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Abstract

Nonlinear methods applied to heart rate variability (HRV) signals have been
reported to provide new insights to characterize abnormalities occurring in the
context of cardiac conditions or pathologies like congestive heart failure or atrial
fibrillation, to name a few. Also, alterations in the Autonomic Nervous System
(ANS), which modulates heart rate, have been shown to lead to changes in nonlinear
HRV patterns. Nonetheless, the still unclear mechanisms underlying physiological
or pathophysiological variations in nonlinear HRV indices, in combination with the
time-consuming algorithms required to estimate these indices, represent bottlenecks
for their application in clinical practice.

Following an introduction to the topics of the thesis, which is covered in chapter
1, the second chapter, chapter 2, is devoted to the first major contribution of this thesis,
which consists of the proposal and development of a methodology to reliably estimate
a nonlinear HRV index, namely correlation dimension, while notably reducing the
computational cost associated with its computation. The proposed framework is
shown to be highly effective in reducing the time for calculation of short-term
nonlinear HRV analysis to just a few seconds.

With regards to interpretation of nonlinear HRV analysis, it is important to note
that there are a number of factors that affect its calculation and should be taken
into account when comparing different studies from the literature. Characteristics
of HRV time series like sampling rate as well as selection of parameter values in
nonlinear methods all have an impact on nonlinear HRV results and could under
some circumstances lead to misleading interpretations. A major objective of chapter
3 is to study the influence of sampling rate on nonlinear HRV indices and to propose
methods to attenuate this influence. The proposed methods include, on the one hand,
heart rate-correction of HRV estimates by individual- or population-based regression
formulas and, on the other hand, pre-processing of HRV time series by interpolation
or point-process models.
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Chapter 4 focuses on investigating the effect of parameter value selection as
required for calculation of certain nonlinear HRV indices (e.g. approximate entropy)
and proposes a novel index independent of a-priori parameter value definition. This
novel index is called multidimensional approximate entropy. Nonlinear HRV analysis,
including the novel proposed index, is applied to the study of conditions associated
with alterations in cardiac ANS modulation, like aging and congestive heart failure
(CHF). All evaluated nonlinear HRV indices are found to be significantly decreased
in elderly subjects with respect to young ones under resting supine conditions. Addi-
tionally, congestive heart failure patients are shown to have statistically significantly
larger values of the evaluated nonlinear indices as compared to healthy subjects,
in all cases analyzing the night period. Also, nonlinear HRV analysis is assessed
in response to sympathetic provocations, as induced by changing from supine to
standing position or by atropine administration, where a decrease in all estimated
nonlinear indices is observed.

Chapter 5 is devoted to assess the performance of nonlinear HRV analysis in
the triage of prophylaxis administration to prevent hypotensive episodes caused by
spinal anesthesia during cesarean delivery. The study is conducted in collaboration
with the Anesthesia Department of Hospital Universitario Miguel Servet (Zaragoza,
Spain). Since prophylaxis may produce side effects on the fetus, the challenge is to
predict normotensive outcomes for which prophylaxis could be disregarded. The
hypothesis in this thesis is based on the fact that altered ANS regulation caused by the
last period of pregnancy and the proximity to surgery could be reflected on nonlinear
HRV indices and this could help to predict hypotensive vs normotensive outcomes
with higher accuracy than when using demographic variables only. Importantly,
the methodological knowhow on nonlinear HRV analysis developed in the thesis is
applied to characterize other cardiovascular signals, like the pulse photopletysmo-
graphic signal. Time series derived from this signal, including peripheral vascular
information, are incorporated into a logistic regression-based classifier together with
nonlinear HRV indices. The proposed classifier reaches 76.5 % sensitivity and 72.2
% accuracy in detecting normotensive outcomes, thus providing relevant objective
information to support clinicians’ decisions.
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In Chapter 6 the main conclusions derived from the thesis are presented and future
extensions of the conducted investigations are considered. Emphasis is made on the
contribution of the thesis to the development of novel methodologies to more robustly
characterize nonlinear HRV indices and reliably interpret corresponding results.
Based on the developed methodologies, conditions or pathologies associated with
altered cardiac ANS modulation are investigated and the contribution of nonlinear
HRV analysis for their characterization is highlighted.

In conclusion, methodological objectives of this thesis include: i) proposal of
a novel framework to improve reliability of correlation dimension estimation by
using an algorithm with reduced computational load that facilitates its applicability in
clinical practice; ii) development of alternative methods to attenuate the dependency
of nonlinear heart rate variability (HRV) indices on mean heart rate (HR); iii) proposal
of a novel multidimensional nonlinear HRV index independent of a priori parameter
definition for its computation.

Objectives related to clinical application of the methodological contributions
are: i) characterization of the effect of aging on nonlinear HRV; ii) assessment of
complexity and irregularity of heart rate in congestive heart failure (CHF) patients
as compared to healthy subjects; iii) improvement in the efficacy of prophylaxis
administration for the prevention of hypotensive events after spinal anesthesia during
programmed cesarean delivery.





Resumen y Conclusiones

La inclusión de métodos no lineales aplicados a señales de variabilidad del ritmo
cardiaco (HRV, del inglés Heart Rate Variability) proporciona una nueva visión
en la caracterización de anomalías en el contexto de las enfermedades cardiacas
o patologías como la insuficiencia cardiaca o la fibrilación auricular, por nombrar
algunas. Se ha demostrado que alteraciones en el sistema nervioso autónomo (ANS,
del inglés Autonomic Nervous System), el cuál modula el ritmo cardiaco, conllevan
a cambios en los patrones no lineales de la HRV. Sin embargo, la incertidumbre,
todavía presente, en los mecanismos que subyacen a variaciones fisiológicas o
patofisiológicas en los índices no lineales de la HRV, junto con el alto tiempo que
requieren los algoritmos para la estimación de estos índices, representan el cuello de
botella para su aplicación en la práctica clínica.

Después de una breve introducción sobre los temas abordados en esta la tesis en
el capítulo1, el segundo capítulo, el capítulo2, está dedicado a la primera gran con-
tribución de esta tesis, que consiste en la propuesta y desarrollo de una metodología
con el fin de reducir el coste computacional asociado a la caracterización no lineal
de la HRV. El esquema propuesto es muy eficaz, reduciendo el tiempo de cálculo a
unos pocos segundos para el análisis no lineal de señales de HRV de corta longitud
(5 minutos).

Con respecto a la interpretación del análisis no lineal de la HRV, es importante
señalar que hay una serie de factores que afectan a su cálculo y deben tenerse en
cuenta al comparar diferentes estudios de la literatura. Las características de las
series de HRV, como la frecuencia de muestreo, así como la selección de valores
de parámetros en los métodos no lineales, tienen un impacto en los resultados de
los índices no lineales de la HRV y, en algunas circunstancias, pueden dar lugar a
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interpretaciones erróneas. Uno de los principales objetivos del capítulo3 es estudiar
la influencia de la tasa de muestreo en los índices no lineales de la HRV y proponer
alternativas para atenuar esta influencia. Los métodos propuestos incluyen, por una
parte, la corrección de la frecuencia cardiaca de las estimaciones de la HRV mediante
fórmulas de regresión individuales o basadas en la población y, por otra, el preproce-
samiento de las series temporales de HRV mediante modelos de interpolación o de
point-process.

El capítulo4 se centra en investigar el efecto de la selección del valor de los
parámetros requeridos para el cálculo de ciertos índices no lineales de la HRV (por
ejemplo, la entropía aproximada) y proponiendo un nuevo índice independiente de la
definición del valor de éstos parámetros a-priori. Este novedoso índice se denomina
entropía multidimensional aproximada. El análisis no lineal de la HRV, incluido el
nuevo índice propuesto, se aplica al estudio de afecciones asociadas a alteraciones de
la modulación cardiaca del ANS, como el envejecimiento y la insuficiencia cardiaca
congestiva (CHF, del inglés Congestive Heart Failure). Por un lado, todos los índices
no lineales de la HRV evaluados ven disminuidos significativamente sus valores en las
personas mayores en comparación con los jóvenes ambos grupos en condiciones de
reposo en posición de decubito supino. Por otro lado, los pacientes con insuficiencia
cardiaca muestran valores más altos de los índices no lineales significativamente con
respecto al grupo de sujetos sanos, en ambos casos analizando el período nocturno.
Además, el análisis no lineal de la HRV es evaluada en respuesta a provocaciones
simpáticas, inducidas por el cambio de la posición supina a la posición de pie o por
la administración de atropina, donde se observa una disminución en todos los índices
no lineales estimados.

El capítulo5 está dedicado a la evaluación del rendimiento del análisis no lineal
de la HRV en el triaje de la administración profiláctica con el fin de prevenir los
episodios de hipotension causados por la anestesia espinal durante el parto por
cesárea. El estudio se realiza en colaboración con el Servicio de Anestesia del
Hospital Universitario Miguel Servet (Zaragoza, España). Debido a que la profilaxis
puede producir efectos secundarios en el feto, el desafío consiste en predecir los
casos normotensos para los cuales se puede prescindir del tratamiento profilactico.
La hipótesis de esta tesis se basa en el hecho de que la alteración de la regulación
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del ANS causada por el último período de embarazo y la proximidad a la cirugía
podría reflejarse en los índices no lineales de la HRV, lo que podría ayudar a predecir
los casos que deriven en hipotension y normotension con mayor precisión que
cuando se utilizan solamente variables demográficas. Es importante destacar que
las propuestas metodológicas para el análisis no lineal de la HRV desarrolladas en
la tesis se aplican en la caracterización de otras señales cardiovasculares, como la
señal fotopletismografica de pulso. Las series temporales derivadas de esta señal, que
incluyen información del sistema vascular periférico, se incorporan en un clasificador
basado en la regresión logística junto con los índices no lineales de la HRV. El
clasificador propuesto alcanza un 76.5% de sensibilidad y un 72.2% de precisión en
la detección de los casos normotensos, proporcionando así información pertinente y
objetiva respaldando la decisión final del equipo médico.

En el capítulo 6 se presentan las principales conclusiones derivadas de la tesis y se
consideran futuras ampliaciones en base a las investigaciones llevadas a cabo. Se hace
hincapié en la contribución de la tesis al desarrollo de metodologías novedosas para
caracterizar de manera más robusta los índices no lineales de la HRV e interpretar
con fiabilidad los resultados correspondientes. Basándose en las metodologías
desarrolladas, se investigan las condiciones o patologías asociadas con alteraciones
en la modulación autonómica de la actividad cardiaca y se destaca la contribución
del análisis no lineal de la HRV para su caracterización.

En conclusión, entre los objetivos metodológicos desarrollados en esta tesis se
encuentran: i) la propuesta de un esquema de trabajo para incrementar la fiabilidad de
la estimación de la dimensión de correlación, usando un algoritmo que reduce la carga
computacional, facilitando su aplicabilidad en la práctica clínica; ii) el desarrollo
de métodos alternativos para atenuar la dependencia de los índices no lineales de
la HRV con el ritmo cardiaco medio; iii) la propuesta de un índice no lineal de la
HRV multidimensional independiente de la definición a priori de parámetros para
su estimación. Además, los objetivos relacionados con la aplicación clínica de las
contribuciones metodológicas son: i) la caracterización del efecto del envejecimiento
en los índices no lineales de la HRV; ii) la evaluación de la complejidad e irregularidad
del ritmo cardiaco en pacientes que sufren de insuficiencia cardiaca comparada con
sujetos sanos; iii) la mejora de la eficacia de la profilaxis para la prevención de
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eventos de hipotensión después de anestesia espinal durante parto programado por
cesárea.
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“The heart has reasons which
reason does not know.”

- Blaise Pascal (1623-1662) -

1
Introduction

Summary

In this chapter, the motivation for the development of this thesis is introduced. The
human body is a source of biomedical signals that can be used to characterize
and identify health status and pathologies. This thesis is based on the heartbeat
interval variations and their relation to the regulation of the autonomic nervous
system (ANS) on the heart. The modulation of the heart rate through sympathetic and
parasympathetic systems is introduced. Finally, technical approaches commonly used
for assessing autonomic nervous system (ANS) activity using heart rate dynamics
are presented throughout this dissertation.



2 Introduction

1.1 Motivation

Heart rate variability is considered a non-invasive technique for assessing ANS
regulation of heart rate [179]. During the last few decades, interest in this analysis
has risen. Around 1600 related scientific papers were published in 2017 (data from
Pubmed search engine https://www.pubmed.gov). Its potential is widely recognized
and used. The analysis of HRV has been applied to characterize changes in ANS
response due to several pathologies or habits, e.g. cardiovascular diseases (CVD),
metabolic disorders, mental disorders and stress [49, 48, 136, 153, 90, 26, 72, 45,
163, 82, 128, 112]. The World Health Organization reported that 31% of all world
global deaths were related to CVD, which is 17.7 million people, 422 million people
worldwide have diabetes and 1.6 million deaths are directly related to this disease
each year. In addition, more than 300 million people worldwide are suffering from
a mental disorder (depression, bipolar affective disorder, schizophrenia, psychosis,
dementia, developmental disorders). Early detection is crucial to reduce the incidence,
morbidity and mortality of CVD, and metabolic disorders and to increase the efficacy
of treatment for mental and stress disorders (retrieved from http://www.who.int).

After years of study, in 1996, the standards of measurement of heart rate vari-
ability, including physiological interpretation and clinical use, were published [179].
However, despite the huge number of studies related to HRV analysis, linear indices
(referred to as time- and frequency-domain) are sometimes not enough to extract
conclusive findings. The relationship between intrinsic pacemaker cells and ANS
modulation expressed in HRV has been reported as nonlinear [194]. Nonlinear tech-
niques have been highlighted as powerful tools to assess HRV for diagnosis and
prognosis, pointing out the presence of nonlinearities in heart rate regulation, but
further research is needed to relate these nonlinear techniques to a physiological
interpretation [87, 85, 177].

During the following 20 years, many authors focused their research studies on
this new branch. In 2015, the advances in HRV signal analysis were released, paying
attention to these nonlinear techniques [161]. However, physiological interpretation
of nonlinear indices is still unclear, since methodological aspects, such as their
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dependence on parameter setting, which has not been addressed in any great depth
yet, may be misleading.

1.2 Autonomic Nervous System Regulation of the Heart

Cardiovascular and respiratory systems are regulated by ANS. Heart rate, lung
volume and blood pressure are modulated in order to supply the body’s needs.
A sensor net, made up of sensory receptors, detects variations of these variables,
information which is managed by regulatory systems. In this thesis, we focus our
attention on the regulation of ANS on the heart. The presence of ANS innervation
in the heart can be found at several locations. ANS fibers are present in the sino-
atrial (SA) node, the atria, atrio-ventricular (AV) node and also in the ventricles, see
figure 1.1. As with most of the body’s organs, the heart is innervated by the two main
subsystems of the ANS, the parasympathetic (vagal) and the sympathetic system.
These subsystems are described as antagonistic and they work together to maintain
the cardiovascular homeostasis.

Adrenal 
medulla Epinephrine and

norephinephrine

Circulation

Heart

SA node

Baroreceptors
in aorta

Carotid body
chemoreceptors

Baroreceptors in wall
of internal carotid artery

Cardioregulatory center and chemoreceptors
in medulla oblongata

Sympathetic 
nerve fibers

Parasympathetic 
nerve fibers

Sensory
nerve fibers

Figure 1.1 Innervation of the heart by autonomic nervous system.



4 Introduction

The vagal system decreases heart rate and cardiac contractility (rest and digest
response), while the sympathetic system acts antagonistically increasing the heart
rate and cardiac contractility, and regulating the peripheral vasoconstriction (fight or
flight response) [65]. The underlying mechanisms of these two subsystems present
different physiological dynamics. On one hand, parasympathetic modulation acts by
releasing acethylcholine into the synaptic space of the neurons, where muscarinic
cholinergic receptors of cardiomyocytes are stimulated, changing properties such as
ionic currents and conductances, decreasing the excitability of the cells, and then
reducing the heart rate. On the other hand, sympathetic regulation stimulates the
adrenal medulla, releasing adrenaline and noradrenaline into the bloodstream, which
stimulates β -receptors, changing the cardiomyocyte properties, increasing the heart
rate. Parasympathetic system regulation shows a faster response than the sympathetic
one.

Pharmacological blockades are used for treatment of certain pathologies in which
ANS response is altered, such as silent ischemia or heart failure, or to explore the
subsystems behavior separately [169, 138, 96]. These drugs could stimulate or inhibit
ANS subsystem activity. On one hand, the muscarinic antagonist (anticholinergic)
drugs reduce the respiratory sinus arrhythmia degree, inhibiting vagal modulation,
and are used in Parkinson’s disease. On the other hand, β -adrenergic receptor
blocker therapy plays a key role in the treatment of cardiovascular diseases due to
their antiischemic, antiarrhythmic and antihypertensive properties, and also it has
been reported to be beneficial in cases of heart failure [108].

1.3 Heart Rate Variability

In normal sinus rhythm, heart rate is determined by the SA node, which receives im-
pulses from both sympathetic and parasympathetic systems, increasing or decreasing
heart rate respectively, in order to meet internal and external demands to maintain
homeostasis. Heart rate variability refers to the beat-to beat heart rate variations, and
its analysis has been proposed for the assessment of ANS regulation on the heart.
HRV is derived from the electrocardiogram (ECG), which describes the electrical
activity of the heart, recorded by electrodes placed on the body surface.
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Figure 1.2 Physiological phases of the heart and electrocardiograph signal representation. 1) Pace-
marker cells of SA node are ready to fire (Atrial depolarization). 2) SA cells fire and electrical activity
begins (Atrial repolarization). 3) Atrium pumps blood to ventricles. 4) Electrical activity travels from
atrioventricular node to Purkinje fibers to depolarize ventricles (QRS complex). 5) Ventricles begin
repolarizing from endocardium to epicardium. 6) End of the ventricular repolarization and ventricles
pump blood to aorta artery.

The mechanical contraction of the heart is preceded by electrical cell (cardio-
myocytes) excitation, the so-called depolarization stage, while, the return to electro-
mechanical relaxed condition is called repolarization. Each heartbeat generation is
composed of several phases illustrated in Fig. 1.2. The cardiomyocytes belonging
to the SA node present the special characteristic of being auto-activated, generating
the beginning of a heartbeat. They are known as the natural pacemaker of the heart.
These cells generate the stimulus to be transmitted to the rest of cardiomyocytes.
First, atria are depolarized, producing the mechanical contraction (P wave). The
electrical activity travels to the atrioventricular node, where it is delayed and then,
ventricles receive the electrical impulse via Purkinje fibers (QRS complex). Atria are
repolarized, and ventricles start depolarizing as well as contracting (T wave). The
electrocardiogram (ECG) represents the global electrical activity of the heart.
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Figure 1.3 Position of electrodes placed in the chest is illustrated in the left panel. On the right,
an ECG signal is shown produced by the electrical activity of each heartbeat. Asterisks represent the
heartbeat location in time, t(k), where k is the beat index.

To obtain HRV, the detection of each heartbeat occurrence time from the ECG
is needed (see Fig. 1.3). The selection of a proper fiducial points for HRV analysis
is important. The heartbeat location is commonly extracted from the R wave peak,
corresponding to the fast propagation of the impulse from atria to ventricles through
the AV node and the bundle of His, since it is usually the dominant wave within
the QRS complex. However, in certain QRS complex morphologies, with dominant
negative peak, detection of the latest would be more robust. On the other hand,
switching from main positive peak to main negative peak from beat to beat would
induce extra variability. Thus, in this thesis, fiducial points are selected to be either the
positive or the negative QRS complex peaks, depending on which of them represent
the most recurrent morphology.

Heart Rate Variability Representations

RR time Series

The tachogram or RR time series is defined as the difference between consecutive R
wave peaks. Hence:

RR(k) = t(k)− t(k−1), (1.1)



1.3 Heart Rate Variability 7

where t(k) is the kth heartbeat location in time.

Heart Rate Series

HR time series are defined as the inverse of RR time series in beats per minute (BPM)
units:

HR(k) =
60

RR(k)
(1.2)

These series are naturally unevenly sampled, but methods, such as interpolation,
could be applied when necessary to generate evenly sampled series.

Figure 1.4 illustrates both series and their differences.
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Figure 1.4 From top to bottom, RR interval and heart rate as HRV signal representations. Data
extracted from a 24h Holter recording of Normal Sinus Rhythm database from www.physionet.org.

Other Alternative Representations

Alternative representations of HRV have been proposed based on physiological
models.

On one hand, integrate-and-fire models such as the integral pulse frequency
modulation (IPFM) model provides a physiologically plausible model for HRV
representation, assuming that the ANS influence on the SA node can be described
by a modulating signal, M(t) [115]. The modulating signal over a DC level of 1 is
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integrated until reaching a threshold, which is the mean heart period, when a new
heartbeat is generated and the integral is reseted.

On the other hand, models taking into account the stochasticity of the process,
like the point-process model, have been also used for HRV representation. This
model was firstly applied in neuroscience, analyzing the electrical activity of the
brain through electroencephalogram (EEG), obtaining promising results [181]. Its
application to HRV analysis provides a probability model to describe heart rate
dynamics mathematically. The waiting time from one heartbeat time t(k) until the
next one is assumed to obey an inverse Gaussian probability density function [10].

1.4 Autonomic Nervous System Assessment

As aforementioned, HRV is considered a non-invasive technique for assessing the
ANS activity related to heart regulation [179]. Approaches based on the time-
frequency-domain and in terms of complexity/irregularity have been applied to HRV
analysis and they are described in the following.

1.4.1 Time Domain Analysis

Time domain indices are based on statistical characteristics of HRV signals. Time
domain indices give a description of the time series first moments, heart rate mean
(HRM), standard deviation of consecutive normal beats (SDNN), referring to those
whose origin is the SA node), and the square root of the mean squared differences of
successive normal heartbeat intervals (RMSSD). In particular, SDNN and RMSSD
have been related to parasympathetic activity [179].

1.4.2 Frequency Domain Analysis

In 1981, Akselrod et al. [2] characterized heart rate fluctuations in the frequency
domain, describing the relation between ANS modulation (sympathetic and parasym-
pathetic subsystems) and power spectral density content in specific bands.
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The sympathetic activity was reported to contribute to low frequency (LF) band
content (PLF : 0.04-0.15 Hz), whereas the parasympathetic activity contribution
was related to high frequency (HF) band content (PHF : 0.15-0.4 Hz), but also to
LF band. Figure 1.5 illustrates an exemplary spectral representation of HRV signal,
corresponding to relaxed conditions. HF content was proposed as an index to estimate
the parasympathetic activity. In addition, the ratio between LF and HF power spectral
density band content, known as sympathovagal ratio (LF/HF), was reported to provide
a measure of the balance between sympathetic and parasympathetic system regulation.
The mentioned spectral band definitions are suitable for adult healthy subjects who
are breathing normally. HF band definition can be modified, depending on the subject
status, to ensure that parasympathetic activity is captured [9, 70], since factors such
as respiratory sinus arrhythmia could be reflected in higher frequencies and thus, the
pre-defined HF boundaries should be adjusted [80].
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Figure 1.5 Example of power spectral density of a HRV signal (modulating signal M(t)) where low
and high frequency contributions are illustrated.

Spectral analysis can be carried out by analyzing the raw RR time series by
Lomb-Scargle periodogram, since raw RR time series is unevenly sampled, or by
Fourier transform on interpolated RR time series.
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1.4.3 Nonlinear Domain Analysis

From Deterministic to Stochastic Processes

A system can be classified as deterministic, stochastic or mixed. When an input
always produces the same output, the system is said to be deterministic. Deterministic
systems can be mathematically described with an unambiguous relationship between
the input and the output of the system. There are deterministic systems whose
response is highly influenced by initial conditions, producing a very different output
depending on those conditions. Such an influence is known as the butterfly effect,
as the dependence on initial conditions is represented as the beating of a butterfly’s
wings in California that could unleash a tornado in another part of the world. Those
deterministic systems are known as chaotic. Although the output of a chaotic system
could seem to be random, it is not, since it can be exactly determined. In Fig. 1.6,
the Lorenz attractor, which is a chaotic system, is illustrated. This system consists
of three coupled differential equations, generating three outcome signals with a
randomness-like behavior (see section 2.2.1 for the Lorenz attractor mathematical
description).
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Figure 1.6 Left panel: Lorenz attractor is represented in the phase-space. Right panel: random-like
behavior of one of its single outputs is illustrated.

The most widespread methods used to characterize nonlinear system dynamics
are the ones based on chaos theory, where the greater the amount of information, the
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higher the accuracy of the measurements. In stochastic systems the output is totally
random or has a certain degree of randomness.

The HRV signal could be interpreted as the observable outcome of a system
containing information on cardiac ANS regulation. The HRV signal can contain
information related to intrinsic physiological nonlinearities, such as changes in the
gain of baro-reflex feedback loops or delays in conduction time, which might not
be properly described by temporal and spectral signal characteristics [200, 6, 165].
The presence of nonlinear characteristics in HRV time series has been highlighted
by surrogate data analysis [87, 85, 177, 88]. The question of whether HRV arises
from a low-dimensional attractor associated with a deterministic nonlinear dynamical
system or has an stochastic origin is still unclear.

System complexity is a concept referring to dynamic richness of subsystem
interconnections and feedback. In particular, HRV is known to be related to the
outcomes of coupled cardiovascular and respiratory systems such as heart rate, lung
volume and blood pressure, among others. Based on transfer functions and models,
proposals to quantify the interaction between these variables influencing HRV have
been reported [162, 187, 16, 192]. A simplified model of these interactions proposed
in [187] is illustrated in Fig. 1.7. Nonlinear complexity indices have been shown to
provide complementary information to linear approaches in the characterization of
HRV signals [30]. Techniques based on detrended fluctuation analysis [84], Lempel-
Ziv complexity [105], Lyapunov exponents [191], D2 [145] and approximate and
sample entropies [142] have been used to assess HRV complexity.

State of the Art

Availability of faster computing resources as well as development of more effi-
cient algorithms for computation of nonlinear HRV characteristics has been crucial
for the boost of these methods in research, since the associated high computational
load was considered as a limitation for their applicability. Fig. 1.8 shows a timeline
with relevant milestones in the characterization of HRV, both using classical and
nonlinear methodologies. Some of these methodologies, like approximate entropy or
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Figure 1.7 A simplified model of HR regulation, adapted from Voss et al. [187]

detrended fluctuation analysis, have been widely applied in the last three decades, as
illustrated in Fig. 1.9, which shows usage rate of nonlinear methodologies.

Nonlinear HRV indices have been highlighted as promising markers to charac-
terize cardiovascular diseases, such as congestive heart failure, atrial fibrillation or
myocardial infarction as well as risk for sudden cardiac death or other type of deaths
[118, 167, 187, 40, 43, 50, 75, 173, 12, 73, 50]. Also, nonlinear HRV analysis has
been applied to investigate the effects of aging [14], mental disorders [16, 122, 124]
or unbalanced cardiovascular regulation [149].

According to Sassi et al. [161], nonlinear methods can be classified as: long-range
correlation and fractal scaling (e.g. 1/ f factor, DFA), short-term complexity (e.g.
Poincaré plot analysis, acceleration/deceleration capacity), entropy and regularity
(e.g. approximate and sample entropy), and nonlinear dynamical systems and chaotic
behavior (e.g. correlation dimension, Lyapunov exponents). In this thesis, the
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nonlinear indices most commonly used in the literature (see Fig. 1.9), like those based
on entropy and regularity (approximate and sample entropy, ApEn and SampEn
respectively) and nonlinear dynamical systems and chaotic behavior (correlation
dimension, D2), have been considered.

The above mentioned nonlinear indices are based on Takens’ work, which was
focused on detecting strange attractors [178]. He concluded that an attractor could be
properly reconstructed when the phase-space dimensionality is sufficient to unfold
the attractor. He also postulated that it is possible to assess the information of a
system by taking into account just one experimental output. Based on this, ApEn, a
measure of system complexity, was introduced by Pincus [144]. Almost a decade
later, Richman and Moorman introduced sample entropy (SampEn), an irregularity
index for which dependency on data length was attenuated with respect to ApEn
[125]. Meanwhile, Grassberger and Procaccia introduced an algorithm to estimate D2

also based on Takens’ conjecture to characterize strange attractors (chaotic systems)
[60].

Shedding light into physiological interpretation of nonlinear HRV indices has
been the focus of different research studies. Some studies have shown correlation be-
tween frequency-domain and nonlinear HRV indices and have postulated the role of
vagal modulation in underlying nonlinear characteristics [198, 132, 75, 193]. Other
studies have shown that nonlinear HRV indices are almost unaffected by postural
changes known to elicit autonomic responses [172]. In contrast, a statistically signifi-
cant reduction in HRV irregularity during tilt test, eliciting sympathetic activation, has
been reported [75, 148]. The effect of ANS blockades on healthy subjects has been
analyzed to improve physiological interpretation of HRV dynamics [135, 75, 193, 23].
Inhibition of vagal nerve activity on the heart by atropine administration revealed
lower complexity in nonlinear HRV analysis, whereas no differences were found in
nonlinear HRV indices following administration of the β -adrenoceptor antagonist
propranolol. In response to exercise, an increase in the exercise load has been related
to a decrease in the irregularity and chaos-like behavior of the HRV time series
[79, 188, 64].
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Figure 1.8 Milestones over the time towards the nonlinear heart rate variability assessment. Figure
adapted from G.E. Billman (Frontiers in Physiology, 2011) [18].
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Figure 1.9 Graphical representation of usage rate of most common nonlinear methods for HRV
analysis (data from Pubmed search engine e, statistical sample of two hundred studies.).

Nevertheless, caution is required when interpreting results obtained by using
nonlinear HRV measurements. First, nonlinear HRV indices are highly influenced
by values given to the parameters involved in their definitions [118, 177, 34, 75, 20,
182, 69]. In addition, nonlinear HRV indices show a strong dependence on mean HR
[202, 146, 123, 195], which should be attenuated before establishing any comparison.
Standardizing the use of nonlinear HRV indices by accounting for both associated
parameter definition and mean HR attenuation would be advisable if such indices are
aimed to be more extensively used and interpreted.
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1.5 Applications of Nonlinear HRV Analysis

The methodologies proposed in this thesis for nonlinear HRV analysis will be ap-
plied to assess cardiovascular disorders and conditions like heart failure, aging and
hypotension during cesarean section.

1.5.1 Aging

Aging has been reported to be associated with a decrease in cardiac vagal modulation
[24, 44, 54]. These effects have been related to a decrease in HRV, as assessed by
frequency-domain indices [98]. In this thesis nonlinear HRV characteristics will be
investigated in a database of healthy subjects spanning a broad range of ages.

1.5.2 Congestive Heart Failure

CHF has been associated with increased sympathetic activity and decreased periph-
eral response to adrenergic input [38, 63]. A decrease in the low frequency power
of HRV was related to the progression of the disease in patients with severe CHF
[62]. This result can be explained by: (i) a central autonomic regulatory impairment
in heart failure, supported by results of muscle sympathetic nerve activity in CHF
patients with absent low frequency content [186]; (ii) a decreased responsiveness to
sympathetic modulation, which may reduce the capability of the heart to oscillate
at this frequency [63]; and (iii) an increased chemoreceptor sensitivity, which may
be related to an increase in very low frequency power (PV LF ) and a decrease in low
frequency power in CHF patients [147]. In the case of nonlinear HRV analysis,
controversial findings have been reported. While some studies report lower com-
plexity and irregularity in CHF patients than healthy subjects [73, 107], other studies
have described HRV of CHF patients as more complex and irregular than that of
healthy subjects [204, 41]. In this thesis, light will be shed on potential reasons
underlying these results, particularly taking into account important methodological
considerations that influence nonlinear HRV analysis.
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1.5.3 Hypotension during Cesarean Section

Prophylaxis treatment has become essential to prevent the development of hypoten-
sive events after spinal anesthesia during cesarean section. However, prophylaxis
administration could increase fetal distress in those cases where there is no need
for it, i.e. for normotensive outcome. The combination of symptoms caused by
late pregnancy period, physiological and psychological stress and ANS disability to
compensate for the drop in blood pressure induced by anesthesia could be responsible
for hypotensive episodes during cesarean delivery. HRV characteristics have been
found to correlate with hypotensive episodes on the day of surgery [21, 31, 66, 199].
Prediction of hypotensive episodes would benefit the wellbeing of both the mother
and the fetus during the intervention, thus increasing the efficacy of prophylactics. In
this thesis novel nonlinear HRV analysis will be applied to improve classification of
hypotensive vs. normotensive events.
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1.6 Objectives

The interaction of the diverse physiological mechanisms involved in HR regulation,
and how each of them is reflected by the HR dynamics, becomes an ambitious and
complicated challenge to understand. Nonlinear HRV analysis was highlighted as a
powerful tool to extend the description of several cardiovascular diseases, comple-
menting the information provided by linear approaches. However, the main caveat
in the nonlinear HRV analysis lies in its physiological interpretation. Searching
for dependencies, such as HRM or a priori parameters that have to be selected for
nonlinear HRV indices estimation, is of great interest in order to attenuate these
influences, and clarify their physiological interpretation.

In chapter 2, alternative methodologies for more reliable estimation of nonlinear
HRV indices while reducing the associated computational cost are explored. A
methodological framework is initially introduced for estimation of D2. Based on
the similarities found in the computation of approximate and sample entropy with
respect to correlation dimension, the framework will be considered for the estimation
of those other indices as well.

The effect of heart rate, as sampling rate of HRV signal, on nonlinear HRV
indices will be investigated in chapter 3 and strategies for attenuation of this effect
will be introduced. The proposed strategies will be validated in synthetic time series
reproducing physiological characteristics of heart rate signals.

Nonlinear HRV indices, like approximate entropy, are to a large extent dependent
on parameters which values need to be set a priori. In chapter 4, a nonlinear multi-
dimensional approximate entropy-based index, independent of a priori parameters
is proposed. Synthetic time series with different levels of randomness are used to
validate the proposed index. This index, as well as other nonlinear HRV indices
commonly used in the literature are applied to assess the effects of aging as well as
to compare CHF patients and healthy subjects.

In chapter 5, the knowhow developed along the thesis is applied to assess a
stress-related clinical problem, namely improvement in the prevention of hypoten-
sive episodes after spinal anesthesia during cesarean section. Linear and nonlinear
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analysis of HRV, pulse wave variability and pulse rate variability (derived from
photoplethysmographic signal) are investigated to derive combinations of indices
with optical capability to classify hypotensive versus normotensive events.

Concluding remarks of this thesis are presented in chapter 6.

In summary, methodological objectives of this thesis include: i) proposal of a
novel framework to improve reliability of correlation dimension estimation by using
an algorithm with reduced computational load that facilitates its applicability in
clinical practice; ii) development of alternative methods to attenuate the dependency
of nonlinear HRV indices on mean HR; iii) proposal of a novel multidimensional
nonlinear HRV index independent of a priori parameter definition for its computation.

Objectives related to clinical application of the methodological contributions
are: i) characterization of the effect of aging on nonlinear HRV; ii) assessment of
complexity and irregularity of heart rate in CHF patients as compared to healthy
subjects; iii) improvement in the efficacy of prophylaxis administration for the
prevention of hypotensive events after spinal anesthesia during programmed cesarean
delivery.





“But the trouble was that ignorance became more
interesting, especially big fascinating ignorance
about huge and important things like matter and
creation, and people stopped patiently building their
little houses of rational sticks in the chaos of the
universe and started getting interested in the chaos
itself – partly because it was a lot easier to be an
expert on chaos, but mostly because it made really
good patterns that you could put on a t-shirt.”

- Terry Pratchett (1948-2015) -

2
Framework for Correlation Dimension

Estimation

Summary

In this chapter, correlation dimension is introduced, based on that it is possible to
reconstruct certain system characteristics with just considering one single system
output (Takens hypothesis). The novelties, presented here, covered a new strategy
to estimate the scaling region of the log-log curves (correlation sums vs. tolerance
values), being crucial for improving reliability of correlation dimension. Besides,
two proposed approaches for its estimation and an algorithm for a fast computation
are introduced. The proposed framework is validated through synthetic and real data,
pointing out the caveats and limitations for correlation dimension estimation.
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2.1 Correlation Dimension

As mentioned in the introduction chapter, nonlinear HRV analysis measurements
have been described as complementary to time- and frequency-domain indices, but
some pitfalls could mislead their interpretation. One of such limitations arises from
their application to time series with limited duration. In particular, D2 estimation
has shown a strong dependence on the length of the time series [60]. Alternatives
to alleviate this effect were proposed in [78, 180]. In addition to this, stationarity is
another requirement that a time series has to fulfill to obtain reliable results. However,
these methodological constraints, regarding data length duration and stationarity, are
usually difficult to satisfy at the same time [88]. Furthermore, computation of D2 is
time-consuming, increasing exponentially with data length. In this regard, several
attempts have been reported trying to reduce this disadvantage, including parallel
computing using MPI (Message Passing Interface) [190, 205].

In this chapter, a new methodological framework to estimate D2 is proposed,
increasing correlation dimension reliability and reducing its computational time.

2.1.1 Mathematical Definition

Let x(n), n = 1, . . . ,N, be the time series of interest, which in HRV analysis will be
the RR interval series normalized to unit amplitude (divided by absolute maximum
value), and N the total number of beats. A set of m-dimensional vectors, ym(i), called

reconstructed vectors, are generated [178]:

ym
i = [x(i),x(i+ τ),x(i+2τ), . . . ,x(i+(m−1)τ)]T (2.1)

where τ represents the delay between consecutive samples in the reconstructed space.
The amount of reconstructed vectors is Nm = N − τ(m− 1) for each embedding
dimension m. The distance between each pair of reconstructed vectors, ym

i ,ym
j , is

denoted as:

dm
i, j = d(ym

i ,y
m
j ) (2.2)
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computed as the norm of the difference vector ∆ym
i, j = ym

i − ym
j . In section 2.4.1,

different norms and their effect on D2 estimates from finite time series are discussed.

The self-similarity is addressed by computing the correlation sums, which repre-
sents the probability of finding similar reconstructed vectors, according to a certain
threshold r. Hence, correlation sums are defined as follow:

Cm(r) =
1

Nm(Nm −1)

Nm

∑
i, j=1

H(r−dm
i, j)

=
1

Nm(Nm −1)

Nm

∑
i=1

cm
i (r)

(2.3)

where H(·) is the Heaviside function,

H(x) =

{1 x ≥ 0

0 x < 0

(2.4)

and

cm
i (r) =

Nm

∑
j=1

H(r−dm
i, j) (2.5)

For deterministic systems, Cm(r) decreases monotonically to 0 as r approaches 0,
and it is expected that Cm(r) is well approximated by Cm(r)≈ rDm

2 . Thus, Dm
2 can be

defined as:

Dm
2 = lim

r→0

logCm(r)
log(r)

(2.6)

For increasing m, Dm
2 values tend to saturate to a D2 value, constituting the

correlation dimension estimate.
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2.1.2 Scaling Range Assessment: Sigmoid Curve Fitting

D2 is estimated from Eq. (2.6), whose numerator and denominator both tend to
−∞ as r tends to 0. Therefore, making use of L’Hôpital’s rule, the equation can be
rewritten as [104]:

Dm
2 = lim

r→0

dlogCm(r)
dlog(r)

(2.7)

Since the size of the time series is finite, choosing small values of r to evaluate
this limit is problematic. For values of r close to 0, very few distances contribute
to the correlation sum, making the estimation unreliable. Therefore, the evaluation
of this expression is usually done in a linear region in the log(Cm(r)) vs log(r)
representation, called the log-log curve, where its slope value is considered an
estimate of Dm

2 .

The slope of the linear region could be estimated by different approaches, e.g.
searching for maximum slope can be done by directly computing the increments
in the log-log curve, or as the maximum of the first derivative of the log-log curve
[78]. Nevertheless, these approaches encounter some limitations, since logarithmic r
values produce non-equidistant sampling . Another limitation arises in the presence
of dynamic systems, whose log-log curves could present several linear regions, as
can be seen in Fig. 2.1, where data corresponds to a RR interval series extracted from
a 30-minute ECG recording. In order to estimate the slope of the linear region of the
log-log curve, an attempt to artificially extend the linear region is made by excluding
the self-comparisons (dm

i, j) from the correlation sums (see Eq. 2.5).

However, the basis of the proposed approach, to improve D2 estimation, lies
into considering self-comparisons. Fig. 2.2 illustrates how log-log curves behave in
both situations, considering or not considering self-comparisons. As shown, both
share part of the linear region. Sigmoid curve fitting (SCF) over the log-log curves
provides an analytic function, whose maximum slope in the linear region is well
defined. These log-log curves are reminiscent of the bi-asymptotic fractals, showing
upper and lower asymptotic log-log values. This was studied by Rigaut [156] and
Dollinger et al. in [47], where exponential fittings were proposed. The sigmoid
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Figure 2.1 Log-log curves for a dynamic system. Data correspond to a RR interval series extracted
from 30 mins of ECG recording.
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curve fitting technique is applied to log-log curves, after interpolating them, in the
logarithmic scale, to achieve evenly-spaced r values.
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To do so, a modified Boltzmann sigmoid function was considered. This was used
by Navarro et al. [130] as a model for the phase transition of smart gels:

f (x) = A2 −
(A2 −A1)

B+ e
(−x+xo)

α

(2.8)

where A1, A2, α , xo and B are the design parameters. The first derivative of f (x) is:

d f (x)
dx

=− (A2 −A1)e
(−x+xo)

α

α

(
B+ e

(−x+xo)
α

)2 (2.9)

In this study, the sigmoid curve, f (x), is fitted to each log-log curve. The first
derivative, Eq. 2.9, is analytically determined and its maximum value constitutes
the estimation of the slope of the linear region, i.e. D̂m

2 , see Fig. 2.3. Note that hat
notation refers the application of SCF on its estimation.
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Figure 2.3 In the left panel a modified Boltzman sigmoid curve is shown where the parameters
according to Eq. 2.8 are illustrated; In the right panel, an example of a log-log curve ( black dashed
line), the SCF curve obtained (black solid line). The derivative of both curves is shown in gray color,
dashed and solid respectively. Maximum slope estimations are marked with dots.

In order to achieve a good fitting, the threshold values, r, have to guarantee
that both upper and lower asymptotes are reached. Then, threshold values, r ∈
[0.01 3] with a step of 0.01 are considered. The upper asymptote is reached when
all comparisons are above the threshold, Cm(r)≈ 1, and the lower asymptote when
only the self-comparisons are below, Cm(r) = 1

Nm(Nm−1) .
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The requirement for a good fitting is to achieve a regression factor greater than
0.8 with respect to log-log curve values. Thus, the SCF approach is robust against
erroneous D2 estimates. In those cases, where dynamic systems exhibits log-log
curves with more than one linear region, no estimation of D2 is given, since the fitting
is not enough satisfactory to reach the minimum necessary regression factor.

As the embedding dimension m increases, the linear regions of the log-log curves
tend to be parallel to each other. Thus, D̂m

2 estimates tend to saturate to a certain
value, which is considered the D̂2. D2 is estimated by fitting the D̂m

2 vs. m curve
following a modified version of the one used by Carvajal et al. [29]:

Dm
2 = D2

(
1−Ae−km

)
(2.10)

where A, is here introduced to reach the saturation level more quickly than the
previously proposed, and k is the exponential growth factor.

2.1.3 New Approaches for D2 Assessment

In this section, new alternatives, based on (SCF) approach, to estimate D2 are
introduced. As mentioned in section 2.1.2, we chose D̂m

2 as the maximum slope on
each fitted sigmoid curve. Nevertheless, the linear region is composed of more than
one single point. Based on this, a new approach for D2 estimation is proposed by
considering a set of points, i.e. slope estimations, extracted from these linear ranges,
instead of considering only one single point per curve.

The main idea is based on selecting one point of the linear range in the SCF
log-log curve of the lowest embedding dimension m, and moving forward to the next
embedding dimension m+1, selecting the point of the corresponding SCF log-log
curve that satisfies the minimum distance to the former curve following the gradient
descent technique (i.e. where an hypothetical perpendicular line starts in the mth

log-log curve and intersects the (m+ 1)th log-log curve, see Fig. 2.4). Minimum
distance was considered, assuming that the linear range of log-log curves tend to
be parallel to each other. The procedure is repeated up to the maximum considered
embedding dimension. Then, several sets of slopes are computed (one for each point
in the linear region around the maximum slope of the SCF log-log curve of the lowest
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Figure 2.4 Maximum slope points are marked with crosses over fitted sigmoid curves. Points
calculated using gradient descent criteria from two starting points are shown in dots and circles. r j
is the point which corresponds to the maximum slope in the lowest embedding dimension. The inset
illustrates the D2 estimation of the three sets of points.

embedding dimension), providing a set of D2 estimates per embedding dimension
(D̂m

2(⊥),r). The dependence on r in the notation indicates that each set of D2 estimates
is linked to an r value, corresponding to the first value of each set.

Finally, Eq. 2.10 is used to estimate the final D2 (D̂2(⊥),r) for each set of points.
These (D̂2(⊥),r) estimates are linked to the log(r) value of the lowest embedding
dimension. Finally, regarding the criterion in searching for the maximum slope value
in the log-log curves, the maximum of the D̂2(⊥),r is selected as the new D2 estimate,
called D̂2(⊥), see Fig 2.5.

Another new approach for D2 estimation based on SampEn is now presented.
SampEn was defined by Zurek et al. [205] as:

SampEn(m,r) = log(Cm(r))− log(Cm+1(r)) (2.11)
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Figure 2.5 a) Set of points where slope is estimated from the fitted sigmoid curves in the approach
proposed in section 2.1.3.; b) Set of D̂m

2(⊥),r estimates for different starting points vs. embedding
dimensions are fitted by the exponential Eq. 2.10; c) Correlation dimension estimate for each set
corresponding to different starting points. Data extracted from Lorenz attractor of 5000 sample length.

where, in this case, Cm(r) is computed as in Eq. 2.1.1, but without considering
self-comparisons. Let us define SampEni= j(m,r) as the sample entropy considering
self-pairs, which is easily computed for all embedding dimensions m and a huge set
of thresholds r using the fast algorithm which will be described in section 2.1.4. We
can generate a SampEni= j(m,r) surface from the fitted sigmoid curves. An example
of a 300-beat RR interval series extracted from one recording of the database used
in [27] is shown in Fig. 2.6. For each embedding dimension, the value of r which
maximizes SampEni= j(m,r) is used to estimate the slope of the linear region of
the SCF log-log curves, D̂m

2(max), yielding another D2 estimate, called in this thesis
D̂2(max).
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Figure 2.6 SampEni= j(m,r) surface for a 300-beat RR interval series. For each embedding dimension
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2.1.4 Fast Computation of Correlation Sums

One important limitation of D2 estimation is the high computational time required,
mainly due to the sequential estimation of correlation sums.

This section describes an algorithm for the fast computation of correlation sums
based on matrix operations (MO). A matrix S, containing the differences between all
pairs of samples of x(n), is computed as:

S = X−XT (2.12)

where X is the N ×N matrix:

X =



x(1) x(2) . . . x(N)

x(1) x(2) . . . x(N)

x(1) x(2) . . . x(N)
...

...
. . .

...
x(1) x(2) . . . x(N)


(2.13)

where xi, j symbolizes x(i)−x( j). For instance, the dashed box contains the elements
of the difference vector ∆ym

i, j for τ = 1. For each embedding dimension m and the
reconstructed vector i, the difference vectors ∆ym

i, j generates a Sm
i matrix:

S =



x1,1 . . . xi,1 xi+1,1 . . . xi+m−1,1 . . . xN,1
...

...
...

...
...

...
...

...
x1, j . . . xi, j xi+1, j . . . xi+m−1, j . . . xN, j

x1, j+1 . . . xi, j+1 xi+1, j+1 . . . xi+m−1, j+1 . . . xN, j+1
...

...
...

...
...

...
...

...
x1, j+m−1 . . . xi, j+m−1 xi+1, j+m−1 . . . xi+m−1, j+m−1 . . . xN, j+m−1

...
...

...
...

...
...

...
...

x1,N . . . xi,N xi+1,N . . . xi+m−1,N . . . xN,N


(2.14)
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Sm
i =



xi,1 xi+1,2 . . . xi+m−1,m
...

...
...

...
xi, j xi+1, j+1 . . . xi+m−1, j+m−1
...

...
...

...
xi,Nm xi+1,Nm+1 . . . xi+m−1,N


=



∆ym
i,1

T

...
∆ym

i, j
T

...
∆ym

i,Nm
T


(2.15)

The selected norm is applied to the matrix Sm
i , generating the norm vector dm

i ,
whose elements are distances dm

i, j.

To compute the limit described in Eq. 2.6, distances should be compared with a
set of thresholds, which implies the repetition of all the process as many times as the
number of thresholds. The proposed algorithm avoids this repetition, since distances
in dm

i are compared with a whole set of thresholds r = [r1,r2, . . . ,rNr ]:

Γ
m
i =


H(r1 −dm

i,1) H(r2 −dm
i,1) .. H(rNr −dm

i,1)

H(r1 −dm
i,2) H(r2 −dm

i,2) .. H(rNr −dm
i,2)

...
...

...
...

H(r1 −dm
i,Nm

) H(r2 −dm
i,Nm

) .. H(rNr −dm
i,Nm

)

 (2.16)

where Γm
i is a Nm ×Nr matrix, which contains ones and zeros. The summation

of all elements per column of Γm
i represents the partial correlation sums of the ith

reconstructed vector for a set of thresholds r:

cm
i = Γ

m
i

T 1 =


cm

i (r1)

cm
i (r2)

...
cm

i (rNr)

 (2.17)

where 1 is a Nm ×1 vector of ones.

Finally, the procedure is repeated varying the i index Nm times to compute Cm(r).
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2.2 Validation Study

The selected time series chosen to validate the proposed approaches to estimate D2

are the Lorenz attractor and the MIX(P) process.

2.2.1 Lorenz Attractor

The Lorenz attractor is a chaotic system, which is described by three coupled first
order differential equations. Its evolution exhibits a chaotic behavior for certain
parameter values and initial conditions.

dx
dt

= σ(y− x), (2.18)

dy
dt

= ρx− y− xz, (2.19)

dz
dt

= β z+ xy (2.20)

For parameter values σ = 10, ρ = 28, and β = 8/3, the theoretical D2 value is
2.02 [109]. The Lorenz attractor was illustrated in chapter 1 Fig. 1.6.

2.2.2 MIX(P) Signals

MIX(P) is a family of stochastic processes that samples a sine for P = 0 and becomes
more random as P increases, becoming totally random for P = 1. These processes
were reported by Pincus et al. [145] following the expression

MIX(P) j = (1−Z j)X j +Z jYj, (2.21)

where X j =
√

2sin(2π j/12), Yj ≡ i.i.d. uniform random variables on [−
√

3,
√

3],
and Z j ≡ i.i.d. random variables, with Z j = 1 with probability P, and Z j = 0 with
probability 1−P. MIX(P indicates a mixture of deterministic and stochastic compo-
nents.
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2.3 Evaluation Study on HRV Signals

The database used for evaluation was recorded at the Miguel Servet University
Hospital in Zaragoza (Spain), for the prediction of hypotensive events in elective
cesarean delivery [27]. It consists of ECG signals from 11 women with programmed
cesarean section recorded at a 1000 Hz sampling frequency immediately before
cesarean surgery. Five of them suffered from hypotension during the surgery (Hyp)
and 6 did not (NoHyp). The database used in this chapter represents a subgroup of
the whole database, since clinicians continued recording signals during 3 years. In
chapter 5, the clinical problem will be deeply assessed. In the meantime, novel D2

estimates were considered to evaluate their capability to track some changes in ANS
modulation moments before intervention.

RR time series of 5 minutes in lateral decubitus position were analyzed. Ectopic
beats as well as missed and false detections were detected and corrected [116].

2.4 Results

2.4.1 Validation on Synthetic Time Series

Lorenz attractor series were used to validate the new proposed methodologies com-
puted using the ℓ∞-norm. Figure 2.5(a) displays the SCF log-log curves for embe-
dding dimensions m from 1 to 10. The sets of points, where the slope was evaluated
according to [88], are displayed for different starting points. For each starting point,
the corresponding set of points, D̂m

2(⊥),r, was selected by gradient descent approach.
Figure 2.5(b) shows the slope estimation D̂m

2(⊥),r versus m for each starting point.
Figure 2.5(c) displays the D2 estimate D̂2(⊥),r versus log(r) for each starting point.
The maximum D̂2(⊥),r constitutes the novel D2 estimate, D̂2(⊥). Tab. 2.1 illustrates
D2 estimates through the three proposed approaches presented in this chapter. The
three of them led to close results to the Lorenz attractor theoretical value of D2, being
D̂2(⊥) the closest one. Relative errors for D̂2 and D̂2(max) were found above 4%, while
for D̂2(⊥) was just 1%; D2 estimated, as described in [27], was also included for
comparison purposes.
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Table 2.1 Correlation dimension estimates for the different proposed approaches, using different
norms for Lorenz attractor series (5000 samples).

Estimates
Lorenz attractor

ℓ1 ℓ2 ℓ∞

D2 [27] 1.95 1.94 1.93
D2 1.69 1.70 1.93
D2(⊥) 1.84 1.74 2.01
D2(max) 1.99 1.71 1.93

Use of Norms in Proposed D2 Estimates

Although the D2 is considered norm-invariant [180], the selection of the norm in D2

estimates deserves further attention when applied to a finite duration time series. The
norm of the difference vector, ∆ym

i, j = ym
i −ym

j , defines the distance dm
i, j in Eq. 2.2.

Norms from ℓ1 (|| · ||1) to ℓ∞ (|| · ||∞) could be selected. Left panel in Fig. 2.7 shows
norm unity for ℓ1 and for ℓ2.

In Fig. 2.7, the right panel shows how different norms shifts the log-log curves,
losing the entire linear region in some cases when a fixed range of thresholds is used.
In those cases, the range of these thresholds should be long enough to ensure that the
linear regions are contained therein, thus, the election of the norm is linked to the
range of the thresholds.

In the SCF approach, it is particularly important that the two asymptotic regions
of the log-log curve should be reached. Therefore, the correct selection of the norm
and the range of the set of thresholds are critical to assure the goodness of the
SCF approach. Tab. 2.1 shows the D2 estimates for 5000 sample length of Lorenz
attractor series. The effect of different norms is reflected in the estimates, since
the set of thresholds was fixed. As shown, the usage of ℓ∞-norm together with the
considered fixed set of thresholds achieves closest values for the novel proposed
estimates with respect to the theoretical D2 value for the Lorenz attractor, 2.01. In
the case of the approach used in [27], where self-comparisons were not considered
on the computation, D2 values was found lower than the theoretical value.
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Figure 2.7 In the left panel, vector differences of any two reconstructed vectors for m=2, ∆y2
i, j), are

shown, where dotted circles and dashed lines represent the points whose ℓ2-norm and ℓ1-norm are equal
to 1, respectively. The dots are the differences below ℓ2-norm unity and the dots with circles are below
ℓ1-norm unity. In the right panel log-log curves of one HRV signal (300 samples) used in the study are
shown for a m = 10 and ℓ1, ℓ2 and ℓ∞ norms.
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Figure 2.8 MIX(P) signals with different degree of randomness and their correspondent estimation
of the D̂2.

Hereinafter, due to the effect of different norms on D2 estimation, all the results
presented in this thesis were computed using the ℓ∞-norm.
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MIX(P) processes were analyzed by considering P values of 0.1, 0.4, and 0.8.
The greater the P value, the higher the level of randomness of the time series is.
D̂2 was found increased as P increases, thus, these estimates can be considered as
measures of the degree of randomness of the time series, as shown in Fig 2.8.

2.4.2 HRV Time Series Results

Same database, as the one used in [27] , was studied in this chapter. The results,
shown in Tab. 2.2, are divided into hypotensive and non-hypotensive groups. As an
example, Fig. 2.9 shows the RR time series of one woman of each group (left panel)
and their D̂2(⊥) estimate (right panel).
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Figure 2.9 The left panel shows two RR intervals, one corresponding to a patient who developed a
hypotensive event (Hyp) and the other to one who did not (N-Hyp); the right panel shows the D̂2(⊥)

estimation using the perpendicular points in the log-log curves.

Besides the approaches proposed in this paper, the sequential approach used
in [27], referred as classical, was added for the sake of comparison. The data
distribution of the results was found to be not normal by the Kolmogorov-Smirnov
test, and, therefore, the Mann-Whitney U test was applied. The differences between
both groups for all estimates were found to be significant with a p-value lower
than 0.03. In order to evaluate their discriminant power, comparing normotensive
and hypotensive groups, a receiver operating characteristic (ROC) analysis was
performed. The area under the ROC curve, accuracy, sensitivity, and specificity for
all the indices were computed, see Tab. 2.3. Similar accuracy value with respect
to the one reported in [27] was achieved by the proposed D̂2 estimate, whereas
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Table 2.2 D2 estimated by different approaches for HRV signals (300 samples). Data expressed as
median | interquartile range.

HRV
Hyp N-Hyp p-value

D2 [27] 5.9 | 0.6 4.4 | 1.3 0.03
D̂2 5.9 | 0.6 4.8 | 0.8 0.03
D̂2(⊥) 6.4 | 0.7 5.1 | 0.8 0.03
D̂2(max) 5.9 | 0.5 4.8 | 0.7 0.01

Table 2.3 ROC area for the nonlinear HRV analysis of all studied correlation dimension estimates for
real data. Accuracy (Acc.), sensibility (Sen.), and specificity (Spe.) are expressed in percentage.

ROC area Acc. Sen. Spe.

D2 [27] 0.90 81.8 71.4 100
D̂2 0.90 81.8 71.4 100
D̂2(⊥) 0.90 90.9 100 85.7
D̂2(max) 0.97 90.9 83.3 100

the proposals, based on the the gradient descent and SampEn surface, were higher,
reaching an accuracy of 90.9% in both cases.

2.4.3 Evaluation of the Computational Load

The computational time cost of the correlation sums depends on the length of the
data to analyze, the maximum embedding dimension considered, and the number of
thresholds used. The results shown in Tab. 2.4 correspond to the computational time
cost, estimating correlation dimension on Lorenz attractor series by varying the data
length (where m = 1 - 16 and r = 0.01-3 with 0.01 step size). The computational
time required for a sequential approach is denoted by TSeq, whereas the time required
for the proposed technique, based on matrix operations to estimate correlation sums,
is denoted by TMO. The speed-up is defined as Sp = TSeq/TMO, which is the ratio
between sequential and the proposed approach. As shown in Tab. 2.4, Sp was
increased by one order of magnitude in the estimation of correlation sums on 5000-
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Table 2.4 Computational time of correlation sums estimated for Lorenz attractor series of different
sample lengths. Sp is the speed-up achieved and defined as Sp = TSeq/TMO, where TSeq is the time
demand for a sequential algorithm and TMO the time demand for the proposed technique, based on
matrix operations.

N (samples) TSeq (s) TMO (s) Sp

300 1086 0.9 ≈ 1200
5000 8.69·105 50 ≈ 16000
10000 3.63·105 300 ≈ 12000

Table 2.5 Computational load for correlation dimension estimates by all proposed approaches
analyzing Lorenz attractor series and HRV signals where ℓ∞-norm was selected. Data expressed as
mean ± standard deviation.

Lorenz attractor HRV
(5000 samples) (300 samples)

TD2 (s) [27] (8.86 ± 0.35) ·105 3314 ± 180
TD̂2

(s) 194 ± 29 4.66 ± 0.58
TD̂2(⊥)

(s) 260 ± 38 214 ± 30
TD̂2(max)

(s) 194 ± 29 4.30 ± 0.56

and 10000-sample time series with respect to 300-sample time series. It is worth
noting that for a 300-sample time series, standard length for a 5-minute RR interval
series, correlation sums were estimated in less than 1 s.

In table 2.4, the time cost was considered for the D̂2 estimation, but not for
the other two novel proposals. Therefore, Tab. 2.5 shows the time required for
the correlation dimension estimates including the one used in [27]. To do so, 10
realizations of Lorenz attractor series were generated, whose initial conditions were
randomly chosen. It is noticeable that the time cost of D̂2(⊥) was higher compared to
the others in both cases, the Lorenz series and the HRV signals (11 subjects), since
sets of slope estimations per log-log curve to compute correlation dimension are
considered. Each of the different sets of thresholds was associated with an r value
within an interval centered on the maximum slope for m = 1. The boundaries of this
interval were defined taking into account a decrease of 50% in the amplitude of the
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maximum slope value by considering the SCF first derivative. The more abrupt the
transition zone in the sigmoid, the lower the amount of starting points. Thus, different
number of points were considered on each realization, leading to computational time
variations.

2.5 Discussion

In this chapter, a methodological framework was proposed to compute the D2 of
a finite duration time series and also to reduce the computational time cost of the
estimation. A new approach for estimating the slope of the linear region from the
log-log curves was proposed, fitting log-log curves through sigmoid ones. Finally,
D2 was estimated, exploiting the asymptotic value of an exponential relationship
between D̂m

2 and m.

One important limitation for the application of D2 on HRV analysis is the long
computational time required for the correlation sums. In an attempt to solve this
problem, an algorithm has been proposed based on matrix operations. In [205],
another approach was described based on parallel computing, which also decreased
the time demand with respect to the sequential approach. Nevertheless, the computa-
tional times, achieved in the present work, were obtained with a regular computer
(Windowsr 7 based PC, Intelr Core i7 3.5 GHz, 16 Gb RAM with Matlabr R2011a).
As an example, for a signal of 300-sample length (a usual length in typical 5 min HRV
analysis, ≈ 300 beats), the time demand was reduced with respect to the sequential
approach from 18 minutes to 1 second, which allows the on-line computation of D2

in clinical practice.

Another limitation for the D2 estimation is the reliability. Non-stationary data can
lead to an unreliable measurement of D2. Regarding this problematic issue, several
techniques, attempting to characterized dynamical systems, have been reported
[180, 190, 205]. Searching the linear region of the log-log curves becomes a difficult
challenge, when the system is non-stationary, since more than one linear region could
appear and classical D2 estimate would be unreliable. The SCF approach is robust
against those cases, since no estimate is provided when fitting is not good enough,
below to 0.8 of determination coefficient.
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The novel approaches, proposed in this thesis regarding estimation of D2, use
the SCF approach. D̂2(⊥) exploits the fact that the linear regions of the log-log
curves tend to be parallel when embedding dimension increases. This allows the
consideration of a set of points surrounding the maximum slope point, and therefore,
several D2 estimates are obtained for these starting points. D̂2(max) is based on the
differences between two consecutive log-log curves, defining the SampEni= j surface.
This surface showed maximum values for each embedding dimension, m, and a
specific threshold, r, providing another estimation of the D2, D̂2(⊥). This estimation
was found to be the closest to the theoretical D2 for the Lorenz attractor, resulting in
a relative error of 4%, considering 5000-sample size and for a differential equation
resolution of 0.01.

D2 is known to be a surrogate of the fractal dimension of a chaotic attractor [60].
However, when applied to finite duration time series, nonzero finite D2 values do not
imply the existence of an underlying chaotic attractor. For example, when applied to
MIX(P) processes, nonzero finite D2 values were obtained, the higher the value was
as much as the random content. Thus, although D2 could not be interpreted as the
fractal dimension of an underlying chaotic attractor, in this case, it still provides a
measure of the complexity of the process, at least regarding its unpredictability.

D2 estimate in HRV signals may shed light on the degree of complexity of the
ANS regulation. The group of women (Hyp) suffering from hypotension during a
programmed cesarean section under spinal anesthesia showed higher D2 values than
the group who did not (N-Hyp), at least when evaluated during lateral decubitus
position. All the proposed correlation dimension estimates not only maintain the
accuracy obtained in [27], but they increased it. Predicting hypotension is a challenge,
since it occurs in the 60% of the cases and may lead to fetal stress [42]. On one
hand, estimates that performed 100% of specificity, D2 [27], D̂2, and D̂2(max), may
provide clinicians valuable information to apply prophylaxis to any woman that
might potentially suffer from a hypotensive event. On the other hand, estimates that
performed 100% of sensitivity, D̂2(⊥), may provide information about the usage of
prophylaxis on the less number of patients to prevent hypotension. The effect of
prophylaxis on patients who finally are not going to suffer from a hypotensive event
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and its relation with fetal stress deserves further studies. This clinical study will be
deeply assessed in chapter 5.

2.6 Conclusion

The contribution of this chapter is the introduction of a novel methodological frame-
work for a reliable estimation of the correlation dimension from a limited time series,
such as HRV signals. Three alternatives for estimating correlation dimension were
proposed. Sigmoid curve fitting was used to assess the slope of the linear region of
the log-log curves based on considering self-comparisons. The computational speed-
up achieved may allow considering correlation dimension for monitoring in clinical
practice. Nevertheless, the main limitation for the application of these methodologies
to HRV analysis lies in its relation to the underlying physiology, which is still unclear
and needs further studies. In spite of the fact that the framework proposed in this
chapter focuses on the characterization of HRV signals, its applicability could be
extended to a wide range of fields.
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“I am enough of the artist to draw
freely upon my imagination.
Imagination is more important than
knowledge. Knowledge is limited.
Imagination encircles the world.”

- Albert Einstein (1879-1955) -

3
Nonlinear HRV Measurement

Dependencies

Summary

The purpose of this study is to characterize the influence of mean HR on nonlinear
HRV indices. The hypothesis is that HR, which is considered the intrinsic sampling
rate of HRV signal, may influence nonlinear HRV indices, leading to biased ANS
modulation information.
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3.1 Introduction

In the previous chapter, a framework for improving D2 estimation was presented.
Using this methodology, sample and approximate entropy can be concomitantly
computed, since they are also based on correlation sums (see section 1.4.3 and
2.1.3). Despite the improvements achieved in terms of estimation reliability and
computational load, these nonlinear indices still require further analysis for their
application to HRV analysis.

The physiological interpretation of HRV as a marker of ANS activity may be
misled by how intrinsic pacemaker cells and ANS activity are expressed in HRV
[194]. The nonlinear relationship between temporal and complexity HRV indices
with respect to HR has been addressed, emphasizing the importance of attenuating
this effect [202, 146, 123, 195]. Furthermore, different mathematical models have
demonstrated a relationship between HRV amplitude and HR, and alternatives to
correct it [33, 121, 8, 159, 150, 19].

Nonlinear indices, such as D2, SampEn, and ApEn are computed over linearly
detrended and normalized series, so this effect on HRV amplitude is already com-
pensated for [135, 143, 148, 187, 22]. Despite this normalization, HR may still
influence nonlinear HRV indices, due to the fact that HR is the intrinsic sampling rate
of HRV signal. This implies that the amount of information captured during the same
time interval depends on HR. Alternatives to increase nonlinear index reliability
(e.g. increasing data length), such as interpolating RR time series, have been used
[180, 135, 64, 152, 79, 94]. However, the reported dependence of nonlinear indices
on data length may compromise the comparison between different studies[67]. Our
hypothesis is that the influence of HR, as sampling rate, on nonlinear HRV indices is
still noticeable even when the same data length is considered.

To summarize, in this chapter the assessment of HR influence on nonlinear
HRV indices is tackled. To do so, a simulation study is carried out emulating ANS
conditions of healthy subjects during resting supine position. Since this HR influence
might mislead the physiological interpretation of nonlinear HRV indices in terms of
ANS evaluation, alternative methods are proposed to attenuate this effect. Finally,
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the methodology is applied to evaluate a body position changes database consisting
of supine and standing position.

3.2 Materials

3.2.1 Fantasia Database

Twenty young rigorously-screened healthy subjects underwent 120 min of supine
resting while continuous ECG and RP signals were recorded at 250 Hz while
watching the movie Fantasia (Disney 1940), to help maintain wakefulness. Fur-
ther database information is available elsewhere [77] and can be downloaded from
http://www.physionet.org/ [59].

3.2.2 BPC Database

This database was developed collaboratively at Harvard Medical School, Massachu-
setts Institute of Technology, and the Favaloro Foundation Medical School. The
whole cohort of short-term recordings comes from two data collecting studies. Fur-
ther details of this database can be found in [175].

First Study: Thirteen male subjects of age 21.6 ± 4.4 years (Mean ± SD; range,
19-38 years) with no history of cardiopulmonary disease participated in a study
carried out at Clinical Research Center at the Massachusetts Institute of Technology,
USA.

Second Study: It comprises groups of subjects of different ages. The database
was created to evaluate the effect of age distinguishing three ranges. In this thesis,
only the young group was included (9 subjects, 26.7 ± 4.7 years; range, 20-35 years).

Thus, subjects from the first and second study were selected, being 22 subjects.
Two recordings per subject were acquired containing 7-min ECG and respiration (RP)
signals, sampled at 360 Hz. The protocol included postural changes. First, ECG
and RP signals were recorded while subjects were in supine position. Then, subjects
changed to standing position and after 5 min, to allow reaching hemodynamic
equilibrium, ECG and RP signals were recorded in standing position. Subjects were
asked to breathe following an irregular sequence of tones.

http://www.physionet.org/
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3.2.3 Simulation Study

A simulation study was conducted to assess the mathematical relationship between
HR and nonlinear HRV indices. The simulation study was carried out based on
a HRV representation through the IPFM model. This model assumes that ANS
influence on the sinoatrial node can be represented by a modulating signal, M(t)
[115]. According to this model, when the integral of 1+M(t) reaches a threshold, T ,
a new heartbeat is generated at time instant t(k). Threshold T represents the inverse
mean HR.

Fantasia database was selected to compute modulating signals, according to the
following procedure. Assuming that M(t) is causal, band-limited and M(t)< 1 then,
the instantaneous HR can be described as:

dHR(t) =
1+M(t)

T
(3.1)

Instantaneous heart rate dHR(t) is obtained from the heartbeat times, t(k), based
on the IPFM model [116], and sampled at 4 Hz. A time-varying mean heart rate
dHRM(t) is computed by low pass filtering dHR(t) with a cut-off frequency of 0.03
Hz. The heart rate variability signal is obtained as dHRV (t) = dHR(t)− dHRM(t).
Finally, the modulating signal, M(t)≈ dHRV (t)/dHRM(t) [8], that is the HRV signal
corrected or normalized by the mean HR.

Spectral analysis was applied to 5-min modulating signals M(t) by Welch pe-
riodogram. Frequency domain indices were estimated based on spectral bands (LF
band from 0.04 to 0.15 Hz and HF band from 0.15 to 0.4 Hz). Respiratory frequency
was checked to be within the HF band.

Among all modulating signals, only those which presented one marked peak
on each band (LF and HF band) were selected for the simulation study. Spectral
indices such as the powers and the frequency peaks were used to generate synthetic
stochastic modulating signals using an autoregressive moving average (ARMA)
technique [134]. A total of one hundred 5-min segments were selected and their
spectral indices were used to feed the ARMA model. A total of M = 50 stochastic
modulating signals M j(t) with j = 1, ...,M, were simulated for each M(t), where
the stochastic content was modeled in the moving-average term by zero-mean unit
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variance white noise. Figure 3.1 shows the spectra of 50 stochastic realizations, their
median spectrum and one of the segment-recording they are based on.

Then, the IPFM model was applied to each stochastic realization, varying the
parameter Tn, where n = 1, ...,16, corresponding to T from 0.46 to 1.1 s in steps of
0.04 s, to simulate the heartbeat occurrence times, t j

Tn
(k). In this way, simulated 300-

sample RR series are generated, where ANS modulation is independent of changes
in mean HR. Simulation scheme is illustrated in Fig. 3.2. D2, SampEn and ApEnmax

were computed over these simulated RR time series.
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Figure 3.1 Spectra derived from 50 stochastic realizations of simulated modulating signals during
supine conditions (data simulates subject conditions from Fantasia database) applying ARMA technique
fixing LF and HF spectral content (red lines). Average spectrum is shown in circles (blue) and spectrum
belonging to real data in dashed line (green).

Another simulation was done based on the BPC database characteristics. Howe-
ver, since subjects were asked to breathe following an irregular sequence of tones,
the spectral analysis did not revealed dominant peaks on HF band, evaluating all
subjects. The ARMA model was fed, on one hand, by the power spectral density
from LF and HF bands and, on the other hand, by the middle band frequencies of LF
and HF, 0.095 and 0.275 Hz respectively. Then, modulating signals were simulated
from spectral indices derived from supine and upright positions. This extends the
analysis of HRV dependence on HR under enhanced sympathetic activity.
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Figure 3.2 Simulation data scheme is illustrated. Heartbeat time occurrences are detected from
ECG. Based on the IPFM model the ANS modulating signal M(t) is estimated. Spectral analysis by
Welch periodogram is computed on M(t) in order to estimate the parameters needed for the simulation,
frequency and power of LF and HF components, which are used to construct a new set of modulating
signals, M j(t), through ARMA technique, with M = 50 realizations. Then, IPFM model is used to
generate simulated heartbeat occurrences t j

Tn
(k) with different values of T from 0.46 to 1.1 s. Simulated

RR series are computed from the t j
Tn
(k).

3.3 Evaluation by Nonlinear Techniques

ECG preprocessing: Because the reliability of the HRV analysis can be compro-
mised by low sampling frequency of ECG recordings [120], the ECGs belonging to
BPC and Fantasia databases were interpolated by cubic splines to a frequency of 1080
and 1000 Hz, respectively. Then, heartbeat times, t(k), where k symbolizes the kth

beat, were estimated using an ECG wavelet-based detector [114]. Ectopic beats were
identified imposing a time-varying threshold on instantaneous heart rate variations.
Then, these ectopic beats were corrected using the IPFM model, as described in
[116].

3.3.1 Correlation Dimension

Correlation dimension, D2, measures the degree of complexity of the system that
generates the time series [60]. In the previous chapter 2, techniques to improve
the estimation of D2 were introduced. On that study, log-log curves (logarithm of
correlation sums vs. logarithm of thresholds) were fitted to sigmoid curves, thus,
increasing the accuracy of maximum slope estimation. Moreover, another estimate
of D2 denoted as D2(max) based on the points that maximize the difference between
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each pair of sigmoid curves was presented. Both D2 and D2(max) were computed by
varying m = 1-16 and r = 0.01-3 in steps of 0.01.

3.3.2 Approximate and Sample Entropy

SampEn and ApEn are irregularity measurements of the time series [140]. Although
both entropies are closely related to each other, SampEn was introduced to overcome
the self-pairs-related limitation of ApEn computation. Briefly, patterns of time series
values (reconstructed vectors) of a certain length (embedding dimension, m) are
compared to the rest of the possible pattern candidates. Those comparisons, whose
differences are below a threshold r, are summed up and used to calculate correlation
sums. The final entropy value measures the changes produced when increasing the
length of the patterns in one unit. The parameters m and r have to be previously
defined to estimate these entropy values. In this chapter, parameter values are set to
m = 2 and r = 0.15 for SampEn.

The computation of approximate entropy recalls the definition to estimate corre-
lation dimension. But in this case, time series of interest is normalized by its standard
deviation. In this approach, correlation sums are modified with respect to the ones
used by correlation dimension as follows:

Cm
i (r) =

1
Nm

Nm

∑
j=1

H(r−dm
i, j) (3.2)

where Cm
i (r) is the correlation sum and H is the Heaviside function 2.4; the amount

of reconstructed vectors is Nm = N − (m−1) for each embedding dimension, m; and
the distance, computed by the ℓ∞ norm, between each pair of reconstructed vectors,
ym

i ,ym
j , is denoted as dm

i, j.
This procedure is repeated with all reconstructed vectors and the probability of a

pattern of length, m, appearing along the time series is denoted by:

φ
m(r) =

1
Nm

Nm

∑
i=1

log(Cm
i (r)) (3.3)

ApEn provides information about how regular the time series is when two con-
secutive length patterns are compared:
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ApEn(m,r) = φ
m(r)−φ

m+1(r) (3.4)

For the further ApEn estimations, the embedding dimension was set to m = 2. A
graphical interpretation of SampEn and ApEn estimation, based on Eq. 2.11 and Eq.
3.4 respectively, is shown in Fig. 3.3.
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Figure 3.3 Graphical representation of SampEn and ApEn computation. The vertical dashed lines in
both panels illustrates the threshold value as r = 0.2. To compute SampEn(2,0.2) and ApEn(2,0.2)
the lost of probability as embedding dimension increases is evaluated, therefore, differences of solid
lines, m = 2 and m =3, are considered.

Maximum Approximate Entropy, ApEn(m,rmax(m))

Figure 3.4 shows an example of the dependence of ApEn estimate on threshold r,
when embedding dimension m is fixed, by analyzing a 2000-sample Lorenz attractor
time series.

Here, threshold values used in the literature, varying commonly between 0.1 and
0.2, provides an underestimation of ApEn value, whereas the proposed methodology
is able to provide the maximum value which it is not found in the SampEn estimation
as a consequence of considering self-comparisons [117].

As mentioned before, the framework for estimating correlation dimension, de-
scribed in chapter 2, was used to obtain: the value of the threshold r that maximizes
ApEn for a given value of m, denoted by rmax(m) [196, 155]; and the maximum en-
tropy value for a given value of m, ApEn(m,rmax(m)). In particular, ApEn(2,rmax(2))
and SampEn(2,0.2) were considered for further analysis.



3.4 Nonlinear Indices Dependence on HR as Sampling Rate 53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

A
pE

n(
2,

 r
)

Threshold r

Figure 3.4 Dependence of ApEn on threshold r. Example of ApEn estimation using the proposed
methodology for correlation dimension described in chapter 2. Vertical dotted lines indicate the three
most common threshold values, r = 0.1, 0.15, and 0.2. Data analyzed extracted from a 2000-sample
time series of Lorenz attractor system.

3.4 Nonlinear Indices Dependence on HR as Sampling Rate

The methodology used to compute nonlinear HRV indices, considered in this study,
was applied to linearly detrended and normalized RR time series. The detrending
ensures that mean HR values are removed from the series, whereas the normalization
eliminates the influence of mean HR on HRV amplitude. Despite this fact, the
effect of mean HR, as sampling rate, might still be present on them. In this section,
this effect is investigated on the simulation study, where changes in mean HR are
independent from changes in ANS modulation. First, a mathematical relationship
between nonlinear HRV indices and HRM is assessed by two regression formulas;
then, a HR-correction is proposed based on these formulas. Second, alternatives
based on interpolation of RR series and instantaneous mean RR, provided by point-
process model, are proposed for attenuating the sampling rate influence of mean HR
on nonlinear HRV indices.

3.4.1 Regression Formulas

In order to explore the relationship between nonlinear HRV indices and HR, the
following regression models were proposed.
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X = β +αRR (Linear), (3.5)

X = β (RRα) (Parabolic), (3.6)

where X ∈ {D2, SampEn, ApEn} and α and β are regression coefficients.

Based on the former models, HR-correction formulas were obtained by projecting
each nonlinear index onto a standard level of RR = 0.5 s, hence:

Linear : XC1 = X +ξ (0.5−RR) , (3.7)

Parabolic : XC2 = X
(

0.5
RR

)ξ

, (3.8)

where ξ is the correction factor.

Transformation of XC1 or XC2 and RR into linear relationship was used to compute
Pearson’s correlation coefficient ρ . Then, optimization was assessed by total least
squares, providing correction factors by a golden cut search algorithm to minimize
ρ(ξ ).

Correction factors were computed on each stochastic realization. Thus, subject-
specific correction was defined, considering the correction factors of the 50 stochastic
realization for each modulating signal and computing the median of the HR-corrected
indices.

Furthermore, a unique correction parameter was additionally computed, conside-
ring all stochastic realization for all modulating signals. In that case, the transfor-
mation and optimization technique, described above, was applied to obtain median
values for each nonlinear index, thus, defining a median correction approach to obtain
Xξ

C1 and Xξ

C2.
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3.4.2 Interpolation

RR series are unevenly sampled, being the HR its sampling rate. This implies that
the number of data information for the same time interval is dependent on HR. On
the other hand, it is known that estimation of nonlinear indices, such as D2, SampEn,
and ApEn, are data length dependent [67]. Therefore, interpolating RR time series
at the same sampling rate may alleviate the influence of mean HR on nonlinear
HRV indices, since it allows considering the same number of data for the same time
interval. Interpolation at 2, 4 and 8 Hz were studied (XI2, XI4, and XI8 respectively).

3.4.3 Point-process

Point-process modeling: Another alternative to overcome the dependency of RR
time series on HRM is based on the point-process paradigm, where derived time
series resolution is not related to HRM. Point-process model provides a probabilistic
framework to characterize the stochastic properties of the beat-to-beat RR time series
[10]. It is based on the assumption that the beat generation events follow a probability
distribution, in particular, the inverse Gaussian probability distribution. In this study,
history dependence of previous events was considered. Thus, the distribution is
named history-dependence inverse Gaussian distribution:

f (t|Ht(k),θθθ) =

[
θp+1

2π(t − t(k))3

] 1
2

exp

(
−

θp+1(t − t(k)−µ(Ht(k),θθθ))
2

2µ(Ht(k),θθθ)2(t − t(k))

)
(3.9)

where t(k) represents the time occurrence of the kth heartbeat,

Ht(k) = {t(k),RR(k),RR(k−1), ...,RR(k− p+1)} the elements involved in the
history-dependence of p order of previous beats and RR(k) = t(k)− t(k−1) the RR
values.

The estimation of θθθ parameters is carried out by considering the local maximum-
likelihood within a time interval l (l = 60 s for this study). This interval should be
long enough to obtain an estimate of µ(Ht(k),θθθ) that represents the behavior of the
beat-to-beat time series. Statistical Kolmogorov-Smirnov test is used to measure the
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Figure 3.5 Graphical representation of the intervals for estimation of θθθ t using the local log likelihood.

goodness-of-fit, comparing heartbeat events t(k) and the ones obtained after time-
rescaling derived from the point-process model [203]. The parameters θθθ are updated
by shifting the estimation interval, ∆ ms, which is considered the point-process
resolution, see Fig. 3.5.

Therefore, the instantaneous mean RR can be defined as:

µ(Ht(k),θθθ) = θ0 +
p

∑
j=1

θ jRR(k− j+1) (3.10)

Ectopic-free RR time series were obtained by a point-process model based on the
methodology described in [36]. Instantaneous mean RR was computed by setting a
resolution of ∆ = 50 ms, trying to capture the effect of right censoring, described as
the influence of the next event out of the analysis window, and a model order of p =

12, set as a trade-off to represent subject resting conditions from Fantasia database
and supine and standing conditions from BPC database [5].

The nonlinear indices considered on this study are commonly computed over raw
RR time series. The embedding dimension, m, needs to be reviewed for the analysis
of point-process derived time series, since it is related to the number of events in the
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raw RR time series. In order to compare nonlinear HRV indices computed from the
point-process instantaneous mean RR with those computed from the interpolated
RR time series, the embedding dimension was scaled by a factor, depending on the
point-process model resolution.

madap = m
∆2Hz

∆XHz
(3.11)

where m values ∈ {1, ...,16}, ∆2Hz is the resolution of RR time series interpolated at
2Hz corresponding to 500 ms, and ∆XHz refers to the new resolution of the RR time
series at sampling rate of XHz corresponding to 1

X s.

For instance, embedding dimension m is set as 2 for maximum approximate
entropy for interpolated RR time series at 2 Hz. Then, the computation of the same
index over derived point-process time series at 50 ms resolution needs to adapt the
embedding dimension value by a factor of 10 to represent the same information.

3.5 Statistical Analysis

Kolmogorov-Smirnov test was used to test the normality of data distributions and
Mann-Whitney U-test or paired T-test were used, according to data normality. Fur-
thermore, Pearson correlation was used to assess linear correlation between corrected
nonlinear HRV indices and RR. p < 0.05 was considered as statistically significant.

Bland-Altman plots were used to analyze the agreement of subject-specific
vs. median correction formulas. The intraclass correlation coefficient (ICC) was
computed by SPSS for Windows, Version 15.0. Chicago, SPSS Inc.

3.6 Results

3.6.1 Nonlinear HRV Indices and Mean HR Reflect Body Position in-
duced Changes

Nonlinear HRV indices, D2, SampEn, and ApEn(2,rmax(2)), were computed for
the BPC database, considering 300-sample segments. All of them were found
significantly higher in supine than in standing position (see Fig. 3.6 b)). Mean RR
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was also significantly higher in supine than in standing position (Fig. 3.6 a)), which
might explain the statistical differences observed in the computed nonlinear HRV
indices.
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Figure 3.6 BPC database (22 subjects) was analyzed in which supine and standing positions were
compared. (a, b) illustrate mean RR and uncorrected nonlinear HRV indices while c) shows HR-
corrected nonlinear HRV indices. ∗ indicates p < 0.05 by Mann-Whitney U-test between supine (Sup)
and standing (Std) positions.

3.6.2 Nonlinear HRV Indices and RR Relationship by Simulation Study

The relationship between nonlinear HRV indices and RR was assessed in the simu-
lation study, where RR was changed remaining ANS modulation. Nonlinear HRV
indices computed from simulated data are illustrated in Fig. 3.7 (median values
shown as blue circles). The correlation of nonlinear indices and mean RR was evalu-
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ated by Pearson correlation coefficient, finding high correlation for a wide range of
median index values, being these ranges 3.5-5.02 for D2, 0.42-1.02 for SampEn, and
0.72-1.24 for ApEn(2,rmax(2)), see Table 3.1.
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Figure 3.7 Nonlinear HRV indices computed from simulation study, X ∈
{D2, SampEn, ApEn(2,rmax(2))}, varying mean heart period, distribution of all uncorrected
nonlinear HRV indices are shown in (blue) circles, corrected by linear regression in (brown)
down triangles, corrected by parabolic regression in (green) up triangles, both former cases only
subject-specific correction value of non-linear indices for each RR were shown. Finally, HR-corrected
nonlinear indices by interpolating RR time series at 2, 4, and 8 Hz in (orange) diamonds. Data
corresponds to all simulations derived from Fantasia database. Data distributions are represented by
median and interquartile range.

HR-Corrected Nonlinear Indices by Regression Formulas

Regression formulas were applied to the nonlinear HRV indices derived from each
simulated modulating signal (subject-specific approach), providing corrected indices
with minimal mean RR correlation. The obtained HR-corrected nonlinear indices are
shown in Fig. 3.7 (median values by taking into account all segments, in triangles
right and left for linear and parabolic regressions, respectively). The application of
correction formulas provided nonlinear HRV indices where the effect of mean RR
values was attenuated. The range covered by them was highly reduced, being in this
case 3.81-3.95 for D2, 0.57-0.61 for SampEn, and 0.8-0.9 for ApEn(2,rmax(2)), see
Table 3.1.

A set of correction factors (median approach) was obtained by considering
the median of all nonlinear index values for each heart rate and computing global
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correction parameters (Table 3.1). To evaluate the agreement between subject-specific
vs. median correction approaches, the intraclass correlation coefficient (ICC) of data
distributions was analyzed. It was found above 0.8 for all HR-corrected nonlinear
indices and for both proposed regression formulas. The Bland-Altman plot in Fig. 3.8
illustrates the difference between linear and parabolic approaches for D2, SampEn,
and ApEn(2,rmax(2)).

Table 3.1 Pearson correlation factor ρ and p-values of nonlinear indices and RR obtained from simu-
lation study. Linear and parabolic dependence of nonlinear indices on RR were evaluated. Coefficient
of determination (R2) as well as Pearson correlation factor and p -values (considering subject-specific
and median correction) and ξ correction factor are presented for both regressions. Pearson correlation
factor ρ and p-values of nonlinear indices and RR obtained, interpolating the simulated RR time series
at 2 Hz. Data are shown as median ± interquartile range.

Uncorrected D2 SampEn ApEn(2,rmax(2))

ρ 0.959 ± 0.068 0.947 ± 0.1 0.949 ± 0.074
p-value 0.0002 ± 0.0015 0.0004 ± 0.0044 0.0003 ± 0.0022
Median± IQR 4.26 ± 0.7 0.72 ± 0.30 0.98 ± 0.26

Regression Formulas Linear Parabolic

Subject-specific D2C1 SampEnC1 ApEn(2,rmax(2))C1 D2C2 SampEnC2 ApEn(2,rmax(2))C2

R2 0.919 ± 0.129 0.896 ± 0.186 0.902 ± 0.139 0.923 ± 0.129 0.896 ± 0.179 0.910 ± 0.125
ρ(·10−05) 0.013 ± 0.20 0.016 ± 0.21 -0.0051 ± 0.20 -0.016 ± 0.20 0.0109 ± 0.20 0.01 ± 0.20
p-value 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
Median± IQR 3.88 ± 0.07 0.59 ± 0.02 0.85 ± 0.04 3.85 ± 0.02 0.59 ± 0.01 0.84 ± 0.03

Median correction D2
ξ

C1 SampEnξ

C1 ApEn(2,rmax(2))
ξ

C1 D2
ξ

C2 SampEnξ

C2 ApEn(2,rmax(2))
ξ

C2

R2 0.997 0.988 0.970 0.999 0.990 0.982
ρ(·10−05) -0.787 -0.109 -0.051 0.661 0.232 0.061
p-value 1 1 1 1 1 1
Median± IQR 3.88 ± 0.07 0.59 ± 0.02 0.85 ± 0.05 3.85 ± 0.02 0.59 ± 0.01 0.84 ± 0.03
ξ Correction factor 2.068 0.869 0.541 0.375 0.813 0.417

2 Hz Interpolation D2I2 SampEnI2 ApEn(2,rmax(2))I2

ρ -0.47 ± 1.41 -0.39 ± 1.09 -0.29 ± 0.77
p-value 0.0005 ± 0.04 0.008 ± 0.19 0.07 ± 0.37
Median± IQR 3.85 ± 0.01 0.59 ± 0.002 0.83 ± 0.006
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Figure 3.8 Bland-Altman plots and ICC illustrate the agreement between subject-specific and
median correction approaches computed on Fantasia database to correct HR effect for both proposed
regressions for corrected D2, SampEn, and ApEn(2,rmax(2)) indices: linear (left panels) and parabolic
(right panels).
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HR-Corrected Nonlinear Indices by Interpolation

The nonlinear indices were computed from simulated RR time series interpolated at
2, 4, and 8 Hz. As shown in Fig. 3.7, the corrected nonlinear index values obtained
by regression formulas projected onto RR = 0.5 s and by interpolating RR time
series at 2 Hz revealed similar median values. However, the interpolation of RR
time series at 4 and 8 Hz resulted in decreased nonlinear values. In these cases, m
values were not adapted, regarding Eq. 3.11. Despite the fact that Pearson correlation
factor computed between HR-corrected nonlinear HRV indices, by interpolation,
and mean HR values is still significant, their range is now much reduced, being
3.84-3.86 for D2, 0.588-0.592 for SampEn, and 0.824-0.836 for ApEn(2,rmax(2)),
almost negligible compared to the range of uncorrected nonlinear ones.

Nonlinear Indices of Synthetic Point-process Time Series

The obtained heartbeat occurrence times, t j
Tn
(k), from the simulation study were used

to generate instantaneous mean RR time series by considering a point-process model
resolution of 500 ms. Nonlinear indices were computed over these synthetic time
series, where the mean RR was varied, see Fig. 3.9. The dependence of nonlinear
indices, in particular, for SampEn and ApEn(2,rmax(2)), on mean RR above 0.5 s
was found attenuated compared with same index values computed over synthetic raw
RR time series (Fig. 3.6, with the exception of D2 index, whose dependence on mean
RR values was still present. Instantaneous mean RR time series derived from the
point-process could not capture variations of mean RR below 0.5 s, due to model
resolution (∆ = 500 ms) and then, this effect influenced the studied nonlinear indices
(Fig. 3.9).

3.6.3 Nonlinear Analysis of BPC Database

The proposed HR-corrections were evaluated in the BPC database. The results shown
in Fig. 3.6 c) illustrate the differences found between supine and standing conditions.
Median and interquartile range of uncorrected and HR-corrected nonlinear HRV
indices are provided in Table 3.2.
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Figure 3.9 Nonlinear HRV indices, X ∈ {D2, SampEn, ApEn(2,rmax(2))}, computed from synthetic
point-process time series at 500 ms resolution and model order of 12 where mean heart period were
varied. Data corresponds to all simulations derived from Fantasia database. Data distributions are
represented by median and interquartile range.

In a first study, the value of the median correction factor ξ extracted from the
simulation study was used. It is worth noting that after linear correction there was no
significant difference in SampEn and ApEn(2,rmax(2)) between supine and standing
positions, while parabolic correction only reduced differences below significance for
SampEn.

In a second study, regression formulas were used to correct nonlinear indices
of each simulated recording’s, referred as subject-specific correction. HR-corrected
D2 was found statistically significantly different for linear and parabolic regression
formulas, whereas ApEn(2,rmax(2)) was only significant for parabolic.

Finally, nonlinear HRV indices were computed on RR time series interpolated at
2, 4, and 8 Hz. We can conclude that the higher the interpolation order, the lower
the nonlinear HRV values. In all cases, HR-corrected nonlinear indices calculated
by interpolation showed statistical differences between position, regardless of the
interpolation order used, being their range notably reduced.

Assessing HRV Analysis by Point-process Paradigm

Time-varying series generated from the previously described point-process model
are shown in Fig. 3.10. There, an example of a set of heartbeat occurrence times
from subject number 1 of the BPC database, during supine position, is illustrated.
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Table 3.2 Uncorrected nonlinear HRV indices and HR corrected by proposed approaches evaluated
in the BPC database. Data are shown in terms of median and interquartile range. C1 and C2 refer to
HR-correction by linear and parabolic regression formulas respectively applied to all cases separately.
ξ refers to HR-correction by C1 or C2 approach but regression parameters were obtained as the
median values of all regression formulas according to C1 or C2. Statistical differences were tested by
Mann-Whitney U-test.

Nonlinear index Supine Standing p-value

D2 5.61 (4.88 | 6.38) 4.41 (3.64 | 4.88) 0.003
D2C1 5.10 (4.33 | 5.62) 4.07 (3.41 | 4.57) 0.001
D2C2 4.85 (4.19 | 5.25) 3.97 (3.31 | 4.46) 0.002

D2
ξ

C1 4.66 (3.98 | 5.27) 3.88 (3.24 | 4.42) 0.005

D2
ξ

C2 4.47 (3.93 | 4.93) 3.82 (3.25 | 4.32) 0.006
D2I2 3.67 (3.23 | 4.08) 3.02 (2.84 | 3.64) 0.02

SampEn 0.73 (0.53 | 0.83) 0.48 (0.37 | 0.67) 0.008
SampEnC1 0.28 (0.05 | 0.38) 0.24 (0.15 | 0.37) 0.7
SampEnC2 0.40 (0.28 | 0.44) 0.33 (0.25 | 0.44) 0.4

SampEnξ

C1 0.33 (0.16 | 0.43) 0.27 (0.19 | 0.42) 0.4

SampEnξ

C2 0.44 (0.34 | 0.49) 0.36 (0.27 | 0.47) 0.06
SampEnI2 0.50 (0.42 | 0.54) 0.35 (0.26 | 0.42) 0.001

ApEn(2,rmax(2)) 1.11 (1.03 | 1.17) 0.88 (0.77 | 0.95) 0.008
ApEn(2,rmax(2))C1 0.94 (0.91 | 1.01) 0.88 (0.80 | 0.97) 0.06
ApEn(2,rmax(2))C2 0.94 (0.91 | 0.99) 0.87 (0.79 | 0.96) 0.04

ApEn(2,rmax(2))
ξ

C1 0.78 (0.68 | 0.84) 0.77 (0.71 | 0.86) 0.5

ApEn(2,rmax(2))
ξ

C2 0.78 (0.74 | 0.83) 0.78 (0.71 | 0.84) 0.9
ApEn(2,rmax(2))I2 0.80 (0.74 | 0.85) 0.71 (0.66 | 0.80) 0.01

Interpolated RR time series at 20 Hz and instantaneous RR derived from a point-
process model at 50 ms resolution were analyzed by means of nonlinear indices,
see Fig. 3.11. Embedding dimension m values were adapted in both cases by a
multiplying factor of 10. Nonlinear indices computed over point-process derived
time series were not found statistically significant, whereas the nonlinear indices
obtained by interpolation of RR time series at 20 Hz provided statistically significantly
different values between supine and standing positions.
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Figure 3.10 Example of instantaneous RR series derived from point-process (Data correspond to
subject 1 during supine conditions from BPC database).
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Figure 3.11 Nonlinear indices computed over i) raw RR time series and over ii) instantaneous
heart rate (µRR(t)) considering a memory order of 12 varying with 50 ms resolution, and iii) RR time
series interpolated at 20 Hz. Embedding dimension m was adapted to point-process and interpolation
resolution.

3.7 Discussion

3.7.1 Simulated Data

HRV analysis has been widely used as non-invasive technique to assess and quantify
cardiac ANS modulation [179, 187, 161]. However, HRV analysis is still under
investigation, due to HRV characteristics that could lead to physiological misinter-
pretations [135, 33]. ANS modulation is linked to ANS tone (HR mean) and, as a
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consequence, an increase in the sympathetic activity and a decrease in the vagal tone
are related to an increment in the HR and a reduction on its variability [33, 91]. This
implies that there is a physiological correlation between HRV and HR. However, we
have demonstrated that it exists also a methodological influence between nonlinear
HRV indices and HR, due to the fact that HR is the intrinsic sampling rate of HRV
signal. A simulation was carried out to study an hypothetical case, where the rela-
tionship of ANS modulation and HR is uncorrelated. ANS modulating signals were
generated as realizations of stochastic processes [134]. Then, heartbeat occurrences
were calculated, using an IPFM model, which is based on action potential generation
in SA node cells, and has been proven appropriate to describe the genesis of HRV
[115]. This simple model allows keeping the ANS modulation constant, emulating
healthy subject’s conditions at resting, for different mean HR values. Two approaches
have been proposed to attenuate the effect of HR in nonlinear HRV indices, as shown
by the simulation study: regression formulas and interpolation.

Regression Formulas

Regression formulas are commonly used to characterize the relationship between
two magnitudes such as ventricular repolarization and heart rate [151, 174, 13]. The
relationship between D2, SampEn, and ApEn, computed over simulated 300-sample
RR series, and mean HR was studied by linear and parabolic regression formulas.
Although the usage of other regression models, different from linear or parabolic
ones, may provide improved fittings to the relationship between nonlinear HRV
indices and mean RR, coefficients of determination R2 ≥ 0.9 were obtained for all
cases for these to regression models. Then, a correction was proposed based on
regression formulas derived for each simulated case, the so-called subject-specific
correction, minimizing nonlinear HRV indices correlation to mean HR. A correction
based on regression formulas derived from median parameters was proposed as an
extension to be applied to other databases. ICC values > 0.8 were found, when
evaluating subject-specific vs. median correction approaches for all nonlinear HRV
indices, suggesting the usage of either of the approaches, see Fig. 3.8.
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Interpolation

Simulated RR time series were interpolated at 2, 4, and 8 Hz. The higher the in-
terpolation rate, the lower the nonlinear index values. The addition of new data,
resulting from interpolation, can be interpreted, in terms of entropy, as an increase
in signal regularity, being in concordance with a previous work where electroen-
cephalogram complexity through D2 was evaluated by varying the sampling rate
[81]. In this chapter, interpolation was used as a technique to reduce the dependence
of nonlinear HRV indices on mean HR as sampling rate effect, since it allows the
estimation of nonlinear indices over the same time interval and the same number of
points. Sampling rate value should be greater than the maximum HR. HR-correction
nonlinear HRV indices computed by interpolating at 2 Hz and by regression formulas
presented similar values and range. In some studies, RR time series were interpolated
to increase the number of data points for improving the accuracy of nonlinear mea-
surements, thus, compensating mean HR effect on them. The used sampling rates
varied including 2, 4, and 8 Hz, or even higher, 20 KHz [135, 64, 94]. However, since
nonlinear HRV indices estimates are strongly dependent on the selected sampling
rate, results should be compared with caution.

On the Comparison with Respect to Point-process

Interpolation of raw RR time series has been proposed, in this thesis, as a method
to attenuate the influence of mean HR on nonlinear HRV indices. Furthermore,
another alternative to overcome this limitation was explored by using a point-process
model, which provides a representation of the RR time series, based on a probability
description, whose resolution is not dependent on HR. In particular, the influence of
HR on D2, SampEn and ApEn(2,rmax(2)), computed over the point-process derived
instantaneous mean RR (see Fig. 3.6), was lower than when these indices were
computed over the raw RR time series, see Fig. 3.9.

Despite the dependence of nonlinear HRV indices, computed over raw RR time
series, on mean HR revealed by the simulation study, no HR-correction of nonlinear
HRV indices is considered in most of the studies found in the literature, where
mean HR values are even not provided in some cases [137, 146, 119, 97, 124, 188].
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The application of nonlinear indices without HR correction should be restricted to
HR steady-state group conditions, avoiding study cohorts that present statistically
different mean HR, as for example in [188].

3.7.2 Real Data

Classical nonlinear HRV indices evaluated in the BPC database showed around 21, 34,
and 21% of reduction in median values from standing with respect to supine position
for D2, SampEn, and ApEn(2,rmax(2)) respectively, while mean HR increased by
around 28%. Changes in these indices may reflect changes in mean HR as well as
additional changes in ANS modulation, as suggested in previous studies [146, 195].

In the BPC database, HR-corrected nonlinear indices were computed under
supine and standing conditions and D2 was found to be significantly different for all
regression approaches, while ApEn(2,rmax(2)) only showed statistical differences
for subject-specific by parabolic regression. Linear and parabolic regression formulas
were selected to be suitable for the three indices under simulation conditions, although
coefficients of determination were slightly lower for ApEn(2,rmax(2)) and SampEn
than for D2.

On the other hand, all nonlinear HRV indices were still found significantly
different, when corrected by interpolation. It was found a statistically significant
reduction in standing with respect to supine of 18, 30, and 12% for HR-corrected
D2, SampEn, and ApEn(2,rmax(2)) respectively, mostly reflecting ANS modulation
changes, while mean HR effect was attenuated. HR-corrected nonlinear index ranges,
calculated as the difference of median values for supine and standing positions, were
found reduced, when compared to uncorrected nonlinear HRV index ranges.

The embedding dimension, m, refers to the length of reconstructed vectors whose
elements correspond to values of the raw RR time series. The same set of values
for embedding dimension were assumed either for interpolated RR time series,
interpolated at 2Hz, and for raw RR time series. Based on this, the necessity to adapt
this parameter setting to the resolution of the derived point-process time series was
suggested, since nonlinear index values computed over interpolated RR time series
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at 4 and 8 Hz were found reduced, but unrelated to a loss of complexity/irregularity,
see Fig. 3.6.

The adaptation of the embedding dimensions, m, was taken into account for
nonlinear HRV analysis in the BPC database, where analysis results (Fig. 3.11
were obtained from: RR time series derived from the point-process model at 50 ms
resolution; and interpolated RR time series at 20 Hz. Results regarding nonlinear
HRV analysis over raw RR time series were also displayed for the sake of comparison.
SampEn and ApEn(2,rmax(2)) computed over raw and interpolated RR time series
were statistically significantly decreased, comparing supine with respect to standing
position, whereas no statistical differences were found for both indices, when point-
process derived time series were analyzed. The point-process model was used by
setting the same parameters for all considered subjects in supine and in standing
position. The results could be influenced by not adjusting the model parameters in a
subject-specific way, but this was not addressed in the thesis. The analysis of derived
point-process time series at 50 ms resolution in a 5-min window was found more
time-consuming than the analysis of interpolated RR time series at 2 Hz, due to the
increase of data length as it was described in section 2.4.1 Table 2.4. This fact may
suppose a limitation in the application of point-process model in the clinical practice,
being, in such a case, suitable for an off-line approach.

Note that, although HR-correction attenuates the effect of mean HR as sam-
pling rate, HR-corrected nonlinear HRV indices may be still correlated with mean
HR, since both parameters could vary in the same direction. After HR-correction,
nonlinear HRV indices were able to capture information about ANS modulation in re-
sponse to body position changes, regardless HRM values. Correction approaches may
lead to better understanding the complexity and irregularity ANS changes unbiased
by mean HR, as natural sampling rate of RR time series.

HR-corrected nonlinear HRV indices addressed in this thesis, pointed out to a
reduction in the complexity of the underlying system and an increase in the HRV
series regularity caused by an increase of the sympathetic activity, when changing
from supine to standing position, being in agreement with previous works with similar
conditions, considering tilt table test or even exercise [135, 83, 152, 79, 148, 23].
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Nevertheless, these results and their physiological interpretation are limited by the
low number of subjects of study and further studies are needed.

3.8 Conclusion

In this chapter, changes in nonlinear HRV indices were studied under different
sympathetic conditions, where mean HR also was changed. D2, SampEn, and
ApEn(2,rmax(2)) dependence on mean HR, as sampling rate, was explored. A
simulation study was carried out, emulating ANS modulation unrelated to mean HR.
Simulation results showed that heart rate affects nonlinear indices as it is the intrinsic
sampling rate of HRV signal, even when considering the same data length. Two
HR-correction methodologies, regression formulas and interpolation, were proposed.
Another alternative, based on a point-process model, was explored. The evaluation
on a BPC database revealed a reduction of all studied HR-corrected nonlinear HRV
indices in standing with respect to supine position. After HR-correction, nonlinear
HRV indices were able to capture changes in the sympathetic modulation by body
position-induced changes. HR-correction by interpolation was found suitable to
attenuate the mean HR effect. Although the application of a point-process model was
also found as an alternative to obtain HRV representation unrelated to its resolution,
its computation was more time-consuming than for interpolation approach. HR-
correction could represent an improvement for nonlinear HRV analysis, extending its
application in such cases of non-steady mean HR.
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“A right-hand glove could be put on
the left hand, if it could be turned
round in four-dimensional space.”

- Ludwig Wittgenstein (1889-1951) -

4
Multidimensional Approximate Entropy:

A priori-free Approximate Entropy-based
Index

Summary

Nonlinear HRV indices, such as ApEn, requires the selection of a priori parameters
to be computed. In this chapter, an approximate entropy-based index called multidi-
mensional approximate entropy, MApEnmax, is proposed. This index is independent
of the a priori parameters, taking into account information from long-term corre-
lations (large embedding dimensions). The validation of the proposed index was
carried out by analyzing synthetic time series by varying their degree of stochasticity.
MApEnmax was applied to characterize aging and congestive heart failure to capture
ANS regulation changes.
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4.1 Introduction

ApEn was introduced by Pincus and co-workers [144] in 1991 as an entropic mea-
surement to quantify the regularity of medical data. Ten years later, Richmann
and Moorman [125] introduced SampEn, a variation of ApEn, reducing the bias
of considering self-comparisons and being less dependent on data length. Both
approaches have been widely used to characterize and distinguish between healthy
and pathological conditions [53, 100, 141, 164, 197, 15, 158].

However, caveats in the computation of these nonlinear indices have been pointed
out, such as the dependence on mean HR and on certain parameters needed for their
estimates. The dependence of nonlinear HRV indices has already been addressed
in chapter 3, while in this chapter, the analysis is focused on the relevance of a
priori parameters, that have to be selected for their computation, evaluating their
effect on SampEn and ApEn results’ interpretation. In particular, the embedding
dimension, m, (i.e. the length of reconstructed vectors); and the tolerance threshold,
r, used to evaluate reconstructed vectors which are similar to each other, are the two
parameters considered for further analysis. These parameters have been assigned
diverse values in published HRV studies (e.g. m = 1 or 2; and r = 0.1 to 0.25 times the
standard deviation of the time series) [158, 145, 176, 201, 1, 52, 40, 140, 168, 11, 3].
Thus, one main drawback lies in the comparison between studies, since the a priori
selection of m and r values can lead to different physiological interpretations.

Different approaches have been proposed to identify the values for the embedding
dimension m or the threshold r used by nonlinear dynamics characterizing chaotic
time series [92, 28, 110, 34, 171, 106]. With regards to the embedding dimension,
the false nearest neighbor method has been used to search for the lowest embedding
dimension, m, that allows the phase-space reconstruction, with very different values
of m in accordance with the diverse underlying dynamics of the analyzed time series
[92]. Minimum values of m were reported, being 2, 3 and 6 for Hénon, Lorenz, and
Mackey-Glass time series, respectively [28]. With regards to the tolerance threshold,
some studies have been focused on searching for the value of the threshold r, denoted
by rmax(m), maximizing ApEn estimate. This ApEn-based index has served to show
that white noise series is more irregular than the cross-chirp signal [34]. Furthermore,
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this index has been reported to better enhanced HRV and blood pressure variability
differences between supine and upright position with respect to the usage of fixed
r values, such as 0.1-0.25 times the standard deviation [171]. It should be noted
that, although, in those cases, r is generally referred as fixed, to be precise, the
parameter that is fixed is the factor multiplying the standard deviation, rather than
the threshold r itself. In the literature, identification of the values of r and m used to
characterize different types of time series is still unclear, as highlighted by the high
diverse published values [171, 106].

Multiscale entropy (MSE) and refined MSE methods have been introduced to
account for complexity properties at different scales [40, 41, 183]. These methods
provide information from SampEn across a range of time scales. By applying the
coarse-graining technique, each time scale is represented as a new time series derived
from the original one [40]. Short time scales (1 to 4) have been proposed to be more
related to parasympathetic and respiratory control, whereas long time scales (5 to
20) have been postulated to be more related to sympathetic control [170]. However,
one caveat of the MSE methods lies in the usage of coarse-graining technique, since
the data length is reduced as the scale increases. This limits the applicability of
MSE for short-term HRV analysis and the reliability of SampEn estimation becomes
compromised for short data length [183].

In this study, a novel ApEn-based index, exploiting maximum ApEn and mul-
tidimensional, properties is presented for short-term HRV analysis. This proposed
index, MApEnmax, avoids the usage of the coarse-graining technique and, thus, the
variations in data length for the different time scales. Furthermore, its computation
provides an entropic estimation without the need of selecting input parameter values
ad hoc. The ability of the proposed index MApEnmax to represent different degrees
of randomness in time series was firstly tested on synthetic signals and subsequently,
the index was used to characterize HRV changes induced by aging and by CHF.

4.2 Approximate Entropy-based Indices

The mathematical definition of ApEn was previously described in section 3.3.2. The
use of fixed threshold values and the one, denoted by rmax(m), that maximizes the



76 Multidimensional Approximate Entropy

ApEn, referred as ApEn(m,rmax(m)), were introduced. In this chapter, ApEn(2,0.2)
and ApEn(2,rmax(2)) were considered for the sake of comparison.

4.2.1 Multidimensional Approximate Entropy

ApEn(m,r) and ApEn(m,rmax(m)) provide information about the regularity of the
time series when two consecutive length patterns (embedding dimensions m and
m+ 1) are compared. Increasing the length pattern, m, the probability of finding
similar patterns decreases. Although this probability tends to zero as m approaches
infinity, the information contained could still be of great interest. Therefore, one
of the novelties in the multidimensional approach proposed in this thesis lies in
considering a range of embedding dimensions to compute a single entropy value,
making it independent of the embedding dimension m. The multidimensional entropy
index, MApEn(r), is defined as:

MApEn(r) =
M

∑
m=1

ApEn(m,r) , (4.1)

where M = 15 was set based on correlation dimension estimation described in [22].
The other novelty lies in considering rmax(m) for each given value of m. In this way,
the definition of MApEn(r) can be used to define MApEnmax.

MApEnmax =
M

∑
m=1

ApEn(m,rmax(m)) , (4.2)

Note that the proposed index MApEnmax does not require any a priori selection
of embedding dimension or tolerance threshold values for its definition, regardless of
M.

Correlation dimension and sample entropy were also computed, using the me-
thodology described in chapter 2. All nonlinear HRV indices were computed over
RR time series interpolated by cubic splines at 2 Hz to attenuate the HR effect as
sampling rate, as described in chapter 3.
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4.2.2 Time- and Frequency-domain HRV Indices

Time- and frequency-domain indices were obtained from the raw RR time series and
from the modulating signal of the IPFM model, respectively, using the same analysis
windows.

Mean heart rate HRM and the square root of the mean squared differences of
successive normal heartbeat intervals RMSSD were calculated.

Spectral analysis was performed on a modulating signal, M(t) estimated by
applying the IPFM model, where the influence of HRM was compensated [8]. Power
spectral density content regarding low frequency (PLF , 0.04-0.15 Hz) and high
frequency (PHF , 0.15-0.4 Hz) bands, as well as normalized low frequency power
(PLFn = PLF/(PLF +PHF)) were estimated [179].

4.3 Materials

4.3.1 Synthetic Signals

MIX Processes: a family of processes combining deterministic and stochastic be-
havior were studied. The degree of stochasticity was controlled by parameter P.
MIX(P) generated a sine for P = 0 (pure deterministic) and became more random as
P increased up to 1 (P = 1, pure stochastic) [144], see section 2.2.2 for its definition.

For each P value in {0,0.25,0.5,0.75,1}, 30 processes were generated, each
containing 300 samples.

Noise Time Series: white and pink noise (1/ f ) time series with zero mean and
unit variance were studied. A total of 30 white and pink noise processes, respectively,
were generated, each containing 300 samples.

4.3.2 HRV Signals

Fantasia Database: ECG signals sampled at 250 Hz were acquired from twenty
young (21-34 years old, 25.9 ± 4.3) and 20 elderly (68-85 years old, 74.5 ± 4.5)
rigorously-screened healthy subjects undergoing 120 minutes of supine resting while
watching the movie Fantasia (Disney, 1940) to help maintain wakefulness. Further
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database information is available in [77]. Recordings can be downloaded from
www.physionet.org [59].

Congestive Heart Failure Database: ECG recordings from the Congestive Heart
Failure RR Interval Database (including patients in NYHA classes I, II, and III)
and the BIDMC Congestive Heart Failure Database (including patients in NYHA
classes III and IV) were selected. These recordings, sampled at 128 and 250 Hz
respectively, can be downloaded from www.physionet.org [59]. The mixed databases
consist of a total of 44 CHF patients aged 55.5 ± 11.4 y.o. Heartbeat locations were
obtained from automatic ECG annotations and subsequently manually reviewed and
corrected by experts, are available in the same repository. ECG recordings from 72
healthy subjects, aged 54.6 ± 16 y.o., were obtained from the Normal Sinus Rhythm
Database available from www.physionet.org. Long-term ECG recordings sampled at
128 Hz and their corresponding heart beat annotations are included.

Heartbeat locations provided by the repository were corrected for ectopic beats
based on instantaneous heart rate variation [116]. The time interval between consec-
utive heartbeats was used to define the RR interval time series.

4.3.3 Statistical Analysis

For the Fantasia database, the whole 2-hour recordings were analyzed. For the CHF
and Normal Sinus Rhythm databases, a 3-hour night period was selected centered on
the minimum HRM to establish a fair comparison under similar stationary conditions,
with minimal influence of potentially different daily activities. 5-minute windows
with 50% overlapping were used for analysis in all cases.

The proposed index, MApEnmax, as well as all other nonlinear HRV indices were
evaluated on synthetic and real data. The normality of data distributions was tested
by Kolmogorov-Smirnov test. Nonlinear as well as time- and frequency-domain
HRV indices were used for the comparison between young and elderly subjects, and
between CHF patients and healthy subjects by ANOVA test or Mann-Whitney U
test depending on whether data distributions satisfied the normality criterion or not
respectively.
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4.4 Results

4.4.1 Synthetic Data

Figure 4.1 and Fig. 4.2 show the values of the nonlinear HRV indices computed over
MIX(P) processes and pink and white time series. In the comparison of MIX(P)
processes with the degree of randomness below P = 0.75 (0 vs. 0.25; 0.25 vs. 0.5;
and 0.5 vs. 0.75) all nonlinear indices led to statistically significant differences. In the
comparison between MIX(P) processes with P above 0.75 (0.75 vs. 1) no statistically
significant differences were found for any of the nonlinear indices. On the other
hand, all the analyzed indices were able to separate pink and white noise time series.
In addition, the multidimensional index MApEn(r) was able to separate pink and
white noise time series for all tested values of the tolerance threshold r (results only
shown for r = 0.2, Fig. 4.2).
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Figure 4.1 Nonlinear indices evaluated over MIX(P) processes with varying stochastic levels and
pink and white noise time series. Data are shown as median and interquartile range over 30 realizations.



80 Multidimensional Approximate Entropy

1

1.5

2

2.5

3

3.5
* * * *

2

3

4

5

6

7

8 * * * *

M
IX

(0
)

M
IX

(0
.25

)

M
IX

(0
.5)

M
IX

(0
.75

)

Pink
 no

ise

W
hit

e n
ois

e

M
IX

(1
)

M
IX

(0
)

M
IX

(0
.25

)

M
IX

(0
.5)

M
IX

(0
.75

)

Pink
 no

ise

W
hit

e n
ois

e

M
IX

(1
)

M
A

pE
n(

0.
2)

M
A

pE
n m

ax
Figure 4.2 MApEn(0.2) and MApEnmax evaluated on MIX(P) processes with varying stochastic
levels as well as white, and pink noises. Data are shown as median and interquartile range by considering
30 realizations.

While statistically significant differences were found for both MApEn(0.2) and
MApEnmax when comparing different stochastic processes, the former presented
decreased values as randomness increased, while the latter showed opposite results.
To analyze these differences, the results of evaluating ApEn for two embedding
dimensions, namely m = 2 and m = 6, are illustrated in Fig. 4.3. The use of a fixed
threshold did not always allow ApEn to characterize the randomness level of the
MIX(P) processes. As an example, for m = 6, the use of the fixed threshold r = 0.2
led to MIX(0.25) having much larger complexity than MIX(0.5), MIX(0.75), and
MIX(1). For m = 2, however, MIX(0.25) presented the lowest complexity. When
combining results from different scales, MApEn(0.2) showed lower values as the
randomness level increased, thus, not being able to reflect the degree of stochasticity
in the time series (Fig. 4.2 left panel). However, MApEnmax served to characterize
MIX(P) processes according to their stochasticity level for any value of m, which
then rendered MApEnmax suitable to characterize stochasticity levels (Fig. 4.2 right
panel).
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Figure 4.4 a) ApEn computed throughout embedding dimensions for pink noise (blue) and white
noise (red) using different thresholds. b) MApEn(r) computed using different thresholds. ∗ indicates
statistically significant differences (p-values < 0.05). Data are shown as median and interquartile range
by considering 30 realizations.
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In Fig. 4.4 a) ApEn(m,0.2) and ApEn(m,rmax(m)) are shown for pink and white
noises when the embedding dimension m was varied from 1 to 15. ApEn(m,0.2)
values were higher for white noise than for pink noise for low embedding dimension
values, while presented the opposite behavior for large embedding dimensions. The
multidimensional index MApEn(0.2) resulted in higher values for white than for
pink noise, reflecting the behavior found for the lowest embedding dimensions (Fig.
4.4 b) left). On the other hand, ApEn(m,rmax(m)) was consistently larger for white
than pink noise throughout all embedding dimensions and, consequently, differences
between these noise time series were amplified when computing MApEnmax (Fig.
4.4 b) right) with respect to MApEn(0.2).

4.4.2 HRV Data

Nonlinear HRV Analysis

One subject from the young cohort and another one from the elderly cohort were
discarded for analysis, as their RR time series were not suitable for ectopic beats
correction. Their variability values reached the maximum allowed HR variation, thus
precluding distinction between normal and ectopic beats [116].

ApEn(2,0.2), ApEn(2,rmax(2)), MApEn(0.2), MApEnmax, SampEn(2,0.2), and
D2 values showed a trend for higher values in young than in elderly subjects, but
only MApEnmax showed statistically significantly higher values in young subjects
(see Fig. 4.5 and 4.6). On the other hand, all analyzed nonlinear HRV indices, with
the exception of MApEn(0.2), were statistically significantly larger in CHF patients
than in healthy subjects (4.5 and 4.6).

Figure 4.7 illustrates the contribution of ApEn(m,0.2) and ApEn(m,rmax(m))

throughout the embedding dimensions for MApEn(0.2) and MApEnmax respectively,
for each of the analyzed cohorts. The index ApEn(m,0.2) was found to have higher
values in young subjects than in elderly subjects for low embedding dimensions
(m <= 3), even if not achieving statistical significance in all cases (Fig. 4.7, left
upper panel). Similarly, CHF patients showed higher ApEn(m,0.2) values than
healthy subjects for low values of the embedding dimension m (Fig. 4.7 left lower
panel). For large embedding dimensions, opposite results were found in the two
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Figure 4.5 Regularity and complexity indices comparing young vs. elderly, and healthy subjects
vs. CHF patients. ∗ indicates statistically significant differences (p-values < 0.05). Data are shown as
median and interquartile range.
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Figure 4.7 ApEn values computed for thresholds set at 0.2, and rmax(m) through embedding dimen-
sions in young (black) and elderly (gray) groups shown in the upper panels, and in healthy subjects
(blue) and CHF patients (red) during the night period in the lower panels. ∗ indicates statistically
significant differences. Data are shown as median and interquartile range.

comparisons. Regarding ApEn(m,rmax(m)), statistically significantly higher values
were found in young vs. elderly and in CHF patients vs. healthy subjects for most
values of the embedding dimension m, while for the remaining values of m the
compared values could not be statistically distinguished.

Figure 4.8 shows results for the comparison of healthy subjects and CHF patients
obtained when: i) restricting the age range (from 50 to 75 years old); and ii) conside-
ring only those CHF patients classified III-IV regardless their age. Nonlinear index
values were found statistically higher for CHF patients than for healthy subjects in
both comparisons.

In addition, MApEnmax values were computed for young, elderly, CHF, and
healthy subjects in 4000-sample time series and results are displayed in Fig. 4.9.
Statistical differences between studied groups are maintained when data length was
increased with respect to the case of considering 5-minute analysis window.
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Figure 4.8 Regularity and complexity indices comparing healthy subjects vs. CHF patients restricted
to an age range of 50 to 75 years old and all healthy subjects with respect to CHF patients classified
III-IV. (∗) indicates statistically significant differences (p-values < 0.05). Data are shown as median
and interquartile range.

Time- and Frequency-domain HRV Analysis

HRM and RMSSD are displayed in Fig. 4.10 for the studied groups. No statistically
significant differences were found for HRM when comparing young and elderly sub-
jects, although a tendency to lower HRM values for the elderly group was observed
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Figure 4.9 MApEnmax values computed for young (solid black) vs. elderly (solid gray), and healthy
subjects (dotted blue) vs. CHF patients (dashed red) in time series of 4000 samples. (∗) indicates
statistically significant differences (p-values < 0.05 (dark), p-values < 0.07 (gray)). Data are shown as
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Figure 4.10 HRM and RMSSD values in young vs. elderly and CHF patients vs. healthy subjects
during the night period. (∗) indicates statistically significant differences.

with respect to the young group. HRM was statistically significantly higher in CHF
patients as compared to healthy subjects. On the other hand, the RMSSD index
showed statistically significant differences between both pairs of groups, with elderly
subjects and CHF patients presenting reduced RMSSD values.
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Figure 4.11 Frequency domain indices computed comparing young vs. elderly, and CHF patients vs.
healthy subjects during the night period. (∗) indicates significant p-values < 0.05.

Values of frequency-domain HRV indices PLF , PHF , and PLFn are shown in Fig.
4.11 for the four studied groups. Significant differences were found for PLF and PHF

in the two comparisons. PLFn only showed statistically significant differences for the
comparison between CHF patients and healthy subjects.

4.5 Discussion

Searching for Standardizing Approximate Entropy

Nonlinear HRV analysis has extended the description of ANS regulation of car-
diac electrical activity. The use of nonlinear HRV indices has provided new phy-
siological insights into ventricular dysfunction, ventricular tachycardia, obstetri-
cal complications under anesthesia, mental disorders and aging, among others
[53, 100, 141, 164, 198, 15, 158]. Nevertheless, the physiological interpretation
of some common nonlinear HRV indices could be biased by the a priori selection of
parameter values intrinsic to their definitions. Automatic search for those parameter
values based on methodological and/or time series characteristics has already been
addressed [110, 106]. Nevertheless, indices like maximum approximate entropy
are still linked to the embedding dimension m by definition. The values of m vary
from one study to another even though there is a general tendency to set m = 2
to estimate ApEn(2,rmax(2)), commonly denoted as ApEnmax. In this study, the
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index MApEnmax has been proposed, which is based on the summation of maximum
approximate entropies for a set of embedding dimensions, and thus, the necessity
of selecting a particular value for the dimension parameter is avoided. Additionally,
the proposed index does not rely on the definition of a tolerance threshold, since the
threshold used is the one leading to the maximal entropy value in each embedding
dimension.

Analysis of Synthetic Data

The proposed index MApEnmax has been tested for characterizing synthetic time
series. MApEnmax values were found statistically significantly larger for white than
for pink noise. This behavior was also reproduced by all other tested nonlinear
HRV indices including MApEn(0.2), although such differences were found to be
attenuated when using a fixed tolerance threshold as compared to using the one
leading to maximum entropy.

The evaluation of the proposed marker on synthetic data, generated by MIX(P)
processes, revealed that the greater the stochastic level, the higher the MApEnmax

value, which is in agreement with the results shown by other nonlinear HRV indices,
like correlation dimension or approximate and sample entropy, describing complexity
of time series. On the contrary, the usage of a fixed threshold r, e.g. with value 0.2,
in the computation of MApEn(r) was not able to reflect the degree of randomness
according to the MIX(P) time series.

Aging and CHF Assessment by Nonlinear HRV Analysis

The effect of aging was evaluated on healthy subjects during supine resting condi-
tions, with subjects being awake. Lower values were found for all analyzed nonlinear
indices in the elderly cohort with respect to the young one, with differences being sta-
tistically significant for our proposed MApEnmax index. Our results are in agreement
with previous studies where aging was reported as a cause for decreased complexity
and irregularity of beat-to-beat RR series [41, 77, 89, 15]. This reduction has been
associated with an impairment to adapt against external or internal perturbations
[77, 154]. HRM, RMSSD, and PHF values were also decreased, while PLFn values
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were increased in the elderly cohort, pointing to a potential enhancement in the
sympathetic modulation of SA node activity.

Congestive heart failure was assessed by comparing failing patients and healthy
controls during the night period while they were sleeping. According to the results ob-
tained for all the studied nonlinear HRV indices, including the proposed MApEnmax

index, statistically significantly higher complexity and irregularity were found in
CHF patients with respect to healthy subjects. Similar results were found when
restricting the age of the individuals to the range covering from 55 to 75 years old,
pointing out that age has no relevant effect on the comparison between CHF patients
and healthy subjects for the compared cohorts. Similarly, NYHA class had no impact
on the distinction between CHF patients and healthy subjects, as demonstrated by
restricting the analysis to CHF patients in NYHA classes III-IV, which led to similar
results to those found for the whole CHF population (Fig. 4.8).

Spectral HRV analysis showed a significant decrease in PLFn for CHF patients
with respect to healthy subjects. In previous studies CHF has been reported to
be associated with an increase of the sympathetic tone and a decreased peripheral
response to adrenergic input [93, 62]. In other studies, a reduction in HRV low
frequency content has been associated with the progression of heart failure in CHF
patients with advanced disease [62].

CHF has been characterized by ApEn in the literature, but results were found
dependent on methodological factors [204]. Multiscale entropy, which extends
the classical SampEn definition to a time-scale representation, has been applied to
describe heart rate dynamics in CHF [40]. Costa et al. reported that healthy subjects
presented greater MSE values than CHF patients, but in particular, the elderly healthy
cohort showed lower MSE values than CHF group in the first scale. In our study
CHF patients and healthy subjects showed diverse ApEn values, being greater in one
or in the other group depending on the tolerance r and the embedding dimension m.
Therefore, the different results obtained in the present study and those in [183] could
be due to the method itself (ApEn here and SampEn in [183]) and/or to the values
used for the tolerance threshold (rmax(m) in this study and fixed thresholds in [183]).
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ApEn(m,rmax(m)) values were found greater for CHF patients than healthy
subjects for all considered embedding dimensions, contrary to the lower MSE values
in CHF reported for all scales in [183]. Additionally, to discard the effect of data
length in underlying differences between the results presented here and results
described in [183], our proposed multidimensional index MApEnmax was also tested
on increased HRV signal lengths (4000 samples), confirming its discriminant capacity
between healthy and CHF patient’s groups, with higher values for CHF patients (Fig.
4.9).

Although a relationship between derived-MSE indices and sympathetic/parasym-
pathetic modulation has been reported [170], the methodological differences compar-
ing derived-MSE and MApEnmax do not allow the translation of the physiological
interpretation to the present study.

The CHF patients included in the present study were enrolled in a long-term
study to evaluate the efficacy of drugs, in particular, milrinone and digoxin, and these
drugs may have had an effect into the ANS response mechanisms. In addition, no
information was available in relation to other concomitant disorders that CHF patients
might suffer, such as obstructive sleep apneas, which could interfere, misleading the
nocturnal nonlinear analysis [129].

4.6 Conclusion

A multidimensional approximate entropy index, MApEnmax, was introduced as a
priori-free parameter entropy measurement. The evaluation on synthetic time series,
such as MIX(P), pink and white noise, revealed that MApEnmax characterized the
degree of randomness in the series consistently. In the analysis of aging, MApEnmax

was higher in the elderly than the young population, thus, capturing the heart rate
complexity changes due to aging that may reflect loss of ANS adaptability. In ad-
dition, MApEnmax was increased in CHF patients as compared to healthy subjects
during the night period suggesting greater complexity in CHF than healthy subjects.
The addition of MApEnmax in nonlinear HRV analysis could provide robust informa-
tion according to the HR dynamics complexity, since maximum approximate entropy
computed throughout embedding dimensions contribute to its value.







“Prediction is very difficult,
especially if it’s about the future.”

- Niels Bohr (1885-1962) -

5
Improvement in the Prevention of

Hypotensive Episodes after Spinal
Anesthesia in Cesarean Delivery by

Nonlinear Analysis

Summary

Prophylactic treatment has been proved to reduce hypotension incidence after spinal
anesthesia during cesarean labor. However, the use of pharmacological prophylaxis
could lead to undesirable side effects on mother and fetus. Thus, the prediction of
hypotension becomes an important challenge to reduce the number of women that
needed to be treated. One of the hypotheses underlying these kind of hypotension
events may be due to the malfunctioning of ANS on blood pressure regulation. In this
chapter, ANS response of pregnant women to body position changes was explored
for hypotension prediction.



94 Improvement in the Prevention of Hypotensive Episodes

5.1 Motivation

The amount of cesarean deliveries worldwide has been increased by a global average
of 12.4% from 1990 to 2014 [17]. Although the use of spinal anesthesia has been
beneficial reducing mortality and morbidity during labor [68], side effects such as
hypotension and bradycardia in the mother [99] and hypoxia and acidosis in the
fetus [157] might be triggered after its administration. In particular, the incidence of
hypotension events has been reported between 30 and 100% of cases [111, 131]. This
wide range of incidence could be associated with discrepancies in the hypotension
definition and measurement techniques [76].

The use of prophylaxis has led to a notable reduction in the number of hy-
potension events [37]. However, prophylaxis through sympathomimetic drugs ad-
ministration can lead to a non-desired reactive hypertension with dose-dependent
incidence up to 82% of the patients [4]. Prediction of hypotension events during
cesarean section would help to: 1) decrease the latency time between hypotension
event and its treatment; 2) increase efficiency in the anesthetic administration to
better control for the hemodynamic consequences of spinal block; 3) decrease the
number needed to treat (NNT), thus avoiding unneeded pharmacological exposition
and therefore, reducing the derived side effects. Prediction of hypotension after
spinal anesthesia during elective cesarean delivery has been reported in the literature
[71, 31, 66, 25, 55, 76, 22, 199, 160]. However, results have been found to be highly
dependent on the number of studied subjects, the definition of hypotension episode,
and the features considered for the analysis.

The malfunctioning or disability of ANS to compensate a drop in blood pressure
induced by anesthesia is one of the hypotheses underlying hypotension episodes.
Besides, the physiological and psychological stress response is altered by the last
period of pregnancy. ANS regulation on the heart can be assessed by HRV analysis,
which was found to be correlated with hypotension episodes the day of surgery
[21, 31, 66, 199]. ANS responsiveness through an elicitation protocol, consisted of
postural changes, and the occurrence of hypotension events have been related during
the day before surgery [160].
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The analysis of pulse rate variability (PRV), extracted from pulse photoplethys-
mographic signal (PPG) recording, has been proved suitable for the assessment of
ANS regulation of the heart, taking into account information about the peripheral vas-
cular regulation [58]. These recordings present the advantage of reducing number of
sensors, being convenient in clinical practice. pulse transit time (PTT) and its surro-
gate pulse arrival time (PAT) derived from the ECG and PPG signals, were introduced
as non-invasive approaches for capturing blood pressure changes [189, 61]. They
have been also related to the arterial stiffness, ANS, respiration, and blood pressure
[35, 101, 127, 139]. An increase of PTT values has been associated with a drop in
arterial blood pressure (hypotensive episode) [166]. Based on this, although several
studies attempted to shed light into the role of HRV and pulse oximeter derived index
analysis for predicting hypotension after spinal anesthesia for cesarean section deliv-
ery, hypotension prediction is still a challenge [71, 31, 66, 25, 55, 76, 22, 199, 160].

In this chapter, ANS responsiveness through body position change protocol is
analyzed by HRV, PRV, and PAT indices to avoid side effects caused by prophylaxis
used for preventing hypotensive events induced by spinal anesthesia during cesarean
delivery. A classifier focused on the minority class, normotensive cases, is developed
to provide clinicians valuable information for making better preventive treatment
decisions.

5.2 Materials and Methods

5.2.1 Programmed Cesareas Database

The database consisted of a total of 105 pregnant women programmed for an elective
cesarean section at the University Hospital Miguel Servet of Zaragoza, Spain. A
subset of this database was already used in an exploratory research addressed in
chapter 2. After obtaining approval from the Clinical Research Ethics Committee,
the parturients were recruited, informed, and asked to sign the written consent.
Indications for programmed cesarean delivery were: iterative cesarean labor; breech
presentation; shoulder presentation; placenta previa; previous uterotomy and other
causes. Exclusion criteria were urgent surgery, uterine contractions and maternal or
fetal pathology.
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The subjects were randomly selected to belong to a control group (no prophy-
lactics were administered, 51 subjects) and to prophylactic group (54 subjects). A
prospective study of this work is based on the factors related to hypotension within
the control group. Thus, subjects were grouped according to hypotensive outcome.
A hypotensive episode was defined as a drop in systolic arterial pressure greater than
20% from baseline value, estimated as mean of three consecutive measurements taken
in lateral decubitus). 33 subjects of the control group suffered from hypotension after
spinal injection until delivery, reaching a 64.7% incidence.

Demographic data were obtained at admission. Biomedical signals were recorded
in the surgical area the day of surgery. Two-lead ECG and PPG were recorded both
at 1 kHz during a protocol designed to enhance ANS alterations by hemodynamic
changes. Protocol stages were: 7 minutes of lateral decubitus (LD) assuming baseline
pregnancy conditions, 7 minutes of supine decubitus (SD) increasing hemodynamic
stress due to aorto-cava compression, 7 minutes of sitting position (SP). LD and SD
were recorded for all subjects of the database, whereas sitting position was recorded
for 40 subjects. Thus, two subgroups are referred as LD-SD and LD-SD-sitting
position (SP).

After recording ECG and PPG signals, all patients received an infusion of Hart-
mann’s solution at 15 ml/kg/h. Thereafter, standardized spinal anesthesia was per-
formed: puncture site was lumbar interspace L2/3 or L3/4 with the patient in a sitting
position. Next, 9 to 11 mg of hyperbaric bupivacaine anesthetic 0.5% according to
patient height (<150 cm, 9 mg; 150-165 cm, 10 mg; > 165 cm, 11 mg) and 10 µg
fentanyl was injected via 27-G Whitacre needle. Immediately after injection, patients
were positioned supine with a left lateral tilt of about 10◦, facilitating left uterine
displacement. Blood pressure was measured at 2-min intervals beginning 1 min after
spinal injection.

The database of study contains demographic data recorded from the beginning
of the pregnancy period until the day of admission to the hospital. These baseline
characteristics grouped according to their hypotensive outcome are shown in Tab.
5.1.
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Table 5.1 Parturient characteristic data. (n) refers to the number of subjects on each group. ∗ indicates
number of subjects different from 18 caused by unavailable data.

Hypotensive Normotensive

Demographic data n Mean SD n Mean SD

Age (yr) 33 35.3 4.7 18 33.7 4.6
Height (cm) 33 161.8 5.9 17 ∗ 161.4 5.8
Weight (kg) 33 73.8 10.5 17 ∗ 72.3 10.5
Pre-gest. weight (kg) 33 61.9 9.9 15 ∗ 62.5 8.9
Gained weight (kg) 33 11.5 4.4 14 ∗ 11.3 3.1
Pre-gest. BMI (kg/m2) 33 23.7 3.7 14 ∗ 24.0 3.1
BMI (kg/m2) 33 28.2 4.1 17 ∗ 28.5 3.9
Gest. age (days) 33 263.2 6.7 18 267.6 6.3

5.2.2 Methods

Series to Study

Heartbeat time occurrences were detected from the ECG lead with the highest
signal quality (signal-to-noise ratio) by a wavelet-based ECG detector [114]. Ectopic
beats were detected and corrected [116]. Then consecutive heartbeat occurrence
times were used to generate the beat-to-beat RR time series.

Temporal location of each PPG pulse wave was detected as the medium-amplitude
point where amplitude reaches 50% of its maximum value [103]. Ectopic and un-
detected pulses were identified and their corresponding pulse wave times corrected
[116]. Then, consecutive pulse wave times were used to generate the PP time series.

In this chapter, PAT, is referred to the spend time used by pulse waves to travel
from the aortic valve to an arterial point placed at the periphery. The time interval
between an R peak in the ECG signal and its corresponding PPG pulse wave location
time defines PAT estimation. It is worth noting that this estimate, PAT, although
considered as a surrogate of PTT, includes the pre-ejection period (PEP) and the
pulse transit time (PTT), the systolic and the propagation time interval respectively,
since the detection of the time instant when the aortic valve opens was replaced by R
peak in the ECG signal.
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Respiratory rate was extracted from ECG signals by applying a QRS morphology-
based technique that exploits respiration-induced variations in QRS slopes and R-
wave angle [102].

Temporal Analysis

RR, PP and PAT time series were used to calculate the temporal indices such
as mean value (µX ), standard deviation (σX ), square root of the mean squared
differences of successive values (RMSSDX ), standard deviation of differences of
successive values (SDSDX ), where X ∈ {RR,PP,PAT}. Median value ( f R) and
interquartile range (IQR[ f R]) were computed from the respiratory rate.

Spectral Analysis

The IPFM model was applied to estimate the modulating signals from heartbeat
locations. As described in chapter 3, these modulating signals are assumed to carry
information about ANS activity once compensated for the mean HR effect [8]. In the
following, these modulating signals are referred to as HRV signals. Similarly as for
heartbeat locations, pulse wave occurrence times were used to compute modulating
signals through the IPFM model labeled as PRV signals. HRV and PRV signals were
interpolated at 4 Hz. The IPFM model was not applied to the PAT signal and, this
series was only interpolated at 4 Hz as the other two signals, being suitable for further
spectral analysis.

Welch-periodogram was used to estimate spectral properties of the HRV, PRV
and PAT signals. Fixed spectral band of LF (0.04-0.15 Hz) and a variable HF band
centered in f R with a fix bandwidth of 0.25 Hz were used to compute the power
content on each band (PLF

Y and PHF
Y ), their normalized values (PLFn

Y and PHFn
Y ) as

well as the sympathovagal balance (LF/HFY ), where Y ∈ {HRV,PRV,PAT}. The
variable HF band aims to better capture parasympathetic activity, since respiratory
rate in pregnant women can be higher and often near the classical HF upper bound of
0.4 Hz [7]. However, in those cases where HF band overlapped with LF band, the
lower limit of HF band was set as the upper LF band limit. No estimation based on
spectral analysis was given in those cases when f R was found below 0.15 Hz due to
the uncertainty in the physiological interpretation of these measurements.



5.2 Materials and Methods 99

Nonlinear Analysis

D2, SampEn(2,0.2), ApEn(2,rmax(2)), and MApEnmax were selected as nonli-
near indices whose interpretation has been related to complexity and irregularity
in previous chapters. In order to simplify the notation, hereinafter D2, SampEn,
ApEnmax, and MApEnmax are used to refer to these studied indices. RR, PP and PAT
time series were interpolated at 2 Hz to be suitable to attenuate the effect of HR on
the estimated nonlinear indices as described in chapter 3.

Statistical Analysis

ANS activity was assessed by analyzing the variations of RR! (RR!), PP and
PAT from ECG and PPG signals recorded few minutes before surgery on each
protocol stage, consisted of lateral decubitus, supine decubitus, and sitting position.
Differences between body position stages were also evaluated. As an example of
notation, PHF

RR(SD−LD) will be the difference of high frequency power from RR!
analysis between supine and lateral decubitus position.

The normality of statistical distributions was analyzed by Kolmogorov-Smirnov
test. Sensitivity analysis of features, comparing hypotensive and normotensive groups
was tested by T-Student test on normal distributions and by Mann-Whitney U test on
non-normal ones. A univariate statistical significance was considered for p-values <
0.05.

Due to the large amount of computed features (more than 200), only those show-
ing statistical sensitivity on hypotension were used as candidates for classification
purposes. In this case, a post hoc correction, such as Bonferroni’s, was not applied,
since our purpose is to obtain a combination of features, no single ones, to better
distinguish both groups of study. A set of classifiers were tested such as Logistic
Regression, Naive Bayes, Nearest Neighbor, Linear and Quadratic Discriminant
Analysis, and Supported Vector Machine to search for the best classification results.
On the one hand, some of these classifiers provide their outcome in discrete values of
1 or 0, depending on whether the subject belongs or not to the non-hypotensive (or
normotensive) group. On the other hand, classifiers such as the one based on a logistic
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regression provide their outcome as a probability of belonging to the hypotensive
group, see Eq. 5.1.

p =
1

1+ exp−(β0+β1X1+β2X2+...+βNXN)
, (5.1)

where β0, ...,βN are the coefficients and X1, ...,XN represent the selected N-features.
Then, a probability threshold, pth, determines the risk of suffering from hypotension.

Feature selection was done by a Greedy forward algorithm by maximizing F1
score as inclusion criteria [39]. F1 score is defined as a measurement equilibrating
the positive predictive value and sensitivity, thus improving the classification of
the minority class, which, in our case, is the normotensive group. Overtraining
was avoided by using the leave-one-out technique combined with bootstrapping
[51] (see Fig. 5.1) and by restricting the maximum number of selected features for
classification to be less than the square root of the number of subjects in the smallest
group as a rule of thumb.
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Figure 5.1 Cross-validation scheme combining leave-one-out (LOO) technique with bootstrapping
reducing the variance of classification results. Circles represent each subject of the database, whereas
the color white or black illustrate their truly hypotension outcome as normotensive or hypotensive
respectively. First, leave-one-out is applied to define a training and a test set (dashed rectangle). Next,
bootstrapping is N-1 times applied to this training set. Then, these bootstrapped training sets are
evaluated in the classifier. Leave-one-out procedure is N times repeated generating the resulting X
matrix.
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5.3 Results

In Fig. 5.2 RR, PP and PAT signals are shown for two subjects belonging to hypoten-
sive (Hyp) and normotensive (N-Hyp) groups during supine position.
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Figure 5.2 RR, PP and PAT signals for two subjects belonging to hypotensive group (left panel) and
normotensive group (right panel) during supine position.

Tab. 5.2 shows those indices that were found statistically significantly different
between the two groups in LD-SD and LD-SD-SP cohorts. Correlation between de-
rived nonlinear indices computed over RR and PP that present statistically significant
p-values in LD-SD cohort is illustrated in Fig. 5.3.

The evolution of ApEnmax
PP(SD−LD) with respect to m and the contribution of

each position are displayed in Fig. 5.4. Only ApEnmax
PP(SD−LD) at m = 2 and 3

were found to be statistically significant comparing hypotensive and normotensive
groups. MApEnmax

PP(SD−LD) index computed as the contribution of all embedding
dimensions appeared statistically significant comparing both groups of study but less
than ApEnmax

PP(SD−LD) as illustrated in Tab. 5.2.

Tab. 5.3 shows the classification results for the different tested classifiers. For
all classifiers ApEnmax

PP(SD−LD) and σPAT (SD) were selected as the combination
of features that achieved the best classification results in the LD-SD cohort. The
classifier showing the highest F1 score was the one based on logistic regression.
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Table 5.2 Relation of features extracted from ECG derived respiration, RR, HRV, PP, PRV, and PAT
analysis for the LD-SD and LD-SD-SP cohorts. Only those that were found statistically significant are
shown. (n) refers to the number of subjects on each group. ∗ indicates number of subjects different
from 18 for LD-SD and 28 for LD-SD-SP respectively, corresponding to cases where respiratory rate
overlapped to LF band. p-values < 0.05 were statistically significant by Mann-Whitney U test.

Features Hypotensive Normotensive

Cohorts n Mean SD n Mean SD p-value

LD-SD

SampEnRR(SD) (a.u.) 33 0.45 0.17 18 0.56 0.18 0.03
SampEnRR(SD−LD) (a.u.) 33 -0.03 0.16 18 0.05 0.11 0.03

MApEnmax
RR(SD−LD) (a.u.) 33 -0.35 0.65 18 0.06 0.6 0.03

SampEnPP(SD) (a.u.) 33 0.48 0.16 18 0.59 0.17 0.03
SampEnPP(SD−LD) (a.u.) 33 -0.04 0.16 18 0.06 0.11 0.02
ApEnmax

PP(SD−LD) (a.u.) 33 -0.04 0.09 18 0.03 0.07 0.01
MApEnmax

PP(SD−LD) (a.u.) 33 -0.35 0.63 18 0.12 0.6 0.02

σPAT (SD) (ms) 33 6.20 4.45 18 4.31 1.13 0.03
PLF

PAT (SD) (ms−2) (10−4) 33 0.15 0.39 17∗ 0.04 0.03 0.02
PLFn

PAT (SD) (%) 33 63.22 0.39 17∗ 51.56 16.3 0.03
PLF

PAT (SD−LD) (ms−2) (10−4) 33 0.08 0.24 17∗ 0.02 0.02 0.02
LF/HFPAT (SD) (adim.) 33 2.90 3.38 17∗ 1.31 0.84 0.03
SampEnPAT (SD−LD) (a.u.) 33 -0.04 0.21 18 0.12 0.21 0.01

IQR[ f R]
(SD)

(Hz) 33 0.05 0.04 18 0.03 0.03 0.03

LD-SD-SP

ApEnmax
RR(SP−SD) (a.u.) 28 0.04 0.12 12 -0.05 0.11 0.04

SampEnRR(SD−LD) (a.u.) 28 -0.03 0.12 12 0.07 0.11 0.02

ApEnmax
PP(SD−LD) (a.u.) 28 -0.02 0.07 12 0.05 0.06 0.008

SampEnPP(SP−SD) (a.u.) 28 0.07 0.15 12 -0.04 0.18 0.04
ApEnmax

PP(SP−SD) (a.u.) 28 0.012 0.11 12 -0.07 0.13 0.05

σPAT (SD) (ms) 28 6.36 4.76 12 4.16 0.84 0.002
σPAT (SP−SD)(ms) 28 -0.75 3.6 12 0.94 1.22 0.02
PLF

PAT (SD) (ms−2) (10−4) 28 0.17 0.43 12 0.03 0.02 0.01
PLFn

PAT (SD) (%) 28 62.4 16.9 12 45.9 15 0.009
LF/HFPAT (SD) (adim.) 28 2.81 3.41 12 0.99 0.59 0.009
LF/HFPAT (SP−SD) (adim.) 27 ∗ -1.56 2.48 12 -0.14 0.78 0.02

f R(SD)
(Hz) 28 0.29 0.06 12 0.26 0.04 0.04
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Figure 5.3 Correlation of nonlinear indices computed over RR and PP time series. Statistically
significant nonlinear features are shown for LD-SD cohort.
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Figure 5.4 a) ApEn(m,rmax(m)) vs. m computed on PP time series during lateral decubitus (left
panel) and during supine decubitus (right panel). b) ApEn(m,rmax(m)) vs. m computed over PP time
series evaluating differences between supine and lateral decubitus (left panel). Data distribution of
MApEnmax

PP(SD−LD) for hypotensive and normotensive groups are shown (right panel). p-values
<= 0.05 were statistically significant by Mann-Whitney U test.
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Table 5.3 Classification results for the LD-SD cohort for the different considered classifiers. In all
cases ApEnmax

PP(SD−LD) and σPAT (SD) were selected by Greedy algorithm as best feature combination.
(#) number of features, (Sens.) sensitivity, (Spec.) specificity, (PPV) positive predictive value, (Acc.)
accuracy, and F1 score.

Classifiers # Sens.(%) Spec.(%) PPV (%) Acc. (%) F1

Logistic Regression 2 76.55 69.81 57.84 72.20 0.66
Naive Bayes 2 73.78 58.91 49.75 64.16 0.59
Nearest Neighbor Method 2 44.78 73.33 47.96 63.25 0.46
LDA 2 41.56 79.64 49.45 66.20 0.46
QDA 2 68.00 59.70 48.27 62.63 0.56
SVM (linear kernel) 2 81.56 61.03 53.94 68.27 0.65
SVM (quadratic kernel) 2 71.33 58.30 48.70 62.90 0.57
SVM (polynomial order 3 kernel) 2 64.56 57.03 45.59 59.79 0.53
SVM (Radial Basis kernel) 2 75.67 60.48 51.52 65.84 0.61
SVM (Multilayer perceptron kernel) 2 77.67 59.76 50.92 66.08 0.62

Subsets of features from the two studied cohorts (LD-SD and LD-SD-SP) and a
third one (LD-SD1) that matches the same subjects from LD-SD-SP group discarding
the SP position were evaluated for classification using the logistic regression approach.
The classification results are shown in Tab. 5.4 and the parameters of the logistic
models for the different studied cohorts can be found in Tab. 5.5.

It is worth noting that the features ApEnmax
PP(SD−LD) and σPAT (SD) were selected

by the classifier in the three cohorts, and f R(SP) was added in the set for the LD-SD-
SP cohort. In Fig. 5.5 box-plots of the selected features for LD-SD and LD-SD-SP
cohorts are illustrated.
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Table 5.4 Classification results considering ECG derived respiration, RR, HRV, PP, PRV, and PAT
analysis features for the three subgroups of the database depending on protocol segments. (#) number
of features, (Sens.) sensitivity, (Spec.) specificity, (PPV) positive predictive value, (Acc.) accuracy,
and, F1 score.

Features
# Sens.(%) Spec.(%) PPV (%) Acc. (%) F1

Cohorts

LD-SD (33 vs. 18)

ApEnmax
PP(SD−LD) (a.u.) 2 76.55 69.81 57.84 72.20 0.66

σPAT (SD) (ms)

LD-SD1 (28 vs. 12)

ApEnmax
PP(SD−LD) (a.u.) 2 78.42 68.13 51.17 71.22 0.62

σPAT (SD) (ms)

LD-SD-SP (28 vs. 12)

ApEnmax
PP(SD−LD) (a.u.)

σPAT (SD) (ms) 3 75.44 74.85 56.66 75.03 0.65

f R(SP)
(Hz)

Table 5.5 Logistic regression parameters for the different cohorts.

Logistic reg. parameters LD-SD LD-SD1 LD-SD-SP
(33 vs. 18) (28 vs. 12) (28 vs. 12)

β̂0 0.306 0.446 3.13

β̂1 [σPAT (SD)] -0.38 -0.479 -0.555

β̂2 [ApEnmax
PP(SD−LD)] 8.36 10.48 -3.753

β̂3 [ f R(SP)
] - - -10.55

pth 0.342 0.268 0.344

where β̂ ’s are the coefficients and in [] is represented the corresponding feature
following Eq. 5.1. pth is the probability threshold of risk of suffering from hypotension.
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Figure 5.5 Box-plots of the features that were finally selected by classification procedure for a)
LD-SD and b) LD-SD-SP cohorts.

5.4 Discussion

Hypotensive episodes after spinal anesthesia during cesarean delivery were hypothe-
sized to be more frequent in patients with high level of stress. The risk of suffering
from hypotensive events could be related to alterations in the ANS response as-
sociated with the stress caused by the proximity of surgery and the last period of
pregnancy [46, 133]. To evaluate this hypothesis, the database used in this study
was recorded following a specific protocol enhancing the ANS response due to
hemodynamic changes. Aside from using an ANS elicitation protocol (body position
changes), which has been proved to be helpful to identify women at risk of severe
hypotensive events [95], one of the novelties of this study lies in the inclusion of the
PAT signal analysis as an alternative to blood pressure measurement that can be more
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easily obtained in clinical practice [127]. Furthermore, PAT signal provides beat-to-
beat information related to arterial stiffness and respiration whereas this information
is missed in blood pressure (BP) measurements by cuff recordings. Improving the
accuracy in predicting hypotensive events to avoid the side effects that pharmaco-
logical prophylaxis may produce in the mother and fetus in the low risk patient is
the goal of our study. However, the performance obtained by predicting hypotension
could be affected by the clinical criterion for considering an event as hypotensive,
since BP was measured every 2 minutes after spinal injection. To minimize this
effect, clinical hypotension was also considered when women showed symptoms of
dizziness, nausea or discomfort.

In this work, the influence of respiration on the ANS modulation of the heart was
also taken into account. This effect, known as respiratory sinus arrhythmia (RSA),
is reflected in the HRV, PRV and PAT through the HF band, corresponding to the
parasympathetic activity [71]. Variability analysis, in particular HRV analysis, could
lead to misinterpreted results depending on respiratory rate [7]. As mentioned above,
stress induced by surgery proximity may produce an increase of respiratory rate
(towards upper boundary of HF band) and also compression of diaphragm. In such
case, parasympathetic activity could be reflected in HRV at higher frequencies and
thus classical HF band would not be able to capture the information of interest
properly. Therefore, variability analysis was proposed to be guided by respiration,
defining an HF band centered in the respiratory rate.

The analyses of HRV and PRV were found to be highly correlated to each other,
being in agreement with the results of Gil et al.[57], see Fig. 5.3. The evaluation
on lateral decubitus, considered as a basal condition, revealed no differences be-
tween both groups of study when analyzing RR, HRV or PP, and PRV. However,
a decreased tendency on the standard deviation of PAT was found as well as on
its complexity, in terms of D2, SampEn, ApEnmax, and MApEnmax values for the
normotensive group with respect to the hypotensive one.

The hemodynamic stress was generated by supine decubitus position via aorto-
cava compression. The analyses of RR, HRV and PP, PRV showed similar temporal
and spectral values for both groups without statistical significance. Nevertheless, the
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normalized low frequency power of PAT increased and therefore, greater sympathetic
activity [56] was recorded in the hypotensive group with respect to the normotensive
group. In addition, greater and significant changes were observed for SampEn
pointing out to a decrease in the time series irregularity of RR and PP for hypotensive
group. This tendency was found for MApEnmax index as well but not statistically
significant. PAT analysis revealed an increase in the amplitude variation values in
the hypotensive group, see Fig. 5.2. On the one hand, PAT measure is affected by
pulse wave velocity, which is related to BP [61]. On the other hand, in the present
study, PAT values include the PEP which was reported to experiment changes under
enhanced sympathetic conditions [74, 113]. PEP was also highlighted to represent
from 12% to 35% of the PAT [139] and its variations could have a strong influence
on the variations of the PAT measure [126]. Variations on PEP could help in the
prediction of hypotensive episodes, since those variations might be enhanced in
the same way as the ones in pulse wave velocity increasing the PAT discrimination
power. Although one limitation of this study is the impossibility of separating those
effects, the studied PAT measure can be easily obtained in the clinical routine and
has discriminant power between hypotensive and normotensive groups.

The responsiveness of subjects through body position changes was explored
by differences between supine and lateral decubitus analysis values. The statistical
differences between hypotensive and normotensive group were more notable, in terms
of irregularity for RR, PP and also for PAT evaluating the position change. Thus, this
position change modifies the venous return and affects the ANS activity as well as
arterial pressure and stiffness. The differences of approximate entropy values between
supine and lateral decubitus computed on PP, achieved the lowest p-value when
comparing both groups of study. On the contrary, same index computed on RR signal
did not reveal statistical differences, so, hemodynamic changes affect peripheral
regulation (blood pressure) more than heart regulation (heart rate). The analysis of
MApEnmax index, derived from RR and PP, showed statistically lower mean values
for the hypotensive than the normotensive group by evaluating differences between
supine and lateral decubitus positions. In regards to the conclusions obtained by
synthetic data in chapter 4, variations of MApEnmax index indicates a decrease in the
complexity of the ANS response in the hypotensive group. The difference of standard
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deviation of PAT values observed between groups may be measuring the capacity of
ANS to react in case of a drop in blood pressure. The normotensive group presented
higher reaction range (lower σPAT (SD) values), whereas the hypotensive group shows
a narrow margin (higher σPAT (SD) values) to reach the hypothetical physiological
maximum value at which a hypotensive event is triggered.

The studied features that presented statistical differences comparing normoten-
sive and hypotensive groups were selected as candidates for classification. Due to
the high incidence ratio of hypotensive events (64.7% of cases), the prediction of the
normotensive cases is mandatory; otherwise looking for hypotensive cases higher
accuracy values can be achieved, but neglecting the other class. Thus, classification
performance was carried out by evaluating the positive predictive value and sensi-
tivity related to the normotensive group. Several classifiers were tested and the one
providing the best classification results was selected, see Tab. 5.2. In all cases, the
Greedy algorithm selected ApEnmax

PP(SD−LD) and σPAT (SD) as the best combination
of features. Regarding the F1 score measurement, the logistic regression classifier
provided the best classification result for the LD-SD cohort: 76.55% of sensitivity,
69.81% of specificity, 57.84% of positive predictive value, and 72.2% of accuracy.
Then, hereinafter classification results are referred to the logistic regression classifier.

Sitting position was also included in the protocol to enhance the ANS activity,
once the database recording was in progress. The first 20 subjects (11 of the control
group) were not asked to be in the sitting position while signals were recorded. All
the analysis procedure was duplicated by considering this position on a subset of
the whole database (LD-SD-SP), see Tab. 5.2. In this cohort, f R(SP) was selected
increasing the classification performance with respect to the one obtained for LD-
SD1 cohort. On the other hand, the comparison between sitting position and lateral
decubitus did not reveal any index capable of distinguishing both groups of study.
The variation in the sympathetic activity caused by sitting position with respect to
the other two body positions was apparently not enough to generate notable changes
on the studied indices.

In the study of Brenck et al. risk factors for developing hypotension based
on population characteristics were studied over 500 pregnant women, achieving
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accuracy around 60% [25]. A test combining the demographic data with the features
derived from the ECG and PPG signals was carried out with the data presented in
this chapter, and the classification results using logistic regression were superior to
only considering ECG and PPG-derived indices. In particular, the Greedy algorithm
selected body mass index (BMI) and the standard deviation of PAT values during
supine position, altogether leading to classification performance characterized by
82.5% sensitivity, 67.9% specificity, and 72.9% of accuracy. Based on this, it is
reasonable to suggest that the combination of demographic data and features derived
from ECG and PPG signals can lead to better classification results. However, this
statement should be validated over an extended database.

Several studies attempted to shed light into the role of HRV and pulse oximeter
derived index analysis for predicting hypotension after spinal anesthesia for cesarean
section delivery [31, 66, 160, 199]. Despite of Yokose et al. found heart rate as the
only predictor obtaining an area under the ROC curve (area under curve (AUC)) of
0.68, this feature did not show predictive power in the database analyzed in our study.
In a study carried out by Sakata and co-workers, the importance of including postural
changes into the recording protocol to enhance hemodynamic changes and ANS
response was highlighted achieving an area under the ROC curve of 0.76. There,
LF/HF was reported to be increased in those parturient who developed hypotension.
In our case, similar trend was found for the LF/HF through the PAT signal (Hyp:
2.9±3.38 versus No-Hyp: 1.31±0.84 in LD-SD cohort and Hyp: 2.81±3.41 versus
No-Hyp: 0.99±0.59 in LD-SD-SP cohort), see Tab. 5.2. Ghabach et al. reported a
relationship between approximate entropy and antenatal weight gain [55]. Assuming
that this position was lateral decubitus, which represents the basal position without
any extra hemodynamic stress, the results found in this chapter are in disagreement
with the ones reported by Ghabach. In our study no statistical differences were found
in the weight gain (results shown in Tab. 5.1) nor in approximate entropy during
lateral position (Hyp: 0.87±0.08); N-Hyp: 0.85±0.1 and p-value: 0.95, values
corresponding to LD-SD cohort). Although in the work of Yokose et al. neither HRV
nor PRV were useful to prospectively relate the analysis results to hypotensive events
[199], our study provides contrary insights. Lack of standardization on hypotension
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definition and the low number of subjects become a limitation leading to controversial
results. Thus, future studies on a larger database should be explored.

Regarding the classification results obtained in this study, first, we would like
to focus our attention into sensitivity values. Normotensive cases were defined as
positive cases for classification, since this is the minority group and their associated
subjects the ones who may suffer from anesthetic side effects in case of a failed
detection. Among normotensive cases (18 women), the 76.55% of them (≈14) were
correctly classified, thus only the 25% (≈4) could present anesthetic side effects. On
the contrary, among hypotensive cases (33 women), the 69.8% (≈23) were correctly
classified, whereas the 31.2% (≈10) were classified as normotensive and they will
suffer from hypotension caused by anesthesia, but they will be treated when hypoten-
sion will be detected. The benefits of our classification results were highlighted being
only 4 out of 55 women the population that could present undesirable, but avoidable
by proper prediction, side effect in mother and fetus. The classifier presented in this
chapter could help to better assist clinicians to take decisions. Although the accuracy
obtained is close to the clinical target of the 80%, it is still margin to continue investi-
gating to identify those factors that triggers the hypotensive events and increase the
accuracy of their prediction.

5.5 Conclusion

PP and PAT analysis could help to predict hypotension events after spinal anesthesia
during cesarean section extending the description of ANS regulation and its response
to postural changes. Nonlinear indices characterizing PP and PAT time series used
as features to classify normotensive and hypotensive women outcome could help
to better assist clinicians to take decisions. These analyses may indicate the role of
peripheral regulation and blood pressure changes in order to avoid the undesirable
side effects of prophylactic administration in the low-risk population.







“How often have I said to you that
when you have eliminated the
impossible, whatever remains,
however improbable, must be the
truth?”

Sherlock Holmes
Sign of the Four, Ch. 6, p. 111

- Arthur Conan Doyle (1859-1930) -

6
Conclusions and Future Lines

Summary

Nonlinear indices for short-term HRV analysis have been reported as promising in
the description of ANS regulation of the heart, providing complementary information
to the classical time- and frequency-domain methods. However, their physiological
interpretation remains unclear, since quantification of nonlinear indices is highly
dependent on methodological factors, such as the intrinsic sampling rate of the HRV
time series or the selection of parameter values involved in the definitions. In this
thesis, a methodological framework aimed at increasing estimation reliability of
nonlinear HRV indices is introduced. This framework could aid in the physiological
interpretation of cardiac ANS regulation and reduce the computational cost for
short-term HRV analysis, thus rendering nonlinear HRV analysis more suitable for
application in clinical practice. Major concluding remarks of this thesis are presented
in the following.
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Nonlinear HRV Analysis: Reliability and
Computational Load

In chapter 2, a novel framework for estimation of correlation dimension was intro-
duced. The inclusion of self-comparisons in computing the probability of finding
similar patterns among reconstructed vectors allowed us to fit the log-log curves to a
sigmoidal function (upper asymptote corresponding to the case of all reconstructed
vectors being considered as similar to each other, and lower asymptote referring to
the case of only self-comparisons being considered in the computation of correlation
sums). The proposed approach improves the identification of the linear region and
the slope is estimated as the maximum of the derivative of the sigmoidal function.

One of the bottlenecks in the application of nonlinear HRV analysis in clinical
practice is its high computational load. An algorithm was proposed based on matrix
operations that led to a notable reduction in computational load as compared to the
sequential approach. With the proposed algorithm D2 was estimated in 1 second for
a 300-sample time series, while the sequential approach took 18 minutes.

Within the methodological framework proposed in this thesis, two alternatives
for estimating correlation dimension were considered. The first one, with correlation
dimension estimate denoted by D2(⊥), considered a range of slope values near the
maximum slope in the log-log curve of m = 1 and a gradient descent technique
was used to estimate the slopes of the remaining log-log curves. The second one,
providing a correlation dimension estimate denoted by D2(max), considered maximum
values of the SampEn surface. The proposed methodologies for D2 computation
were tested by estimating the fractal dimension of the Lorenz attractor, obtaining
a relative error with respect to the theoretical value of 4% for D2(max) and 1% for
D2(⊥), while the relative error for the sequential approach was of 4%.

Caveats in the Interpretation of Nonlinear HRV Indices

Effect of HRM on Nonlinear HRV Indices
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In chapter 3, the influence of HR on nonlinear HRV indices was addressed. A si-
mulation study using the IPFM model was carried out to investigate conditions where
HRV and HR were uncorrelated. Stochastic realizations of IPFM modulating signals
were generated based on estimates from a healthy subject at rest. The model allowed
the variation of HRM values without altering the remaining model components, thus
generating RR time series with similar ANS modulation but different HRM. The
studied nonlinear HRV indices (correlation dimension as well as approximate and
sample entropy) showed positive correlation with mean RR changes (negative with
respect to HRM), being these results in agreement with the dependencies reported in
previous studies [202, 146, 123, 195]. Methodologies to attenuate this HRM effect
on nonlinear HRV indices were proposed based on: interpolation of RR time series;
computation of RR time series as derived from a point-process model; and regression
(linear and parabolic) formulas relating HRV indices and RR.

A database consisting of ECG recordings of healthy subjects undergoing body
position changes, as described in section 3.2.2, was analyzed and nonlinear HRV
indices were calculated. An increase in HRM of 28% (in terms of median values)
was measured when changing from supine to upright position. The corresponding
nonlinear HRV indices were statistically significantly reduced by 21, 34, and 21 % for
D2(max), SampEn and ApEnmax respectively. When introducing interpolation prior to
computation of nonlinear HRV, the corrected indices were found to be significantly
reduced in upright with respect to supine position, in this case by 18, 30, and 12 %
for D2(max), SampEn and ApEnmax respectively, thus confirming attenuation of the
HRM effect. Application of HRM correction of nonlinear HRV indices based on
linear or parabolic regression formulas led to results similar to those obtained by
interpolation, with the disadvantage of being more time-consuming. Correction using
a point-process model also attenuated the dependence of nonlinear HRV indices on
HRM. However, the high resolution of point-process-derived time series needed to
capture the right censoring effect imply a very notable increase in data length, which
possibly precludes the use of this technique in clinical applications. Globally, the
approaches proposed in this thesis lead to HR-corrected nonlinear HRV indices able
to capture the variation in cardiac ANS modulation induced by body position-induced
changes regardless of variations in HRM values.
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Application of the proposed methodologies to correct for the effects of HR could
represent an improvement in the applicability of nonlinear HRV analysis, extending
it to cases where HRM cannot be considered as constant. Evaluation of nonlinear
HRV beyond HR is of relevance. In this regard, previous studies have demonstrated
differences in nonlinear HRV indices despite controlling for HR values, as in the
study by Weippert et al., who reported differences in nonlinear HRV analysis under
dynamic and static exercise even if keeping similar HRs [188].

Effects of a priori Parameter Value Selection on Nonlinear HRV Indices

On top of the effect of HRM on nonlinear HRV indices, physiological interpreta-
tion of these indices can also be influenced by the value of parameters that need to
be a priori defined when defining the indices. Approximate entropy is an example
where the values of the embedding dimension, m, and the threshold, r, need to be
selected prior to its computation. The effect of varying the values of these parameters
was assessed in chapter 4. Rather than considering a fixed threshold value r, selecting
the one that maximizes the approximate entropy (denoted by maximum approximate
entropy) has been reported to be a better indicator of the degree of randomness of the
time series. However, this maximum approximate entropy still remains dependent on
the embedding dimension m, which hampers its interpretation. To cope with this, a
nonlinear approximate entropy-based index independent of a priori parameters was
proposed in this thesis. This index is called multidimensional approximate entropy,
MApEnmax.

Time series generated from MIX(P) processes, with varying level of randomness,
as well as from white and 1/ f noises were used as a basis for evaluation of the
proposed MApEnmax index. The obtained results showed that the proposed index
was able to capture the degree of randomness with increasingly higher MApEnmax

values for more random time series. The results for MApEnmax were compared with
those of ApEn(m,rmax(m)), for particular values of the embedding dimension m.
The proposed index, by accounting for multidimensional information, showed more
pronounced differences as a function of the level of randomness as compared to
ApEn(m,rmax(m)) for any individual value of m.
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By incorporating the proposed multidimensional index to nonlinear HRV analy-
sis, the effects of aging and CHF disease were assessed. Aging on was evaluated by
investigating ECG recordings of healthy awake subjects at rest. Lower MApEnmax

values were found in the elderly group as compared to the young group . Such a
reduction in HRV may be indicative of a decrease in ANS regulation complexity with
age. In a separate investigation, ECG recordings of CHF patients and healthy subjects
were analyzed during the night period. CHF patients showed greater MApEnmax

values than healthy subjects. Although these results would reflect increased nonlinear-
ities in ANS regulation in association with CHF, the influence of other concomitant
disorders, such as sleep apnea, on HRV cannot be discarded, which would interfere
in the interpretation of CHF effects.

In conclusion, the proposal of MApEnmax as a novel index for nonlinear HRV
analysis provides more robust information on the randomness level of time series and
could represent a better indicator of HR dynamics complexity, with the additional
important advantage of being independent of pre-selected parameter values.

Clinical Application: Improving Efficacy of Prophylaxis in
Preventing Hypotensive Events during Cesarean Section

The aforementioned methodological proposals were applied to investigate a stress-
related clinical problem, namely prediction of hypotensive episodes during cesarean
section after spinal anesthesia. The study was carried out in collaboration with the
Anesthesia Department of Hospital Miguel Servet (Zaragoza, Spain). The stress
caused by the last period of pregnancy and the proximity of surgery could be factors
altering ANS regulation on the heart and predisposing to hypotension. Linear and
nonlinear analyses applied onto cardiovascular variability signals, such as HRV,
pulse arrival time variability and pulse rate (from pulse photoplethysmographic
signal) variability, were analyzed following a protocol that included variations in
body position (lateral decubitus, supine decubitus and sitting) to elicit autonomic
changes.
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Analyzed features presenting statistically significant differences between nor-
motensive and hypotensive groups were incorporated into a logistic regression-based
classifier. The best classification results were achieved for the combination of
ApEnmax

PR(SD−LD) and σPAT (SD), measured at lateral and supine decubitus, reaching
76.55% sensitivity, 69.81% specificity, 57.84% positive predictive value and 72.2%
accuracy. These figures on classification performance evaluate the positive predictive
value and sensitivity referred to the normotensive group, as the main objective of
the study is to improve prophylaxis efficacy to avoid undesirable side effects in this
low-risk normotensive group.

According to the obtained results, pulse rate (PR) and PAT analysis could help
predict hypotensive events after spinal anesthesia during cesarean section, thus
extending the description of ANS regulation to other variability signals on top of
HRV. Peripheral regulation and blood pressure information, incorporated into a
classifier like the one proposed in this thesis, could aid clinicians in their decision
making.

Importantly, the benefit of including nonlinear indices in the description of
variability signals was highlighted in the evaluated stress-related clinical problem,
where the combination of a nonlinear index (measuring maximum approximate
entropy) and a temporal index (measuring the standard deviation) was selected as
providing the best classification results. In addition, nonlinear HRV indices corrected
for HR effect as well as the novel multidimensional parameter-free index proposed in
this thesis, MApEnmax, demonstrated the ability to capture altered ANS modulation
in the evaluated problem.

Future Lines

Based on the results achieved in this PhD thesis, the following extensions or future
lines are proposed:
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Nonlinear HRV Analysis under ANS Blockade Conditions

Physiological interpretation on the role of sympathetic and parasympathetic ANS
branches in modulating nonlinear HRV characteristics deserves further investigation.
Analysis of the nonlinear HRV indices proposed in this study under interventions
inhibiting or stimulating the activity of each of the two autonomic branches would
be of major interest. This proposed analysis should ideally first be performed over a
healthy population to provide meaningful physiological interpretations that could be
the basis for subsequent studies aimed at elucidating how specific cardiac disorders
alter cardiac ANS modulation quantified via nonlinear HRV analysis.

Another investigation that should be accomplished in future studies regards the
study of changes in nonlinear HRV in the presence of multiple concomitant disorders.
In this thesis, nonlinear HRV was analyzed in patients with congestive heart failure.
However, a relevant number of those patients presented with sleep apnea, which
may notably limit interpretation of the obtained results in terms of CHF effects
[129]. While patients presenting multiple disorders could have been discarded from
further analysis, the low number of them fulfilling such criterion represents a major
limitation. Access to a database comprising a relevant number of patients free from
any other disorder apart from CHF could be the basis of a new research line.

On the Relation of ANS and Cardio-respiratory System

Another effect interfering in HRV interpretation is respiratory sinus arrhythmia,
which is associated with the high frequency content in spectral HRV analysis. Con-
tradictory results have been reported from the analysis of the influence of controlled
breathing on nonlinear HRV indices [86, 152]. The point-process methodology,
introduced in chapter 3, has been used to assess the interaction of cardio-respiratory
and ANS systems [184, 32]. Valenza et al. described the concept of complexity vari-
ability as variations in instantaneous dominant Lyapunov exponent estimates [185].
Based on this concept, the coupling between HRV and respiration was analyzed,
quantifying the effect of respiratory sinus arrhythmia on HRV. Based on the results
of this thesis, the usage of MApEnmax may render valuable information analyzing the
effect of RSA on HRV in terms of irregularity, since pattern length related to RSA
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could match with the embedding dimension used by ApEn misleading the underlying
nonlinear dynamic.

Spectral HRV Complexity

Spectral HRV analysis is commonly accepted as a method to assess sympathetic and
parasympathetic contributions to ANS modulation of heart rate. Most methods based
on the study of spectral components assume stationarity of heart rate signals and
characterize low and high frequency powers of HRV by a single value. Spectral time-
varying approaches extend the applicability of spectral analysis to conditions where
ANS modulation is changing, as e.g. during exercise. The assessment of the results
obtained by time-frequency approaches is limited to characterize central tendency
and amplitude variations of spectral components. However, the framework developed
in this thesis for nonlinear HRV analysis could be extended to this study, providing
further and information of interest about nonlinear ANS modulation dynamics.
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