical effects on
SBP, the HF oscillations in MSNA can be due to the respiratory modulation in the SBP
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values and, by this reason, due to increased parasympathetic activity (Fig. 1.4). Previous
studies corroborate this hypothesis: it was reported that under a sympathetic inhibition (by
continuous administration of phenylephrine) the MSNA power in the LF frequency band
decreases and the MSNA power in the HF frequency band dominates over that evaluated for
LF band (Pagani et al., 1997). Therefore, these authors suggested that MSNA powers in LF

and HF bands are related with sympathetic neural excitation and inhibition, respectively.

(a) (b)
0.025 150 — ‘
LF HF LF HF
0.02
100}
S 0015 <
a9
= 7
@ 0.01 <5
50
0.005
0 : 0 : -
0.04 0.15 0.4 0.6 0.04 0.5 0.4 0.6
f (Hz) f (Hz)
(c) (d)
15— ‘ : 15 — :
LF HF LF HF
— 10} — 10
= =
= <
%] Z
: -
@ st © 5
0 : 0t~ : :
0.04 0.5 0.4 0.6 0.04 0.5 0.4 0.6
[ (Hz) [ (Hz)

Figure 5.2: Power spectra of RR, SBP, MSNA and RESP time series computed with the Welch
method (Hanning window, 62,5% overlap, 128 FFT points, 5 segments). Frequency axis normalized
by RR mean. Same data as in Fig. 5.1.

The typical variables extracted from nonparametric spectral analysis are related with the
distribution of the power in VLF, LF and HF bands (Task Force of ESC & NASPE, 1996),
because power distribution has been shown to change in accordance to changes in autonomic
RR modulations (Pagani et al., 1986). With non parametric methods, the VLF component
requires longer data series (> 5 min) to be accurately estimated (Leite et al., 2007) and it was

not considered in the analysis. The power of each series in each frequency band B = {LF HF}
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was computed from the PSD area in the frequency band B, i.e.,

P :/feB Sl‘l‘(f)df7 (514)

and expressed in squared units of each series x = {RR,SBP,RESP,MSNA}. The LF and HF
power components can also be measured in normalized units (nu), obtained by dividing the
power of each component B = {LF,HF} by the total power subtracted by the VLF power
and multiplying by 100, i.e.,

'PB
B,nu __
This normalization emphasizes the balance between the two branches of the ANS, with the
LF band being more associated to sympathetic activity and HF band being more associated
with parasympathetic activity (Task Force of ESC & NASPE, 1996). Also, this normalization

reduces the limitation that the acquired RESP and MSNA signals are not calibrated.

5.2.2 Frequency domain BRS estimators

The methods proposed for the estimation of a frequency domain BRS value («) were already
overviewed in Sec. 1.3.3. In this section, the Transfer Function Method (Robbe et al., 1987)
and the Alpha Technique (Pagani et al., 1988) will be detailed. These frequency domain
BRS methods assume an open-loop relation between SBP and RR. (being SBP the input and
RR the output of the system), similarly to the time domain BRS methods. Both types of
methods cannot distinguish between negative and positive feedback components, neither can

account for the influence of respiration in the SBP and RR coupling (see Fig. 1.4).

5.2.2.1 BRS estimate from the Transfer Function Method

The BRS estimate obtained by the transfer function method was first described as the average

of the |H(f)| values, at the frequency values exhibiting a minimum degree of linear coupling
(Robbe et al., 1987), i.e.,

a=1[H(), f: K>k (5.16)
To guarantee a relevant coupling between SBP and RR series, and consequently a meaningful
BRS value, a threshold level x in the coherence function is usually considered. In this work,

k = 0.5 was considered, following previous frequency BRS studies (Robbe et al., 1987).
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As illustrated in Fig. 5.3, the SBP and RR series show a high correlation typically around
0.1 Hz (LF band) and around the respiratory frequency of that subject (see Fig. 5.2(c)).
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Figure 5.3: Squared Coherence magnitude (|K(f)|?) between SBP and RR, based on Welch method.
The dashed line identifies the threshold level for a significant coherence. Same data as in Fig. 5.1.

The magnitude and phase of H(f) is presented in Fig. 5.4. It can be observed that the
H(f) phase is more stable for the frequencies exhibiting very high |K(f)|? values. The phase
function indicates if the changes in the two series can be considered synchronous in each
frequency band. Also, it allows to access the lag for which their coupling is higher. Within
the LF band, a negative phase is observed, which can be interpreted as a baroreflex effect,
once SBP changes induce RR changes with a determined time delay. The approximately zero
phase at the HF band expresses a zero time lag between the two series, indicating that their
changes in this frequency band are synchronous.
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Figure 5.4: Transfer Function magnitude (a) and phase (b) between SBP and RR, based on Welch
method. The black and grey circles identify the frequencies with |[K(f)|?> > 0.5 in LF and HF bands,
respectively. Same data as in Fig. 5.3.
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In order to distinguish the SBP and RR interactions due to the baroreflex and the respiratory
activity, the BRS estimate from the transfer function method is computed in the frequency
bands B = {LF ,HF}. In experimental data with HF respiration, the o"" can be considered as
a BRS measure avoiding the respiratory influence, while the o"F evaluate the BRS response

to SBP oscillations specifically associated to respiration.

Overall frequency BRS estimates have also been proposed to quantify the BRS function
across the entire frequency range, e.g., the average of the & and &"* values (Pitzalis et al.,
1998a). In this work, a frequency BRS estimate computed in the total frequency (TF) range

F

was also considered: the @™ is estimated in the same way as & and &"", but considering

the entire frequency range instead of B = {LF,HF} bands.

5.2.2.2 BRS estimate from the Alpha Technique
A simplified approach to compute a frequency BRS value has been proposed by the Alpha

technique (Pagani et al., 1988). The BRS estimate is obtained as the square root of the ratio
between the RR and SBP spectral powers, i.e.,

B
&=, /;DgR (5.17)
SBP

with B = {LF HF} and considering the frequency values in which the coherence is above 0.5.

Figure 5.5 shows the RR and SBP spectra highlighting the areas used for the computation
of « by the Alpha technique.
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Figure 5.5: Spectra of RR and SBP series based on Welch method. The black and grey areas indicate
the frequencies with |[KC(f)|?> > 0.5 in LF and HF bands, respectively. Same data as in Fig. 5.1.



5.3. RESULTS 183

Previous comparisons between frequency BRS methods have pointed out that the Transfer
Function method provides lower BRS estimates in comparison with the Alpha Technique, and
the BRS estimates obtained by the two methods exhibit more differences when computed for
frequencies presenting lower levels of coherence (Barbieri and Saul, 1999). Nevertheless,
because both methods provide correlated BRS estimates, only one of them was used in this
thesis to compute a frequency BRS estimate. The choice was naturally for the Transfer
Function method, because a transfer function is basically a (linear) way of describing a
relationship between an system input and output and, therefore, the mean of the transfer
function amplitudes (Eq. 5.16) holds more methodological similarities with the slope in

regression analysis than the BRS estimate obtained from the Alpha technique (Eq. 5.17).

5.3 Results

The experimental data consists of the spontaneous recordings from the SP/NT/PH dataset,
described in Sec. 4.3.1, and spontaneous recordings from the EuroBaVar dataset, described in
Sec. 3.2. The SP/NT/PH recordings were used to compare the frequency BRS estimates from
the LF and HF bands with the time BRS estimates from BSs and BEs. These recordings were
also used to estimate the indicative cutoff value to define short and long BEs, by maximizing
the correlations between time domain BRS estimates with MSNA measures. The EuroBaVar
recordings were used to further explore the ability of the time and frequency BRS methods to
discriminate Lying from Standing positions, including the time domain BRS estimates from
short and long BEs.

As previously, in a dispersion diagram representing x versus ¥, the percentage C defined as
the ratio #(z > y)/#x where # indicates the counting numbers, is indicated at the lower
right corner of the figure. If justified, the correlation between the x and y values (r) is also
presented at the top of each dispersion diagram, as well as the number of values (n). The

cases of statistical significance level (fixed for p < 0.05) are indicated with the symbol *.

5.3.1 Frequency and time domain BRS estimates

Figure 5.6(a) presents the dispersion diagram of &“* and &"F values, showing that there are

F

subjects exhibiting similar & and &"F values, and subjects exhibiting &"* /&"F > 1.5. As

illustrated in Fig. 5.6(b), the subjects with the highest differences between &"* and &"* also
present the highest differences between Bg,o and [;’é,o. This result indicates that [S’g,o and

Bg o can be measuring different aspects of the BRS function, such as the &"* and &"" values.



184

5. BRS ESTIMATION FROM SHORT AND LoNG EVENTS

(a) x10° (b)
0.06 - 20
r=0.60*, n—14 - r—0.83*, n—13
. 15
° o
0.04 ° 3
. Q10 o
T |
3 o @ o 5 .
[}
0.02 . 2 .
.
[ hd 0 °
o o ' L[]
e C=4/14 °
0~ -5
0 0.02 0.04 006  -0.04 -0.02 0 0.02 0.04
&LF dLF _ dHF
Figure 5.6: Dispersion diagrams comparing (a) a“* with @™" and comparing (b) their differences

with the differences between Bg,o and Bé’o. Results for the SP/PH/NT recordings.

Figure 5.7 shows the comparison between time and frequency domain BRS estimates. As
illustrated in Figs. 5.7(a,d), the &™ values are more correlated with the [S’go values than
with the BE’},O values. The results obtained for BSs (Figs. 5.7(b,c)) corroborate that the BE’},O
values are more correlated with the &"F values rather than with &"* (Watkins et al., 1996;
Persson et al., 2001). Similarly, the results obtained for BEs (Figs. 5.7(e,f)) indicate that the
Bg,o values are more correlated with &"" than with &“*. Finally, the BRS estimates from
BEs are more correlated with the spectral estimates (regardless of the frequency band they

are computed from), in comparison with the BRS estimates from BSs.

(a) (b) (c)
0.06 , 0.06 , 0.06 .
©=0.66%, n=14 - r=0.51, n=14 - r=0.57%, n=13
0.04 0.04 0.04 °
& o & o E
= | Jos)
<3 o Ne] o e éD )
0.02 e 0.02 R 0.02 -
o® o%
o% % o ° 09
e C=2/14 ° C=T7/14 o Cc=1/13
0 0.02 0.04 0.06 0.02 0.04 0.06 % 0.02 0.04 0.06
B(S;,O[SP] B%,O[SP] B%,O[SP]
d e f
0.06 (d) , 0.06 (€) 0.06 ® .
r=0.91¢, n=15 - r=0.71", n=15 r=0.88%, n=14 -
0.04 0.04 0.04 .
B ‘e & . . B
= A A : Jus .
< o < e s I s
0.02 $ ° 0.02 * . 0.02 »
co'.'b oo‘.. e ..:
k) o * 0 b }.~
R C=3/15 X C=8/15 . C=1/14
% 0.02 0.04 0.06 0.02 0.04 0.06 % 0.02 0.04 0.06
Bg,o[sp] BE,O[SP] Bg,o[sp]

Figure 5.7: Dispersion diagrams comparing l’;’G,o evaluated from BSs and from BEs, and & evaluated
in TF, LF and HF bands. Results for the SP/PH/NT recordings.
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Figure 5.7 also shows that the subjects with low Bg,O values have similar &"F and &"* values,
while the subjects with high Bg,o values exhibit the highest differences between the &"* and
a"" values. As a matter of fact, for the 7/15 files exhibiting &""/&"* > 1.5, 7 out of the
7 subjects presented &"F < Bg,o < &"F. On one hand, &"F/&"F > 1.5 indicates that the
parasympathetic and sympathetic contributions to the BRS response in those subjects are
not similar and, on the other hand, @ < BE ; < &"F indicates that BE , is a measure that

accounts for both ANS contributions.

Table 5.1 resumes the measures obtained from the analysis of the RR, SBP, MSNA and RESP
series, for all subjects of the dataset and distinguishing the subjects exhibiting &"" =~ &"*

(group gA) from the subjects presenting &"F/&"" > 1.5 (group gB).

Group gB exhibit higher Zyg(n) mean values, together with lower PLE and higher PLE mean
values in comparison with group gA. The differences in the RR power distribution over
frequency bands is enhanced for the normalized variables Py """ and Py in mean, 61,6%
and 35,3% of the RR power is respectively distributed over the LF and HF bands, for the
group gA, whereas for the group gB the average percentages are 36,9% and 60,8%. The SBP
power distribution over frequency bands indicates that the SBP power is mainly on the LF
band, for both groups. Nevertheless, group gB have the tendency to present higher Pegp "
and lower Pipp"" mean values in comparison with the group gA. Finally, all subjects exhibit
more MSNA and RESP power in the HF rather than in the LF band, with group gB having

the tendency to exhibit higher Py and Phpas” mean values in comparison with group gA.

Regarding the BRS estimates, &™ is increased for group gB, mainly due to the increased &™*
values in comparison with that for group gA. The time domain BRS estimates [;’G,O have the

" values between groups. Group gB exhibits lower N and K mean

same tendency as the &”
values in comparison with group gA, because gB recordings present shorter length in beats.

Also, shorter BEs were identified for the subjects in group gB.

In summary, the results presented in Table 5.1 show that the different subjects evaluated in
spontaneous condition exhibit different patterns. In particular, the higher Prn™" and the
lower Pgpp' mean values are associated with higher Zgpy(n) mean values (group gB). Also,
gB group presents higher &"" and BG,O mean values, pointing out increased parasympathetic

activity for these subjects.

Different patterns can also be observed regarding the length of the identified BEs. As shown
in Table 5.1, group gB exhibits BEs with shorter length in comparison with BEs identified
for group gA, evidencing that the identification of shorter BEs can be related with increased

parasympathetic activity.
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Table 5.1: Variables extracted from spectral analysis of the RR, SBP, RESP and MSNA series and
from BRS analysis. Mean+Std values for all subjects of the dataset (n=15) and distinguishing the
subjects exhibiting &' ~ &MF (group gA, n—8) and &"F/&™ > 1.5 (group gB, n—=7). The Pggr
values are presented in 10®sec? units.

‘ All subjects ‘ Group gA  Group gB

Trr 0.96+0.16 | 0.89+0.15  1.05+0.14
Pan 3.42+2.49 | 3.30+3.27  3.56+1.39
Par” 0.79+0.41 | 0.71+£0.33  0.89+0.49
Pik 1.16+1.04 | 1.33+1.34  0.96+0.59
Pig 1.41+£1.57 | 1.18+2.04 1.67+0.88

PLEm 50.1£19.8 | 61.6+17.9 36.9+12.6
PHEME 1 47.2419.8 | 35.3+17.1  60.8+13.1

Tspp 125.64+14.9 | 132.94£12.7 117.3+13.6
Papo 17.74£7.9 15.246.6 20.6+8.8
P 9.646.0 7.444.7 12.0+6.7
PEEs 6.3+3.5 5.442.3 7.44+4.5
Pixs 1.6+1.6 2.1+2.0 1.14£0.8

P | 7844139 | 71.3+15.3  86.446.1
PRSI 1 19.64+12.1 | 25.2413.6  13.2+5.9
Prisia 28.047.1 25.948.4  30.5+4.7
Pomie | 53.1410.1 | 48.849.6  58.0+8.9
Proowt | 1414112 | 17.4+124  10.449.3
PHESE | 80.4412.8 | 73.9+412.5  87.9+8.8

aTF 25.9421.7 | 21.9427.7 30.4+125
arF 158+6.6 | 15.7+7.9  15.8+5.3

aHF 24.5+16.7 | 122435  36.9+15.4
B, 16.246.20 | 13.746.2  19.7+4.6

rs 0.86+0.09 | 0.89+0.05  0.83+0.12
NS 57.6+44.8 | 67.3+39.1  44.7+52.2
K3 17.8413.3 | 20.8+£11.8 13.8+15.3
NS/KS | 3.18+0.17 | 3.21 £0.17 3.13+0.18
BE 19.7411.1 | 15.3£12.7  24.8+ 6.7
P 0.73+£0.07 | 0.74+0.07  0.72+£0.08
NF 159.2493.3 | 201.6+93.7 110.7+70.1
K* 33.8412.9 | 37.9413.0 29.1+12.0

NE/K® | 4.48+1.80 5.25%£2.07  3.60£0.95

Figure 5.8 presents the distribution of the BSs and BEs number, as a function of the segment
length. Subjects gA present more BEs than subjects gB and the groups exhibit differences
in the BEs number distribution. As illustrated in Fig. 5.8(b), subjects from group gB exhibit
more BEs in the class between 2.5 and 3.5 seconds in comparison with subjects from group

gA. Also, subjects from group gA exhibit higher dispersion in the BEs length, with all gA
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subjects exhibiting at least one BEs in all classes. As a matter of fact, the Zgg(n) values were
found to be correlated with the standard deviation of the BEs length (r = —0.66, p = 0.007,
n = 15), indicating that the subjects with higher Zzz(n), i.e. the subjects from group gB,
tend to have lower standard deviation of the BEs length.

(a)

30 T

20 1

KS

o Al .IJ_I.HHHH..‘H ‘

11.5,2.5] 12.5,3.5] 13.5,4.5] 14.5,5.5] >5.5
BS length (sec)

(b)

30 T

20 1

10} -

11.5,2.5] 12.5,3.5] 13.5,4.5] 14.5,5.5] >5.5
BE length (sec)

Figure 5.8: Barplot of the BSs and BEs number (K) per segment length (dividing the scale in classes
of 1 sec). Each bar corresponds to one SP/PH/NT subject, distinguishing subjects from groups gA
and gB (black/grey). The subjects are sorted by increasing Zrr(n) value.

The results displayed in Fig. 5.8 are in accordance with the fact that the subjects from group
gB exhibit an increased parasympathetic activity and a higher BRS estimate in the HF band
in comparison with the subjects with group gA (Table 5.1). The vagal activity influences the
RR in a faster way than the sympathetic activity and, therefore, short BEs are expected to
reflect predominantly parasympathetic activity. As the subjects from group gA also exhibit
long BEs (longer than those of the subjects from group gB) and, therefore, long BEs may
reflect the sympathetic activity of the subject. In order to further investigate the ability
of short and long BEs to capture parasympathetic and sympathetic activities, respectively,

indicative cutoff values to define short and long BEs have to be estimated.
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5.3.2 Cutoff to define short and long baroreflex events

To determine an indicative cutoff value to define short and long BEs, the time and frequency
BRS estimates were first compared with the amount of sympathetic activity, measured from
the MSNA series.

Figure 5.9 shows the dispersion diagrams between the BRS estimates and the MSNA power
in each frequency band. As presented in Fig. 5.9(a—c), the &"F, Bé,o and B‘é,o values are not

LF,nu

significantly correlated with the Py;sxa values. On the contrary, as presented in Fig. 5.9(d-f),

the &7, l’;’é,o and Bg,O values are significantly correlated with the Pysus values. Regarding

the frequency BRS estimates, the &"F values were not significantly correlated with the Pycya
values (r = 0.46, p = 0.09, n = 15). However, the &"" values were found to be correlated
with PEE (r = 0.55, p = 0.03, n = 15) and with the PEE values (r = 0.81, p = 0.0002,
n = 15). Furthermore, the PLE and PEE values were not correlated (r = 0.42, p = 0.12,
n = 15). The results obtained support that &"F is a measure considering both sympathetic
and parasympathetic ANS contributions (Task Force of ESC & NASPE, 1996). Finally, the
&M values were found to be significantly correlated with PEE (r = 0.81, p = 0.0005, n = 14)
and not significantly correlated with Py (r = —0.09, p = 0.73, n = 14), providing evidence

that &™F is a measure related with parasympathetic modulation and not with sympathetic

modulation.
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Figure 5.9: Dispersion diagrams between BRS estimates and sympathetic activity, quantified from
the normalized MSNA power distribution in B = {LF,HF} bands (Pyix4)-
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Figure 5.9 also shows that time domain BRS estimates are correlated with Pysaa’ and not with
Pusnn. This result indicates that time domain BRS estimates are measures predominantly of

parasympathetic activity and is in accordance with the fact that time domain BRS estimates

are more correlated with &"F rather than with &"* (Fig. 5.7).

Indicative cutoff to define short and long BEs: adjusted to each subject

The BRS analysis from BEs can be advantageous in comparison with the BRS analysis from
BSs, because BEs are in larger number and some of the BEs are longer than BSs (Fig. 5.8).
Therefore, BRS analysis from BEs is more likely to also capture the sympathetic modulation
than BSs.

In order to perform the BRS analysis from short and long segments, the cutoff length ¢ to
define a short and a long BE must be estimated. Then, two distinct BRS estimates can be

< >c
O

obtained: a [3‘230” value estimated from BEs with length shorter than ¢ and a [3‘2 value

estimated from BEs with length longer than c.

The ¢ value is expected to change for different subjects and conditions, because the sym-
pathetic and parasympathetic modulations are known to be different for different subjects
(Table 5.1) and for different conditions (e.g., Lying from Standing positions). Therefore,
an optimal cutoff adjusted for each subject was considered. Intuitively, the cutoff was first
considered as a function of the BSs length in each recording, with a BE shorter than the BSs
identified in a recording being considered as short, and a BE longer than the BSs considered
as long. However, it is known that the BSs length is directly related with the length of
the inspirations and expiration phases in the respiratory cycle, with typical duration of 3
to 6 cardiac beats (Rothlisberger et al., 2003). Therefore, the length of a breathing cycle
can be used as a majorant for the BSs length and it can be estimated from the respiratory
frequency f, of the subject, as 1/f,. In this work, the f, value for each subject was estimated
from the RESP series with the methods described in Sec. 2.3.1. Briefly, f, was taken as the
central frequency of the spectral component with highest variance from the RESP parametric

spectrum.

Figure 5.10 shows the distribution of the BSs and BEs number, distinguishing the segments
shorter and longer than a respiratory cycle. As illustrated in Fig. 5.10(a), BSs are segments
typically shorter than one respiratory cycle. Because BEs are identified without being
restricted to be SBP and RR ramps over time, these segments can be longer than the length
of a respiratory cycle. Figure 5.10(b) illustrates that there are BEs of the same length of
BSs. Additionally, there BEs longer than BSs, with duration longer than one respiratory
cycle. Therefore, because BSs are shorter than one respiratory cycle and BEs can be either
shorter or longer than one respiratory cycle, the length of the respiratory cycle can be used

as an indicative cutoff value to define short and long BEs.
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Figure 5.10: Barplot of the BSs and BEs number (K) per segment length (segments shorter and
longer than f,.). Each bar corresponds to one SP/PH/NT subject, distinguishing subjects from groups

gA and gB (black/grey). The subjects are sorted by increasing Zrg(n) value.

Figure 5.11 presents the dispersion diagrams between the MSNA powers per frequency band

and the BRS estimates from short and long BEs, defined from the indicative cutoff of 1/f,

sec adjusted to each subject. It can be observed that, on one hand, the BE 21T Galues are

significantly correlated with the Py, and not significantly correlated with the Pycl. On
the other hand, the BE ST Galues are significantly correlated with the Py, values, but

not significantly correlated with the Pyaxa values.
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Figure 5.11: Dispersion diagrams between the MSNA powers per frequency band and the BRS
estimates obtained from BEs shorter and longer than 1/f, sec, with f, indicating the respiratory
frequency estimated for each subject.
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Indicative cutoff to define short and long BEs: adjusted to a dataset

The use of f, to estimate a cutoff value to define short and long BEs, demands for the
acquisition of the respiratory signal or, at least, the use of signal processing techniques to
derive the respiratory frequency from the ECG (Bailon et al., 2006). Nevertheless, the
BRS estimation, using the time and frequency domain methods explored in this thesis,
implicitly assume that the SBP and RR series are acquired in stationary recording conditions.
Consequently, it is also expected that the reference respiratory frequency f, does not change
significantly along the short recording. Moreover, in short recordings, it is not expected that
many segments of several lengths would be identified, such that the BRS estimate would
change significantly. Therefore, a constant cutoff value for all subjects was considered as an

alternative to 1/f, sec, with f, being estimated for each subject.

In the SP/NT/PH dataset, a ¢ value can be estimated to maximize the correlation between
the &"F and the B’G’>c values, or as to maximize the correlation between the &"" and the
Agzéc values. An optimum c value could also be set as a trade-off between both correlations.
However, because & and Pysxa were not significantly correlated (Fig. 5.9(a)), the frequency

BRS estimates were not considered to estimate an optimal ¢ value for all subjects.

Alternatively, the ¢ value was estimated from the correlations between the BRS estimates from
short and long BEs with the MSNA powers computed at each frequency band. Specifically,

3E >c and Pyavt values, and the correlation between the BE <S¢

the correlation between the B¢
and Plaaat values should be maxnnlzed. Figure 5.12 shows these correlations as a function
of ¢ (2 < ¢ <15 sec). Asillustrated in Fig. 5.12(a), the number of subjects exhibiting BEs
shorter than ¢ sec increase for increasing values of ¢, while the number of subjects exhibiting

E>c

BEs longer than ¢ sec decrease. Figure 5.12(b) shows the correlation between the By 5 and

the Pty values, and the correlation between the Bg éc and the Pyl values. The optlmal
cutoff ¢ should be taken as to maximize simultaneously the correlation between the BE o€ and
the Py values, and the correlation between the Bg¢ and the Pysis values. The optimum
¢ value was estimated as the maximum of the product between these two correlations and it

was estimated to be ¢ = 3.5 sec, in the SP/NT/PH dataset.

In the SP/NT/PH dataset, the results obtained for the constant cutoff value of 3.5 sec are
similar to those obtained for 1/f, (and presented in Fig. 5.11). By one hand, the BE >33
values are significantly correlated with the Pycxs values (r = 0.55, p = 0.04, n = 14) and not
significantly correlated with the Pysxa values (r = 0.49, p = 0.08, n = 14). On the contrary,
the BE S35 Jalues are significantly correlated with the Pysua values (r = 0.66, p = 0.01,
n = 13), but not significantly correlated with the Pycys values (r = 0.11, p = 0.72, n = 13).

The similarity of the results obtained for 1/ f, (adjusted to each subject) and 3.5 sec (constant
for all subjects), evidences that 3.5 sec can be used as an indicative cutoff value to define short
and long BEs, if there is no information about the respiratory information of the subject,

e.g., the recordings of the EuroBaVar dataset.
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Figure 5.12: (a) Number of subjects with long/short BEs (solid/dashed), as a function of c.
(b) Correlation between B& 3¢ and Pyawa (solid), and between Bgg® and Pyswa’ (dashed). (c)

Corresponding p-values for the hypothesis of no correlation. Results from SP/NT/PH dataset.

5.3.3 BRS estimates from short/long BEs and L from S discrimination

The time and frequency BRS estimates were also compared with respect to the discrimination
between Lying and Standing positions. This comparison was carried out with the EuroBaVar

dataset files (paired Lying/Standing evaluations from 23 subjects), described in Sec. 3.2.

As previously remarked, the L to S ratio of Zrg(n) is able to identify the posture changes in 22
out of the 23 subjects. This result indicates that the Zgrg(n) not only changes from subject to
subject, but also changes when a specific subject is evaluated in different positions: Zgg(n) for
one subject is typically higher in Lying than in Standing position. Other variables also differ:
from Lying to Standing position, Pgy" increased and Pyy™" decreased (p < 0.005, n = 23),
while Pgpa’ and Psgp” did not changed significantly (p = 0.13 and p = 0.10, respectively,
n = 23). The results indicate that sympathetic modulation increases and parasympathetic

modulation decreases, from Lying to Standing position.

As the EuroBaVar dataset do not include respiratory signals, it was not possible to estimate

the respiratory frequency from the RESP series. Therefore, 3.5 sec was used as the indicative
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cutoff to define short and long BEs. Figure 5.13 illustrates that BSs are segments typically
shorter than 3.5 sec, while there are BEs shorter and longer than 3.5 sec. Also, differences
between the number of segments in Lying and Standing positions are not perceptible.
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Figure 5.13: Barplot of the BSs and BEs number (K) distinguishing the recordings in Standing and
Lying positions (black/grey). Each bar corresponds to one subject of the EuroBaVar dataset.

Regarding the BRS estimates, it was possible to obtain a &™F for the 46 files of the EuroBaVar
dataset. Only in 34/46 recordings it was possible to obtain simultaneously a &"* and &'
value. All subjects presented BEs and all subjects presented short and long BEs, using
the indicative cutoff of 3.5 sec. As illustrated in Fig. 5.14(a), all estimates were found to be
comparable, with the confidence intervals over the mean and median BRS estimates indicating
no statistical differences among the BRS values. As illustrated in Fig. 5.14(b), the L to S
ratio of the BRS estimates (RLS) was above 1 for all estimates, indicating that the BRS
values typically increased in Lying position (Laude et al., 2004). Of the 23 pairs of records,
the Ryg obtained from @™ is above 1 in 23/23 pairs. From the 34 recordings with &“* and
&M values, 17 paired L and S evaluations were obtained. Of those, 15/17 and 17/17 were

HF

found to exhibit Rpg above 1, respectively, for &"F and &"F. Also, the &"F increase more

from Standing to Lying position than &, i.e., Rpg is higher for &"F than for & in 15 out
of 17 cases. Regarding the time domain BRS analysis, the Rpg obtained from Bg,o is above

1 in 23 of the 23 pairs. All recordings present short and long BEs, and the corresponding

Rpg is above 1 in 21 of the 23 pairs. In 19 out of the 23 cases, Rpg from A2:§3'5 was found

to be lower than the Ry g from 1’3’2233'5.
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Figure 5.14: Boxplots of (a) B and (b) L to S ratio of B (Rrs). Median and mean 95% confidence
intervals represented by the notch and by the interval displayed at the left of each boxplot. The
circles localize the files without &*" or &™F values for the EuroBaVar recordings.

5.4 Discussion

Time domain BRS estimates are overall estimates that account for both sympathetic and
parasympathetic influences. In this work, they were found to be highly correlated with &™F,
a frequency BRS estimate obtained considering the entire frequency range. In particular,
BRS estimates from BEs were found to be more correlated with @™ than BRS estimates
from BSs.

Frequency domain analysis is able to provide BRS estimates from the LF and HF components,
respectively, more associated to the sympathetic and the parasympathetic contributions
(Pagani et al., 1997). Distinguishing the two frequency bands, previous comparisons between
BRS estimates from the sequences technique and from the transfer function method indicate
that BE,O values are more correlated with &"" values than with &** (Watkins et al., 1996). The
observation that &"" and BE,O values are both related with fast SBP and RR simultaneous
changes (fast oscillations in frequency domain and short segments in time domain) and
that the BRS estimates based on such changes are correlated, supports the validation of

the sequences technique to provide a measure more related with parasympathetic activity
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(Persson et al., 2001). In this work, the B% , and BE , values were also found to be more
correlated with &"" rather than with &"", corroborating the previous studies (Watkins et
al., 1996; Persson et al., 2001). However, the files exhibiting &""/&"" > 1.5 also presented
Q< [S’g,o < &"F| indicating that [S’g,o is a BRS measure that accounts for both sympathetic

and parasympathetic ANS contributions.

Time domain BRS estimates and ability to discriminate different BRS conditions
Even if not distinguishing sympathetic and parasympathetic influences, time domain BRS
analysis is able to identify changes in BRS function. The results in spontaneous data indicate
that the BRS estimation from BEs is able to capture changes in the BRS function due to
parasympathetic withdraw, including for the subjects with BRS dysfunction (Fig. 3.19).
The results in drug-induced data indicate that the BRS estimation from BEs is able to
capture BRS changes in conditions of a clear sympathetic or parasympathetic activation
(Fig. 4.17). Finally, the events technique has been shown to be able to capture changes
in the BRS function that are not due to changes in sympathetic activity (Beloka et al.,
2009). In that parallel study, the effect of prolonged oral beta blockade with bisoprolol
was studied in normal subjects'. Bisoprolol was found to increase the mean RR interval
and the MSNA burst incidence (# bursts/100 HB). Time domain BRS analysis indicated
that bisoprolol significantly increased the sequences/events BRS estimates, with the events
technique providing more statistical evidence of such change. Regarding the frequency BRS
estimates, there was no statistically significant change in BRS estimates computed either
in LF or in HF bands (with the Transfer Function method), from placebo to bisoprolol
conditions. Unchanged SBP, RR, MSNA and RESP powers in LF and HF frequency bands
from placebo to bisoprolol condition suggested that the larger burst incidence and increased

BRS is not due to sympathetic activation.

Time domain BRS estimation from short/long BEs and sympathetic activity

The events technique is able to identify short and long BEs. The causes to the occurrence
of a BE still remain to determine, as well as the physiological sources that trigger their
length. However, the results in this study bring evidence that short and long BEs carry
different information on the ANS modulations. As a matter of fact, BRS estimates from
short BEs were found to be significantly correlated with the MSNA powers in HF, while
not being significantly correlated with the MSNA powers in LF band. Additionally, BRS
estimates from long BEs were significantly correlated with the MSNA powers in LF, while
not being significantly correlated with the MSNA power in HF band. Nevertheless, the

!Beta blockers are frequently used for the treatment of cardiovascular diseases, e.g., hypertension (Burns
et al., 2004). They are also administered to normotensive patients to prevent migraine (Stark et al., 2007)
and to relief essential tremor, e.g., in Parkinson’s disease (Uitti, 1998). However, the effects of prolonged
beta blockade in normotensive individuals were unknown, in particular, with respect to the cardiovascular
variables and the BRS function. This motivated the study of Beloka et al. (2009), a parallel study in the

scope of the thesis objectives.
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obtained correlations were found to be moderate (i.e., r < 0.7).

The moderate level of correlation point out for other possible sources that determine a
BRS response, besides sympathetic/parasympathetic balance (Lanfranchi and Somers, 2002).
Also, it should be considered that the distinction between sympathetic and parasympathetic
influences might be impossible to achieve, simply because these activities are complementary
and not mutually exclusive (Falcao de Freitas, 1999). Therefore, it is possible that any cutoff
length to define short and long BEs will not distinguish completely the parasympathetic
and sympathetic influences on the BRS response. It is expected that longer segments are
able to capture the slower frequency responses as well as the faster ones, and any cutoff will
distinguish both responses. Consequently, the BRS analysis from short BEs is expected to
reflect exclusively the faster responses, while the BRS from long BEs is expected to reflect a
mixture of both fast and slow responses. Finally, the moderate level of correlations found can
be a consequence of the definition of the LF and HF frequency bands. As a matter of fact,
more expressive correlations between MSNA and RR powers evaluated in LF and HF bands
were referred to be obtained with the use of parametric spectral analysis methods and the
use of a restricted definition of the LF and HF bands (Pagani et al., 1997). In that study, the
MSNA and RR powers were estimated as the variance associated to the parametric spectral
component with central frequency within LF: 0.10 4 0.01 Hz and HF: 0.23 + 0.01 Hz.

Regarding the discrimination between Lying from Standing position in the EuroBaVar dataset,
the ratio Rrgs obtained from the overall estimates ¢™ and BE, allows the discrimination
for all subjects. Only 17 of the 23 pairs of L. and S recordings presented simultaneously &=F
and &"F values. From those 17 pairs, Rpg > 1 in 15/17 and 17/17 of the cases, respectively
for &"F and &". It was possible to identify short and long BEs in all 23 pairs and, both
1’3’2253'5 and 33233'5 values are able to distinguish Lying from Standing position in 21 out of
23 of the cases. Finally, in accordance with a parasympathetic inhibition in Lying position
(Mancia and Mark, 1983), the &" were found to be typically higher than the &"* in that

E,>3.5
o

condition. Similarly, the 32153'5 values were found to be higher than the B’G, values in

Lying position.

The evidence that BRS estimates from long and short BEs capture sympathetic and parasym-
pathetic effects explain the results obtained from the comparison between the different
spontaneous BRS estimates (Fig. 3.18). Spontaneous BRS estimates based on BSs measure
typically parasympathetic modulations (Parlow et al., 1995). For the B’g,o computation,
all identified BEs are considered, both short and long. It was found that Bg,o and [;’E,O
are correlated, although exhibiting statistically significant differences (Fig. 3.18(c)). The
observed difference is due to the use of different slope approaches (Bf’;,o and BE,O also show
differences, Fig. 3.18(a)), but also due to the use of BEs in the BRS estimation instead
of BSs. The latter point out that BEs and BSs carry different physiological information.

As a matter of fact, the Bg,O values discriminate better L and S positions in comparison
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with B’E,O and l’;’f‘;,o (Fig. 3.19(b)). Distinguishing the short and long BEs, [S’g,o estimated
from the short and long BEs was found to discriminate L and S positions similarly to the
frequency BRS estimates computed in HF and LF bands, respectively (Fig. 5.14). Regarding
the robust global approach, the [S’gT value is computed with an outlier rejection rule that
keeps the segments with similar slope (Fig. 3.8). As short BEs are in a larger number than
long BEs (Fig. 3.17), the l;’gT value is evaluated predominantly with shorter BEs and points
out this BRS estimate as mostly reflecting the parasympathetic effect on the cardiovascular
variables. This is also corroborated by the fact that BE,O is a measure of the BRS associated
with parasympathetic activity (Parlow et al., 1995) and that [;’E,O, [;’f‘;T and BET values do
not exhibit statistically significant pairwise differences (Fig. 3.18(d-e)).

Indicative cutoff to define short/long BEs and respiration

The indicative cutoff to define short and long BEs was first considered as function of the
breathing frequency (f,). The use of f, demands for the acquisition of the respiratory signal
or, at least, the use of signal processing techniques to derive the respiratory frequency from
the ECG, but this strategy also presents some shortcomings. The estimation of f, from the
RR spectra is based on the fact that respiration influences the RR variability (RSA), and
when that influence is diminished (e.g., in standing position) an inaccurate estimate can be
obtained (Leanderson et al., 2003). Also, it is worthwhile to mention that as an EDR method
based on 3 ECG orthogonal leads improves significantly the accuracy in the f, estimation
when compared with a 2 ECG lead based method (Bailon et al., 2006), it is likely that the use
of only one ECG lead could not provide an accurate f, value. Therefore, in the impossibility
to record the respiratory signal, a viable alternative to perform the time domain BRS analysis
based on short and long BEs is to acquire more than one ECG lead (preferably, orthogonal

ECG leads) to obtain more accurate f, value.

In this work, it was found that the replacement of the individually adjusted cutoff 1/f, by
a constant cutoff did not change the results significantly. As a matter of fact, the cutoff of
3.5 sec estimated in the SP/NT/PH dataset is a value comparable to the typical length of
a breathing cycle (12 cycles per minute), considering a normal and spontaneous breathing
condition?. Also, in short recordings, it is not expected that many segments of several length
would be identified, such that the BRS estimate would change significantly, by considering
3.5 sec instead of 1/ f, sec.

Further studies are now needed to validate the indicative cutoff provided in this work. These
studies should include experimental SBP, RR and RESP data (and preferably also MSNA

data) following a suitable protocol, e.g., invasive protocol involving continuous injections

’In healthy adults and spontaneous breathing condition, the average respiratory rate is typically of 12
breaths per minute (Guyton and Hall, 2000), being able to change within the range of 12 to 20 breaths per
minute. Therefore, the typical length of the respiratory cycle (1/f.) in spontaneous condition is within the

range from 3 to 5 sec.
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of nitroprusside or phenylephrine (Pagani et al., 1997) or spontaneous protocol involving
controlled breathing at different breathing frequencies (Pitzalis et al., 1998b). As an example,
in LF controlled breathing, the BEs are expected to be longer because this condition increases
the power of the SBP and RR series in the LF band, while abruptly diminishes their power
in HF band?.

Thresholds and threshold values used in frequency domain BRS methods

In this work, the frequency BRS estimates were computed considering the coherence threshold
value Kk = 0.5. The choice of this threshold becomes particularly important for BRS dys-
function cases, in which the coupling between the SBP and RR series is expected to be lower
than for normal BRS cases. If restrictive x values are considered the method loses the ability
to provide a BRS estimate, while if k is set too low the transfer function estimate is more
unreliable. An alternative to avoid the choice of a value for k is to estimate the significance
of the coherence function (as a function of frequency) from surrogate data analysis, e.g. Faes
et al. (2004). In that study, surrogate series were generated preserving the modulus of the
Fourier Transform of the original series, while randomizing the phase. The threshold for
“zero” coherence was then derived from confidence intervals of the distribution of surrogated
coherence functions. However, this approach is dependent on that experimental dataset and,
therefore, provides a coherence threshold tuned for a BRS condition.

Also, Pinna et al. (2002) has suggested to disregard that threshold, always obtaining a BRS
estimate, with similar limits of a agreement to the invasive BRS estimates. Furthermore, dis-
regarding that threshold was reported to increase the bias and dispersion in BRS estimation
to values still suitable for clinical practice (Pinna and Maestri, 2002). However, disregarding
the coherence threshold can lead to important methodological issues. In fact, the model
underlying the estimation of the BRS through the transfer function method assumes that
the baroreflex response is linear and, therefore, this assumption should be at least verified.
Additionally, the inclusion of “unreliable” values in the average of few values (Eq. 5.16) can

lead to excessive increases in BRS dispersion.

The drawbacks of the use of the transfer function method are avoided by the use of the events
technique (choosing threshold values to verify linearity). The events technique is based on
a slope computation and, therefore, also assumes that the baroreflex response is linear. The
BEs used to compute the slope are identified as exhibiting high SBP and RR correlation
and, consequently, the linear BRS assumption is implicitly satisfied. Also, under stationary
acquisition conditions, the SBP and RR correlation in all identified BEs still exhibit high

3In LF controlled breathing, the baroreflex and respiratory contributions to the cardiovascular oscillations
are mixed around the 0.1 Hz frequency. Lower frequency breathing is accompanied by deeper breathing
(Brown et al., 1993) and, therefore, an increased range of the SBP and RR amplitudes is observed.
Consequently, the correlation between the SBP and RR values tends to be higher, what is translated in
longer length segments of correlation 0.8, in the same way that lower SBP and RR correlation expected in

BRS dysfunction cases is translated into shorter segments of correlation 0.8, see Fig. 3.11.



5.5. CONCLUSIONS 199

correlation, which is convenient for the computation of a global slope. If future results
corroborate that short and long BEs are more related, respectively, to the parasympathetic
and sympathetic ANS modulations in cardiovascular oscillations, time domain BRS methods
can be preferable to frequency domain methods also because the only threshold used for BEs

identification is set regardless of the BRS condition (r,;, = 0.8, see Fig. 3.11).

5.5 Conclusions

In this chapter, time domain BRS analysis was associated with ANS sympathetic activity and
respiration. The results in this study bring evidence that short and long BEs carry different

information on the ANS modulations.

In the SP/NT/PH dataset, the BRS estimates from short BEs were significantly correlated
with the MSNA powers in HF and not significantly correlated with the MSNA powers in LF
band. Additionally, the BRS estimates from long BEs were significantly correlated with the
MSNA powers in LF, while not being significantly correlated with the MSNA power in HF
band. In the EuroBaVar dataset, the BRS estimation from short and long BEs was found to
distinguish Lying from Standing positions in 21 out of the 23 cases. Additionally, frequency
BRS estimates from HF band were found to be higher than those evaluated in LF band in
15 out of the 17 pairs. Following the same trend, time BRS estimates from short BEs were

found to be higher than that evaluated from long BEs in 19 out of 23 cases.

In this work, indicative cutoffs to define short and long BEs are provided. In the SP/NT/PH
dataset, the individually adjusted cutoff 1/f, (with f, being the respiratory frequency of the
subject) and the optimal dataset cutoff of 3.5 sec did not change the results significantly.
This result can be explained by the fact that 3.5 sec is a value comparable to the typical
length of a breathing cycle (12 cycles per minute), considering a normal and spontaneous
breathing condition. Further studies are now needed to validate the indicative cutoff values,

considering different experimental protocols.






Chapter 6
Concluding Remarks

The main goal of this work is the study and the improvement of time domain methods for
spontaneous BRS assessment, as well as to contribute to their validation as reliable methods

to assess the autonomic reflex function.

The first part of this work consisted of the development of BRS methods offering a higher
ability to provide a BRS estimate in ANS dysfunction cases as reliable as the BRS estimates
provided for the ANS normal function cases. Other aspects considered in this study are
the ability of the methods to discriminate conditions in which the BRS is expected to be

modified, as well as reproducibility and dispersion in BRS estimation.

The second part of this work consisted of the validation of the improved BRS methods, and
to further explore the BRS function with respect to respiration, sympathetic and parasympa-
thetic ANS modulations. The validation is carried out from the comparison of the improved
estimators with time domain BRS estimators proposed for the analysis of drug-induced
data (Parlow et al., 1995) and frequency domain BRS estimators developed for the analysis
of spontaneous data (Robbe et al., 1987), both conventionally accepted to distinguish the
sympathetic and parasympathetic ANS effects (La Rovere et al., 2008).

Multimodal system to extract beat-to-beat variability from the acquired signals
The joint analysis of the beat-to-beat series of SBP values and RR intervals allows the BRS
assessment (La Rovere et al., 2008). Therefore, to carry out the BRS estimation, the beat-
to-beat series have to be extracted from the acquired ABP and ECG signals. In this work, a
multimodal system to detect the reference points in the cardiovascular signals is presented.
This system is based on independent ABP and ECG beat detections with following fusion of
the results, making use of the robust ECG beat detector previously evaluated by the group
(Martinez et al., 2004). Additionally, to explore the BRS dependencies with respiration and
sympathetic activity, methods for automatic extraction of RESP and MSNA features are

presented. The performance of the methods is illustrated with experimental data.
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Improvement of time domain BRS estimation in spontaneous data

The sequences technique is a frequently used time domain method for spontaneous BRS
estimation. This method is based on the identification of baroreflex sequences (BSs) and
linear regression over the corresponding SBP and RR values. An overall estimate is obtained
by averaging the slope estimates from all BSs identified in a record. In spite of its clinical
usefulness (Di Rienzo et al., 2001), experimental literature studies argue that changes should
be made to the sequences technique. On one hand, reference threshold values for the
identification of BSs should be established to optimize its validity in humans, particularly
when applied to patients with attenuated BRS (Davies et al., 2001). On the other hand,
reference BRS values should be established to allow the diagnosis of an impaired baroreflex

function in individual patients (Tank et al., 2000).

The study on the effect of changing the threshold values currently used for BS identification
points out that the thresholds are redundant and that its simultaneous use reduce the ability
of providing a BRS estimate. The results also indicate that the SBP and RR segments
of high correlation, defined here as baroreflex events (BEs), are a reliable alternative to
the traditional BSs. To additionally increase robustness and decrease the variance in BRS
estimation, global/total slope estimators are proposed to replace the average slope estimator.
The combined use of BEs and global/total estimators constitutes the events technique,

proposed in this work to enhance spontaneous BRS estimation.

The performance of the BEs based BRS methods is evaluated in the spontaneous FuroBaVar
dataset (Laude et al., 2004). With the use of BEs instead of BSs, the BRS analysis benefits
from more and longer segments of data, leading to a higher number of beats available for
the slope estimation. Therefore, there is a higher likelihood of obtaining a BRS estimate
from BEs than from BSs: if BSs are identified, BRS estimates from BEs and BSs are highly
correlated; for the cases of BSs absence, BRS estimates based on BEs are lowest. The fact
that BRS estimates from BSs and BEs are correlated, though in the latter case obtained
from a higher number of beats, indicates that both are measuring the same phenomenon but
with a more visible expression in BEs. The absence of BSs in a record, and the impossibility
to assess the BRS, is not synonymous of an absent BRS function, but rather a shortcoming
of the sequences technique to provide a BRS estimate. The results also point out that the
events technique provides a higher BRS estimates inter-subject variability, allowing a better
discrimination between conditions in which it is expected the BRS to be modified (Lying
versus Standing). Finally, the BRS estimation from the events technique achieves a higher
reproducibility and a lower dispersion, with the files not presenting BSs (and presenting BEs)

exhibiting similar values to those of the remaining files.

Validation of the events technique with drug-induced data
Drug-induced protocols are considered as a gold standard for BRS quantification because they

allow to characterize the BRS function over its entire sigmoidal range (Fig. 1.7). Therefore,
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the novel BRS methods were further compared with data following the “Modified Oxford”
protocol, involving drug-stimulation of the sympathetic and parasympathetic activity of the
ANS with Nitroprusside and Phenylephrine boluses (Ebert and Cowley Jr, 1992). The results
corroborate that spontaneous and drug induced estimates are different although correlated
(Parlow et al., 1995). The differences between the invasive and spontaneous BRS estimates
were found to be due to the differences in the physiological information that the invasive
and spontaneous data carry, and also due to the methodological dissimilarities between the
invasive and spontaneous BRS estimators. The BRS analysis from BEs was found to provide
values that reflect better the physiology of the baroreflex, against the BRS analysis from
BSs: BRS estimates from BEs discriminate better SP, NT and PH conditions, they are in
accordance with the expected relationship between the BRS estimates and the mean RR
interval and, finally, they are more correlated with the amount of sympathetic activity in a
condition of sympathetic activation. Therefore, the BRS analysis from BEs is preferable, even
to compute a BRS estimate with data following the “Modified Oxford” protocol. Finally, the
results indicate that no decrease in the BRS variability is achieved with drug induced data,
pointing out that the possibility of increase the number of beats in spontaneous experiments
is clearly an advantage over increasing the SBP-RR correlation in drug experiments, as a
higher number of beats for slope estimation in spontaneous recordings requires only longer

stationary recordings.

Time domain BRS estimation from short and long baroreflex events

Time domain BRS estimates are overall estimates that do not traditionally distinguish
parasympathetic and sympathetic ANS modulations. Nevertheless, they are able to identify
changes in the BRS function. The results in spontaneous data indicate that the BRS
estimation from BEs is able to capture changes in the BRS function due to parasympathetic
withdraw, including for the subjects with BRS dysfunction (Fig. 3.19). The results in drug-
induced data indicate that the BRS estimation from BEs is able to capture BRS changes
in conditions of a clear sympathetic or parasympathetic activation (Fig. 4.17). Finally, the
events technique has been shown to be able to capture changes in the BRS function that are

not due to changes in sympathetic activity (Beloka et al., 2009).

In conditions of drug-induced sympathetic activation, the changes in BRS estimates from BEs
are correlated with the changes in sympathetic activity (Fig. 4.20). In spontaneous condition,
the sympathetic activity is more reduced and the ability of the BRS estimation from BEs to
capture the sympathetic activity in such condition was studied. The sympathetic branch of
the ANS presents typically oscillations of lower frequency than the parasympathetic (Parlow
et al., 1995) and, therefore, longer SBP-RR data segments are needed to detect and quantify
this modulation. Because BSs are short segments of data, the BRS analysis from BSs mostly
reflects the parasympathetic ANS control of the heart (Parlow et al., 1995). As the events
technique is able to provide long BEs besides short BEs (of the same length as BSs), BEs

are more likely to additionally capture the sympathetic modulation than BSs.
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The results obtained in this thesis evidence that short and long BEs carry different informa-
tion on the ANS modulations (Fig. 5.11). On one hand, the BRS estimates from short BEs are
significantly correlated with the MSNA powers in HF, while not being significantly correlated
with the MSNA powers in LF band. On the other hand, the BRS estimates from long BEs are
significantly correlated with the MSNA powers in LF, while not being significantly correlated
with the MSNA power in HF band. The evidence that BRS estimates from long and short
BEs are more associated with sympathetic and parasympathetic effects, respectively, explain
the relation between the different spontaneous BRS estimates (Fig. 3.18). BRS estimates
based on BSs measure typically parasympathetic modulations (Parlow et al., 1995). The
events technique estimate (global approach and BEs) is computed considering all identified
BEs, both short and long. The global BRS estimates based on BEs hold differences to the
BRS estimates based on BSs, what is indicative that BEs (short and long) and BSs carry
different physiological information. As a matter of fact, this is corroborated by the fact that
total BRS estimates from BEs do not exhibit differences with BRS estimates based on BSs.
The events technique estimate (total approach and BEs) is computed with an outlier rejection
rule that predominantly keeps the short segments. Therefore, total BRS estimates from BEs

mostly reflect the parasympathetic effect on the cardiovascular variables.

In conclusion, this work indicates that the use of the events technique, which can be
considered as a simplification of the sequences technique, brings advantage in BRS estimation.
The events technique makes use of less thresholds to identify a baroreflex related segment
and only one slope obtained for all identified segments (instead of the average of the slopes
obtained for each identified segment). The events technique is set with a single threshold for
the BEs identification (minimum beat to beat SBP and RR correlation, r,,;,) with reference
value suitable for the identification of BEs both for normal and for dysfunction BRS cases
(min = 0.8). The results obtained for the EuroBaVar files without BSs are promising and
should now be corroborated with the comparison of a normal BRS group against a group of
attenuated BRS.

As a final remark, it is worthwhile to refer that there is a significant correlation among
the BRS estimates provided by the various methods (time and frequency) and experimental
protocols (spontaneous and invasive). Therefore, if the aim is merely to derive an index that
quantifies the BRS of an individual subject, it is not important which method is used for
BRS assessment. However, if the goal is to further understand the human physiology, most
of the literature results on BRS are not comparable and it is essential to establish reference

experimental protocols, methods and thresholds for BRS assessment.



Chapter 7

Scientific Contributions

The main framework of this PhD thesis is related with the analysis of short-term SBP and
RR series, as a tool for a non invasive study of the Autonomic Nervous System. The
scientific contributions directly related with the work described in the thesis are resumed

in the following lists.

International Journals

e S Gouveia, AP Rocha, P Laguna and P Lago, “Time Domain Baroreflex Sensitivity As-
sessment by Joint Analysis of Spontaneous SBP and RR”, Biomedical Signal Processing
and Control 4: 254-261, 2009. DOI:10.1016/j.bspc.2009.03.003.

e SP Beloka, S Gouveia, M Gujic, R Naeije, AP Rocha and P van de Borne, “Differential
Effects of Oral Beta Blockade on Cardiovascular and Sympathetic Regulation in Normal
Subjects”, Accepted in Journal of Cardiovascular Pharmacology and Therapeutics. 2009

Proceedings of Scientific Meetings with Referees (* indicates the presenter)

e S Gouveia*, AP Rocha, P Van de Borne and P Lago, “Assessing Baroreflex Sensitivity
in the Sequences Technique: Local versus Global Approach”, Comput Cardiol 32: 279—
282, 2005.

e S Gouveia®, AP Rocha, P Laguna, P Van de Borne and P Lago, “Improved BRS
Assessment Using the Global Approach in the Sequences Technique”, Comput Cardiol
33: 641-644, 2006.

e S Gouveia®, AP Rocha, P Laguna and P Lago, “Improved Time Domain BRS Assess-
ment with the Use of Baroreflex Events”, Comput Cardiol 34: 813-816, 2007.
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S Gouveia®, AP Rocha, P Laguna and P Lago, “Threshold Sensitivity in Time Domain
BRS Estimation: Minimum Beat-to-Beat Changes and Minimum Correlation”, Comput
Cardiol 34: 557-560, 2007.

SP Beloka*, M Gujic, S Gouveia, AP Rocha and P van de Borne, “Differential Effects of
Oral Beta Blockade on Cardiovascular and Sympathetic Regulation During Normoxia
and Hypoxia”, Acta Cardiologica 63(4): 525-534, 2008. DOI:10.2143/AC.63.4.2033055.

S Gouveia*, AP Rocha, P Laguna and P Lago, “Methodological Insights on Time
Domain Baroreflex Sensitivity Analysis Hlustrated with the EuroBaVar Data”, Acta
Cardiologica 63(5): 669, 2008. DOI: 10.2143/AC.63.5.2033239.

SP Beloka*, M Gujic, S Gouveia, AP Rocha and P Van de Borne, “Effects of Beta
Blockade on Hemodynamics and Muscle Sympathetic Activity”, J Hypertens 26(sl):
479, 2008.

S Gouveia®, AP Rocha, P Laguna, M Gujic, SP Beloka, P Van de Borne and P
Lago, “BRS Analysis from Baroreflex Sequences and Baroreflex Events Compared Using
Spontaneous and Drug Induced Data”, Comput Cardiol 35: 737740, 2008.

Presentations, besides the included in Scientific Meetings with Referees (* indi-

cates the presenter)

S Gouveia*, AP Rocha, P Laguna and P Lago, “Thresholds Tuning in Time Domain
Methods for BRS Estimation”,

Poster presentation in 6th EMB-IEEE International Summer School on Biomedical
Signal Processing 2007, Certosa di Pontignano, Siena, Italy.

S Gouveia®, AP Rocha, P Laguna and P Lago, “Improved Time Domain BRS Assess-
ment with the use of Baroreflex Events”,
Oral presentation in 8th STAFF Studies Symposium 2007, Shell Island, USA.

S Gouveia®, AP Rocha, P Laguna, M Gujic, SP Beloka, P Van de Borne and P
Lago, “BRS Analysis from Baroreflex Sequences and Baroreflex Events Compared Using
Spontaneous and Drug Induced Data”,

Oral presentation in 9th STAFF Studies Symposium 2008, Bertinoro, Italy.

SP Beloka*, S Gouveia, M Gujic, AP Rocha and P Van de Borne, “Differential Effects
of Oral Beta Blockade on Cardiovascular and Sympathetic Regulation”,

Oral presentation in BHC/CBH Scientific Meeting of the Belgian Hypertension Com-
mittee 2008, Gent, Belgium.
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During the PhD period (2005-2009), there was also collaboration in other projects in the
scope of the main PhD framework. These projects were related with the study of the
interactions between cardiovascular parameters extracted from the ECG (RR and QT interval
variability), related with the study of ambulatory long term HRV recordings and related with
the study of the parameters extracted from the RR and/or SBP series in the characterization
of different conditions: Diabetes Mellitus pathology, Pediatric coma and Sleep disorders. The

scientific material that resulted from these collaborations is resumed in the following list.

Other Publications/Presentations during the PhD period (* indicates the pre-

senter)

e R Almeida, S Gouveia, AP Rocha, E Pueyo, JP Martinez and P Laguna, “QT variability
and HRV interactions in ECG: Quantification and Reliability”, IEEE Trans Biomed Eng
53(7): 1317-1329, 2006.

e A Leite, AP Rocha*, ME Silva, S Gouveia, J Carvalho and O Costa, “Long-Range
Dependence in Heart Rate Variability Data: ARFIMA Modelling vs DFA Analysis”,
Comput Cardiol 34: 21-24, 2007.

e A Leite*, AP Rocha, S Gouveia, ME Silva, O Costa and J Winck, “Modelacao ARFIMA-
GARCH na Variabilidade da Frequéncia Cardiaca”,
Oral presentation in SPE’08 - Congresso Anual da Sociedade Portuguesa de Estatistica
2008, Vila Real, Portugal.

e AP Rocha, S Gouveia, JP Fernandes, MJ Carvalho, P Lago and AF Freitas, “Carac-
terizagao da Variabilidade dos Sinais Cardiovasculares na Diabetes Mellitus”,
Poster presentation of the research work developed in the project “Diabetes Mellitus:
Indicios na fase pré-sintomatica da disfungao autonémica”, program Investigagcao Cien-
tifica na Pré-graduagao 2004,/2005, promoted by UPorto, in partnership with Fundacao
Ilidio Pinho. Project awarded in the area of Exact and Natural Sciences, after jury

evaluation.

e AP Rocha, R Almeida, S Gouveia, P Lago, J Aparicio, O Costa, P Costa, LA Santos,

L Barros, L Lacerda, A Vela, A Castro, T Ventura, A Almeida, J Carvalho, L. Ribeiro
and J Sousa, “Heart Rate Variability in Critical Illness: Follow-up from Admission to
Outcome”,
Poster presentation of the research work developed in the project “Anélise da variabil-
idade cardiovascular em doenca critica: seguimento e prognodstico”, program Projectos
pluridisciplinares Investiga¢ao Cientifica na Pré-Graduagao 2006/2007, promoted by
UPorto and Caixa Geral de Depositos.

e JC Winck*, M Sequeiros, M Drummond, J Pipa, S Magalhaes, P Simdes, S Gouveia
and AP Rocha, “Blood Pressure Levels during Sleep — a pilot study”,
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Oral presentation in XXIV Congresso de Pneumologia da Sociedade Portuguesa de
Pneumologia 2008, Porto, Portugal.

AP Rocha, S Gouveia, H Aradjo, B Ferreira, P Miranda, J Carvalho, J Aparicio,
A Ribeiro, MJ Silva, R Almeida, A Leite, P Caldas and O Costa, “Cardiovascular
Variability Monitoring in Pediatric Coma”,

Poster presentation in IT Encontro de Jovens Investigadores da UPorto 2009, Porto,
Portugal.

Research work developed in the project “Multimodal analysis in pediatric coma”, pro-
gram Projectos pluridisciplinares Investigag¢ao Cientifica na Pré-Graduacao 2007/2008,
promoted by UPorto and Caixa Geral de Depositos.

JC Winck, S Magalhaes, P Simdes, S Gouveia, AP Rocha, M Sequeiros, J Pipa, M
Drummond, O Costa and C Rocha, “Cardio-respiratory Interactions during Sleep in
Snorers and Patients with Obstructive Sleep Apnoea Syndrome”,

Poster presentation in II Encontro de Jovens Investigadores da UPorto 2009, Porto,
Portugal.

Research work developed in the project “Arterial Blood Pressure responses and Heart
rate Variability: role in the diagnosis and prognosis of Sleep Disordered Breathing”, pro-
gram Projectos pluridisciplinares Investigag¢ao Cientifica na Pré-Graduacao 2007/2008,
promoted by UPorto and Caixa Geral de Depositos.
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