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Abstract

The main objective of this thesis is to develop non-invasive methods for

respiration information extraction from two biomedical signals which are

widely adopted in clinical routine: the electrocardiogram (ECG) and the

pulse photoplethysmographic (PPG) signal. This study is motivated by the

desirability of monitoring respiratory information from non-invasive devices

allowing to substitute the current respiration-monitoring techniques which

may interfere with natural breathing and which are unmanageable in some

applications such as stress test or sleep studies. Furthermore, if these non-

invasive devices are those already used in the clinical routine, the respiratory

information obtained from them represents an added value which allows a

more complete overview of the patient status.

This thesis is divided into 6 chapters. Chapter 1 of this thesis introduces

the problematic, motivations and objectives of this study. It also introduces

the physiological origin of studied ECG and PPG signals, and why and how

they carry autonomic- and respiration-related information which can be

extracted from them.

Chapter 2 of this thesis addresses the derivation of respiratory informa-

tion from ECG signal. Several ECG derived respiration (EDR) methods

have been presented in literature. Their performance usually decrease con-

siderably in highly non-stationary and noisy environments such as stress

test. However, some alternatives aimed to this kind of environments have

been presented, such as one based on electrical axis rotation angles (ob-

tained from the ECG), which to the best of our knowledge was the best

suited for stress test. This method requires three orthogonal leads, and it

is very dependent on each one of those leads, i.e., the performance of the

method is significantly decreased if there is any problem at any one of the

required leads. A novel EDR method based on QRS slopes and R-wave

angle is presented in this thesis. The proposed method demonstrated to

be robust in highly non-stationary and noisy environments and so to be

applicable to exercise conditions including sports training. Furthermore, it
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is independent on a specific lead set, and so, a problem at any lead do not

imply a significantly reduction of the performance.

Chapter 3 addresses the derivation of respiratory information from PPG

signals. A novel method for deriving respiratory rate from PPG signal is pre-

sented. It exploits respiration-related modulations in pulse width variability

(PWV) which is related to pulse wave velocity and dispersion. The proposed

method is much less affected by the sympathetic tone than other methods

in literature which are usually based on pulses amplitude and/or rate. This

leads to highest accuracy than other PPG-based method. Furthermore,

a method for combining information from several respiratory signals was

developed and used to obtain a respiratory rate estimation from the pro-

posed PWV-based in combination with other known PPG-based methods,

improving the accuracy of the estimation and outperforming other methods

in literature which involve ECG or BP recording.

Chapter 4 addresses the derivation of respiratory information from smart-

phone-camera-acquired-PPG (SCPPG) signals by adapting the methods for

deriving respiratory rate from PPG signal presented in Chapter 3. The pro-

posed method accurately estimates respiratory rate from SCPPG signals at

its normal spontaneous ranges (0.2-0.4 Hz) and even at higher rates (up to

0.5 Hz or 0.6 Hz, depending on the used device). The only requirement is

that these smartphones and tablets contain a flashlight and a video camera

to image a fingertip pressed to it. As smartphones and tablets have become

common, they meet the criteria of ready access and acceptance. Hence, a

mobile phone/tablet approach has the potential to be widely-accepted by

the general population and can facilitate the capability to measure some of

the vital signs using only fingertip of the subject.

Chapter 5 of this thesis proposes a methodology for obstructive sleep

apnea syndrome (OSAS) screening in children just based on PPG signal.

OSAS is a sleep-respiration-related dysfunction for which polysomnogra-

phy (PSG) is the gold standard for diagnosis. PSG consists of overnight

recording of many signals during sleep, therefore, it is quite involved and

difficult to use in ambulatory scenario. The method presented in this thesis

is aimed to diagnose the OSAS in children based just on PPG signal which

would allow us to consider an ambulatory diagnosis with both its social and

economic advantages.

Finally, Chapter 6 summarizes the original contributions and main con-

clusions of the thesis, and proposes possible extensions of the work.



Resumen y conclusiones

El objetivo principal de esta tesis es el desarrollo de métodos no inva-

sivos para la extracción de información respiratoria a partir de dos señales

biomédicas ampliamente utilizadas en la rutina cĺınica: el electrocardio-

grama (ECG) y la señal fotopletismográfica de pulso (PPG). La motivación

de este estudio es la conveniencia de monitorizar información respiratoria a

partir de dispositivos no invasivos que permita sustituir las técnicas actuales

que podŕıan interferir con la respiración natural y que presentan inconve-

nientes en algunas aplicaciones como la prueba de esfuerzo y los estudios

del sueño. Además, si estos dispositivos no invasivos son los ya utilizados

en la rutina cĺınica, la información respiratoria extráıda de ellos representa

un valor añadido que permite tener una visión más completa del paciente.

Esta tesis se divide en 6 caṕıtulos. El Caṕıtulo 1 introduce la prob-

lemática, motivaciones y objetivos del estudio. También introduce el origen

fisiológico de las señales estudiadas ECG y PPG, y cómo y por qué tienen

información autonómica y respiratoria que se puede extraer de ellas.

El Caṕıtulo 2 aborda la obtención de información respiratoria a partir

del ECG. Se han propuesto varios métodos para la obtención de la res-

piración a partir del ECG (EDR, del inglés “ECG derived respiration”).

Su rendimiento se suele ver muy afectado en entornos altamente no esta-

cionarios y ruidosos como la prueba de esfuerzo. No obstante, se han prop-

uesto algunas alternativas, como una basada en el ángulo de rotación del

eje eléctrico (obtenido del ECG), que es el que mejor funciona en prueba

de esfuerzo según nuestros conocimientos. Este método requiere de tres

derivaciones ortogonales y es muy dependiente de cada una de ellas, i.e., el

método no es aplicable o su rendimiento se reduce significativamente si hay

algún problema en alguna de las derivaciones requeridas. En el Caṕıtulo 2

se propone un método EDR nuevo basado en las pendientes del QRS y el

ángulo de la onda R. El método presentado demostró ser robusto en entornos

altamente no estacionarios y ruidosos y por tanto ser aplicable durante ejer-

cicio incluyendo entrenamiento deportivo. Además, es independiente de un
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conjunto espećıfico de derivaciones y, por tanto, un problema en alguna de

ellas no implica una reducción considerable del rendimiento.

El Caṕıtulo 3 aborda a obtención de información respiratoria a partir

de la señal PPG. Se propone un método nuevo para obtener la tasa respi-

ratoria a partir de la señal PPG. Explota una modulación respiratoria en

la variabilidad de anchura de pulso (PWV) relacionada con la velocidad y

dispersión de la onda de pulso. La PWV está mucho menos afectada por

el tono simpático que otros métodos presentados en la literatura que suelen

basarse en la amplitud y/o la tasa de pulso. Esto permite una mayor pre-

cisión que otros métodos basados en PPG. Además, se propone un método

para combinar información de diferentes señales respiratorias, y se utiliza

para estimar la tasa respiratoria a partir de la PWV en combinación con

otros métodos basados en la señal PPG, mejorando la precisión de la es-

timación incluso en comparación con otros métodos en la literatura que

requieren el ECG o la presión sangúınea.

El Caṕıtulo 4 aborda la extracción de información respiratoria a partir de

señales PPG registradas con smarthpones (SCPPG), mediante la adaptación

de los métodos basados en la señal PPG presentados en el Caṕıtulo 3. Los

métodos propuestos estimaron de forma precisa la tasa respiratoria para

a partir de señales SCPPG en sus rangos espontáneos habituales (0.2-0.4

Hz) e incluso a tasas más altas (hasta 0.5 Hz o 0.6 Hz, dependiendo del

dispositivo utilizado). El único requerimiento es que el smartphone tenga

un luz tipo flash y una cámara para grabar una yema del dedo sobre ella.

La popularidad de los smartphones los convierte en dispositivos de acceso

y aceptación rápidos. Aśı, para la población general es potencialmente

aceptable un método que funciona en smartphones, pudiendo facilitar la

medida de algunas constantes vitales utilizando solo la yema del dedo.

El Caṕıtulo 5 se propone un método para el diagnóstico del śındrome

de apnea obstructiva del sueño (OSAS) en niños basado únicamente en la

señal PPG. El OSAS es una disfunción relacionada con la respiración y el

sueño que se diagnostica mediante polisomnograf́ıa (PSG). La PSG es el

registro nocturno de muchas señales durante el sueño, siendo muy dif́ıcil de

aplicar en entornos ambulatorios. El método que presenta esta tesis está

enfocado a diagnosticar el OSAS en niños utilizando únicamente la señal

PPG que permitiŕıa considerar un diagnóstico ambulatorio con sus ventajas

económicas y sociales.

Finalmente, el Caṕıtulo 6 resume las contribuciones originales y las con-

clusiones principales de esta tesis, y propone posibles extensiones del tra-

bajo.
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Chapter 1

Introduction

If you want to conquer the anxiety of life,

live in the moment, live in the breath.

Amit Ray.

1.1 Motivations

Monitoring respiratory information is useful in several situations, e.g., res-

piratory rate is a sensitive clinical parameter in a multitude of pulmonary

diseases [1], such as acute respiratory dysfunction, for which respiratory

rate remains the first and often the most sensitive marker [2, 3]. Another

example is detection of periodic breathing, which shares pathophysiological

aspects with the central sleep apnea syndrome and with CheyneStokes res-

piration in patients with heart failure [4], and results in elevated mortality

in this last kind of patients [5]. Respiratory rate is very useful also in sports

training, because it is a reliable marker for the anaerobic threshold, which

is defined as the theoretical highest exercise level that can be maintained

for prolonged periods [6–9].

Respiration is usually recorded by spirometry, pneumography, or plethys-

mography. These techniques require cumbersome devices which may inter-

fere with natural breathing and which are unmanageable in some situations

such as ambulatory monitoring, stress tests, or sleep studies [10], where

the patient comfort is critically relevant for affecting physiological sleep as

minimally as possible.

Therefore, obtaining respiratory information from non-invasive devices

is a very relevant task. It is even more desirable that these non-invasive

devices are those already used in the clinical routine and thus, respiratory

information obtained from them allows to have a more complete overview of

the patient status. One of the most used signals in the clinical monitoring

is the electrocardiogram (ECG) on which many markers of several cardiac

diseases are based. ECG has also other uses such as heart rate monitoring

1
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and autonomic nervous system (ANS) assessment, which result interesting

in several applications such as stress monitoring and sport performance.

Another signal from which obtaining respiratory information results par-

ticularly interesting is the PPG signal. PPG signal is usually provided by

a simple, economical and comfortable device called pulse oximeter. The

form factor of the pulse oximeter is commonly a fingertip, and it is widely

adopted in the clinical routine as SpO2 monitor. SpO2 is a very important

parameter in studies concerning respiration and essential in many applica-

tions such as sleep apnea diagnosis. Obtaining accurate respiratory signal

from a pulse oximeter would allow us to consider an ambulatory diagnosis

with its both social and economic advantages. Because of these properties,

PPG signal receives especial attention in this thesis.

In this thesis, novel methods for obtaining respiratory information from

ECG signals, and also from PPG signals are presented. Some algorithms for

combining information of different methods aimed to increase the robustness

are also developed. Finally, an obstructive sleep apnea syndrome (OSAS)-

in-children screening method based only in PPG signal is proposed.

1.2 Autonomic nervous system

The brain and the spinal cord compose the central nervous system. A large

segment of the nervous system operates at a subconscious level and it is

called the ANS. It controls many functions of the internal organs, move-

ments of the gastrointestinal tract, secretion by many of the glands of the

body, and including the level of pumping activity by the heart [11]. ANS

controls the heart rate by exciting the sinus node. In absence of ANS influ-

ence, the intrinsic heart rate is about 100 to 120 beats per minute [12].

ANS is composed of two branches. On one hand, the sympathetic ner-

vous system. It “activates” the body when necessary, e.g., in an alarm sit-

uation. An animal in this state decides almost instantly whether to stand

and fight or to run, and because of this, this reaction is so-called the fight

or flight reaction. In either event, the sympathetic alarm reaction makes

the subsequent activities of the animal vigorous [11]. Some of the effects of

a sympathetic activation are, among others, heart rate increase and vaso-

constriction.

On the other hand, the parasympathetic nervous system “relaxes” the

body and it is the responsible of the so called rest and digest status. A

parasympathetic activation induces, among other processes, heart rate de-

crease. The parasympathetic branch acts in a much more specific way than
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the sympathetic branch, which commonly generates a mass response. For

instance, parasympathetic branch cardiovascular control usually acts only

on the heart rate [11].

Some processes are known to be controlled by only one of the branches,

e.g., arteries constriction is controlled by only the sympathetic branch, and

respiration is controlled by only the parasympathetic branch. However, the

two branches acts in a reciprocal manner, with increases in the activity of

one of them associated with decreases in the activity of the other one, at

least in part [13]. In this way, the overall status of the organism depends

on which ANS branch is predominating and how big this predominance is

at each moment. This sympathetic-parasympathetic balance is commonly

referred to sympathovagal balance.

1.3 Biomedical signals

1.3.1 Electrocardiogram

The ECG is the measurement of the electrical activity of the heart recorded

superficially over the skin by two electrodes. The voltage variations between

the electrodes are originated by the action potentials of the cardiac cells that

make them to contract. The resulting beat can be seen in the ECG as a set

of waves. The morphology and temporal variations of those waves represent

information which is used for diagnosis of diseases that affect the electrical

activity of the heart. The time between successive beats represents also

useful information [14].

The morphology of each heartbeat in a normal ECG signal is composed

of several waves. ANS rhythmically excites the sinus node (S-A node) which

generates an electrical impulse. This electrical impulse is transmitted to

along the atria through the internodal pathways, leading to an atrial depo-

larization and so an atrial contraction. This atrial depolarization is reflected

in the ECG by the P wave. Subsequently, the impulse is delayed in the atri-

oventricular node (A-V node) allowing the blood to get into ventricles be-

fore their contraction. The A-V node transmit the electrical impulse to the

bundle of His (A-V bundle), which in conjunction with the Purkinje fibers

rapidly gets the electrical impulse to all parts of the ventricles, leading to

their depolarization associated to their contraction and so the blood pump-

ing [11]. Ventricular depolarization is reflected in the ECG by the QRS

complex which is the result of superposition of 3 waves: Q, R, and S waves.

QRS complex reflects also, in a very minor part, the atrial repolarization
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Figure 1.1: Sinus node, and the Purkinje system of the heart, showing also the

A-V node, atrial internodal pathways, and ventricular bundle branches (From [11]).

associated to the atrial relaxation. However, this effect cannot usually be

observed in the ECG because it is overlapped in time with the ventricular

depolarization which generates the great major part of QRS complex. The

following wave to QRS complex which is usually the last wave of the heart-

beat is known as T wave, and it reflects the ventricular repolarization which

occur during the ventricular relaxation. The heart anatomy parts named in

this paragraph are illustrated in Fig. 1.1, and a normal ECG can be seen

in Fig. 1.2.

Electrocardiogram recording techniques

The electrodes are placed over the skin in positions where the spatio-tempo-

ral variations of the cardiac electrical field are reflected enough. A specific

position of a pair of electrodes is called lead. The recording of that pair

of electrodes is denoted with the name of that lead. The ECG is usually

recorded by using a multi-lead set-up which uses unipolar and bipolar leads.

An ECG lead is a unipolar lead if it records the voltage variation in one

electrode, taking the reference in another virtual electrode where the voltage

remains almost constant during the whole cardiac cycle. On the other hand,

bipolar leads are those leads which record the voltage between two electrodes

[14]. The clinical routine has established a 12 lead set-up which is known as
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Figure 1.2: Normal electrocardiogram signal (From [11]).

12-standard-leads ECG which is composed of 3 bipolar leads and 9 unipolar

leads.

The 3 bipolar leads of the 12-standard-leads ECG are known as the

bipolar limb leads and they were introduced by Einthoven in the early 20th

century:

I = VLA − VRA (1.1)

II = VLL − VRA (1.2)

III = VLL − VLA, (1.3)

where VLA, VRA and VLL denote the voltage recorded by electrodes placed

at the left arm, right arm and left leg, respectively. The bipolar limb leads

describe a triangle known as “Einthoven’s triangle” which has the heart at

its center.

The 9 unipolar leads of the 12-standard leads ECG can be divided into 2

groups. On one hand, the augmented unipolar limb leads which were intro-

duced by Golderberg [15, 16] by modifying a previous procedure proposed

by Wilson et al. [17]. The procedure proposed by Wilson measures 3 leads

known as V leads (V R, V L, V F ) which represent the voltage variations at

a single location of the three locations of the Einthoven’s triangle, based

on a relatively neutral reference electrode obtained by pooling the 3 limb

electrodes in a common terminal. Golderberg proposed to disconnect the
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central terminal from the limb to which the exploring electrode was placed,

getting bigger the voltage variations in the V leads and defining the aug-

mented leads [18]:

aV R = VRA −
VLA + VLL

2
(1.4)

aV L = VLL −
VRA + VLL

2
(1.5)

aV F = VLL −
VLA + VRA

2
. (1.6)

On the other hand, the precordial leads whose electrodes are placed

directly over the chest, nearer to the heart than the limb leads as shows

Fig. 1.3. The directions of the 12-standard-leads ECG are shown in Fig.

1.4.

I

+ +

+

-

-

-

BIPOLAR LEADS

III

II

PRECORDIAL LEADS

V1 V2 V3 V4

V5

V6

Figure 1.3: Electrode locations for the 12-standard-leads ECG.

Vectorcardiogram

The vectorcardiogram (VCG) is obtained from an ECG set-up composed

of 3 orthogonal leads. A VCG set-up is attractive because it reflects the

heart electrical activity in 3 perpendicular directions X, Y and Z. The

interpretation of the VCG is not limited to separate leads, but additional

information is obtained from the three-dimensional beat “loops” traced by

the end point of the vector which defines the dominant direction of the

electrical wavefront [14] (see Fig. 1.5).
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Figure 1.5: A VCG loop and its projection onto the three orthogonal planes.

The two arrows outside each loop indicate the direction in which the loop evolves

(From [14]).

Autonomic information in the electrocardiogram

The autonomic control of the heart rate have been exploited for ANS as-

sessment in many studies. There is ANS information in beat occurrence
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since the ANS controls the heart rate by exciting the sinus node. Heart rate

varies along the time, e.g., it is lower in rest conditions than during exercise

but, even during periods with the same heart rate mean, there are still vari-

ations in heart rate. These short-term variations in heart rate are known

as heart rate variability (HRV), and they remain the most extended tool

for ECG-based ANS assessment. The methods of HRV measurement were

standardized and its physiological and pathophysiolocal correlates were de-

fined by a Task Force constituted by the European Society of Cardiology

and the North American Society of Pacing and Electrophysiology [19].

In this way, HRV analysis is subjected to sinus beat occurrence time.

The most appropriate fiducial point to determine such beat occurrence is

the P wave onset. However, P wave has a very low energy so using this wave

to accurately determine the fiducial points is an extremely difficult task. For

this reason, the fiducial point is usually based on QRS complex which has

a much larger energy and so its detection is much more reliable. The use of

RR intervals (led by successive R points) is generally accepted, considering

that PR interval is relatively fixed and so, that the RR intervals reflect the

activity of the sinus node [14]. It is necessary to remark that sometimes a

mass of heart cells not located in the sinus node may generate an electrical

impulse before the sinus node, generating a phenomenon known as ectopic

beat. These ectopic beats does not reflect the activity of the sinus node,

so they must be excluded in HRV analysis leading to a new interval series

commonly denoted normal-to-normal intervals, or NN intervals.

Several NN interval series representations have been used. The sim-

plest one is the so-called interval tachogram which is a signal composed of

successive NN intervals:

dIT(k) = tk − tk−1, (1.7)

where tk denotes the time occurrence of the kth sinus beat.

Another NN interval series representation is the inverse interval tacho-

gram, which is similar to the interval tachogram but reflecting the heart

rate:

dIIT(k) =
1

tk − tk−1
. (1.8)

Note that both interval tachogram and its inverse are discrete signals

that represent different amplitudes related to the NN interval series at each

heartbeat, but heartbeats occur non-uniformly in time. For this reason, it

is more common to use functions which represent the same information on a
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continuous-time basis taking in account the time instant when each heart-

beat occurs. These functions are known as interval function and inverse

interval function and they are defined as:

duIF(t) =
∑

k

[tk − tk−1] δ (t− tk) (1.9)

duIIF(t) =
∑

k

[

1

tk − tk−1

]

δ (t− tk) , (1.10)

where the superscript “u” denotes that the signal is unevenly sampled.

Methods of HRV measurement can be divided into 2 groups. On one

hand the time domain methods, which are based on statistical or geometric

measurements of the NN interval series, such as the standard deviation

(SD) of the NN intervals (so-called SDNN), the root mean square (RMS) of

differences of successive NN intervals (so-called rMSSD), or the number of

differences of successive NN intervals greater than 50 ms (so-called NN50),

among others.

On the other hand, the frequency domain methods are subjected to a

power spectrum density (PSD) estimation from a fragment of an NN interval

series representation, usually of 2-5 minutes of length. Two main spectral

bands are studied in an HRV PSD: the low frequency (LF) (tipically [0.04,

0.15] Hz), and the high frequency (HF) (typically [0.15, 0.4] Hz) bands.

The physiological interpretation of these frequency components of HRV

has been studied by inferring sympathetic and/or parasympathetic block-

ades. Sympathetic blockade leads to a power decrease in LF band, while

parasympathetic blockade leads to a power decrease in both LF and HF

band [20]. In this way, HF band is accepted to be majorly contributed by

parasympathetic system, and LF is thought to reflect both sympathetic and

parasympathetic systems. Consequently, the LF/HF ratio is considered by

some investigators to mirror sympathovagal balance or to reflect the sym-

pathetic modulations [19]. In fact, normal range of human respiration in

rest conditions is [0.08, 0.5] Hz, so it is not a surprising situation that res-

piration, which is parasympathetic related, is in the LF band. Respiration

may also exceed the classical range of HF, as it usually does in exercise

conditions [21]. In these situations when the respiratory rate is out of the

classical HF band, the analysis of HRV within the standard frequency bands

would yield inaccurate estimates of the ANS activity [22]. Because of this,

in some studies the HF band is centered at the respiratory rate using either

a constant or a time-dependent bandwidth [23, 24].
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Autonomic information in the ECG is not limited to the HRV. There

are other methods to extract ANS-related information from the ECG such

as heart rate turbulence (HRT), which describes short-term fluctuations in

heart rate that follow ventricular ectopic beats [25]. Systolic blood pressure

(BP) produced by a ventricular ectopic beat is considerably lower than that

of a normal sinus beat [26]. This phenomenon acts as trigger of a pattern

in the heart rate, which in normal subjects shows a briefly acceleration and

subsequently a deceleration before returning to baseline [25]. The control

system that provokes this pattern is the baroreflex sytem, which is part

of ANS and one of the mechanisms of the body to maintain BP at the

homeostatic levels. Different patterns may be observed in subjects with

some ANS-related pathology, and the clinical use of these difference has

been studied in several applications such as prediction of mortality after

acute myocardial infarction [27].

Respiratory information in the electrocardiogram

It is well known that respiration affects ECG signals in several ways. On one

hand, respiration modulates the heart rate, which is higher during inspira-

tion than during expiration [28–30]. This phenomenon is known as respi-

ratory sinus arrhythmia (RSA). It has been reported that the amplitude of

these heart rate oscillations decreases as the respiratory rate increases [31].

On the other hand, ECG morphology is also affected by respiration

through relative movements of the electrodes with respect to the heart, and

changes of impedance distribution in thorax due to the filling and emptying

of the lungs [10].

Several methods for deriving respiratory information from ECG signals

have been proposed. A new ECG-morphology-based method for deriving

respiratory rate from ECG signals which exploits the respiration-induced

variations in QRS slopes and R-wave angle is proposed in Chapter 2 of this

thesis, with the purpose to serve as EDR even at highly non-stationary and

noisy scenarios.

1.3.2 Pulse photoplethysmographic signal

Photoplethysmography is a technique introduced by Hertzman [32] which al-

lows to measure blood volume variations in the microvascular bed of tissue.

The signals acquired by using this technique are known as PPG signals.

Photoplethysmography consists of illuminating the tissue and simultane-

ously measuring the transmitted (transmission mode PPG signal) or the
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reflected light (reflection mode PPG light) using a specific wavelength. An

example of PPG signal can be observed in Fig. 1.6.
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Figure 1.6: Example of PPG signal.

The PPG signal has two components: one component reflecting the ar-

terial pulse produced by the heartbeats (AC component), and another com-

ponent due to the non-pulsating blood volume and the surrounding tissue,

producing a signal with slow changes (DC component). The morphology

of the PPG pulses can be divided into two phases. On one hand, the rise

of the pulse which corresponds to the systole, and the descent of the pulse

which corresponds to the diastole and the wave reflections. PPG pulses from

subjects with no arterial compliance problems usually present a dichrotic

notch. Figure 1.7 shows morphology of PPG pulses from 2 subjects in ears,

fingers, and toes [33].

Photoplethysmography-based techniques have been proposed for many

clinical settings such as physiological monitoring, vascular assessment, and

ANS study [35]. Probably, the most clinically adopted PPG-signals-based

device is the pulse oximeter, which is mainly used to monitor the pe-

ripheral oxygen saturation (SpO2) and it usually offers more physiologi-

cal information such as pulse rate. It is important to remark that oxy-

genated haemoglobin and non-oxygenated haemoglobin have different light-

absorption properties, and that these properties depend on the light wave-

length. Exploiting these facts, SpO2 can be measured by using two PPG

signals acquired at the same location by using two different wavelengths,

typically in the red and infrared bands. The method is based on the ratio

between AC and DC components of the two PPG signals:

R =
ACR/DCR

ACIR/DCIR

, (1.11)
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Figure 1.7: Morphology of PPG pulse from two subjects (From [34]).

where ACR, DCR, ACIR, and DCIR denote the AC and DC components of

the red (“R” subindex) and the infrared (“IR” subindex) PPG signals. The

manufacturers calibrate pulse oximeters empirically by using PPG signals

obtained from a large group of healthy volunteers and a reference blood

oxygen saturation from a standard in vitro CO-oximeter [36].

Smartphone-camera-acquired pulse photoplethysmographic signal

Smartphone devices can record PPG signals based on light emitted by flash

and received by a camera [37, 38]. The smartphone-camera-acquired PPG

(SCPPG) signals are usually extracted from an average of a pixel region of

the green video signal at each frame. The reason for using only the green

band is that there is high absorption by hemoglobin in the green range, and

it has been demonstrated to give a stronger cardiac pulse signal than the

red or blue bands during remote PPG imaging [39–42]. Then the signal is
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inverted by multiplying it by -1 in order to obtain the traditional waveform.

An example of a SCPPG signal can be observed in Fig. 1.8.

Smartphones are interesting devices in ambulatory scenarios due to sig-

nificant advancements in the computational power which enables complex

signal processing algorithms to be performed in real time. Certainly, built-in

wireless communications feature of the smartphones facilitates ease of data

transfer. These features make smartphones very valuable as take-anywhere

and easy-to-use physiological monitors [41].
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Figure 1.8: Example of SCPPG signal.

It should be noted that, however, SCPPG signals are more vulnerable to

ambient-light interferences and variations in finger pressure over the sensor,

making them, in general, noisier than conventional PPG signals obtained

by pulse oximeter sensors. Furthermore, their sampling rate is lower. Thus,

deriving physiological information from SCPPG signals remains a more chal-

lenging situation than deriving it from conventional PPG signals, and the

performance of known methods which have been tested with conventional

PPG signals must be tested also with SCPPG signals.

Photoplethysmography for blood pressure monitoring

BP is the pressure exerted by the blood flux over the arteries walls. When

the heart beats, a blood volume is pumped out from it to the arteries in-

creasing BP which reaches its maximum in that cardiac cycle, known as

systolic pressure. When the heart relaxes between successive beats, BP de-

creases and it falls to its minimum value in that cardiac cycle, which is

known as diastolic pressure. BP is usually quantified in the clinical routine

with a pair of numbers which correspond to the systolic and the diastolic

pressures, e.g., 120/80 mmHg.
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Several techniques for measuring BP have been proposed, such as auscul-

tatory, oscillometric, ultrasound, and tonometry methods. The auscultatory

methods have been the most used methods in clinical settings, but they are

gradually being replaced by other techniques that are more adequate for

automatic measures [43], such as the oscillometric methods [44].

Photoplethysmography is also applied by some BP monitoring methods

also known as finger cuff methods. These methods consist in arranging a

finger cuff around a finger of a patient, which exerts pressure to that finger

in order to maintain the artery diameter (blood volume) measured by an

infrared PPG signal. This PPG signal is considered to be inversely propor-

tional to the artery diameter and it is used for controlling the amount of

exerted pressure, trying to keep constant the diameter of the finger artery.

Then, the exerted pressure is directly linked to the BP [45,46]. This method

has been validated using intra-arterial pressures invasively measured [47].

However, it is unmanageable in clinical settings because of its cost, inconve-

nience, and relative inaccuracy for measuring absolute levels of BP. Never-

theless, it is very interesting in research studies assessing short-term changes

of BP and its variability [43], because it offers a continuous monitoring (not

limited to the systolic/diastolic BP) in a non-invasive way. An example of

BP signal measured by a cuff-finger based BP monitor (Finometer [46]) can

be observed in Fig. 1.9.
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Figure 1.9: Example of BP signal recorded by Finometer system [46].

Autonomic information in the PPG signal

The useful information for clinical/physiological monitoring in PPG signals

is not limited to the SpO2, but also for other parameters such as its pulse

rate and its variability (PRV), which is not an exact surrogate of HRV [48]
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but they are highly correlated even during non-stationary conditions [49,50].

Similarly, PRT have been studied as a surrogate of HRT [51].

PPG signals reflect not only cardiac information but also vascular infor-

mation, allowing us to asses ANS information through its effects on blood

vessels, such as vasoconstriction which is reflected in the PPG signal by de-

creases in the signal amplitude fluctuation [52,53]. Vasoconstrictions events

detected with PPG-based techniques have been proposed for OSAS screen-

ing either by themselves [54] and in combination with other ANS-related

information such as HRV [55]. The use of HRV requires ECG as an addi-

tional recording. This is a disadvantage that takes more relevance in sleep

studies context where a high number of sensors over the patient can affect

the physiological sleep. In Chapter 5 of this thesis, a similar method to

that presented in [55] is described, this time evaluating the possibility of

using the PRV obtained from the PPG signal instead of the HRV. Although

the high correlation between HRV and PRV decreases during obstructive

apnea episodes [56], PRV still carries ANS-related information which can

be exploited.

Respiratory information in the pulse photoplethysmographic sig-

nal

Deriving respiratory information from PPG signal is especially interesting.

PPG signal can be provided by a pulse oximeter, which is economical, com-

fortable, and widely used in clinical routine for SpO2 measurement. It allows

to know if a low oxygen saturation is due to low respiratory rates or is the

result of a low degree of gas exchange in the lungs, which can represent a

dangerous physiological condition [57]. SpO2 is a very important parameter

in studies concerning respiration and essential in many situations such as

sleep apnea diagnosis. Obtaining accurate respiratory signal from a pulse

oximeter would allow us to consider an ambulatory diagnosis with its both

social and economic advantages. In the health/sports tracking applications,

the use of PPG signal has the advantage of the ability to acquire the signal

at different parts of the body (i.e. fingers, ears, forehead) depending on the

specific activity.

Known methods for deriving respiratory information from the PPG sig-

nal exploit variations on pulse morphology and/or occurrence. PRV has a

respiratory component as HRV does because they are highly correlated and

so, PRV can be used as respiratory information source similarly to HRV.

Respiration also modulates the morphology of the PPG signal. Inspiration
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can lead to a reduction in tissue blood volume, and this lowers the ampli-

tude of the PPG signal. This reduction in tissue blood volume is generated

by two different mechanisms: a reduction of cardiac output, and a reduction

of intra-thoracic pressure [58]. A new PPG-morphology-based method for

deriving respiratory rate from PPG signals which exploits the respiration-

induced variations in pulse width is proposed in Chapter 3 of this thesis.

This method was adapted and evaluated over SCPPG signals as described

in Chapter 4 of this thesis.

1.3.3 Obstructive sleep apnea syndrome

OSAS is characterized by an interruption of the airflow to the lungs pro-

duced by an upper airways occlusion during sleep. Then SpO2 goes down

across time and mechanical respiratory efforts are intensified in order to

reopen upper airways. If these efforts are not enough and hypercapnia level

evolves dangerous, an arousal is generated to reactive all the peripheral sys-

tems and the respiration is restored. These episodes could occur hundreds

of times in a single night and may produce serious health implications [59].

The open-close cycle in the upper airways produces a regular oscillatory

state of peripheral systems such as cardiac and vascular. For instance, heart

rate decrements during apnea and increases during restore breathing, while

vascular system presents vasoconstriction during apnea and vasodilatation

after apnea [55]. Complications of OSAS in adults may include increas-

ing risk of hypertension [60] and stroke [61], and other important implica-

tions such as motor vehicle accidents [62, 63]. Complications of OSAS in

children are quite different since they are in their growth process. These

complications may include growth abnormalities [64–66], neurologic disor-

ders [67–69], and cor pulmonale [70–72], especially in severe cases [73].

Polysomnography (PSG) is the gold standard procedure for OSAS diag-

nosis. It consists of an overnight recording which require a sleep laboratory

and includes a high number of biomedical signals [63], being quite involved

and difficult to use in ambulatory scenario. In Chapter 5 of this thesis,

a technique for ambulatory diagnosis of OSAS in children based on PPG

signal is presented.

1.4 Objective and outline of the thesis

The main objective of this thesis is to develop non-invasive methods for

respiration information extraction from biomedical signals which are widely
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adopted in clinical routine. Novel methods for deriving respiratory rate

from ECG and from PPG signal are developed.

The content of the thesis is organized as follows:

• Chapter 2: A novel beat-morphology based method for estimating

respiratory rate from ECG signals is presented in this chapter. It

is based on QRS slopes and R-wave angle, which reflect respiration-

induced beat morphology variations. Evaluation is performed over

two databases containing ECG and respiratory signals simultaneously

recorded during two clinical tests with different characteristics: tilt

test, representing abrupt cardiovascular changes, and stress test rep-

resenting more gradual cardiovascular changes but a highly noisy en-

vironment. The research described in this chapter generated the fol-

lowing publications:

– J. Lázaro, A. Alcaine, D. Romero, E. Gil, P. Laguna, E. Pueyo,

and R. Bailón. Electrocardiogram derived respiratory rate from

QRS slopes and R-wave angle, Annals of Biomedical Engineering,

40(10):2072-2083, 2014.

– J. Lázaro, A. Alcaine, D. Romero, E. Gil, P. Laguna, L. Sörnmo,

and R. Bailón. Electrocardiogram derived respiration from QRS

slopes: Evaluation with stress testing recordings, XL Interna-

tional Conference on Computing in Cardiology, 655-658, 2013.

– J. Lázaro, A. Alcaine, E. Gil, P. Laguna and R. Bailón. Electro-

cardiogram derived respiration from QRS slopes. 35nd Annual

International Conference of the IEEE EMBS, 3913-3916, 2013.

• Chapter 3: A novel method for deriving respiration from PPG signal

is presented. This method is based on the pulse width variability

(PWV), and it exploits the respiratory information present in the pulse

wave velocity and dispersion. PWV information is also combined with

other PPG-based methods such as pulse amplitude variability (PAV)

and PRV. Evaluation is performed over one of the databases used in

Chapter 2: the database that contains signals recorded during a tilt

table test, which in addition to ECG and respiratory signals, it also

contains PPG and BP signals simultaneously recorded. The research

described in this chapter generated the following publications:

– J. Lázaro, E. Gil, R. Bailón, A. Mincholé, and P. Laguna. Deriv-

ing respiration from photoplethysmographic pulse width, Medical

& Biological Engineering & Computing, 51:233-242, 2013.
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– M. Pelaez, M. Orini, J. Lázaro, R. Bailon, and E. Gil. Cross time-

frequency analysis for combining information of several sources.

Application to estimation of spontaneous respiratory rate from

photoplestimography, Computational and Mathematical Methods

in Medicine, Volume 2013, Article ID 631978, 8 pages, 2013

– J. Lázaro, E. Gil, R. Bailón, and P. Laguna. Deriving Respi-

ration from the Pulse Photoplethysmographic Signal, XXXVIII

International Conference on Computing in Cardiology, 713-716,

2011.

• Chapter 4: The method for deriving respiratory rate from PPG

signal described in Chapter 3 is adapted to derive respiratory rate

from SCPPG signal in this chapter. Evaluation is performed on a

database containing SCPPG signals recorded from 30 subjects during

controlled respiration experiments at rates from 0.2 to 0.6 Hz with an

increment of 0.1 Hz, using three different devices: iPhone 4S, iPod

5, and HTC. The research described in this chapter generated the

following publications:

– J. Lázaro, Y. Nam, E. Gil, P. Laguna, and K. H. Chon. Respira-

tory rate derived from smartphone-camera-acquired pulse photo-

plethysmographic signals, Physiological Measurement, under re-

view (major revision).

– J. Lázaro, R. Bailón, P. Laguna, Y. Nam, K. H. Chon, and E. Gil.

Respiratory rate influence in the resulting magnitude of pulse

photoplethysmogram derived respiration signals. XLI Interna-

tional Conference on Computing in Cardiology, 289-192, 2014.

– J. Lázaro, Y. Nam, E. Gil, P. Laguna, and K. H. Chon. Smart-

phone-camera-acquired pulse photoplethysmographic signal for

deriving respiratory rate. 8th Conference of the European Study

Group on Cardiovascular Oscillations, 121-122, 2014

• Chapter 5: A technique for ambulatory diagnosis of the OSAS in

children based on PPG signal is presented in this chapter. Decreases

in amplitude fluctuations of the PPG signal (DAP) events have been

proposed as OSAS discriminator in the literature, since they are re-

lated to vasoconstriction associated to apnea. HRV analysis during

these DAP events has been proposed to discriminate between DAP
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events related or unrelated to an apneic event. The use of HRV re-

quires ECG as an additional recording, meaning a disadvantage that

takes more relevance in sleep studies context where the number of

sensors is tried to be minimized in order not to affect the physiolog-

ical sleep. This study proposes the use of PRV extracted from the

PPG signal instead of HRV. Results suggest that PRV can be used

in apnea detectors based on DAP events, to discriminate apneic from

nonapneic events avoiding the need for ECG recordings. The research

described in this chapter generated the following publications:

– J. Lázaro, E. Gil, J. M. Vergara, and P. Laguna. Pulse rate

variability analysis for discrimination of sleep-apnea-related de-

creases in the amplitude fluctuations of PPG signal in children,

IEEE Journal of Biomedical and Health Informatics, 18(1):240-

246, 2014.

– R. Jané, J. Lázaro, P. Ruiz, E. Gil, D. Navajas, R. Farré, and

P. Laguna, Obstructive sleep apnea in a rat model: Effects of

anesthesia on autonomic evaluation from heart rate variability

measures, XL International Conference on Computing in Cardi-

ology, 1011-1014, 2013.

– J. Lázaro, E. Gil, J. M. Vergara, and P. Laguna, OSAS detec-

tion in children by using PPG amplitude fluctuation decreases

and pulse rate variability. XXXIX International Conference on

Computing in Cardiology, 185-188, 2012.

• Chapter 6: The final chapter contains the conclusions and the pos-

sible extensions of this thesis.





Chapter 2

ECG derived respiration

from QRS slopes and R-wave

angle

Fill your paper with the

breathings of your heart.

William Wordsworth.

2.1 Introduction

Respiration affects ECG signals in several ways. On one hand, it is well

known that respiration modulates the heart rate, which is higher during

inspiration than during expiration [28–30]. It has been reported that the

amplitude of this oscillation decreases when the respiratory rate increases

[31]. On the other hand, ECG morphology is also affected by respiration

through movements of the electrodes with respect to the heart, and changes

of impedance distribution in thorax due to the filling and emptying of the

lungs [10].

Several algorithms for deriving respiratory rate from the ECG have been

developed. Some of them are collected in [10]. Probably, the simplest

morphology-based methods are those based on the R-wave amplitude, either

with respect to the baseline or with respect to the S-wave amplitude [74].

Other more complex morphological features of the ECG signal have been

exploited to obtain respiratory rate, such as variations of QRS area [75] or

electrical axis rotation [76]. In [21], respiratory rate is derived from beat-

to-beat variations of the heart electrical axis between VCG loops. There

also have been proposed methods that exploit both beat occurrence and

morphology such as [77] or [78].

In this thesis, a novel beat-morphology-based technique have been devel-

oped. It exploits morphological variations in the ECG, in particular those

21
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variations of QRS slopes and R-wave. Both QRS slopes and R-wave angles

have been previously proposed as a marker of ischemia [79–81].

Evaluation of proposed methods was performed over two databases which

contains ECG and respiration signals simultaneously recorded during two

tests which represent different conditions. One of them contains signals

recorded during a tilt table test, which is characterized by abrupt cardio-

vascular changes. The other one contains signals recorded during a stress

test, representing a highly non-stationary and noisy environment.

2.2 Materials

2.2.1 Tilt test data

The tilt test dataset is composed by 17 (11 men) recordings from volun-

teers, aged 28.5 ± 2.5 years, during a tilt table test. Tilt test is clinically

used for testing the sympathetic nervous system response to blood pressure

variations induced by postural changes [82]. In particular, the tilt table test

was performed according to the following protocol: 4 min in early supine

position, 5 min tilted head-up to an angle of 70◦, and 4 min to later supine

position. The transitions between these 3 stages lasted 18 s.

Following signals were simultaneously recorded:

1. The respiration signal, by using a pneumogram transducer (TSD201,

Biopac) and an amplifier (RSP100C, Biopac), with a sampling rate of

125 Hz.

2. The 12 standard lead ECG signal, by using removable Ag-AgCl elec-

trodes and an amplifier (ECG100C, Biopac), with a sampling rate of

fE
s = 1000 Hz.

3. The BP signal, by using a non-invasive device (Finometer, Finapress

Medical Systems), which provides a continuous signal placed in the

right index finger, with a sampling rate of 250 Hz.

4. The PPG signal, by using a transducer (TSD200, Biopac) and an

amplifier (OXY100C, Biopac), with a sampling rate of 250 Hz.

Further details of this data can be found in [83].

2.2.2 Stress test data

This database contains recordings from 14 volunteers (10 males) aged 28±4

years and 20 patients (16 males) aged 58± 14 years, referred to the Depart-
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ment of Clinical Physiology at the University Hospital of Lund, Sweden,

for stress testing. The stress test was performed on a bicycle ergometer

Siemens-Elema Ergoline 900C. The initial workload (50 W for males and

30 W for females) was increased at a rate of 15 W/ min for males and 10

W/min for females, until a rate of perceived exertion (according to Borg

scale [84]) of 15 for volunteers and of 17 for patients was reached, unless

other clinical stopping criteria (e.g., chest pain or tachycardia) occurred

first.

Following signals were simultaneously recorded:

1. The respiration signal, by an airflow thermistor (Sleepmate), an am-

plifier (DA100C, Biopac) and a digitalizer (MP100, Biopac), with a

sampling rate of 50 Hz.

2. The 12 standard lead ECG signal, by using the Siemens-Elema Mega-

cart front-end, with a sampling rate of 1000 Hz.

Further details of this data can be found in [21].

2.3 Methods

2.3.1 Preprocessing

VCG was obtained by using the inverse Dower matrix [85], whose degree of

accuracy is generally accepted to be high enough to be considered as a sat-

isfactory method of derivation of the QRS complex [86]. QRS complexes in

all ECG leads were automatically detected by using a wavelet-based detec-

tor [87] and ectopic/misdetected beats were identified and removed using

an algorithm described in [88]. Normal sinus beat locations are denoted

nNl,i
, where l represents ECG lead and i normal sinus beat order. Base-

line was removed by a cubic-spline interpolation technique, which results

in a linear filtering with a time-variable cut-off frequency, better tracking

rapid baseline wander when compared to a fixed cut-off frequency approach

while maintaining beat-to-beat variations. Then, for each lead l and nor-

mal sinus beat i, wave delineation was performed by using a wavelet-based

technique [87] determining Q (nQl,i
), R (nRl,i

), and S (nSl,i
) peaks (or QRS

end when no S wave is present), and QRS onset (nONl,i
).

2.3.2 Non-standard leads

Two non-standard leads were derived: the loop derived lead (LDL) and the

N-loops derived lead (NLDL). Both of them are based on VCG-QRS loops.
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LDL was presented in [80]. It tries to enhance the QRS magnitude by

projecting VCG-QRS loop onto its dominant direction ui, obtained as:

ui = [uXi
, uYi

, uZi ]
T = [lX(n0i), lY(n0i), lZ(n0i)]

T , (2.1)

being lX(n), lY(n), and lZ(n) the 3 VCG leads, and:

n0i = argmax
n∈ΩQRSi

[

l2X(n) + l2Y(n) + l2Z(n)
]

, (2.2)

where ΩQRSi
is a 140 ms interval starting 10 ms before the earliest QRS

onset in the 3 VCG leads, nONi
:

nONi
= min

{

nONX,i
, nONY,i

, nONZ,i

}

(2.3)

ΩQRSi
= [nONi

− 0.01fE
s , nONi

+ 0.13fE
s ] . (2.4)

Then, the LDL lLDL(n) is computed at each beat as:

lLDL(n) =
[lX(n), lY(n), lZ(n)]ui

||ui||
, ∀n ∈ ΩQRSi

. (2.5)

In this way, the beat-to-beat variations of the dominant direction of

VCG-QRS loop are followed by lLDL(n). Following these variations may be

counter-productive in this application, since they are in part due to respira-

tion [10,75,76]. For this reason, NLDL is proposed as a slight modification

of LDL. The NLDL is similar to the LDL, but the dominant direction of

VCG-QRS loops is estimated with the first N beats and it is not updated.

In mathematical terms, the NLDL is defined as:

ū =
N
∑

i=1

{

ui

||ui||

}

(2.6)

lNLDL(n) =
[lX(n), lY(n), lZ(n)] ū

||ū||
, (2.7)

being N set to 5 beats in this work.

2.3.3 QRS slopes measurement

QRS slopes were measured by using the algorithm presented in [79]. For

each beat, two slopes are measured: upward slope of the R wave (IUSl,i
) and

downward slope of the R wave (IDSl,i
).
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First, time instants associated with the maximum variation points of the

ECG signal between nQl,i
and nRl,i

, and between nRl,i
and nSl,i

are computed

as:

nUl,i
= argmax

n

{∣

∣l′l(n)
∣

∣

}

, n ∈
[

nQl,i
, nRl,i

]

(2.8)

nDl,i
= argmax

n

{∣

∣l′l(n)
∣

∣

}

, n ∈
[

nRl,i
, nSl,i

]

, (2.9)

where l′l(n) is the first derivative of lead l computed as:

l′l(n) = ll(n)− ll(n− 1). (2.10)

Finally, a straight line is fitted to the ECG signal by least squares in two

8 ms-length intervals, one of them centred at nUl,i
and the other one at nDl,i

.

The slopes of these lines are denoted IUSl,i
and IDSl,i

, respectively. Fig. 2.1

illustrates relevant points taking part in this measurement algorithm.

2.3.4 R-wave angle measurement

The R-wave angle is also used to derive respiratory rate in this work. This

angle was defined as in [81], i.e., it corresponds to the smallest angle formed

by the straight lines that define IUSl,i
and IDSl,i

. Assuming a two-dimensional

euclidean space coordinate system, the general equation that defines this

angle is:

φ = arctan

(
∣

∣

∣

∣

I1 − I2

1 + I1I2

∣

∣

∣

∣

)

, (2.11)

where I1 and I2 denote the slopes of the straight lines forming the angle.

The units of the horizontal axis (time) and vertical axis (voltage) were

rescaled to match the particular case of conventional ECG tracings in clinical

printouts, where a speed of 25 mm/s and a gain of 10 mm/mV are used as

in [81], so the angle expression assuming a sampling rate of 1000 Hz and

amplitude expressed in mV results in:

φRl,i
= arctan

(
∣

∣

∣

∣

∣

IUSl,i
− IDSl,i

0.4
(

6.25 + IUSl,i
IDSl,i

)

∣

∣

∣

∣

∣

)

. (2.12)

2.3.5 Electrocardiogram derived respiration signals

Based on QRS slopes or R-wave angle

An ECG derived respiration (EDR) signal was generated for each one of the

QRS slopes series by assigning to each beat occurrence nNl,i
, the value of
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Figure 2.1: Relevant points over an example of QRS from lNLDL(n). Thick ma-

genta lines represent the two straight lines best suited to the QRS slopes by least

square, and from which the slope series are obtained. R-wave angle series are

obtained from the smallest angle formed by these two lines.

its associated QRS slope:

du{US, DS}l
(n) =

∑

i

I{US, DS}l,i
δ
(

n− nNl,i

)

, (2.13)

where the superindex “u” denotes the signal is unevenly sampled. An EDR

signal was generated for each one of the R-wave angle series in a similar

way:

duRl
(n) =

∑

i

φRl,i
δ
(

n− nNl,i

)

. (2.14)

Then, a median absolute deviation (MAD)-based outlier rejection rule

was applied as in [10], and subsequently, a 4 Hz evenly sampled version

of each EDR signal was obtained by cubic-splines interpolation. Finally,

a band-pass filter (0.075–1) Hz was applied. These filtered signals are de-

noted with the same nomenclature than the unevenly sampled versions, but

without the superindex “u”, e.g., dUSNLDL(n) is the 4-Hz, outlier-rejected,

evenly sampled, band-pass filtered version of duUSNLDL
(n).
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Fig. 2.2 shows an example of some EDR signals and the reference res-

piratory signal r(n) from stress test dataset during resting, stress peak and

recovery phases. It can be observed that EDR signals and r(n) are oscillat-

ing at very similar rates, which notably differ at each phase of the protocol.

A total of 51 EDR signals were studied corresponding to the 2 QRS

slopes and 1 angle series (IUSl,i
, IDSl,i

and φRl,i
) in the 17 studied leads.
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Figure 2.2: Example of some EDR signals and the reference respiratory signal r(n)

from stress test dataset during different phases of the protocol: stress beginning

(≈ 0.3 Hz), peak (≈ 0.7 Hz) and recovery (≈ 0.35 Hz). It can be observed that

EDR signals and r(n) are oscillating at very similar rates, which notably differ at

each phase of the protocol.

Based on electrical axis rotation angles

Three additional EDR signals were also studied for comparison purposes.

These EDR signals were presented in [21] and they are based on heart-

electrical-axis-rotation angle variations induced by respiration. The EDR

signals are defined by the series of least-squares-estimated rotation angles

between successive QRS-VCG loops and a reference loop.
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The basis of the method is the minimization of a normalized distance

ǫ between a reference loop (Y R) and each observed loop (Y ) with respect

to rotation, amplitude scaling, and time synchronization [89,90]. In mathe-

matical terms, the normalized distance ǫ for each QRS-VCG loop is defined

as:

ǫ =
||Y R − γJτY Q||2F

||γJτY Q||2F
, (2.15)

where || · ||2F denotes the Frobenius norm, and

• Y R is an Ns × 3 matrix (being Ns the number of samples of the QRS

analysis window) containing the reference loop. Each column contains

the QRS corresponding to each one of the 3 VCG leads.

• γ is a scalar that controls the amplitude scaling.

• Jτ is an Ns × (N + 2∆) matrix which controls the time synchroniza-

tion:

Jτ = [0∆−τ I 0∆−τ ] , (2.16)

where ∆ is the number of symmetrically augmented samples which

allow for time synchronization with τ = −∆, . . . ,∆.

• Y is an (N + 2∆)× 3 matrix containing the observed loop.

• Q is the rotation matrix and can be viewed as three successive ro-

tations around each axis (VCG leads) defined by the rotation angles

ΦX , ΦY , and ΦZ :

Q =







1 0 0

0 cos(ΦX) sin(ΦX)

0 − sin(ΦX) cos(ΦX)






×







cos(ΦY ) 0 sin(ΦY )

0 1 0

− sin(ΦY ) 0 cos(ΦY )






×

×







cos(ΦZ) sin(ΦZ) 0

− sin(ΦZ) cos(ΦZ) 0

0 0 1






=

=







∗ sin(ΦZ) cos(ΦY ) sin(ΦY )

∗ ∗ sin(ΦX) cos(ΦY )

∗ ∗ ∗






, (2.17)

where ∗ denotes an omitted matrix entry.

The ǫ minimization process consists of estimating γ and Q for every τ

and subsequently selecting that τ for which ǫ is minimum. The maximum-

likelihood estimator of Q is computed by left (U τ ) and right (V τ ) singular
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vectors from the SVD of Y T
R
JτY , and subsequently, γτ is obtained by

[89,90]:

Q̂τ = V τU
T
τ (2.18)

γ̂τ =
tr
(

Y T
R
Y R

)

tr
(

Y T
R
JT

τ Y Q̂τ

) . (2.19)

Rotation angle series ΦXi
, ΦYi

, and ΦZi
can be derived from that Q̂τ

which yields the minimal normalized distance ǫ by using the structure in

(2.17). Subsequently, these three series were processed in the same way than

QRS slopes and R-wave angle EDR signals (MAD-outlier-rejection rule,

4-Hz-spline interpolation, and (0.075-1 Hz) band-pass filtering) obtaining

three EDR signals denoted dΦX
(n), dΦY

(n) and dΦZ
(n) in this study.

2.3.6 Respiratory rate estimation algorithm

Respiratory rate estimation is based on the algorithm presented in [21].

It allows to combine information from several EDR signals increasing the

robustness of the estimation. Let M be the number of EDR signals used

for estimating respiratory rate. The algorithm can be divided into 3 phases:

the power spectrum (PS) estimation, the peak-conditioned average, and the

respiratory rate estimation.

The PS estimation is performed by using the Welch periodogram. For

the jth EDR signal and kth running interval of Ts-s length, the PS Sj,k(f)

is generated by an average of PS obtained from subintervals of Tm-s length

(Tm < Ts) using an overlap of Tm/2 s, after a power normalization in [0, 1]

Hz band (i.e., the power in this band is forzed to value 1). A spectrum is

generated every ts s.

The second phase is a peak-conditioned average. First, for each Sj,k(f),

the location of largest peak f I
P(j, k) is detected. Subsequently, a reference

interval ΩR(k) where respiratory rate is estimated to be, is defined as:

ΩR(k) = [fR(k − 1)− δ, fR(k − 1) + δ] , (2.20)

where fR(k− 1) is a respiratory frequency reference obtained from previous

(k − 1) steps.

Then, f II
p (j, k) is chosen as the nearest peak to fR(k − 1), among all

peaks larger than 85% of f I
p(j, k) inside ΩR(k). Note that f II

p (j, k) can be

the same f I
p(j, k) if the largest peak is inside ΩR(k) and it is also the nearest

to fR(k − 1). An example of selection of f I
p(j, k) and f II

p (j, k) is shown in

Fig. 2.3.
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ΩR(k)

Sj,k(f
I
p(j, k))
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I
p(j, k))

fR(k − 1)

f I
p(j, k) f II

p (j, k)

Frequency

(a)

(b)
(c)

(d)

Figure 2.3: Example of selection of f I
p(j, k) and f II

p (j, k) for an hypothetical Sj,k(f)

and for a given fR(k − 1). Peak (a) is selected as f I
p(j, k) because it is the highest

peak. Then, peaks higher than 85% of the amplitude of peak (a) within ΩR(k) are

detected, finding peaks (b) and (c), and discarding peak (d). Peak (b) is selected

as f II
p (j, k) because it is the nearest to fR(k − 1).

Afterwards, Ls spectra Sj,k(f) are “peak-conditioned” averaged; only

those Sj,k(f) which are sufficiently peaked take part in the averaging. In

this thesis, “peaked” denotes that f II
p (j, k) exists and a certain percentage

ξ of the spectral power must be contained in an interval centred around it.

In mathematical terms, this averaging is defined as:

S̄k(f) =

Ls−1
∑

l=0

∑

j

χA
j,k−lχ

B
j,k−lSj,k−l(f), (2.21)

where χA
j,k−l and χB

j,k−l represent two criteria aimed at deciding whether

power spectrum Sj,k−l(f) is peaked enough or not, preventing those not

peaked enough spectra from taking part in the average. On one hand, χA

lets those spectra whose peakness is greater than a fixed value take part in

the average, as shown in (4.28), and on the other hand, χB compares the

spectra of different EDR signals, letting those spectra more peaked in each

time instant take part in the average, although all them had passed the χA

criterion, as shown in (4.29). Note that χB has no effect if the estimation is

being accomplished from only one EDR signal (M = 1).

χA
j,k =

{

1, Pj,k ≥ ξ

0, otherwise
(2.22)
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χB
j,k =

{

1, Pj,k ≥ max
j

{Pj,k} − λ

0, otherwise
, (2.23)

where Pj,k is defined by the percentage of power around f II
p (j, k) with respect

to the total power in ΩR(k):

Pj,k =

∫ min{f II
p (j,k)+0.4δ, fR(k−1)+δ}

max{f II
p (j,k)−0.4δ, fR(k−1)−δ}

Sj,k(f)df

∫ fR(k−1)+δ

fR(k−1)−δ
Sj,k(f)df

. (2.24)

Then, the algorithm searches the largest peak f Ia
p (k) in S̄k(f), and sub-

sequently f IIa
p (k) defined as the nearest to fR(k−1) inside ΩR(k) which is at

least larger than 85% of f Ia
p (k). At this time the reference frequency fR(k)

is updated as:

fR(k) = βfR(k − 1) + (1− β) fp(k), (2.25)

where β denotes the forgetting factor and fp(k) is defined by

fp(k) =

{

f IIa
p (k), ∃f IIa

p (k)

f Ia
p (k), otherwise

. (2.26)

Figure 2.4 shows an example of Welch periodogram spectra from dUS(n),

dDS(n), and dR(n), with limits of the integral that define Pj,k.

Finally, estimated respiratory rate f̂(k) is defined as:

f̂(k) = αf̂(k − 1) + (1− α) fp(k) (2.27)

α =

{

α2, ∃f IIa
p (k)

α1, otherwise
, (2.28)

where α2 ≤ α1, providing more memory when f IIa
p (k) could not be set.

Note that S̄k(f) is the result of an average from zero up to M×Ls power

spectra. If no spectrum takes part in the average, the algorithm increases

the reference interval by doubling the δ value and repeats the process from

the search of f II
p (j, k) in individual power spectra. In the case that no

spectrum is peaked enough after this second iteration, respiratory rate is

not estimated at that time instant.

At initialization time, in order to reduce the risk of spurious frequency

selection, δ is set to 0.125 Hz and fR(0) is set to 0.275 Hz, allowing the

algorithm to pick peaks inside the normal range of spontaneous respiratory

rate ([0.15, 0.4] Hz). Occasionally, respiratory rate can be outside this band
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Figure 2.4: Example of Welch periodogram spectra from dUSNLDL
(n) (a),

dDSNLDL
(n) (b), and dRNLDL

(n) (c). Limits of the integral that define Pj,k (see

eq. 2.24) are shown with red slashed lines (numerator), and with blue slashed

lines (ΩR(k), denominator). The resulting peakness-conditioned average S̄k(f) for

NLDL combination is also shown (d). Note that S̄k(f) is obtained not only from

the 3 Welch periodograms at instant k, but also from those Welch periodograms

obtained at the last Ls − 1 instants (see 2.21).
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so algorithm could not be initialized as proposed. To deal with that issue, if

fR(k) is not set after 5 averages S̄k(f), then δ is increased allowing algorithm

to pick peaks in the full [0, 1] Hz studied band.

Concatenation of all S̄k(f) results in a time-frequency map S̄(k, f) as

shown in Fig. 2.6. The parameter values for the Welch periodograms used

in [21] are also used here: Ls = 5, Ts = 42s, Tm = 12s and ts = 5s.

Parameter β, which controls the change of location of ΩR(k), was set to

0.7 as in [21]; δ was set to 0.1 setting the maximum length of Ω R(k) to

0.4 Hz; α1 and α2 were set to 0.7 and 0.3, fixing the maximum allowed

changes in respiratory frequency inside (α2) and outside (α1) ΩR(k). λ was

set to 0.05 because that value was observed to achieve a good compromise

for peak spectrum acceptance/rejection. The minimum peakness to fulfill

the χA criterion, ξ, was set to 0.65 based on a study with a different dataset

containing 3-leads ECG recordings during stress testing [91], thus avoiding

overfitting.

Four different combinations were studied: the QRS slopes and R-wave

angle from the standard 12 leads (12ECG), from VCG, from LDL, and from

NLDL. In order to study whether respiratory information in QRS slopes

and R-wave angle is complementary or redundant, respiratory rate was also

estimated from combinations of only QRS slopes (12ECGS, VCGS, LDLS,

NLDLS) and only R-wave angles (12ECGR, VCGR, LDLR, NLDLR). For

comparison purposes, a combination composed of the three rotation angle

series [10] (Φ) was also studied.

Fig. 2.5 illustrates a block diagram of this algorithm.

12ECG

VCG

LDL

NLDL

QRS

SLOPES

AND

R WAVE ANGLE

MEASUREMENT

dUSl
(n)

dDSl
(n)

dRl
(n)

PS

PS

PS

Sj,k(f)

Sj,k(f)

Sj,k(f)

PEAK

CONDITIONED

AVERAGE

S̄k(f) f̂(k) AND fR(k)

ESTIMATION

f̂(k)

fR(k)

Figure 2.5: Block diagram of respiratory rate estimation algorithm.
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Figure 2.6: Example of peak-conditioned averaged running spectra obtained from

the studied combinations: a) 12ECG, b) LDL, c) VCG, d) Φ, e) NLDL, and f)

reference respiratory signal. Note that a time instant at which spectrum is not

drown (white) means that no spectrum was peaked enough at that time instant.

In case of reference respiratory signal, the time instants where no spectrum was

peaked enough are represented by black rectangles at where a concatenation of

Welch periodograms (Sr,k(f)) is shown for visual purposes.

2.3.7 Performance measurements

In order to evaluate the proposed methods, two performance measures were

used: the relative and absolute error of the respiratory rate estimations

defined as:

eA(k) = f̂(k)− fRES(k) (2.29)

eR(k) =
eA(k)

fRES(k)
, (2.30)

where fRES(k) is the respiratory rate estimated from the reference respira-

tory signal by using the same method. Note that the same absolute dif-

ferences can correspond to very different relative error due to the fRES(k)

normalization.

2.4 Results

The mean and standard deviation (STD) of absolute and relative error sig-

nals were computed for each subject. Then, the intersubject mean of those
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Table 2.1: Inter–subject mean of means and SDs of eA(k) and eR(k) obtained for

the tilt test dataset.

eR(k) [%] eA(k) [mHz]
Time measuring

[%]

Mean STD Mean STD Mean

1
2
E
C
G Combination 0.46 5.69 −0.05 10.50 100

Best (dRV6
(n)) −1.68 5.63 −5.18 13.94 89.42

Worst (dUSaVR
(n)) 16.23 23.80 18.16 44.06 38.81

V
C
G Combination 0.50 4.11 0.20 7.56 99.84

Best (dRX
(n)) −0.49 7.27 −2.83 14.68 92.30

Worst (dDSY
(n)) 0.35 12.03 −5.72 24.48 77.68

L
D
L Combination 0.66 4.80 0.48 8.54 96.36

Best (dUSLDL
(n)) 0.02 5.47 −0.72 10.30 94.19

Worst (dDSLDL
(n)) 1.10 7.36 0.43 13.89 85.21

N
L
D
L Combination 0.71 4.61 0.52 8.58 95.37

Best (dUSNLDL
(n)) −0.20 6.34 −3.14 13.26 73.62

Worst (dRNLDL
(n)) 3.05 8.24 5.04 14.64 87.33

Φ

Combination 0.48 6.19 −0.81 12.18 96.26

Best (dΦX
(n)) 1.29 6.84 0.49 12.26 91.32

Worst (dΦY
(n)) 16.04 22.02 17.11 30.81 63.59

Table 2.2: Inter–subject mean of means and SDs of eA(k) and eR(k) obtained for

the stress test dataset.

eR(k) [%] eA(k) [mHz]
Time measuring

[%]

Mean STD Mean STD Mean

1
2
E
C
G Combination 1.95 9.26 4.76 28.63 99.81

Best (dRV4
(n)) −0.63 7.38 −3.46 26.18 62.55

Worst (dRI
(n)) 1.32 14.36 −19.66 53.65 38.96

V
C
G Combination 0.52 8.99 0.46 30.36 96.09

Best (dUSZ
(n)) −1.14 8.03 −11.05 29.75 73.05

Worst (dRY
(n)) −5.32 13.17 −34.51 47.98 49.32

L
D
L Combination 0.04 8.30 −2.10 28.15 85.17

Best (dDSLDL
(n)) −0.65 8.48 −4.34 28.90 67.39

Worst (dRLDL
(n)) −2.40 10.95 −12.61 38.53 66.66

N
L
D
L Combination 0.76 7.30 1.43 22.53 85.07

Best (dRNLDL
(n)) −0.03 7.76 3.27 27.30 68.21

Worst (dUSNLDL
(n)) −1.47 9.80 −14.66 30.76 67.18

Φ

Combination −1.62 9.65 −14.80 39.72 91.07

Best (dΦZ
(n)) −1.99 10.74 −17.45 38.50 70.38

Worst (dΦY
(n)) 3.38 16.39 4.64 52.45 72.93
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Table 2.3: Inter–subject mean of means and SDs of eA(k) and eR(k), obtained for

combinations of only QRS slopes and only R-wave angles.
eR(k) [%] eA(k) [mHz] Time measuring [%]

Mean STD Mean STD Mean

12ECGS 0.55 6.89 -0.84 14.40 100.00

12ECGR -0.07 6.44 -1.90 12.82 100.00

Tilt test
VCGS 0.80 5.06 0.46 8.93 99.42

VCGR 0.31 4.61 -0.41 9.29 96.87

dataset
LDLS 1.20 6.24 1.06 10.76 93.75

LDLR 0.53 6.33 -0.52 13.42 85.70

NLDLS 0.51 6.43 -0.52 11.75 88.39

NLDLR 3.05 8.28 5.04 14.64 87.33

12ECGS 2.11 9.50 5.74 29.02 98.65

12ECGR -0.23 10.11 -2.82 36.74 96.44

Stress test
VCGS 1.95 9.11 4.89 26.63 93.85

VCGR 0.56 9.51 -0.35 26.18 87.17

dataset
LDLS -0.60 7.53 -5.07 26.09 77.32

LDLR -2.40 10.95 -12.61 38.53 66.66

NLDLS 0.47 7.19 -0.11 21.85 78.94

NLDLR -0.03 7.76 -3.27 27.30 68.21

means and STDs were also computed. Obtained results from the studied

combinations of EDR signals are shown in Table 2.1 for the tilt test dataset,

and in Table 2.2 for the stress test dataset. For each studied combination,

the EDR signals that obtained the best and worst results in terms of root

mean square of eR(k) (less is better) are also shown.

Results obtained for combinations of only slopes and only R-wave angles

are shown in Table 2.3.

In order to study the performance of the methods at different respi-

ratory rates, they were evaluated separately as a function of the rate of

reference respiratory signal. Furthermore, recordings from patients of stress

test dataset were observed to have more irregular breathing patterns when

compared with healthy volunteers (see Fig. 2.7). This makes the task of

deriving respiratory rate more challenging with patients than with volun-

teers. Table 2.4 shows results for different ranges of respiratory rate, and

for patients and volunteers separately.
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Table 2.4: Inter–subject mean of means and STDs of eA(k) and eR(k) obtained

for the stress test dataset for different respiratory rate ranges for the stress test

dataset, and from patients and volunteers separately.

eR(k) [%] eA(k) [mHz] Time measuring [%]

Mean STD Mean STD Mean

1
2
E
C
G

fRES < 0.3 1.61 8.68 4.34 23.11 98.05

fRES ∈ [0.3, 0.5) 0.28 8.63 −3.23 33.14 94.01

fRES ∈ [0.5, 0.7) −1.92 5.73 −10.78 32.07 96.58

fRES ≥ 0.7 −5.00 1.76 −35.92 12.99 100

Patients 1.86 8.88 5.90 32.45 99.63

Volunteers 2.04 9, 68 3.55 24.95 100

V
C
G

fRES < 0.3 1.74 8.46 4.80 21.62 90.13

fRES ∈ [0.3, 0.5) 0.55 5.53 2.18 21.25 90.80

fRES ∈ [0.5, 0.7) 0.39 3.48 2.60 19.16 96.05

fRES ≥ 0.7 1.01 1.86 7.29 13.42 81.43

Patients 0.98 7.23 4.29 29.41 95.66

Volunteers 0.03 10.87 −3.65 31.38 96.55

L
D
L

fRES < 0.3 3.19 7.06 8.64 18.23 76.50

fRES ∈ [0.3, 0.5) −0.30 5.40 −1.05 21.30 76.66

fRES ∈ [0.5, 0.7) −2.87 4.61 −16.26 26.90 73.56

fRES ≥ 0.7 −5.57 4.19 −44.92 32.29 48.18

Patients −0.56 7.82 −4.56 34.11 81.54

Volunteers 0.68 8.81 0.53 21.76 89.03

N
L
D
L

fRES < 0.3 1.74 8.46 4.80 21.62 72.96

fRES ∈ [0.3, 0.5) −0.45 4.37 −2.61 16.70 79.78

fRES ∈ [0.5, 0.7) −2.66 3.16 −14.43 18.04 77.78

fRES ≥ 0.7 −1.25 2.01 −9.04 14.39 42.11

Patients 1.34 6.75 3.46 24.19 80.35

Volunteers 0.15 7.90 −0.74 20.75 90.14
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Figure 2.7: Example of Welch periodograms obtained from reference respiratory

signal of a patient (a), and a volunteer (b). Volunteer is breathing more regularly,

so respiratory rate is more marked in the associated spectrum.

2.5 Discussion

In this chapter a new beat-morphology-based method for deriving respira-

tory rate from the ECG is presented. First, EDR signals are estimated based

on the beat-to-beat variations of QRS slopes and R-wave angle, which have

been obtained from different leads. Then, respiratory rate is estimated using

an algorithm which includes peak-conditioned averaging to selectively com-

bine information from different EDR signals, and restricted interval peak

search. The method has been evaluated in two different challenging scenar-

ios: tilt table test and stress test.

The performance of the methods is assessed in terms of the respiration

rate estimation error, as well as of the percentage of the record duration

where an estimate is given (measuring time). In the tilt table test scenario,

combining information from different EDR signals results in a reduction

of estimation error and an increase of the measuring time for all sets of

analyzed leads. In the stress test scenario, characterized by noisier and more

non stationary signals, combining information from different EDR signals
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always results in an increase of the measuring time but, sometimes, at the

expense of a slight increase of the estimation error. However, even in those

cases (12ECG), the combination is advantageous since the slight increase

in estimation error (1.95 ± 9.26% [4.76 ± 28.63 mHz] vs. −0.63 ± 7.38%

[−3.46 ± 26.18 mHz]) is more affordable than the decrease in measuring

time (37.26%).

Best performance as a compromise between estimation error and measur-

ing time is achieved by VCG combination in both scenarios (estimation error

of 0.50±4.11%, measuring time of 99.84% in tilt table test, estimation error

of 0.52±8.99%, measuring time of 96.09% in stress test). VCG combination

outperforms 12ECG combination in estimation error terms (0.50 ± 4.11%

vs. 0.46±5.69% in tilt test, and 0.52±8.99% vs. 1.95±9.26% in stress test),

suggesting that inverse Dower transformation enhances beat morphological

variations induced by respiration. Although there is a clear advantage in

combining information from different EDR signals, it is preferable to use less

EDR signals with higher signal to noise ratio (SNR) than more EDR sig-

nals with lower SNR. Leads LDL and NLDL also combine information from

VCG leads. However, in tilt table test EDR signals derived from LDL and

NLDL do not achieve better performance results than VCG combination.

On the contrary, in the stress test scenario, NLDL combination obtains less

estimation error, at the expense of reducing measuring time (from 96.09%

to 85.07%). There is a reduction in estimation error from 0.52 ± 8.99%

(0.46±30.36 mHz) to 0.76±7.30% (1.43±22.53 mHz), which may be justi-

fied in applications where an accurate estimation of respiratory frequency is

needed [24]. In applications where the interest is in the evolution of respira-

tory frequency during stress test, it may be more practical to have slightly

less accurate estimates but during more time. In the stress test scenario,

EDR signals derived from NLDL slightly outperforms those from LDL in

estimation error terms. Moreover, NLDL does not require the update of the

dominant direction beat-to-beat, representing a computational advantage.

For comparison purposes, a combination composed of the three electrical

axis rotation angle series has been included, which yields an estimation error

of 0.48 ± 6.19% with measuring time of 96.26% in tilt table test, and an

estimation error of −1.62 ± 9.65% with measuring time 91.07% in stress

test. These results indicate that the proposed methodology outperforms

electrical axis rotation angles in terms of estimation error and measuring

time, which was the best suit for this purpose according to [21].

A possible explanation for the improvement of results for VCG combi-

nation with respect to Φ may be that, although both methods use the same
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ECG signals (lX(n), lY(n) and lZ(n)), QRS slopes and R-wave angles are

more robust in those situations when there is so much noise in one of the

leads. Each one of the EDR signals combined in Φ (rotation angle series)

uses the three VCG leads. Thus, if one lead is affected by noise or arti-

facts, the three EDR signals are affected. In opposite, each one of EDR

signals used in VCG combination (QRS slopes and R-wave angle from each

one of the VCG leads) are based on one single lead, so only those EDR

signals based on that noisy lead are affected and their contribution to the

respiratory rate estimate can be attenuated by the peaked-conditioned PS

average.

In general, methods obtained similar results in absolute error terms for

rates below 0.7 Hz. Worse performance is observed for respiratory rates

above 0.7 Hz, either in absolute error terms or in percentage of time mea-

suring. This may be due to the fact that respiratory rate is above 0.7 Hz only

in 5 recordings belonging to patients, who present more irregular breathing

patterns (see Fig. 2.7).

Regarding the separation of patients and healthy volunteers, a slight de-

crease in performance can be observed in patients with respect to volunteers

in absolute error terms while relative error is slightly lower for patients, due

to the fact that respiratory rate is higher for patients than for volunteers.

The percentage of time offering estimates was also lower for patients than

for volunteers.

All proposed combinations use in some way the 12-lead ECG, but having

that number of leads is unmanageable in some situations, such as ambula-

tory scenarios based on Holter devices. All the 220 possible combinations of

3 leads from the 12-lead ECG were studied in the stress test dataset. The

best results in relative error terms were obtained by the combination of V2,

V5 and I leads (−1.05 ± 8.61% during 95.52% of the time), and the worst

results were obtained by the combination of V4, V5 and V6 (10.05±15.85%

during 89.90% of the time). This suggests it is better to place electrodes in

a spatially-dispersed way than placing them proximately to each other, and

also that the area covered by the posterior leads is the one less suited for

EDR since respiration induced changes at those ECG leads results in the

lower EDR performance.

Furthermore, to assess the incremental value of QRS slopes and R-wave

angle in estimating respiratory rate, they have been evaluated separately.

Combination of QRS slopes and R-wave angles reduces estimation error and

increases measuring time with respect to QRS slopes or R-wave angles alone.

Although R-wave angles are computed from QRS slopes, their relation is
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non-linear, which may exploit complementary respiratory information to

that obtain by the linear combination of QRS slopes.

The two databases contains registers obtained during specific clinical

tests involving different cardiovascular changes, so a measure of accuracy

of the proposed methods in normal rest conditions has not been given.

As a reference for this, respiratory rate estimation during only the first

part of tilt test protocol (4 minutes in supine position) was evaluated for

the four proposed combinations. The obtained results in eR(k) terms were

0.31± 4.22% (mean ± STD) during 100% of time for 12ECG, 0.88± 3.03%

during 100% of time for VCG, 0.87±3.41% during 99.39% of time for LDL,

and 1.10±2.92% during 100% of time for NLDL. For the four combinations,

obtained results are better than those obtained when evaluating during the

complete three parts of tilt test. This was expected since the first part of tilt

test (rest) has no significant cardiovascular changes, nor usually significant

respiratory rate changes.

2.6 Conclusions

This chapter addresses the derivation of respiratory information from ECG

signals by exploiting the respiration-induced variations in QRS slopes and

R-wave angle. The proposed methods are robust in highly non-stationary

and noisy environments, and do not depend on a specific set of leads, and so,

do not lead to a significantly lower performance in the case of there is any

problem at any one of the leads. Results suggest that the proposed meth-

ods based on QRS slopes and R-wave angle series are the most suitable for

respiratory rate estimation from ECG signals in tilt and stress test. In the

stress test database, combination of EDR signals from NLDL lead achieved

the lowest estimation error (0.76 ± 7.30%) while 12ECG combination ob-

tained the largest measuring time (99.81%). Combination of EDR signals

from VCG leads displayed the best trade-off between accuracy and mea-

suring time (estimation error of 0.52 ± 8.99%, measuring time of 96.09%),

outperforming existing methods in literature.





Chapter 3

PPG derived respiration

from pulse width variability

A lot of people are afraid of heights.

Not me, I’m afraid of widths.

Steven Wright.

3.1 Introduction

There are several known methods for deriving respiration from the PPG

signal such as PAV [92] and PRV. Both heart and respiratory rates were

extracted by methods based on empirical mode decomposition in [93], and

based on correntropy spectral density in [94]. In [95], both amplitude and

frequency modulation of PPG signal due to respiration are used to compare

two time–frequency methods for respiratory rate estimation. Both pulse am-

plitude and rate are affected not only by respiration but also are affected by

other physiological modulations whose power is comparable or even larger

than the respiration-related modulation, such as the Mayer waves [58, 96].

These non-respiration-related modulations usually lead to high errors. An-

other approaches to assess respiratory information using the PPG signal

are those methods based on PTT [97,98], which measures the time a pulse

takes to get the periphery (measured by PPG signal) from the heart (mea-

sured by ECG signal). PTT is much less affected by non-respiration-related

modulations, but requires the ECG as an additional recording. This is a

disadvantage that takes even more relevance in some applications such as

sleep studies context where a high number of sensors over the patient can

affect the physiological sleep.

In this chapter, a new method for deriving respiratory rate from PPG

based on PWV is presented. The hypothesis on which it is based is that res-

43
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piration affects pulse wave width: during inspiration sympathetic activation

stiffs arteries increasing pulse wave velocity in comparison with expiration,

moreover there are intrathoracic pressure variations induced by respiration

whose effect can add to the former constructively. The PWV method is

also combined with PRV- and PAV-based methods which use also the PPG

signal. Evaluation is performed over a database which contains simultane-

ous recordings of ECG, BP, PPG and respiration signals. For comparison,

derived respiration (DR) signals obtained with other methods which involve

the ECG, PPG, and BP signals were also evaluated.

3.2 Materials and methods

3.2.1 Data, signal preprocessing and significant points de-

tection

The database used for evaluation is described in Section 2.2.1 at page 22,

which contains ECG (sampling rate of fE
s = 1000 Hz), PPG (sampling rate

of fP
s = 250 Hz), BP (sampling rate of 250 Hz) and respiration (sampling

rate of 125 Hz) signals simultaneously recorded from 17 young healthy pa-

tients during a tilt table test.

The ECG baseline contamination was removed with a high-pass filter

with a cutoff frequency of 0.03 Hz, and the 50 Hz powerline interference was

attenuated with the non-linear technique described in [99]. Note that these

prepossessing techniques are slightly different to those applied in Chapter

2, where baseline was estimated by cubic splines (and then subtracted)

and no powerline filtering was applied. The fixed-cut-off-frequency based

powerline attenuation technique was used instead of using the cubic-spline-

based technique because no rapid baseline changes are expected in tilt test

environments. Regarding the powerline attenuation, in Chapter 2 was not

needed because the preprocessing included a 35-Hz-lowpass filtering which

showed to be a good solution to the trade-off situation of maintain the

respiration-related variations in QRS slopes and removing noise.

Then, as in Chapter 2, the locations of each R (nRi
) and S (nSi) in lead

V4 were obtained by the wavelet based QRS detector described in [87], and

ectopic/misdetected beats were identified and removed using the algorithm

described in [88]. Lead V4 was chosen because of its high SNR and also

because it is one of those whose amplitude modulation is in phase with

respiration. The preprocessing applied to the PPG and BP signals consists

of a low-pass filtering with a cut-off frequency of 35 Hz. Subsequently, each
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pulse apex point (nAi
) in PPG and each systolic pressure point (nB

Ai
) in BP

were automatically determined using the algorithm described in [100] which

uses the nRi
previously obtained:

nAi
= argmax

n
xPPG(n), n ∈

{

fP
s

fE
s

nRi
+ 0.15fP

s ,
fP
s

fE
s

nRi+1

}

(3.1)

nB
Ai

= argmax
n

xBP(n), n ∈

{

fP
s

fE
s

nRi
+ 0.15fP

s ,
fP
s

fE
s

nRi+1

}

, (3.2)

where fE
s and fP

s are the sampling rates of xECG(n) and xPPG(n), respectively,

which correspond to 1000 and 250 Hz.

Subsequently, baseline point of the ith PPG pulse was defined as the

minimum previous to:

nBi
= argmin

n∈[nAi
−0.3fP

s ,nAi ]
{xPPG(n)} (3.3)

Artifact detector

Artifactual PPG pulses were suppressed by using the artefact detector de-

scribed in [54] which is based in Hjorth parameters 1 and 2. These pa-

rameters have been proposed in the electroencephalogram domain as an

estimation of the central frequency, and half of the bandwidth, respectively.

Thus, they can be used to estimate whether a signal is oscillatory or not.

In mathematical terms, Hjorth parameters are defined as:

H1(n) =

√

w̄2(n)

w̄0(n)
(3.4)

H2(n) =

√

w̄4(n)

w̄2(n)
−

w̄2(n)

w̄0(n)
, (3.5)

where w̄m denotes the mth-order spectral moment:

w̄m =

∫ π

−π
wmSPPG(e

jω)dω, (3.6)

being SPPG(e
jω) the power spectrum of PPG signal.

H1(n) and H2(n) can be estimated using the temporal expressions of

the moments, and made as a function of time n by using a sliding window

of P samples:

ˆ̄wi ≈
2π

P

n
∑

p=n−(P−1)

(

x
(m/2)
PPG (p)

)

, m = 0, 2, 4, (3.7)
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where x
(m/2)
PPG (n) is the m/2 derivative of xPPG(n).

Two thresholds for H1(n) (γl1 and γu1 ) and one for H2(n) (γ2) were

defined. The basis of the artifact detector is that a sample n is considered as

artifact when one of the following criteria is fulfilled: a) the main frequency

of the PPG signal is clearly different from the heart rate (H1(n) ≤ γl1 or

H1(n) ≥ γu1 ); b) the PPG signal presents a very wide spectrum (H2(n) ≥

γ2).

The following values for parameters were used:

• P = 5fP
s

• γu1 = median (H1(n)) + 1.4Hz

• γl1 = median (H1(n))− 1Hz

• γ2 = median (H2(n)) + 3Hz

Further details are given in [54].

3.2.2 Pulse width variability

In order to measure the pulses width in PPG signal, it is necessary to

locate the onset and end of each pulse wave. The detection is performed

with a modification of the algorithm presented in [101] which was originally

designed for detecting the wave boundaries in ECG signals. The algorithm

uses a low-pass derivative:

x′PPG(n) = xPPGLP(n)− xPPGLP(n− 1), (3.8)

where xPPGLP(n) is the low-pass filtered version of PPG signal, using a cut–

off frequency of fC which was set to 5 Hz as shown in Section 3.3.1.

For the ith pulse wave, the algorithm uses the maximum upslope point:

nUi
= argmax

n

{

x′PPG(n)
}

, n ∈ [nAi
− 0.3fP

s , nAi
]. (3.9)

The pulse wave onset nOi
search is limited to ΩOi

interval:

ΩOi
= [nAi

− 0.3fP
s , nUi

], (3.10)

and is determined as:

nOi
=



















argmin
n∈ΩOi

{
∣

∣x′PPG(n)− ηx′PPG(nUi
)
∣

∣

}

if C1

last relative minimum of x′PPG(n), if C2

argmin
n∈ΩOi

{

x′PPG(n)
}

, otherwise

, (3.11)
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where ηx′PPG(nUi
) represents a beat varying threshold dependent on maxi-

mum upslope value of each pulse wave, and conditions C1 and C2 are defined

by:

C1 : ∃m ∈ ΩOi
∋ x′PPG(m) ≤ ηx′PPG(nUi

)

C2 : C1 ∧ exists a relative minimum of x′PPG(n) in ΩOi
.

Pulse wave ends nEi
were detected in a similar way as nOi

but using

maximum downslope (nDi
) instead of nUi

, in the interval [nAi
, nAi

+ 0.3fP
s ]

and ΩEi
= [nDi

, nAi
+ 0.3fP

s ]. Fig. 3.1 illustrates the significant points

determination rule of this algorithm.

Once nOi
and nEi

are detected, the pulse width is defined as the time

difference between them, and the DR signal based on the PWV is defined

as:

duPWV(n) =
∑

i

1

fP
s

(nEi
− nOi

) δ (n− nAi
) , (3.12)

where the superscript “u” denotes that the signal is unevenly sampled. Fig.

3.1 illustrates this definition and Fig. 3.2 shows an example of this DR

signal where it becomes evident the close relation of temporal oscillations

of this signal to those of respiration signal r(n).
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Figure 3.1: Example of xPPG(n) (a) and its low–pass derivative x′

PPG(n) (b) with

definitions of pulse onset (nOi
) and end (nEi

) points in PPG, and PWV based PPG

DR signal.
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Figure 3.2: Example of duPWV(n) (continuous line) and amplitude scaled reference

r(n) (dashed line) for comparison.

3.2.3 Other derived respiration signals

As mentioned previously, for comparison purposes, respiration has also been

derived by other known methods which involve the ECG, BP, and PPG

signals. Studied DR signals from PPG are three: PRV, PAV, and the PWV

already presented.

The one based on PRV is defined as:

duPRV(n) =
∑

i

fP
s

1

nAi
− nAi−1

δ (n− nAi
) . (3.13)

The PAV based DR signal takes its reference to derive amplitude at the

basal point:

duPAV(n)=
∑

i

[xPPG (nAi
)− xPPG (nBi

)] δ (n− nAi
) . (3.14)

From the ECG, six DR signals were obtained: one based on HRV, two

based on R amplitude variability, and three based on the electrical axis

rotation angles called duΦX
(n), duΦY

(n) and duΦZ
(n), which are computed by

the same algorithm presented in [21] and also used in Chapter 2, based on

spatio-temporal alignment of successive QRS–VCG loops with respect to a

reference loop.

The HRV-based DR signal is computed similarly to the PRV based one:

duHRV(n) =
∑

i

fE
s

1

nRi
− nRi−1

δ (n− nRi
) . (3.15)

The difference of two R wave amplitude based DR signals is the reference

used to derive signal amplitude: one takes the reference as zero while the

other one takes it as the amplitude of S point at the same beat:

duR(n) =
∑

i

xECG (nRi
) δ (n− nRi

) (3.16)
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duRS(n) =
∑

i

[xECG (nRi
)− xECG (nSi)] δ (n− nRi

) , (3.17)

where xECG(n) is the filtered ECG at lead V4.

Another method which involves the ECG derives respiration from PTT.

The PTT signal was obtained and taken it as a DR signal as:

duPTT(n) =
1

fP
s

(

nMi
−

fP
s

fE
s

nRi

)

δ (n− nRi
) , (3.18)

where the fP
s /f

E
s term is due to the different sampling rates of ECG and

PPG signals, and nMi
is the time instant when the PPG signal reaches 50%

of amplitude between onset and apex points:

nMi
= argmin

n∈[nOi
,nAi

]

{
∣

∣

∣

∣

xPPG(n)−
xPPG(nOi

) + xPPG(nAi
)

2

∣

∣

∣

∣

}

. (3.19)

A DR signal based on BP pulses width was obtained, hypothesizing that

BP width variability (BWV) is modulated by respiration through the in-

trathoracic pressure variations described in Section on which also the PWV-

based DR signal is based:

duBWV(n) =
∑

i

1

fP
s

(

nB
Ei

− nB
Oi

)

δ
(

n− nB
Ai

)

, (3.20)

where nB
Oi

and nB
Ei

are the onset and end points of the ith pressure wave

in BP (see Fig. 3.3) detected with the same algorithm used for the PPG

signal.

Two other BP-based DR signals were also obtained: BP rate variability

(BRV) duBRV(n) and BP amplitude variability (BAV) duBAV(n). The first one,

defined in (3.21), is based on rate similarly to dPRV(n) and dHRV(n), and

the second one is based on the beat-to-beat systolic pressure variability as

defined in (3.22).

duBRV(n) =
∑

i

fP
s

1

nB
Ai

− nB
Ai−1

δ
(

n− nB
Ai

)

(3.21)

duBAV(n) =
∑

i

xBP

(

nB
Ai

)

δ
(

n− nB
Ai

)

. (3.22)

Note that in duBAV(n) the absolute value of systolic pressure is considered,

instead of referring it to the basal point as in duPAV(n), since, otherwise,

respiratory modulation of systolic and diastolic pressures could compensate

each other.
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Fig. 3.3 illustrates definitions of all DR signals defined in this section,

and Fig. 3.4 shows an example of the unevenly sampled version of each

DR signal. Due to some outliers presence in the DR signals, a MAD based

outlier rejection rules as described in [21] was applied. Finally, a 4 Hz

evenly sampled version of each DR signal by cubic splines interpolation

was obtained, and then filtered with a band-pass filter (0.075-1 Hz). The

resulting signals are denoted without the superscript “u”, e.g., dPWV(n)

is the 4 Hz outlier–rejected evenly sampled band–pass filtered version of

duPWV(n).
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Figure 3.3: Examples of xECG(n) (a), xPPG(n) (b), and xBP(n) (c), with definitions

of ECG DR and BP DR signals, and definitions of PRV and PAV based PPG DR

signals.

3.2.4 Respiratory rate estimation

As the method presented in Section 2.3.6, the respiratory rate estimation

algorithm is based on the method presented in [21]. There are some dif-

ferences with respect to the method in Section 2.3.6, but it also allows to
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Figure 3.4: An example of some of the studied derived respiration signals (con-

tinuous line) and amplitude scaled reference r(n) (dashed line) for comparison.

estimate the respiratory rate from up to M DR signals, combining them in

order to increase robustness.

The first stage of the algorithm is the same as the first stage of the

algorithm in Section 2.3.6: a power spectrum (PS) estimation based on

the Welch periodogram. Following the same notation introduced in Section

2.3.6, Sj,k(f) denotes the PS for the jth DR signal and kth running interval of

Ts-s length, generated by an average of PS obtained from subintervals of Tm-

s length (Tm < Ts) using an overlap of Tm/2 s, after a power normalization

in [0, 1] Hz band. A spectrum is generated every ts s.

Similarly to the method in Section 2.3.6, the location of largest peak of

each Sj,k(f) is detected and denoted f I
p(j, k), and then, a reference interval

ΩR(k) is established in order to search the respiratory peak f II
p (j, k). One

of the differences between this algorithm and the one presented in Section

2.3.6 is a redefinition of ΩR(k) which, although it is also located around a

respiratory frequency reference obtained from previous (k − 1) steps (and

denoted fR(k− 1)), this time ΩR(k) is asymmetric with respect to fR(k− 1)

as shows (3.23). The reason of this asymmetry is that the most important

contamination present in PS is in the LF band due to the sympathetic

system activity, reflected at some DR signals.

ΩR(k) = [fR(k − 1)− δ, fR(k − 1) + 2δ]. (3.23)
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All peaks larger than 85% of f I
p(j, k) inside ΩR(k) are detected, and

f II
p (j, k) is chosen as the nearest to fR(k− 1) (see Fig. 2.3). Note that, in a

similar way to that in the method presented in Section 2.3.6, f II
p (j, k) can be

the same f I
p(j, k) if the largest peak is also the nearest to fR(k−1). Then, Ls

spectra Sj,k(f) are “peak-conditioned” averaged; only those Sj,k(f) which

are sufficiently peaked take part in the averaging. Similarly, “peaked” de-

notes that f II
p (j, k) exists and a certain percentage (ξ) of the spectral power

is contained in an interval centered around it. Peak-conditioned averaging

is computed as in method in Section 2.3.6 (see eq. 2.21), using the same

peakness-based criteria χA
j,k−l and χB

j,k−l defined in (4.28) and (4.29), respec-

tively. Nevertheless, the peakness is redefined in order to take into account

the new asymmetric ΩR(k):

Pj,k =

∫ min{f II
p (j,k)+0.6δ, fR(k−1)+2δ}

max{f II
p (j,k)−0.6δ, fR(k−1)−δ}

Sj,k(f)df

∫ fR(k−1)+2δ

fR(k−1)−δ
Sj,k(f)df

. (3.24)

Then, similarly to the method presented in Section 2.3.6, the algorithm

searches the largest peak f Ia
p (k) in S̄k(f), and subsequently f IIa

p (k) defined

as the nearest to fR(k − 1) inside ΩR(k) which is at least larger than 85%

of f Ia
p (k), and uses them to set the respiratory peak fp(k) (see eq. 2.26)

which at the same time used to set fR(k) (see eq. 2.25) and the estimated

respiratory rate f̂(k) (see eq. 2.27).

Similarly to the method presented in Section 2.3.6, S̄k(f) is the result

of an average from zero up to M × Ls PS, and if no spectrum takes part

in the average the algorithm increases the reference interval by doubling

the δ value and repeat the process from the search of f I
p(j, k) and f II

p (j, k)

in individual PS. In the case that no spectrum is peaked enough after this

second iteration, the method presented in Section 2.3.6 sets fR(k) as the

previous fR(k − 1) but it does not offer a respiratory rate estimation. In

difference, this method offers an estimate by setting f̂(k) as the previous

f̂(k − 1). The reason of this difference is that noise level in a tilt test

environment is considerably lower than that in a stress test environment

and so, the signal to noise ratio is expected to be high enough in the entire

recording and also respiratory rate variations are slower.

Figure 3.5 shows an example of Welch periodogram spectra from PRV,

PAV, and PWV, with limits of the integral that define Pj,k.

Concatenation of all S̄k(f) results in a time-frequency map S̄(k, f) as

shown in Fig. 3.6. Values for Ls, Ts, and Tm were selected as in Chapter 2:
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Figure 3.5: Example of Welch periodogram spectra from PRV (a), PAV (b), and

PWV (c). Limits of the integral that define Pj,k (see eq. 3.24) are shown with red

slashed lines (numerator), and with blue slashed lines (ΩR(k), denominator). The

resulting peakness-conditioned average S̄k(f) for combination of PRV, PAV, and

PWV is also shown (d). Note that S̄k(f) is obtained not only from the 3 Welch

periodograms at instant k, but also from those Welch periodograms obtained at

the last Ls − 1 instants (see 3.24).
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42 s, 12 s and 5 s respectively. α1 and α2 which fix the maximum allowed

changes in respiratory frequency inside (α2) and outside (α1) ΩR(k), were

set to 0.7 and 0.3 respectively as they were in the method presented in

Section 2.3.6. The other parameters were empirically set for this work:

• ξ = 0.4 and λ = 0.05 are based on the observation of spectra to achieve

a good compromise for peak spectrum acceptance/rejection.

• β = 0.8 is slightly higher than 0.7 used in Chapter 2, since in regu-

lar conditions respiratory frequency band is expected to change more

gradually than in stress test. Thus, a higher filtering for fR tracking

has shown to be more adequate in this scenario.

• δ = 0.08 Hz not allowing respiratory rate changes as fast as in Chapter

2, more adequate for tilt test recordings. Note that this value of δ sets

the length of ΩR(k) to 0.24 Hz which coincides with the typical HF

bandwidth.

Figure 3.6 shows some examples of time-frequency maps.

3.2.5 Performance measurements

With the objective of evaluating the different methods for deriving res-

piration, a 4 Hz sampled, [0.075, 1] Hz band-pass filtered version of the

respiratory signal r(n) was obtained. Two error functions for each one of

the 17 subjects in the database were computed: absolute error eA(k) and

relative error eR(k):

eA(k) = f̂d(k)− f̂RES(k) (3.25)

eR(k) =
eA(k)

f̂RES(k)
× 100, (3.26)

where f̂d(k) and f̂RES(k) are the respiratory rates estimated from the eval-

uated DR signal and r(n), respectively. Note that the same absolute dif-

ferences can correspond to very different relative error due to the f̂RES(k)

normalization.

In order to study the optimal values for parameters η and fC in the pulse

width based DR signals, the performance measurement z was defined as the

intersubject mean of intrasubject mean of the absolute value of relative error

|eR(k)|:

z =
1

M

M
∑

m=1

|eR(k)|m, (3.27)
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Figure 3.6: Examples of time-frequency maps: Welch periodograms for PRV (a),

PAV (b), and PWV (c); peak-conditioned average with estimated rate in black line

for PRV (d), PAV (e), PWV (f), combination of ΦX, ΦY and ΦZ (g), combination

of PRV, PAV and PWV (h), and reference respiratory signal (i).
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where M is the number of subjects in our database, and |eR(k)|m is the

mean of |eR(k)| obtained from mth subject.

3.3 Results

3.3.1 Pulse width measurement parameters optimization

In reference to the parameters optimization of the pulse width measure-

ment algorithm, they were computed all the 286 possible combinations cor-

responding to η ∈ [0, 0.5] with a step of 0.05, and fC ∈ [2.5, 15] Hz with a

step of 0.5 Hz, for both PPG and BP signals. The values which minimized z

were η = 0.05 and fC = 5 Hz for PPG signal (with z = 5.26%), and η = 0.3

and fC = 3 Hz for BP signal (with z = 5.66%).

These optimal values were used to obtain DR signals based on width

(duPWV(n) and duBWV(n)).

3.3.2 Evaluation of derived respiration signals

In order to evaluate the DR signals, the mean and standard deviation of both

eR(k) and eA(k) signals were computed for each subject. Then, intersubject

mean of both means and SD were computed for three groups of subjects:

one group containing all the subjects, and other two groups which make a

division of the subjects based on whether their mean respiratory rate f̄RES

is greater than 0.15 Hz or not. In other words, whether their f̄RES overlaps

in frequency with the sympathetic modulation or not. Respiratory rate was

estimated from each DR and from 6 combinations: the four combinations of

QRS slopes and R-wave angles studied in Chapter 2 (12ECG, VCG, LDL,

and NLDL), one combining all three PPG-based DR signals PCOMB, and

other combining all three rotation angle series ΦCOMB. Results obtained for

QRS slopes and R-wave angles are shown in Table 3.1 and, results obtained

for each DR signals and combinations PCOMB and ΦCOMB are shown in Table

3.2. Moreover, the percentage of times in which each DR signal is used in

PCOMB is shown in Table 3.3.

For comparison with [95], the median of eR(k) for each subject was

obtained for the two proposed methods: the PWV and the combination of

PRV, PAV and PWV, PCOMB. Table 3.4 shows inter–subject median and

interquartile range (IQR) of these medians, for the same three groups of

subjects over which the mean of means and SD were computed.
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Table 3.1: Inter–subject mean of means and standard deviations of eA(k) in mHz

and eR(k) in percentage obtained for the different combinations of QRS slopes and

R-wave angles presented in Chapter 2.
eR(k) [%] eA(k) [mHz]

Mean SD Mean SD

12ECG 0.17 5.32 −0.51 10.57

VCG −0.10 5.37 −1.33 9.94

LDL 0.69 4.75 0.44 8.54

NLDL 0.82 4.76 0.59 9.14

3.4 Discussion

As it was mentioned previously, deriving respiration from the PPG signal

is especially interesting because it is recorded by a simple and cheap device

which also results very comfortable for the patient and, in addition, is widely

adopted as a SpO2 monitor: the pulse oximeter. SpO2 is a very important

parameter in studies concerning respiration and essential in many applica-

tions such as sleep apnea diagnosis. Obtaining accurate respiratory signal

from a pulse oximeter would allow us to consider an ambulatory diagnosis

with its both social and economic advantages.

A method for deriving respiration from the PPG signal has been devel-

oped: the PWV, which has obtained very accurate results, comparable or

even better than other known methods which involve ECG or BP.

In respiratory rate estimation from only one DR signal, this method

based on PWV has obtained the best results (1.27 ± 7.81%; 0.14 ± 14.78

mHz), being much better than PRV (−10.29±13.63%; −34.60±33.73 mHz)

or PAV (−8.75± 17.06%; −26.41± 41.84 mHz), which are more affected by

the sympathetic modulation which results in a very high negative error

in the f̄RES ≥ 0.15 Hz group. The PWV based method results are also

comparable to the pulse transit time (PTT) based one (0.96±9.26%; −1.54±

18.57 mHz), which needs ECG in addition to PPG signal.

The BP width variability (BWV) based method also obtained very good

results (2.54 ± 8.76%; 1.93 ± 15.08 mHz), but acquiring BP signal is more

uncomfortable and expensive than acquiring PPG signal and the first one

provides no information about SpO2.

In PCOMB, the PWV based method have a fundamental role since PWV

is much less affected by the sympathetic modulation (see Fig. 3.6). This

fact explains why the PWV method is more often used in the f̄RES ≥ 0.15 Hz

group (67.63% of times) than in the f̄RES < 0.15 Hz group (42.41% of times),
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Table 3.2: Inter–subject mean of means and standard deviations of eA(k) in mHz

and eR(k) in percentage. ΦCOMB refers to the combination of the three rotation

angle series, and PCOMB refers to the combination of PRV, PAV, and PWV.

eR(k) [%] eA(k) [mHz]

Mean SD Mean SD

E
C
G

m
e
th

o
d
s

HRV

fRES < 0.15 Hz 4.19 11.91 4.08 13.75

fRES ≥ 0.15 Hz -21.21 15.15 -62.78 46.31

All -12.25 14.00 -39.18 34.82

R

fRES < 0.15 Hz 12.49 20.50 13.86 24.64

fRES ≥ 0.15 Hz -7.55 15.48 -24.33 43.17

All -0.48 17.25 -10.85 36.63

RS

fRES < 0.15 Hz 41.50 36.94 40.28 36.46

fRES ≥ 0.15 Hz -7.55 15.48 -24.33 43.17

All 14.84 21.13 18.28 35.05

ΦCOMB

fRES < 0.15 Hz 13.30 11.20 4.71 4.31

fRES ≥ 0.15 Hz 0.81 4.58 1.50 10.52

All 2.05 6.92 2.63 11.50

B
P

m
e
th

o
d
s

BRV

fRES < 0.15 Hz 4.31 11.20 4.71 13.30

fRES ≥ 0.15 Hz -19.21 14.49 -58.13 44.06

All -10.78 13.62 -35.95 33.33

BAV

fRES < 0.15 Hz 1.28 10.66 0.93 13.14

fRES ≥ 0.15 Hz -4.49 11.80 -14.68 34.63

All -2.78 11.40 -9.17 24.04

BWV

fRES < 0.15 Hz 8.26 15.97 9.16 19.01

fRES ≥ 0.15 Hz -0.58 4.82 -2.01 12.94

All 2.54 8.76 1.93 15.08

P
P
G

m
e
th

o
d
s

PRV

fRES < 0.15 Hz 4.46 11.93 4.41 13.85

fRES ≥ 0.15 Hz -18.34 14.56 -55.89 44.58

All -10.29 13.63 -34.60 33.73

PAV

fRES < 0.15 Hz 0.35 12.27 -0.73 15.20

fRES ≥ 0.15 Hz 56.37 19.68 -40.43 -13.72

All -8.75 17.06 -26.41 4.84

PWV

fRES < 0.15 Hz 5.32 13.27 5.85 16.06

fRES ≥ 0.15 Hz -0.92 4.83 -2.97 14.08

All 1.27 7.81 0.14 14.78

PCOMB

fRES < 0.15 Hz 2.27 10.50 1.87 12.57

fRES ≥ 0.15 Hz -1.50 4.58 -4.35 12.76

All -0.17 6.67 -2.16 12.69

O
th

e
r

PTT

fRES < 0.15 Hz 5.88 13.62 6.20 15.58

fRES ≥ 0.15 Hz -1.73 6.89 -5.76 20.21

All 0.96 9.26 -1.54 18.57
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Table 3.3: Percentage of utilization of each DR signal in combination of PRV,

PAV and PWV.
Percentage of use

Group PRV PAV PWV

f̄RES ≥ 0.15 Hz. 48.24% 37.80% 67.63%

f̄RES < 0.15 Hz. 59.77% 61.27% 42.41%

All 52.31% 46.08% 58.73%

Table 3.4: Inter–subject median and IQR of medians of eR(k) in percentage ref-

erent to PWV and combination of PRV, PAV and PWV.
eR(k) [%]

Group
PWV PCOMB

Median IQR Median IQR

f̄RES ≥ 0.15 Hz −0.24 0.48 −0.67 0.41

f̄RES < 0.15 Hz 1.72 1.60 0.31 0.69

All 0.02 1.48 −0.37 0.66

Table 3.3. Results referred to estimated rate from PCOMB (−0.17 ± 6.67%;

−2.16 ± 12.69 mHz) are comparable with combination of three electrical

axis rotation angle series (2.05 ± 6.92%; 2.63 ± 11.50 mHz) and have out-

performed those obtained with only PWV. This means that it is reasonable

to combine respiratory information of these three signals or, in other words,

the respiratory information carried by these three signals can be comple-

mentary.

The obtained values of median and IQR of medians (0.02 ± 1.48% for

PWV and −0.37± 0.66% for PCOMB) are worst than those obtained in [95]

(f̄RES between 0.2 and 0.3 Hz, 0.00 ± 0.00%; f̄RES between 0.4 and 0.6 Hz,

0.00 ± 1.18% for supine position and 0.00 ± 1.07% for tilt position), but

it must be kept in mind that the database used in [95] contains signals

recorded during a controlled respiration experiment. Controlled respiration

means the subjects are instructed to breathe according to a timed beeping

sound. Thus, those generated rates were constant, so estimation methods

were not required to follow rate variations which is not an easy task and,

furthermore, all generated rates were higher than 0.2 Hz, not overlapping

in frequency with the sympathetic modulation present below 0.15 Hz in LF

band.

Note the same subjects used to evaluate performance of the methods

were also used to optimize the parameters η and fc, and this could bias the

results. An additional test was performed: 8 randomly selected subjects
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(training set) were used for parameters optimization and the remaining 9

subjects (test set) were used for the evaluation of PWV and PCOMB methods.

Same values were obtained for optimal parameters (η = 0.05 and fc = 5 Hz).

Results were almost identical to the ones just commented above (see Table

1), obtaining a mean ± SD of frequency estimation error of 1.71 ± 7.99%

(0.91± 13.74 mHz) for the PWV method, and 0.09± 6.61% (−1.75± 12.26

mHz) for the PCOMB method.

The algorithm for respiratory rate estimation is slightly different from

that presented in Chapter 2 which was designed to work in the highly non-

stationary and noisy environment of stress test. The main modifications

include: (i) the reference interval ΩR(k) (see eq. 3.23) for estimating res-

piratory frequency is asymmetric with respect to the reference frequency

fR(k− 1), since some of the DR signals in this study are contaminated with

sympathetic-related LF components; (ii) respiratory rate estimated even

when no spectrum is peaked enough according to χA and χB, because very

noisy signal segments are not expected in the tilt test environment. As

expected, obtained results (see Table 3.1) are similar to those obtained in

Chapter 2 for tilt test (see Table 2.1). It is also remarkable that results

obtained for combinations of QRS slopes and R-wave angles proposed in

Chapter 2 (e.g., 0.82 ± 4.76%; 0.59 ± 9.14 mHz for NLDL) outperformed

those obtained with electrical axis rotation angles (2.05±6.92%; 2.63±11.50

mHz).

One limitation of this study is that methods have been evaluated only

with recordings from healthy young people. The physiological source of the

respiration-related modulations in PPG signal exploited by the presented

methods is the autonomic control over the cardiovascular system. In ad-

dition, PPG pulses morphology is affected by age, due to arterial stiffness.

So age, arterial or ANS diseases could affect results. Further studies must

be elaborated to assess the performance of the presented methods over this

kind of patients.

3.5 Conclusions

This chapter addresses the derivation of respiratory information from PPG

signals by exploiting the respiration-induced variations in pulses width. The

PWV method does not require the ECG as an additional recording as PTT-

based methods does, and it is much more less affected by other physiologi-

cal non-respiration-related modulations than PAV- and PRV-based methods

are. It showed better performance than other single PPG-based DR signals
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in respiratory rate error terms (1.27± 7.81%). Additionally, when combin-

ing it with PRV and PAV methods which are also based on PPG, results

improved to (−0.17 ± 6.67%) even outperforming the ones obtained with

other methods which involve ECG or BP registration. These results allow

to derive respiration from PPG suitable for ambulatory analysis and for

sleep apnea diagnosis due to the simplicity of PPG recordings.





Chapter 4

Respiration derived from

smartphone-camera-acquired

PPG signals

Anything can change, because the smartphone

revolution is still in the early stages.

Tim Cook.

4.1 Introduction

Smartphone devices can record PPG signals based on light emitted by flash

and received by a camera [37, 38]. Smartphones are interesting devices

in ambulatory scenarios due to significant advancements in the computa-

tional power which enables complex signal processing algorithms to be per-

formed in real time. Certainly, built-in wireless communications feature

of the smartphones facilitates ease of data transfer. These features make

smartphones very valuable as take-anywhere and easy-to-use physiological

monitors [41]. Obtaining respiratory rates from smartphone devices would

represent a simple and automated way for assisting hospital clinical staff

who are currently trained to measure it by counting the number of breaths

in a 15 or 30-seconds window [102], making the process cumbersome and

user-dependent. It has the potential for other applications, such as anxi-

ety, fatigue or stress level monitoring at home, especially if respiratory rate

information is combined with other physiological information accessible in

the PPG signal, such as pulse rate and its variability [50] or BP [103].

It should be noted that, however, SCPPG signal is more vulnerable to

ambient-light interferences and variations in finger pressure over the sensor,

making them in general noisier than the standard pulse oximeter sensor.

Furthermore, their sampling rate is lower. Thus, deriving physiological

information from SCPPG signals remains a more challenging situation than

63
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deriving it from conventional PPG signals, and the performance of known

methods which have been tested with conventional PPG signals must be

tested also with SCPPG signals.

In this chapter, the PPG-based methods for deriving respiratory rate

presented in Chapter 3 (pulse-to-pulse methods) in combination with those

presented in [104] (non-pulse-to-pulse methods), are applied and adapted

to SCPPG signals. The methods in [104] were used with SCPPG signals

in [105] and [41], but they were neither combined with each other, nor with

the methods presented in Chapter 3.

Furthermore, the power of respiration-induced modulations on which

these DR signals are based (rate, amplitude and width) may depend on

the respiratory rate. In the case of PRV, it is known that respiratory sinus

arrhythmia (which modulates the heart rate and therefore the pulse rate)

is reduced at high respiratory rates [106]. The respiratory rate influence

in the resulting magnitude of PPG-based DR signals is also studied in this

chapter.

4.2 Materials

4.2.1 Smartphone-camera-acquired-PPG signals

SCPPG signals from 30 healthy subjects (22 men and 8 women, between 20

and 26 years old) were collected during controlled respiration experiments.

Subjects were instructed to breathe at a constant rate according to a timed

beeping sound, while placing the right index finger on the camera lens of

the analyzed device. The data were collected for respiratory rates ranging

from 0.2 to 0.6 Hz at an increment of 0.1 Hz, recording a total of 2 minutes

of SCPPG signal for each subject, respiratory rate and device. The SCPPG

signals were recorded with 3 different smartphone devices: iPhone 4S, iPod

5, and HTC One M8. The signals were extracted from average of 50x50

pixel region of the green video signal at each frame. The reason for using

only the green band is that there is high absorption by hemoglobin in the

green range, and it has been demonstrated to give a stronger cardiac pulse

signal than the red or blue bands during remote PPG imaging [39–42].

4.2.2 Conventional PPG signals

The study of respiratory rate influence in the resulting magnitude of PPG-

based DR signals included the analysis of PPG data recorded by a con-

ventional photoplethysmograph. PPG and chest respiratory effort signals
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were simultaneously recorded with Medicom MTD Poly10 and Poly4 using

a sampling rate of 250 Hz, from 14 healthy volunteers during similar con-

trolled respiration experiments. According to the chest respiratory effort

signal, the subjects breathed at the requested respiratory rate with an error

of 0.22± 1.05 mHz.

4.2.3 Polysomnographic recordings

This database includes PSG recordings from 21 children (11 boys and 10

girls) whose mean age was 4.47± 2.04 (mean ± standard deviation). Chil-

dren were referred to hospital for suspected sleep-disordered breathing.

Common PSG signals records including ECG leads I and II, and airflow,

were recorded by a digital polygraph (BITMED EGP800), according to the

standard procedure defined by the American Thoracic Society [107]. PPG

and SpO2 were measured using a pulse oximeter (COSMO ETCO2/SpO2

Monitor Novametrix, Medical Systems). Signals were stored with a sam-

pling rate of 100 Hz, except ECG signals, which were sampled at 500 Hz.

OSAS evaluation from PSG data were scored by clinical experts using the

standard procedures [108]. 10 out of the 21 children were diagnosed with

OSAS. Ethical approval for this study was obtained from the Aragon clinical

research local ethics committee (CEICA).

4.3 Methods

4.3.1 Preprocessing

The sampling rate of SCPPG signals is variable due to internal processing

load [109], and it depends on the measuring device. The SCPPG signals

were interpolated to a constant sampling rate of fSP
s = 100 Hz by using

cubic splines. Furthermore, SCPPG signals are obtained as inverted PPG

signals [37]. Thus, the signals were inverted by multiplying by -1 to be used

for further processing.

Next, the data were divided into 60s-length data segments that were

shifted every 10 s. A length of 60 s ensure at least 9 breaths of the lowest

frequency eligible as respiratory rate in this work, which is 0.15 Hz. The

baseline contamination was removed with a high-pass filter with a cutoff

frequency of 0.3 Hz, and high frequency noise was considerably attenuated

by a low-pass filter with a cutoff frequency of 35 Hz. Subsequently, the

artifacts were automatically detected and removed by an algorithm based

on Hjorth parameters presented in [54] which was described in Section 3.2.1
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at page 45. Segments with 30% or more of the time containing artifactual

signal were discarded.

Note that aliasing problems may affect methods since respiratory infor-

mation is obtained only at pulse occurrence. For this reason, fragments

associated to a respiratory rate higher than the half mean pulse rate were

excluded from the study.

4.3.2 Pulse-to-pulse methods

Significant points detection

In contrast to Chapter 3 where the PPG pulses detection was based on

maximum of R waves previously detected in the ECG signal. The ECG

signal is not available in the databases studied in this chapter. Furthermore,

an ECG-independent pulse detector is desirable. In order to detect SCPPG

pulses, an automatic PPG pulses detector was developed. Conventional

PPG signals were used for developing the pulse detector in order to obtain an

algorithm generally applicable. Concretely, the PSG recordings described in

Section 4.2.3 were used. These recordings were chosen because they present

very abrupt changes in pulse rate and also in pulse amplitude fluctuations

as they present DAP events, which are analyzed in Chapter 5. Because

of these characteristics of PSG recordings, a pulse detector which work for

them results easy to extend to other kind of recordings.

The developed algorithm consists of two phases: a linear filtering trans-

formation, and an adaptive thresholding operation. The filtering transfor-

mation is designed to accentuate the abrupt upslopes of the PPG pulses

over the smoother one of the dichrotic pulses. It consists of a low-pass-

differentiator filter designed by applying a least square linear-phase FIR

technique [110] using transition band from 7.7 Hz to 8 Hz, considering PPG

pulses to be below those frequencies (see Fig. 4.1). The impulse response

and the transfer function of this filter are shown in Fig. 4.2.

For peak, n∗

Ai
, detection in filtered signal y(n), a time varying threshold

γ(n) gradually decreasing between detected peaks was used. This threshold

keeps the value of the previous detected peak γ(n) = y(n∗

Ai−1
) during a

refractory period which corresponds to 150 ms (Nr = 0.15fSP
s ) and after

this it begins to decrease linearly. If there is no new detection after a time

period m̂AAi
, the threshold will have decreased to a percentage α < 1 of

y(n∗

Ai−1) and from that instant it maintains its value:
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Figure 4.1: Inter-subject mean and SD of PPG pulses power spectrum, taking

one pulse of each one of the 21 studied subjects and estimating its PSD by classic

periodogram.

γ(n)=
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
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
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

y(n∗

Ai−1
), Tri

(α−1)y(n∗
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, (4.1)

being Tri the time interval during refractory period, Tdi the time inter-

val during threshold decrease, and Tli the time interval during which the

threshold maintains its lowest value as defines:










Tri : (n−n∗

Ai−1
) < Nr

Tdi : Nr ≤ (n−n∗

Ai−1
) < m̂AAi

Tli : (n−n∗

Ai−1
) ≥ m̂AAi

, ∀n∈
[

n∗

Ai−1
, n∗

Ai

]

, (4.2)

where α was set to 0.2, and the m̂AAi
period is an estimation of the inter-peak

interval calculated as the median of three peak-to-peak intervals previously

detected:

m̂AAi
=median

{(

n∗

Ai−4
−n∗

Ai−3

)

,
(

n∗

Ai−3
−n∗

Ai−2

)

,
(

n∗

Ai−2
−n∗

Ai−1

)}

. (4.3)

Finally, the maximum of each PPG pulse nAi
is set at the maximum

point of PPG signal within a 300 ms-length interval beginning at each peak

n∗

Ai
detected in transformed signal. Figure 4.3 shows an example of PPG

pulses detection during a DAP event.
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Figure 4.2: Implemented low-pass-differentiator filter: (a) shows the impulse re-

sponse, and (b) the the transfer function (solid black line) over the ideal one (slashed

grey line).

Then, baseline point of the ith SCPPG pulse was defined as the mini-

mum previous to:

nBi
= argmin

n∈[nAi
−0.4fSP

s ,nAi ]
{xPPG(n)} , (4.4)

and subsequently, the fiducial point of each pulse in SCPPG used for PRV

analysis was the medium-amplitude point nMi
, defined as that point in which

the amplitude has reached the 50% of its maximum:

nMi
= argmin

n∈[nBi
,nAi ]

{
∣

∣

∣

∣

xPPG(n)−
xPPG (nAi

) + xPPG (nBi
)

2

∣

∣

∣

∣

}

. (4.5)

The reason for using nMi
as fiducial point instead of using nAi

is the

robustness. The maximum of PPG and SCPPG pulses are typically located

at smooth zones, so nAi
can be considerably changed by a low level of noise.

However, nMi
is located at the upslope of the pulse which represents a very

abrupt zone of the signal [51].
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Figure 4.3: Example of detector behavior during a DAP event: (a) shows the

PPG signal, and (b) shows its filtered signal (solid blue line) and the resulting time

varying threshold (slashed black line).

The pulse onset nOi
and end nEi

points were detected by adapting

the methodologies described in Chapter 3 to SCPPG signals. The light-

reflection basis of SCPPG signals makes their pulses smoother and larger

than those in transmitted-light-based PPG signals. Because of this, the

intervals in which the maximum up-/down-slope points nUi
and nDi

are

searched were enlarged from 300 ms to 400 ms:

nUi
= argmax

n

{

x′SCPPG(n)
}

, n ∈ [nAi
− 0.4fSP

s , nAi
] (4.6)

nDi
= argmin

n

{

x′SCPPG(n)
}

, n ∈ [nAi
, nAi

+ 0.4fSP
s ], (4.7)

and consequently, the intervals in which pulse onset nOi
and end nEi

points

were also enlarged:

ΩOi
= [nAi

− 0.4fSP
s , nUi

] (4.8)

ΩEi
= [nUi

, nAi
+ 0.4fSP

s ]. (4.9)

Parameters fc (cutoff frequency of the low-pass filter before obtaining

the derivative signal x′PPG(n)) was set to 2 Hz, and η (percentage of max-

imum/minimum amplitude of x′SCPPG(n) at nOi
/nEi

) was set to 0.5 as de-

scribed in Section 4.4.1.
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Figure 4.4: Pulse-to-pulse-methods-based DR signals over a SCPPG signal.

Derived respiration signals

The 3 PPG-based DR signals used in Chapter 3 (PRV, PAV, and PWV)

were also used in this study:

duPRV(n) =
∑

i

fSP
s

1

nNi
− nNi−1

δ (n− nNi
) (4.10)

duPAV(n) =
∑

i

[xSCPPG (nAi
)− xSCPPG (nBi

)] δ (n− nAi
) (4.11)

duPWV(n) =
∑

i

1

fSP
s

(nEi
− nOi

) δ (n− nAi
) . (4.12)

Figure 4.4 illustrates the pulse-to-pulse-methods-based DR signals over

a SCPPG signal. The same processing applied in Chapter 3 was applied

here in order to obtain the final 4 Hz outlier–rejected evenly sampled band–

pass filtered version of DR signals, denoted without the “u” superscript: a

MAD-based outlier rejection, a cubic splines interpolation, and a band-pass

filtering (0.075-1 Hz).

4.3.3 Non-pulse-to-pulse methods

Amplitude and frequency modulation sequences were extracted from SCPPG

signal as described in [104]. The amplitude and frequency modulation se-

quences are extracted from a time-frequency spectrum obtained by the vari-

able frequency complex demodulation (VFCDM) method [111].

The VFCDM-based time-frequency spectrum obtainment procedure can

be divided in 2 steps: estimations of a time-frequency spectrum by com-
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plex demodulation (CDM) denoted fixed frequency CDM (FFCDM) in this

thesis, and subsequently applying VFCDM selecting only the dominant fre-

quencies of interest for improving the time-frequency resolution.

Fixed frequency complex demodulation

Let x(t) be a narrow-band oscillation:

x(t) = xDC(t) +A(t) cos (2πf0t+Φ(t)) , (4.13)

where f0 is the center frequency, A(t) is the instantaneous amplitude, Φ(t)

is the phase, and xDC(t) is the DC component.

A(t) and Φ(t) can be extracted for a given f0 from x(t) by multiplying

it by e−j2πf0t, shifting f0 to zero frequency:

z(t)=x(t)e−j2πf0t=xDC(t)e
−j2πf0t+

A(t)

2
ejΦ(t)+

A(t)

2
e−j(4πf0t+Φ(t)). (4.14)

Then, a low-pass filter can be applied to z(t), with a cutoff-frequency

less than f0, obtaining the middle term of (4.14):

zLP(t) =
A(t)

2
ejΦ(t), (4.15)

from which A(t) and Φ(t) can be obtained as:

A(t) = 2 |zLP(t)| (4.16)

Φ(t) = tan−1

(

Im(zLP(t)

Re(zLP(t)

)

. (4.17)

Variable frequency complex demodulation

Consider a case when modulating frequency varies as a function of time,

f0(t). Equation 4.13 can be rewritten as:

x(t) = xDC(t) +A(t) cos

(
∫ t

0
2πf0(τ)dτ +Φ(t)

)

. (4.18)

The frequency shift in (4.14) can be performed this time by multiplying

by e−j
∫ t

0 2πf0(τ)dτ obtaining:

z(t) = x(t)e−j
∫ t

0 2πf0(τ)dτ = xDC(t)e
−j

∫ t

0 2πf0(τ)dτ +
A(t)

2
ejΦ(t) +

+
A(t)

2
e−j(

∫ t

0 4πf0(τ)dτ+Φ(t)), (4.19)
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from which the middle term can be obtained similarly to the FFCDM case,

i.e., by using a low-pass filter with a cut-off frequency lower than f0(t). The

expression of this term is the same of zLP(t) in (4.15), and instantaneous

amplitude A(t) and phase Φ(t) can be obtained similarly to the FFCDM

case (see (4.16) and (4.17), respectively). The instantaneous frequency f(t)

can be obtained from Φ(t) [112]:

f(t) = f0(t) +
1

2π

dΦ(t)

dt
. (4.20)

In this way, a time-frequency spectrum can be obtained by first applying

FFCDM using a set of central frequencies:

f0k = (k − 1)(2fω), k = 1, 2, int

(

fmax

2fω

)

, (4.21)

where the bandwidth between successive center frequencies is 2fω, and fmax

denotes the highest signal frequency. A FIR low-pass filter with a cut-off

frequency fω was applied for obtaining each zLPk
(n).

The dominating frequencies fk(t) can be obtained by (4.20) based on

instantaneous phase (4.17), and Ak(t) can be obtained from (4.16). Subse-

quently, fk(t) were used as central frequencies for applying VFCDM using

a cut-off frequency for the low-pass filter of fω/2, refining time-frequency

resolution [111].

Parameter fω was set to 0.6 Hz. Further details are given in [104].

Derived respiration signals

Once the VFCDM-based time-frequency spectrum SVFCDM(n, f) is com-

puted, dFM(n) is determined by extracting the frequency component that

has the largest amplitude for each time point at the heart rate frequency

band, since heart rate is considered the carrier wave:

dFM(n) = argmax
f∈ΩHR

{SVFCDM(n, f)} , (4.22)

where ΩHR denotes the frequency band in which heart rate is expected. This

band is defined by using the spectrum of the SCPPG signal SSCPPG(f):

fHR = argmax
f

{SSCPPG(f)} , f ∈ [0.5Hz, 2Hz] (4.23)

ΩHR = [fHR − 0.2Hz, fHR + 0.3Hz] . (4.24)
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Figure 4.5: Example of DR signals studied in this paper: dPRV(n) (a), dPAV(n)

(b), dPWV(n) (c), dFM(n) (d), and dAM(n) (e). In this expample, the subject was

asked to breathe at 0.4 Hz.

A similar procedure is used for extracting the amplitude modulation:

dAM(n) = max
f

{SVFCDM(n, f)} , f ∈ ΩHR. (4.25)

The same processing applied to pulse-to-pulse-methods-based DR sig-

nals (Section 4.3.2) was applied also to dFM(n) and dAM(n), i.e., a 4-Hz cubic

spline interpolation followed by a band-pass filter (0.15-0.7 Hz). Fig. 4.5

shows an example of studied DR signals.

4.3.4 Respiratory rate estimation algorithm

Respiratory rate was estimated from the jth DR signal by using its PSD

Sj(f), which was estimated by applying a modified periodogram using a

Hamming window. Figure 4.6 shows an example of Sj(f) for each one of

the studied DR signals. The respiratory rate f̂ is estimated within the band

[0.15 Hz, 0.7 Hz], as the frequency at which the absolute maximum of Sj(f)

is located.

In addition, respiratory rate was also estimated by combining informa-

tion from several DR signals by using an algorithm based on a “peakness”-

conditioned average of PSDs as those used in Chapter 2 and Chapter 3.
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Figure 4.6: Example of normalized PSD of DR signals studied in this paper:

dPRV(n) (a), dPAV(n) (b), dPWV(n) (c), dFM(n) (d), and dAM(n) (e). In this expam-

ple, the subject was asked to breathe at 0.4 Hz.

This time, the “peakness” of the jth PSD is redefined as:

Pj =

∫ fp(j)+0.05

fp(j)−0.05
Sj(f)df

∫ 0.7Hz

0.15Hz

Sj(f)df

, (4.26)

where fp(j) denotes the highest peak within the studied band [0.15, 0.7 Hz]

in the PSD of the jth DR signal.

The “peakness”-conditioned average is computed as:

S̄(f) =
∑

j

χA
j χ

B
j Sj(f), (4.27)

where the two criteria χA and χB used in Chapter 2 and Chapter 3 are

also used, allowing to take part in the average only to those spectra whose

“peakness” is higher than a fixed value (χA) and which are the most peaked

for each subject at each segment (χB):

χA
j =

{

1, Pj ≥ ξ

0, otherwise
(4.28)

χB
j =

{

1, Pj ≥ max
j

{Pj} − λ

0, otherwise
. (4.29)

Finally, f̂ is estimated as the frequency at which the absolute maximum

of S̄(f) is located within the studied band [0.15 Hz, 0.7 Hz]:

f̂ = argmax
f∈[0.15,0.7]

{

S̄(f)
}

. (4.30)
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Respiratory rate was estimated from each one of the five DR signals

separately, and from two combinations:

• CPRV,PAV,PWV: dPRV(n), dPAV(n), and dPWV(n)

• CALL: dPRV(n), dPAV(n), dPWV(n), dFM(n), and dAM(n)

Furthermore, the Kruskal-Wallis statistical test and the Bonferroni cor-

rection were used for analysis of differences of eR for the different methods.

The non-parametric Kruskal-Wallis statistical test was chosen because it

was observed that is not normal distributed, and the Bonferroni correction

was applied in order to control the familywise error rate because multiple

comparisons were performed.

4.3.5 Estimation of power of oscillations

In order to study the respiratory rate influence in the resulting magnitude

of PPG-based DR signals, the power of oscillations in DR signals at the

respiratory band was estimated by an algorithm based on PSD. This time,

one PSD was obtained from each one of the 2-minutes-length recordings

corresponding to each subject and each respiratory rate. These PSDs are

denoted S∗

j (f) and they were computed by using the Welch periodogram

using a 96-samples-length (24 seconds) Hamming window with an overlap

of 50%.

Subsequently, the principal frequency of the oscillations at the respira-

tory band was estimated as:

f̂∗

j = argmax
{

S∗

j (f)
}

, f ∈ [fR − 0.05Hz, fR + 0.05Hz] , (4.31)

where fR denotes the respiratory rate at which subject is requested to

breath.

Then, the power of the oscillations at the respiratory band was estimated

as:

Pj =
fSP
s

NFFT

f̂∗
j +0.025Hz
∑

f=f̂∗
j −0.025Hz

S∗

j (f), (4.32)

where NFFT denotes the number of points of S∗

j (f).

The Friedman statistical test was used in order to study whether there

are significant differences (p-value < 0.05) for different respiratory rates for

each device.
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4.4 Results

4.4.1 Pulse width parameters optimization

Optimal values for fc and η were obtained by a similar procedure to that

described in Section 3.3.1. They were computed all the 323 possible combi-

nations corresponding to η ∈ [0, 0.8] with a step of 0.05, and fC ∈ [1, 10] Hz

with a step of 0.5 Hz, and the relative error of estimated respiratory rate

was obtained as:

eR =
f̂ − fR

fR

× 100. (4.33)

The values which minimized the mean of absolute value of eR were ob-

tained and chosen as optimal. These values coincided for the 3 studied

devices and they were η = 0.5 and fc = 2 Hz.

4.4.2 Respiratory rate estimation

The percentages of 60-s-length fragments excluded by the artifact and alias-

ing criteria described in Section are shown in Table 4.1.

Table 4.1: Percentage of fragments excluded from the study due to the artifact

and aliasing criteria.

fR (Hz)
iPhone 4S iPod 5 HTC One M8

Artifact Aliasing Artifact Aliasing Artifact Aliasing

0.2 15.38% 0.00% 8.47% 0.00% 20.98% 0.00%

0.3 17.51% 0.00% 9.63% 0.00% 19.52% 0.00%

0.4 16.36% 0.00% 6.95% 0.00% 18.10% 0.00%

0.5 14.03% 1.36% 4.79% 6.38% 22.13% 0.00%

0.6 14.09% 24.55% 7.53% 35.48% 8.57% 15.71%

Relative error eR was obtained for each studied DR signal and combi-

nation. Medians and IQRs obtained for eR from different DR signals and

combinations, for each fR and device, are shown in Table 4.2, and Fig. 4.7

illustrates them in boxplots.

Table 4.3 shows those pairs of methods for which obtained eR showed

significant differences (p-value< 0.05) between each other, according to the

Kruskall-Wallis statistical test and the Bonferroni correction.
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Table 4.2: Obtained medians and IQRs for eR from different DR signals and

combinations, for each fR and device.

fR DR Signal / iPhone 4S iPod 5 HTC One M8

(Hz) Combination Median/IQR Median/IQR Median/IQR

0.2

dFM(n) 0.10%/2.44% 0.10%/0.00% 0.10%/2.44%

dAM(n) 0.10%/2.44% 0.10%/4.88% 0.10%/4.88%

dPRV(n) 0.10%/1.95% 0.10%/1.46% 0.10%/0.98%

dPAV(n) 0.10%/2.93% 0.10%/3.05% 1.07%/15.87%

dPWV(n) 0.10%/1.46% 0.10%/1.46% 0.10%/1.46%

CPRV.PAV.PWV -0.39%/1.46% -0.39%/0.98% -0.39%/0.98%

CALL -0.39%/1.10% -0.39%/0.98% -0.39%/0.98%

0.3

dFM(n) 0.91%/1.63% -0.72%/1.63% 0.91%/18.31%

dAM(n) -0.72%/3.66% -0.72%/2.03% -0.72%/3.26%

dPRV(n) -0.07%/0.98% -0.07%/1.06% -0.07%/1.38%

dPAV(n) -0.07%/1.95% -0.39%/1.38% -0.39%/2.36%

dPWV(n) 0.10%/0.98% -0.07%/0.65% -0.39%/1.63%

CPRV.PAV.PWV 0.91%/0.65% -0.07%/0.98% -0.07%/0.73%

CALL -0.07%/0.65% -0.07%/0.98% -0.07%/0.98%

0.4

dFM(n) 0.10%/4.88% 0.10%/1.22% 0.10%/10.99%

dAM(n) -2.34%/41.50% -1.12%/36.62% -1.12%/34.18%

dPRV(n) -0.15%/1.22% -0.15%/1.22% 0.10%/2.20%

dPAV(n) -0.15%/3.17% -0.39%/24.66% -0.63%/15.38%

dPWV(n) -0.15%/1.46% -0.15%/1.22% -0.15%/2.69%

CPRV.PAV.PWV -0.15%/0.49% -0.15%/0.73% -0.15%/1.22%

CALL -0.15%/0.73% -0.15%/0.73% -0.15%/0.98%

0.5

dFM(n) -0.39%/3.17% -0.39%/1.95% -0.39%/11.72%

dAM(n) -39.94%/55.91% -39.45%/59.57% -25.78%/56.64%

dPRV(n) -0.20%/4.64% -0.20%/1.17% -0.20%/11.91%

dPAV(n) -0.59%/44.14% -0.39%/45.90% -0.20%/26.56%

dPWV(n) -0.20%/2.29% 0.00%/1.95% -1.37%/39.06%

CPRV.PAV.PWV -0.20%/0.78% 0.00%/0.78% -0.20%/1.17%

CALL 0.00%/0.98% 0.00%/0.78% -0.20%/4.69%

0.6

dFM(n) -0.72%/50.05% 0.10%/46.39% -3.97%/44.76%

dAM(n) -49.95%/65.10% -57.28%/66.73% -37.74%/59.41%

dPRV(n) -0.47%/36.42% -0.23%/4.11% -13.90%/56.32%

dPAV(n) -2.99%/59.57% -51.66%/69.42% -31.64%/54.32%

dPWV(n) -0.39%/32.63% -0.07%/8.63% -14.71%/48.50%

CPRV.PAV.PWV -0.23%/2.40% -0.07%/3.01% -13.49%/54.57%

CALL -0.23%/2.12% -0.07%/1.99% -2.51%/37.64%
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Figure 4.7: Boxplots of relative error eR for the different methods, devices, and

respiratory rates fR.
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Table 4.3: Pairs of methods for which obtained eR showed significant differences

(p-value< 0.05) between each other, according to the Kruskall-Wallis statistical

test and the Bonferroni correction. Note in the text that observed differences are

due to outliers.

fR ∈ {0.2, 0.3, 0.4}Hz fR ∈ {0.5, 0.6}Hz

iPhone 4S

{ FM, AM }, { FM, PRV } ,

{ FM, PAV } , { FM, PWV }

, { FM,CPRV,PAV,PWV} ,

{ FM,CALL} , { AM, PWV }

{ FM, AM } , { FM, PRV } ,

{ AM, PRV } , { AM, PAV }

, { AM, PWV } ,

{ AM,CPRV,PAV,PWV} ,

{ AM,CALL} , { PRV, PAV }

, { PAV, PWV } ,

{PAV,CPRV,PAV,PWV} ,

{ PAV,CALL}

iPod 5

{ FM-AM }, { FM-PAV } ,

{ AM,PRV } , { AM,PAV } ,

{ AM,PWV } ,

{ AM,CPRV,PAV,PWV} ,

{ AM, CALL} , { PRV,PAV } ,

{ PAV,PWV } ,

{ PAV, CPRV,PAV,PWV} ,

{ PAV,CALL}

{ FM,AM } , { FM,PAV } ,

{ AM,PRV } , { AM,PAV }

, { AM,PWV } ,

{ AM, CPRV,PAV,PWV} ,

{ AM, CALL} , { PRV,PAV }

, { PAV,PWV } ,

{ PAV, CPRV,PAV,PWV} ,

{ PAV, CALL}

HTC

{ FM,AM } , { FM,PRV } ,

{ FM,PAV } , { FM,PWV } ,

{ FM, CPRV,PAV,PWV} ,

{ FM, CALL}

{ FM,AM } , { FM,PAV } ,

{ FM,PWV } , { AM,PRV }

, { AM, CPRV,PAV,PWV} ,

{ AM,CALL}
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4.4.3 Respiratory rate influence in the resulting magnitude

of DR signals

Table 4.4 shows inter-subject medians and IQRs of obtained PPRV, PPAV and

PPWV, for each device and each respiratory rate. Figure 4.8 shows boxplots

for these powers.

Significant differences according to the Friedman statistical test were

found for the following groups (p-value < 0.05):

• PRV:

– Conventional PPG: 0.2-0.5Hz, 0.2-0.6Hz, and 0.3-0.6Hz

– iPhone 4S: 0.2-0.4Hz, 0.2-0.5Hz, and 0.2-0.6Hz

– iPod 5: 0.2-0.4Hz, 0.2-0.5Hz, 0.2-0.6Hz, and 0.3-0.6Hz

– HTC One M8: 0.2-0.4Hz, 0.2-0.5Hz, 0.2-0.6Hz, 0.3-0.5Hz, 0.3-

0.6Hz, and 0-4-0.6Hz

• PAV:

– Conventional PPG: None

– iPhone 4S: None

– iPod 5: 0.3-0.6Hz, and 0.4-0.6Hz

– HTC One M8: 0.2-0.5Hz, 0.2-0.6Hz, 0.3-0.6Hz, and 0.4-0.6Hz

• PWV:

– Conventional PPG: 0.2-0.6Hz

– iPhone 4S: 0.2-0.3Hz, 0.2-0.4Hz, 0.2-0.5Hz, and 0.2-0.6Hz

– iPod 5: 0.2-0.4Hz, 0.2-0.5Hz, 0.2-0.6Hz, 0.3-0.6Hz, and 0.5-0.6Hz

– HTC One M8: 0.2-0.4Hz, 0.2-0.5Hz, 0.2-0.6Hz, 0.3-0.6Hz, and

0.4-0.6Hz

4.5 Discussion

In this chapter, the methods for deriving respiratory rate from PPG signal

which were presented in Chapter 3 are adapted to SCPPG signals. Two

combinations are studied. One of them combines information from pulse-to-

pulse methods PRV, PAV, and PWV presented in Chapter 3 (CPRV.PAV.PWV).
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Table 4.4: Inter-subject medians and IQR of obtained PPRV, PPAV and PPWV, for

each device and each respiratory rate.

fR PPRV (s−2) PPAV (a.u.2) PPWV (s2)

(Hz) Median/IQR Median/IQR Median/IQR

C
on

ve
n
ti
on

al

P
P
G

0.2 4.19E-05/2.22E-05 3.80E-04/6.49E-04 6.12E-06/1.40E-05

0.3 9.70E-06/1.19E-05 3.13E-04/1.43E-03 2.84E-06/4.80E-06

0.4 5.40E-06/5.43E-06 3.30E-04/1.83E-03 1.84E-06/4.02E-06

0.5 3.88E-06/3.73E-06 2.20E-04/7.83E-04 1.17E-06/2.67E-06

0.6 2.93E-06/2.35E-06 1.78E-04/1.21E-03 4.63E-07/3.41E-07

iP
h
on

e
4S

0.2 1.39E-05/1.74E-05 5.95E-04/1.05E-03 3.14E-06/5.02E-06

0.3 5.47E-06/8.29E-06 3.20E-04/9.38E-04 1.02E-06/2.08E-06

0.4 2.01E-06/4.79E-06 3.15E-04/7.62E-04 6.64E-07/1.08E-06

0.5 2.31E-06/5.02E-06 1.84E-04/6.66E-04 5.98E-07/1.04E-06

0.6 2.26E-06/8.85E-06 1.56E-04/4.53E-04 6.30E-07/1.28E-06

iP
o
d
5

0.2 1.49E-05/1.81E-05 1.65E-04/3.81E-04 4.53E-06/5.48E-06

0.3 4.72E-06/6.76E-06 1.12E-04/9.49E-04 1.33E-06/1.88E-06

0.4 2.23E-06/4.83E-06 1.95E-04/7.24E-04 7.01E-07/1.09E-06

0.5 2.27E-06/4.83E-06 1.71E-04/3.47E-04 6.42E-07/1.37E-06

0.6 1.81E-06/2.97E-06 5.81E-05/1.41E-04 2.32E-07/8.60E-07

H
T
C

O
n
e
M
8 0.2 2.03E-05/2.65E-05 2.31E-04/2.88E-04 4.54E-06/8.94E-06

0.3 4.26E-06/6.33E-06 1.21E-04/4.65E-04 1.19E-06/1.46E-06

0.4 2.88E-06/4.34E-06 1.35E-04/2.98E-04 1.27E-06/1.21E-06

0.5 2.48E-06/3.72E-06 7.21E-05/2.01E-04 4.37E-07/7.88E-07

0.6 1.35E-06/1.80E-06 5.32E-05/9.18E-05 2.68E-07/6.68E-07
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Figure 4.8: Boxplots of obtained PPRV, PPAV, and PPWV, for each device and each

respiratory rate.
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The other methodology uses these pulse-to-pulse methods in combination

with non-pulse-to-pulse methods presented in [104] (CALL).

The low sampling rate and the ambient-light noise considerably affect

the quality of SCPPG signals. In order to deal with this issue, the artifact

detector presented in [54] and was described in Section 3.2.1 at page 45 was

used to automatically exclude the artifactual fragments, which represents

up to a 22.13% of the total fragments (HTC One M8 at fR = 0.5 Hz).

PPG-amplitude- and rate-based DR signals (as those based on PAV,

PRV, AM and FM) present LF modulations below 0.15 Hz due to the sym-

pathetic activity, which can be considered as noise from the point of view

of deriving respiratory information. As stated in Chapter 3, the power of

these modulations is usually comparable or even higher than the respiration-

related modulations, and this may confound respiratory rate estimation.

For this reason, the studied frequency band starts at 0.15 Hz in this chap-

ter (being 0.2 Hz the lower expected respiratory rate) in order to study

if respiration-related modulations already studied in PPG signals are still

present in SCPPG signals, with independence of this kind of noise. How-

ever, the frequency band should be extended in further studies nearer to

the final application. A possible solution to deal with the LF-modulation

problem could be the one used at initialization of algorithms described in

Chapter 2 and Chapter 3, based on a 2-steps search (first in [0.15, 0.4] Hz

band and subsequently extending it to wider band if no “peaked” peak is

found).

The metronome frequency was used as reference for respiratory rate be-

cause a respiratory signal was not available when data were collected for

the iPod 5 and HTC One M8 experiments. However, a respiratory signal

from a respiration belt was available for 10 of the subjects in the iPhone 4S

experiments and according to it, subjects breathed at the metronome res-

piratory rate with an error of 0.12/1.01 mHz (median/IQR). Furthermore,

the analyzed PPG data for studying the respiratory rate influence in the

resulting magnitude of DR signals, includes also a respiratory signal from

a respiration belt and according to it, subjects breathed at the metronome

respiratory rate with an error of 0.22/1.05 mHz. These results suggest that

subjects breathe according to the metronome frequency accurate enough to

consider it as a reference.

Those fragments associated with a respiratory rate higher than half mean

pulse rate were also excluded, because the pulse-to-pulse methods would

track an alias in such situations. This problem affects high fR (0.5 and

0.6 Hz), e.g., for tracking a fR = 0.6 Hz using pulse-to-pulse methods, it
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would be necessary to have a mean pulse rate of 1.2 Hz, i.e., 72 beats per

minute. However, a high fR with a low pulse rate does not represent a

realistic physiological situation. In such situations when the ANS requires

a high respiratory rate, it also requires a high heart rate (which leads to a

high pulse rate), e.g., during exercise.

An analysis of the influence of respiratory rate in the power of respiration-

related oscillations in PRV, PAV, and PWV has been also performed in this

chapter. Significant differences according to the Friedman statistical test

were found in the powers PPRV, PPAV and PPWV for some groups. When an-

alyzing PRV and PWV, clear tendencies of power decrease as fR increases

were observed, while less evident tendencies were observed when analyzing

PAV. Estimated PSD of PAV signals showed other non-respiration-related

oscillations, which act as noise from the point of view of the study of

respiration-related oscillations and make longer the IQR of PPAV. How-

ever, a median decrease tendency when respiratory rate increases can be

still observed. These results suggest that the power of respiration-related

oscillations in PRV, PAV and in PWV decreases when respiratory rate in-

creases. A possible reason for this observation is that the ANS response

which generates the respiration-related modulations in PRV, PAV and PWV

may act as a physiological low-pass filter, and other mechanical effects may

also interfere in PAV and PWV. A limitation of this study is the absence

of a measure of the tidal volume. Tidal volume may also have effect on the

power of the respiration-related oscillations in PRV, PAV and PWV as it

does in RSA [106]. Furthermore, it is natural to decrease the tidal volume

when forcing to increase the respiratory rate during rest conditions. In this

way, when a decrease of PPRV, PPAV or PPWV is observed, it cannot be deter-

mined how much of this decrease is due to a decrease of tidal volume, and

how much is due to an increase of respiratory rate.

The observed decrease in the power of respiration-related modulations as

the respiratory rate increases may be the reason why, in general, all studied

methods obtained low median (around 0.5%) and low IQR (around 2.5%)

of eR until reaching a given fR, which depends on the method and on the

device, e.g., dPWV(n) maintain good performance in eR terms up to 0.5 Hz

when using the iPhone 4S, and up to 0.4 Hz when using the HTC One M8.

Results obtained for dPWV(n) were comparable to those obtained for

dPRV(n) and better than for the other DR signals in general, obtaining low

medians and IQR for eR with fR up to 0.4 Hz and even 0.5 Hz when using the

iPhone 4S and iPod 5 devices. Occasionally, dPWV(n) and dPRV(n) obtained

worse results (higher median/IQR for eR) than another DR signal, such as
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dFM(n) when using the iPod 5 device with fR = 0.2 Hz (0.10/0.00% vs.

-0.10/1.46%), or when using the HTC One M8 device with fR = 0.4 Hz

(-0.39/11.72% vs.-0.20/11.91% and -1.37/39.06%).

Both combinations CPRV.PAV.PWV and CALL obtained low median (less

than 0.5%) and IQRs (less than 2.5%) for eR, in every case where at least

one of the DR signals included in the combinations obtained low median and

IQR for eR, and even in some cases where none of the DR signals obtained

low median and IQR for eR. For instance, in the case of the iPhone 4S at

fR = 0.6 Hz, combinations obtained low median and IQR for eR although

DR signals obtained very high IQRs for eR (up to 65.10%). Similarly, at

fR = 0.5 Hz, both combinations still obtained low median and IQR for

eR, even though in this case dAM and dPAV obtained high IQR (55.91% and

44.14%, respectively). These observations demonstrate the advantages of

combining information.

CALL obtained similar results to CPRV.PAV.PWV in eR terms, and signifi-

cant statistical differences were not found between their associated eR, for

all devices either at normal ranges of spontaneous respiratory rate (0.2-0.4

Hz) or higher ones (0.5-0.6 Hz). These results suggest that CALL offers no

advantages over CPRV.PAV.PWV. A possible reason for this observation may be

that respiratory information in dFM(n) and dAM(n) is mainly redundant with

respiratory information in dPRV(n), dPAV(n) and/or dPWV(n). It is reasonable

to believe that respiratory information in dAM(n) and dPAV(n) is redundant

to a large extent, because they are based on similar effects: respiration-

induced amplitude modulations, of the SCPPG signal in one case, and of

pulses of SCPPG in the other one. A similar case occurs with dFM(n) and

dPRV(n). Note that statistical differences were found in some cases between

dAM(n) and dPAV(n) (iPhone 4S at 0.5-0.6 Hz and iPod 5 at both 0.2-0.4 Hz

and 0.5-0.6 Hz) and between dFM(n) and dPRV(n) (iPhone 4S at both 0.2-0.4

Hz and 0.5-0.6 Hz, and HTC One M8 at 0.2-0.4 Hz). However before inter-

preting this observation it must be kept in mind that when a method fails

in tracking respiration, the obtained eR, especially when errors are big, has

clear tendencies (see Fig. 4.7) so statistical differences in eR should not be

considered as an indicator of differences in the physiological origin of those

respiratory-related modulations. When the statistical tests is repeated tak-

ing only those eR between -15% and 15% (excluding outliers), no statistical

differences are found between these methods in any device/respiratory rate

condition, so corroborating results independence with the used methodol-

ogy in respiratory frequency derivation when the methods are able to catch
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the respiration. The differences are then in the different ability to provide

meaningful estimation.

One limitation of this study is that the inter-device variability for the

same model of smartphones cannot be assessed because only one device

per model has been tested. Slight differences in flashlight or camera lens

may affect results. However, the form factor and so the distance between

flashlight and camera lens, which is the most important signal-acquisition

difference between different smartphone models, remains the same for de-

vices of the same model. Nevertheless, if different models of smartphone

would be wanted to be compared in the task of deriving respiratory rate,

further studies using several devices for each model should be elaborated.

4.6 Conclusions

This chapter addresses respiratory information extraction from SCPPG sig-

nals by adapting the methods for deriving respiratory rate from PPG signal

described in Chapter 3, and combining them with other methods [104] which

have been previously applied to SCPPG signals [41,105], but they were nei-

ther combined with each other nor with other methods. Results suggest

that normal ranges of spontaneous respiratory rates (0.2-0.4 Hz) can be ac-

curately estimated from SCPPG signals based on PWV or PRV with low

eR (median of around 0.5% and IQR of around 2.5%). The accuracy can

be further improved by combining them with other methods such as PRV,

PAV, AM and/or FM methods. Indeed, the combination of these methods

resulted in lower eR values within normal ranges of spontaneous respiratory

rate, but with small degradation in its performance at higher rates (up to

0.5 Hz when using HTC One M8, and up to 0.6 Hz when using the iPhone

4S or iPod 5 devices).

These promising results suggest that accurate normal ranges of respi-

ratory rates can be obtained from general people using only smartphones

without using any external sensors. The methods could be extended to

other models of smartphones or tablet devices, the only requirement is that

these smartphones and tablets contain a video camera to image a fingertip

pressed to it. As smartphones and tablets have become common, they meet

the criteria of ready access and acceptance. Hence, our mobile phone/tablet

approach has the potential to be widely-accepted by the general population

and can facilitate the capability to measure some of the vital signs using

only fingertip of the subject.
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PPG for obstructive sleep

apnea syndrome diagnosis in

children

Whenever I feel blue,

I start breathing again.

Lyman Frank Baum.

5.1 Introduction

In the last decade, application of different techniques for home sleep apnea

monitoring has been extensively developed. Some of them are based on

the ECG signal. These ECG-based methods usually use HRV in combina-

tion with beat morphology features which are known to be modulated by

respiration [113–115].

Other methods are based on the PPG signal, which is particularly

interesting in sleep studies context because monitoring sleep apnea from

only a pulse oximeter would allow us to consider an ambulatory diagno-

sis with its both social and economic advantages. Several works propose

pulse-oximeter-based methods for OSAS detection in adults. These pulse-

oximeter-based methods usually use SpO2 either alone [116,117] or in com-

bination with PPG signal [118]. OSAS in children is quite different than in

adults, e.g., the apnea-hypoapnea index does not give an accurate picture

of the nature of the breathing disturbance in children, while it is the most

often used parameter to characterize disordered breathing in adults [119].

However, some pulse-oximeter-based methods have been proposed also

for children. It is known that vasoconstriction causes considerable DAP

[52, 53]. Based on this, in [54], obstructive sleep apnea is tried to be indi-

rectly detected by DAP events under the hypothesis that the sympathetic

activation associated to the arousal caused as response to the apnea, in-

87
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duces also vasoconstriction. The relation between apnea and DAP events

was demonstrated, but the obtained results showed low specificity, i.e., there

are many DAP events which are not related to apnea. Later, a HRV analy-

sis during the DAP events was proposed in [55] to discriminate those DAP

events which are related to an apnea from those which are not, improving

the accuracy of subject classification and showing that combination of DAP

events and HRV could be an alternative for sleep apnea screening.

The use of HRV requires ECG as an additional recording. This is a

disadvantage that takes more relevance in sleep studies context where a high

number of sensors over the patient can affect the physiological sleep. In this

chapter, the study presented in [55] is extended evaluating the use of PRV

obtained from the PPG signal instead of the HRV. The correlation between

HRV and PRV [49,50] decreases during obstructive apnea episodes [56], but

PRV still carries useful information which can be exploited.

5.2 Materials

5.2.1 Polysomnographic recordings

The database used in this study is described in Section 4.2.3. It includes,

among others, overnight PPG signals sampled at Fs = 100 Hz from 21 chil-

dren who were referred to hospital for suspected sleep-disordered breathing.

10 out of the 21 children were diagnosed with OSAS.

5.2.2 Rat-model recordings

This dataset is composed of recordings from seven male Sprague-Dawley rats

(390-465 g). The rats were intraperitoneally anesthetized with uretane (see

Table 5.1). One of them was excluded due to technical problems. They were

connected to an electronically controlled nasal mask system that consists of

two tubes, one open to atmosphere and the other connected to a positive

pressure pump avoiding re-breathing on the animal. Airway obstructions

on the tubes by electrical-operated valves, simulate obstructive-sleep-apnea

episodes.

The protocol consisted of 2 steps. In a first step, recurrent 15s-apnea

episodes for 15 minutes intervals, with a subsequent resting period of 15

minutes were used. Apnea index of 20, 40 and 60 apnea/hour were applied.

In a second step, apnea index of 60 apnea/hour was applied with different

durations of the apnea episodes (5, 10 and 15 s). In both cases the order
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Table 5.1: Rat population and anesthesia dose.

Rat number Weight (g) Uretane 10% (ml) Onset time End time

1.1 433 8.5 10:50h 15:45h

1.2 450 7.5 9:10h 13:45h

1.3 391 7.2 15:15h 20:55h

1.4 457 7 9:20h 14:40h

1.6 428 7 16:00h 20:30h

1.7 465 7.2 11:30h 17:20h

of the 15-minutes apnea intervals were randomly selected. The different

phases of the protocol are illustrated in Fig. 5.1.
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Figure 5.1: Different phases of the protocol for the rat-model OSAS recordings.

PPG and SpO2 signals were recorded by using the pulse oximeter for

rat StarrLife Mouse Ox Plus with a sampling rate of 1250 Hz and 15 Hz,

respectively. ECG leads I and III were recorded by using Biopac ECG100C

module and E-08-21BEP electrodes with a sampling rate of 1250 Hz. Res-

piratory pressure and flow were recorded by using a UIM100C module with

a sampling rate of 156.25 Hz, and the apnea generator signal, which is a

two level signal that controls the electrical-operated valves, was recorded

also with a UIM100C module with a sampling rate of 10000 Hz. Figure

5.2 shows an example of ECG, PPG, SpO2, and respiratory flow signals

recorded from a rat.
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Figure 5.2: Example of ECG, PPG, SpO2, and respiratory flow signals recorded

from a rat.

5.3 Methods

5.3.1 Preprocessing

The same preprocessing applied to PPG signals in Chapter 3 was applied to

PPG signals from children database, i.e., a low-pass filtering with a cut-off

frequency of 35 Hz, and the artifact detector based on Horth parameters

described in [54]. Apex (nAi
), basal (nBi

) and medium (nMi
) points were

detected as described in Section 4.3.2, being the medium points used as

fiducial points as in Chapter 4 because of robustness reasons. Normal si-

nus pulses nNi
were determined after removal/replacing ectopic and miss-

detected pulses using the method proposed in [88].
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5.3.2 DAP events detection

The DAP events were automatically detected by applying the algorithm

described in [54], which consists of an RMS-based envelope estimation and

an adaptive-threshold-based decision rule.

The envelope estimation stage is based on RMS series. First, a mean

subtraction is performed by using a moving average filter. xPPGDC(n) is

the mean-suppressed version of xPPG(n). Then, each sample of the enve-

lope xPPGE(n) is estimated from a NE-samples-length running window of

xPPGDC(n):

xPPGE(n) =

√

√

√

√

1

NE

n
∑

k=n−(NE−1)

x2PPGDC
(k). (5.1)

NE was set to be equivalent to 2 cardiac cycles (T denotes the cardiac cy-

cle estimated by using a zero-crossing detector applied to xPPGDC(n)) which

allows the tracking of attenuation changes greater than 3 beats. This de-

cision rises the risk of an increase in short-length false positives, caused by

high signal variability, and several DAP events, rather than a single event,

can be interpreted as being different when the signal amplitude is near the

threshold of the decision rule. To account for this, a minimum duration of

events and a minimum distance between events is imposed. In that way,

short-length false positives are suppressed and detection close in time are

grouped together [54].

The decision rule is based on an adaptive threshold. A DAP event is

considered when xPPGE(n) is lower than the established adaptive threshold

for at least a minimum duration. In mathematical terms, the threshold is

defined as:

ξ(n) =















UP

100Lp

n
∑

k=n−(LP−1)−TLP ,n

xPPGE(k), n ∈ {nadapt}ξ

ξ(n− 1), otherwise

, (5.2)

where {nadapt}ξ is the sample set that fulfills the criterion of eligibility for

threshold adapting, TLP ,n is the number of samples not in {nadapt}ξ inside

the interval [n− (LP − 1)− TLP ,n, n], so that LP is always the number of

samples in {nadapt}ξ from the interval.

Thus, the threshold ξ(n) is computed as the UP percent of the mean of

xPPGE(n) using the last LP samples in {nadapt}ξ.

The sample set that fulfills the criterion of eligibility for threshold adapt-

ing, {nadapt}ξ, is composed of all samples except those accomplishing any of

the following conditions:
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• A DAP event is detected, i.e., when xPPGE(n) < ξ(n− 1).

• An artifact is detected in PPG signal (see Section 3.2.1 at page 45).

• When an abrupt change is detected in xPPGE(n), considering abrupt

changes those samples accomplishing:

∣

∣xPPGE(n) − xPPGE(n−1)

∣

∣ >
5

fP
s

APPGE , (5.3)

where APPGE is half of the oscillation amplitude range of xPPGDC(n) at

the beginning of the recording.

The following values for the parameters were used: UP = 45%, LP =

30fP
s T . Further details are given in [54].

5.3.3 PRV analysis

The inverse interval function was generated by using the normal sinus oc-

currences nNi
:

duPRV(n) =
∑

i

1

nNi
− nNi−1

δ (n− nNi
) . (5.4)

Subsequently, a 2-Hz evenly sampled version was generated by cubic

splines interpolation. The evenly sampled version of this signal is denoted

dPRV(n) in this thesis.

The smoothed pseudo Wigner-Ville distribution (SPWVD) [120] was

used to analyse the spectral parameters of the PRV in a time-frequency

map, using a 5 minutes-length time window centred at the onset of the

studied DAP event. The SPWVD was chosen because of its high time and

frequency resolution and its independent smoothing in time and frequency.

The discrete SPWVD can be seen as the discrete Fourier transform of the

autocorrelation function rx(n, k), filtered and windowed:

Sx(n, k) = |h(k)|2
[

N−1
∑

n′=−N+1

g(n′)rx(n+ n′, k)

]

, (5.5)

where |h(k)|2 defines the windowing and g(n′) defines the filtering. Both

h(k) and g(n) were defined as Hamming windows. The length of the ana-

lyzed segment was set to 5 minutes to ensure that is long enough to contain

at least one period of the lowest frequency in the studied band, which is

0.0033 Hz.
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Power in the very low frequency (VLF) (0.0033-0.04 Hz) (PVLF(n)), LF

(0.04-0.15 Hz) (PLF(n)), HF (0.15-0.5 Hz) (PHF(n)) bands, and low to high

frequency ratio (RLF/HF(n)) were computed. Their normalized versions with

respect to the total power (PVLF(n)+PLF(n)+PHF(n)) were also computed,

and they follow the same nomenclature with an additional n as subscript,

e.g., PHFn(n) is the normalized version of PHF(n).

Classifier

A linear discriminant analysis (LDA) [121] was used to discriminate between

DAP events related and not related to apnea episodes. LDA is a classifica-

tory statistical technique that estimates the probability of each case belongs

to each of the groups previously defined (qualitative dependent variable) by

studying a set of features (quantitative independent variables) of this case.

Finally, the classification is performed by assigning each case to the group

with highest probability of belonging.

For DAP event classification, the features are based on the PRV around

them, and there are two classes (or groups): apnea related DAP events (Ga)

and non apnea related DAP events (Gn). Let yj = [y1j , y2j , ..., ydj ] be a row

vector with d values where each element represents a feature value from jth

DAP. To assign yj to class k of the c possible classes, the discriminant value

fk for each class is evaluated from the following equation:

fk = µkΣ
−1yT

j −
1

2
µkΣ

−1µT
k + log(πk), (5.6)

where T represents the transpose and µk is the row mean vector obtained

from the whole Nk training vectors belonging to class k as defines (5.7), and

Σ represents the pooled covariance defined in (5.8).

µk =
1

Nk

Nk
∑

j=1

yjk (5.7)

Σ =
1

N − c

c
∑

k=1

Nk
∑

j=1

(yjk − µk)
T (yjk − µk), (5.8)

where N is the total number of cases yj in the training set.

The term πk represent the prior probability that yj belongs to a class

k. A practical way to evaluate πk is:

πk =
Nk

N
. (5.9)
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Finally yj is assigned to the class, k with higher fk so the πk term can

be removed from (5.6) if yj has the same probability for all classes.

Features set

In order to quantify the evolution of autonomic variations when a DAP event

is associated or not associated to apnea, four time windows were defined in

specific time intervals related to the onset of DAP events. Three of the four

windows have a length of 5 s.: The reference window (wrj ) which begins 15

s. before nDOj
, the DAP window (wdj ) which begins 2 s. before the DAP,

and the post-DAP window (wpj ) which begins 15 s. after nDOj
. The fourth

window is called global window. It begins 20 s. before nDOj
and its length is

40 s. Fig 5.3 illustrates wrj , wdj , and wpj over the mean of dPRV(n) during

related and non related to apnea DAP events.
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Figure 5.3: dPRV(n) mean ± SD for apneic (a) and non-apneic (b) DAP events.

Reference (wr), DAP episode (wd), and post-DAP episode (wp) windows, with

DAP onset at time 0 s.

The feature set contains the means of PVLFn(n), PLFn(n), PHFn(n), and

RLF/HF(n) signals, computed within the four defined windows. The mean

and the variance of dPRV(n) within the same four windows are also consid-

ered. These last two indexes are computed after a normalization by sub-

tracting the mean value and dividing by the variance of the 5 min-length

segment centred at nDOj
. This is done since it was hypothesized that the

relative variation in the analysed window with respect to baseline differs

between apneic or non-apneic episodes. In addition, for each index the dif-
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ference between wrj and wpj was computed making a total of 34 features

extracted from the pulse rate.

Feature selection

Features must be selected and weighted in order to select the feature set

that provides the best discrimination of DAP events. This training stage

was performed by studding the features in a subset of manually labeled

DAP events.

For training the classifier, 268 DAP events were extracted. These DAP

events were clustered in two classes: apneic DAPs (Ga) and non apneic

DAPs (Gn) based on physiological characteristics. DAP events were classi-

fied into Ga when SpO2 falls at least 3% or airflow decreases at least 50%

respect to the baseline for a minimum duration of 5 seconds and into Gn

otherwise. A summary is presented in Table 5.2.

Table 5.2: Clustering of DAP events

Clinical diagnosis
DAP group

Total
Ga Gn

Normal 41 107 148

Pathological 98 22 120

Total 139 129 268

Feature selection was addressed using the wrapper method forward ap-

proach, i.e., by adding gradually one more feature and selecting the one

which provides the highest accuracy. For evaluating the accuracy of every

feature set, leave-one-out validation method was performed.

5.3.4 Clinical study

In order to evaluate the proposed techniques, PSG registers were splitted

into 1-hour length fragments, and they were labeled as control, doubt or

pathological based on SpO2 desaturation. To establish this separation, it

was considered a baseline level β corresponding to the SpO2 signal mode

of the entire night recording, and tβ−3 is the total time with SpO2 signal

below β − 3%. The fragment is clustered as pathological if tβ−3 is more

than 3 min. This implies a minimum of 5% of the time with evident oxygen

desaturation which corresponds to a severe OSAS criteria in children [119]

of 18 apneas/hour having a mean duration of 10 seconds. If tβ−3 is less than
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0.9 min., which corresponds to 5 apneas/hour, the fragment is clustered as

normal. Fragments which are not clustered as normal or pathological are

clustered as doubt. Table 5.3 shows this classification.

Table 5.3: PSG fragments classification.

Clinical PSG fragments classification

diagnosis subjects fragments normal doubt pathological

Normal 10 46 42 4 0

Pathological 11 59 28 20 11

Total 21 105 70 24 11

These one hour fragments were automatically classified in normal or

pathological based on the DAP per hour ratio using the DAP coming from

the DAP detector in [54], rDAP, or alternatively considering only those DAP

classified as apneic events with the methodology presented in Section 5.3.3,

rPRV
DAP. Receiver operating characteristic (ROC) curves were calculated for

both indexes and the optimum thresholds in terms of maximizing accuracy

were established. In addition, Wilcoxon non parametric statistical analy-

sis was carried out for both indexes in order to evaluate their discriminant

power between groups. Then, the percentage of time under pathological

fragments based on rDAP and rPRV
DAP was analysed as a rule to consider a sub-

ject as pathological or not. The threshold for this percentage was selected

for maximizing accuracy. Only 15 subjects (8 OSAS) were included in this

study since subjects with less than 4 hours of acceptable quality signal were

excluded.

Those DAP events in which PRV could not be obtained over its global

window wg were excluded for calculation of rDAP and rPRV
DAP indexes. However,

in [55] the excluded DAP events were those in which HRV could not be

obtained from ECG. This represents two different exclusion criteria, based

on quality of PPG and ECG signals, respectively. For comparison purposes,

it also were studied the subgroup of DAPs which results after discarding

those DAPs in which PRV or HRV could not be obtained, denoting their

indexes with an additional subscript 2, for example, rPRV
DAP2

.

5.3.5 OSAS in rat model

Rat model of OSAS is a realistic approach for understanding and studying

physiological mechanisms involved in sleep apnea [122,123]. Rats are usually

anesthetized for in vivo experiments. Anesthetics can affect cardiovascular
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functions and even the ANS could be blocked. The type, dose and method of

administrating anesthetics can disturb in different manner the sympathetic

activity of instrumented rats [124].

Observing the recorded signals during the protocol, all simulated ob-

structive apnea events showed changes in respiratory flow and falls in SpO2

to at least 90%, but DAP events were not observed during apnea events

(see Fig. 5.4). A possible reason for this observation could be a sympa-

thetic blockade. In order to study the effect of anesthesia on ANS activity

during obstructive apnea episodes in this rat model, mean of PLFn(n) and

RLF/HF(n) within 3 15-s-length windows defined around the kth apnea event

were computed: wRAT
bk

(the 15 s before the kth apnea), wRAT
dk

(the 15 s dur-

ing the kth apnea), and wRAT
a (the 15 s after the kth apnea). Figure 5.4

illustrates the location of these windows. Only the longer apneas (length

of 15 s) were considered in this study since, individually, they are the most

aggressive and so they should lead to the strongest ANS response.
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.
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The LF and HF bands were re-defined to be appropriate for a rat model:

[0.04-1] Hz, [1-3] Hz, respectively [125]. The inverse interval function was

this time interpolated to 15 Hz (instead of 2 Hz), and a time-frequency

PRV spectrum was obtained from a 3-min-length interval centered at each

apnea event, by using the SPWVD. PLFn was computed as the power in the

LF band normalized to the power in the whole studied band (LF and HF,

[0.04-3] Hz).

Means of PLFn and RLF/HF within each one of the 3 windows were com-

puted. In addition, the differences between wRAT
dk

and wRAT
bk

, and between

wRAT
ak

and wRAT
dk

were also computed for each one of these means. The Fried-

man statistical test, which is a paired-non-parametric statistical test, was

applied in order to study whether these indexes (means of PLFn(n) and

RLF/HF(n)) show significant statistical differences between the 3 windows

wRAT
bk

, wRAT
dk

, and wRAT
ak

. This same test was also applied in order to study if

significant statistical differences are shown in the differences between wRAT
dk

and wRAT
bk

, and between wRAT
ak

and wRAT
dk

.

5.4 Results

5.4.1 OSAS in children

Table 5.4: PSG fragments and subjects classification results obtained by using the

two different DAP event discarding criteria: related to PPG signal quality (rDAP

and rPRV
DAP), and related to ECG and PPG signal quality (rDAP2

, rPRV
DAP2

and rHRV
DAP2

).

Results include accuracy (Acc), sensitivity (Se), specificity (Sp), and area under

curve (AUC).

PSG fragments classification Subjects classification

Acc Se Sp AUC Acc Se Sp

(%) (%) (%) (%) (%) (%) (%)

rDAP 67.90 90.91 64.29 76.30 80.00 87.50 71.43

rPRV
DAP 70.37 81.82 68.57 78.38 86.67 100.00 71.43

rDAP2
60.49 72.73 58.57 69.55 73.33 75.00 71.43

rPRV
DAP2

59.26 81.82 55.71 71.36 80.00 87.50 71.43

rHRV
DAP2

76.54 63.64 78.57 71.10 73.33 62.50 85.71

The best features for classification obtained by the wrap method were

the mean of dPRV(n) signal within the DAP event window, the mean of
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PVLFn(n) within the post-DAP window, the mean of RLF/HF(n) during the

reference window, and the mean of dPRV(n) signal within the global window.

Table 5.4 shows results of PSG fragment and subject classification by using

the two described DAP event discarding criteria. The Wilcoxon test shows

better discriminant power between normal and pathological fragments for

rPRV
DAP (p = 0.0034) than for rDAP (p = 0.0067).

5.4.2 OSAS in rat model

Table 5.5 shows the median and IQR for means of PLFn(n) and RLF/HF(n)

within the windows wRAT
bk

, wRAT
dk

, and wRAT
ak

, and Table 5.6 shows the same

for their differences between wRAT
d and wRAT

bk
, and wRAT

ak
and wRAT

dk
.

Table 5.5: Median and IQR for means of PLFn
(n) and RLF/HF(n) within the

windows wRAT
bk

, wRAT
dk

, and wRAT
ak

.

wRAT
bk

wRAT
dk

wRAT
ak

Median / IQR Median / IQR Median / IQR

PLFn
(n) 7.67% / 28.71% 8.01% / 31.11% 8.45% / 26.63%

RLF/HF(n) 0.08 / 0.46 0.09 / 0.52 0.09 / 0.42

Table 5.6: Median and IQR for means of the differences of PLFn
(n) and RLF/HF(n)

within the windows wRAT
dk

and wRAT
bk

, and wRAT
ak

and wRAT
dk

.

wRAT
dk

− wRAT
bk

wRAT
ak

− wRAT
dk

Median / IQR Median / IQR

PLFn
(n) 0.21% / 4.50% 0.25% / 4.44%

RLF/HF(n) 0.00 / 0.07 0.00 / 0.06

According to the Friedman statistical test, there were no significant dif-

ferences in mean of PLFn(n) and RLF/HF(n) during the 3 windows wRAT
bk

,

wRAT
dk

, and wRAT
ak

(p-value=0.2107). The differences between wRAT
dk

adn wRAT
bk

,

and wRAT
ak

and wRAT
dk

also showed no statistical differences (p-value=0.5809).



100 Chapter 5. PPG for OSAS diagnosis in children

5.5 Discussion

The PPG signal presents interesting characteristics that can be used to

detect apneic episodes. In [55], a diagnostic method based on DAP events

which satisfies some HRV related conditions was proposed, requiring ECG in

addition to PPG signal. The minimization of signal recordings takes special

relevance in sleep studies because the use of many sensors could disturb the

physiological sleep. The use of PRV obtained from PPG signal instead of

HRV obtained from ECG signal is proposed in this chapter avoiding the

need of ECG recording and simplifying ambulatory monitoring.

Selected features addressed by the wrap method were different to those

selected features of HRV in [55]. The reason of this difference could be that

although HRV and PRV are highly correlated in normal breathing [50], this

correlation decreases considerably during obstructive apnea episodes [56].

Before introducing the PRV information, the fragment and subject clas-

sification obtained an Acc of 67.90% and 80.00%, respectively. The intro-

duction of PRV information increased the classifier performance obtaining

an Acc of 70.37% for fragment classification and 86.67% for subject classi-

fication. In terms of Acc, both rDAP and rPRV
DAP have obtained better subject

classification results than the ones obtained with HRV in [55] (73.33% for

rDAP and 80.00% for rHRV
DAP). This improvement could be explained by the

DAP exclusion criteria, which in [55] is related to the quality of ECG but in

this work it is related to the quality of PPG signal where also DAP events

are detected, and this could improve the DAP event detection by excluding

DAP events which are related to an artifact and not related to an apnea.

By excluding those DAP events in which HRV or PRV could not be

obtained (bad quality of ECG or PPG signal), obtained Acc decreased for

all r∗DAP2
indexes in both fragment and subject classification. This decrease

could be explained by the loss of information implied by the DAP events ex-

clusion, which is higher than in r∗DAP indexes because more DAP events are

excluded. In fragment classification, rHRV
DAP2

obtained better Acc (76.54%)

than rPRV
DAP2

(59.26%), while in subject classification, the index which ob-

tained the highest Acc was rPRV
DAP2

with 80.00%, over rHRV
DAP2

and rDAP2 , both

with 73.33%.

HRV and PRV give additional information to the classifier, but using

them implies a loss of information due to the DAP exclusion. However, re-

sults obtained for rHRV
DAP (ECG quality exclusion criteria) or rPRV

DAP (PPG qual-

ity exclusion criteria) outperform those obtained without introducing infor-
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mation from PRV/HRV, so the additional information given by PRV/HRV

compensates the loss of information associated to the DAP event exclusion.

A limitation of this study is that the procedure for labeling the 1-h PSG

fragments is based only on SpO2. According to American Sleep Disorders

Association criteria [126], SpO2 is not sufficiently accurate or validated to

recommend for use in OSAS diagnosis. Nevertheless, all pathological frag-

ments defined according to this procedure correspond to children suffering

from OSAS, see Table 5.3 and subjects classification use clinical diagnosis

as the reference.

Another limitation of this study is that the optimal thresholds for both

rDAP and rPRV
DAP were obtained from all the fragments. In other words, for

the subject classification, training and test sets are the same. The fragment

classification accuracy was also computed using the leave-one-out validation

method, obtaining sightly smaller accuracies (64.20% for rDAP and 67.90%

for rPRV
DAP).

Moreover, Table 5.3 shows an unbalanced sample with 70 normal and

11 pathological fragments. The fragment classification was also performed

after balancing the groups. Optimal thresholds for both rDAP and rPRV
DAP were

computed. Obtained results were exactly the same.

The small number of subjects in the database (21, 10 of them suffering of

OSAS) is another limitation. This study should be validated over a longer

database.

5.5.1 OSAS in rat model

Although all simulated apnea episodes showed falls in SpO2 bellow 90%,

none of them showed an associated DAP event. Furthermore, mean of

PLFn(n) presented extremely low values before (median of 7.67%), during

(median of 8.01%), and after apnea (8.45%). Slight increases were observed

during and after apnea. However, no statistical differences according to the

Friedman test were found in means of PLFn(n) or RLF/HFn
(n) during the

three studied windows.

These results suggest that sympathetic system may be blocked by the

anesthetics, making this rat model unsuitable for the analysis of methods

based on ANS response, such as those presented in this chapter which are

based on DAP and PRV.
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5.6 Conclusions

This chapter addresses the OSAS diagnosis in children based on PPG sig-

nal. A method based on DAP event detection and their classification as

apnea- or non-apnea-related using ANS information obtained by the PRV

is presented. Results obtained with PRV (Acc=86.67%) are comparable to

those extracted from HRV in [55] (Acc=80.00%), suggesting that PRV can

be used to discriminate apneic and non-apneic DAP events. As PRV is ob-

tained from PPG signal (as DAP events are), no additional (ECG) signal is

required which takes special relevance in sleep studies.

The rat model is suitable to study the consequences of OSAS, but anes-

thetic effects can limit the ANS response, preventing the use of the model

in studies based on this response. Thus, DAP events, HRV or PRV cannot

be studied with this rat model. In this way HRV, PRV, and or DAP events

analysis during apnea could be an indirect tool to assess the effect and deep

of anesthesia.
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Conclusions

There is no real ending.

It’s just the place where you stop the story.

Frank Herbert.

This chapter summarizes the original contributions and main conclusions

of the thesis, and proposes possible extensions of the work.

6.1 Summary and conclusions

As stated in Chapter 1, the objective of this thesis was to develop non-

invasive methods for respiration information extraction from biomedical

signals which are widely adopted in clinical routine. Novel methods for

deriving respiratory rate from ECG and from PPG signal were developed

and compared with other methods in the literature.

6.1.1 Electrocardiogram-based methods

Chapter 2 presented a novel ECG-based method for deriving respiratory

rate. It exploits respiration-related variations in QRS slopes and R-wave

angle. A method for combining information from several respiratory signals

was also developed and used to combine several respiratory signals derived

from different lead sets. The proposed method does not depend on a specific

lead set, and so, do not lead to a significantly lower performance when any

problem appears at any lead.

The method demonstrated its robustness in high non-stationary noisy

environments such as stress test obtaining an error of 0.76 ± 7.30% (mea-

suring the 85.07% of the time, with NLDL), measuring up to the 99.81% of

the time (with an error of 1.95 ± 9.26%, with 12ECG lead set). Accuracy

and measuring time represent a trade-off situation for which the VCG lead

set displayed the best results obtaining an error of 0.52± 8.99% measuring

the 96.09% of the time, outperforming existing methods in literature.

103
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6.1.2 Pulse-photoplethysmogram-based methods

Chapter 3 presented a novel PPG-based method for deriving respiratory

rate. It exploits respiration-related variations in pulses width. The pro-

posed method is much less affected by the sympathetic tone than other

methods in literature which are usually based on pulses amplitude and/or

rate. It obtained better performance than other single PPG-based methods

in respiratory rate estimation error terms (1.27 ± 7.81%). Furthermore, a

method for combining information from several respiratory signals was de-

veloped and used to obtain a respiratory rate estimation from the proposed

PWV-based in combination with other known PPG-based methods (PAV

and PRV), improving the accuracy of the estimation (obtained relative er-

ror was 0.17± 6.67%) and outperforming other methods in literature which

involve ECG or BP recording.

Chapter 4 presented an adaptation of the PPG-based methods to derive

respiratory rate from smartphone devices using SCPPG signals. Results

suggest that normal ranges of spontaneous respiratory rates (0.2-0.4 Hz)

can be accurately estimated from SCPPG signals based on PWV or PRV

with low relative error (median on the order of 0.5% and IQR on the or-

der of 2.5%). The performance of the methods considerable decreases when

reaching a respiratory rate depending on the method and the device. How-

ever, the results showed a smaller degradation at higher respiratory rates

when combining PWV- and PRV-based methods with other SCPPG-based

methods in the literature such as PAV-, AM-, and/or FM-based methods,

obtaining relative errors of the same order up to 0.5 Hz when using the HTC

One M8, and up to 0.6 Hz when using the iPhone 4S or the iPod 5 devices.

Chapter 5 presented an automatic algorithm to diagnose OSAS in chil-

dren based on the PPG signal. The method is based on DAP event de-

tection and their classification as apnea- or non-apnea-related using ANS

information obtained by the PRV. Obtained results are comparable (Acc

= 86.67%) to those obtained with other methods in the literature which

require the ECG signal as an additional recording. Reducing the number

of sensors over the patient takes special relevance in sleep studies where it

is desirable to minimize the physiological sleep disturbance. The proposed

method have the advantage of not requiring any additional signal and so

could be used for diagnosing OSAS in children from only a pulse oxime-

ter, allowing to consider an ambulatory diagnosis with its both social and

economic advantages. However, the number of subjects in the database is
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low (21 subjects, 10 of them suffering of OSAS) and this study should be

validated over a longer database.

Furthermore, a rat model for OSAS was studied, but no DAP events

or PRV alteration in the LF band were observed during induced apnea

events, suggesting a sympathetic system blockade by the anesthetics. Thus,

proposed methods in this thesis could not be studied using this model, since

they are based on ANS response. In this way HRV, PRV, and or DAP events

analysis during apnea could be an indirect tool to assess the effect and deep

of anesthesia.

6.2 Future work

Possible research lines to expand the work in this thesis are presented bellow.

• Study of the potential of the methods presented in this thesis to obtain

respiratory volumes from the ECG and from PPG signal. Potential

applications may include motorization of athletes, and screening of

asthma and OSAS. This study would require ECG, PPG, and respira-

tory volume (recorded by spirometry) signals simultaneously recorded.

• Characterization of PWV during sleep apnea events. This thesis has

shown PWV to be an accurate method to obtain respiratory rate.

However, the morphological variations of PPG pulses in PSG record-

ings due to the DAP events may reduce its potential for apnea detec-

tion. This study would require PSG (including PPG signals) record-

ings whose apnea events are manually annotated by experts.

• Extension of the PPG-based methods to exercise environments. Many

commercial wearable health/fitness tracker devices use PPG signals

for mean pulse rate measurement. PPG is a very interesting signal

for this kind of devices due to the simplicity and the low price of

its recording. However, PPG signals are very sensible to motion ar-

tifacts. To deal with motion artifacts, wearable devices usually use

accelerometers. Obtaining PRV is more challenging than obtaining

mean pulse rate because PRV require the accurate detection of each

one of the PPG pulses, and the extraction of signals based on pulse

morphological features such as PWV and PAV results even more chal-

lenging. However, some noise-cancellation systems for PPG signals

based on accelerometers (e.g., an adaptive Wigner filtering) could be

studied with the purpose of deriving respiratory rate from PPG signal
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in presence of motion artifacts and so, allowing wearable health/fitness

tracker devices to estimate respiratory rate and ANS information

through PRV. Some potential applications could be the estimation of

anaerobic threshold [7–9] or the assessment of stress level. This study

would require PPG, accelerometer, respiration and ECG simultaneous

recordings in presence of motion artifacts.
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