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fisiológico-diagnóstica de señales biomédicas del sistema cardiorrespiratorio, au-
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Abstract

In the present thesis, the problem of automatic ischemia detection in Holter recordings
and the search for new risk markers from the surface ECG are studied.
The first part of the thesis deals with ischemia detection, which is commonly diag-

nosed by observing changes of the ST segment in the ECG. Despite the frequent use of
ST deviation in clinical practise to diagnose ischemia, several studies have shown the lim-
itations of using it as the only diagnostic tool due to its low specificity. Not only ischemic
episodes result in ST deviations but also heart rate related events, body position changes
or conduction changes. The release of the Long Term ST database, which contains a large
number of human annotated ischemic and non-ischemic ST-segment events such as those
mentioned before, has provided an extensive tool to evaluate ischemia detectors. In par-
ticular, in this thesis we elaborate on one detector structure which accounts for changes
in the ST segment after defining a reference non ischemic ST segment. However, body
position changes, which are often manifested as shifts in the electrical axis, also result in
ST modifications, and thus, may be misclassified as ischemic changes during ambulatory
monitoring. In order to cancel out body position changes, with a more abrupt ST sig-
nature than ischemic or heart rate related episodes, we have modelled the body position
change as a step like change in the Karhunen-Loève transform coefficient series of the
QRS and STT complexes. Karhunen-Loève transform series accounts for morphological
changes of an specific complex with respect to a template. A generalized likelihood ra-
tio test assuming laplacian noise has been chosen as the strategy to detect those body
position changes. Two databases have been selected to assess both the performance in
detection and the false alarm rate, obtaining improved results in both with respect to
current techniques based on gaussian noise assumptions.
The very similar signature of ST modifications in ischemia and heart rate related events

has driven us to look for other ECG indices allowing to discriminate between them. Heart
rate-based indices, correlation between the absolute ST segment deviation and heart rate
series, the interval between the T wave peak and the T wave end, the signal to noise ratio
and changes in the upward/downward slopes of the QRS complex have been considered
and shown as significant discriminant parameters. A discrimination analysis between the
three types of events: ischemia, heart rate related episodes and sudden step changes, and
between ischemic and non ischemic episodes, have been performed in order to select the
most significant set of features in each case. The obtained set of features in each case has
been analyzed and discussed.
The second part of the thesis is focused on finding ECG features which could prevent
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the occurrence of life threatening arrhythmias. Recent clinical and experimental studies
have suggested that abnormalities of ventricular repolarization, and specially the last part
of it, the interval between the T wave peak and the T wave end (Tpe), play a role in the
genesis of ventricular arrhythmias. Also, restitution characteristics of the tissue are very
important in the occurrence of a reentry. Therefore the rate adaptation of the Tpe has
been characterized and compared to the QT rate adaptation, using an acquired database
of healthy subjects undergoing a tilt test trial. The tilt test trial results in heart rate
changes and then, in modifications of the repolarization features. Results from this study
confirm that Tpe adapts to HR changes much faster than the QT interval.
The generation of arrhythmias has been widely studied by dynamically pacing cardiac

myocytes, cardiac tissue or whole hearts. In particular, dispersion of action potential
duration restitution (APDR) has been suggested to act as a potent arrhythmogenic sub-
strate. In the last chapter, a methodology is developed for its computation from the
surface ECG through the Tpe interval dynamics. In particular, the estimate includes com-
pensation for the Tpe memory lag after heart rate changes. The capability of the proposed
estimate to reflect APDR dispersion has been assessed using a combination of ECG signal
processing and computational modeling and simulation. Specifically, ECG control record-
ings are used to measure that estimate, while its capability to provide a quantification of
APDR dispersion at tissue level is assessed by using a 2D ventricular tissue simulation.
Our results provide evidence that the proposed estimate is a non invasive surrogate of
APDR dispersion in ventricle.



Resumen y conclusiones de la tesis

En la presente tesis se estudian tanto la problemática en la detección automática de
isquemia en registros ambulatorios como la búsqueda de ı́ndices de riesgo en el ECG de
superficie basándonos en marcadores conocidos a nivel celular.
La primera parte de la tesis se centra en la detección de isquemia, enfermedad que

se diagnostica en la práctica cĺınica observando cambios en segmento ST del electrocar-
diograma (ECG). A pesar de la frecuente utilización de la desviación del segmento ST,
varios estudios han mostrado sus limitaciones como única herramienta de diagnóstico de-
bido a su baja especificidad. La baja especificidad se debe a que no sólo los episodios
isquémicos causan cambios en el segmento ST sino también episodios relacionados con
el ritmo cardiaco, cambios posturales o bloqueos de rama. La base de datos Long Term
ST contiene un gran número de episodios isquémicos y no isquémicos relacionados con
cambios en el segmento ST como los ya mencionados, anotados por expertos. Esto pro-
porciona una valiosa herramienta para evaluar detectores de isquemia. Espećıficamente,
en esta tesis utilizamos una estrategia de detección, que se basa en la búsqueda de cam-
bios en el segmento ST una vez definido un segmento ST de referencia no isquémico. Sin
embargo, los cambios posturales se manifiestan a menudo como cambios bruscos en el eje
eléctrico, produciendo también modificaciones en el segmento ST que pueden ser clasifi-
cados incorrectamente como episodios isquémicos durante la monitorización ambulatoria.
Para cancelar estos cambios posturales, los cuales provocan un cambio más abrupto en
el segmento ST con respecto a los episodios isquémicos o relacionados con cambios de
ritmo, se ha modelado el cambio postural como un cambio tipo escalón en los series de
coeficientes de la transformada Karhunen-Loève de los complejos QRS y STT. Las series
de coeficientes de la transformada Karhunen-Loève proporcionan un seguimiento de los
cambios morfológicos de un complejo espećıfico con respecto a un patrón de referencia.
Se ha elegido la técnica de detección GLRT asumiendo ruido laplaciano como estrategia
para detectar cambios posturales desde el ECG. Dos bases de datos han sido seleccionadas
para evaluar tanto el rendimiento del detector como la probabilidad de falsa alarma, obte-
niendo mejores resultados en ambas bases de datos con respecto a la técnica actual de
detección que asume ruido gausiano.
Los cambios producidos en el segmento ST en episodios isquémicos y relacionados con

ritmo cardiaco tienen una forma similar, lo que nos ha llevado a buscar ı́ndices que nos
permitan distiguirlos. Índices relacionados son el ritmo cardiaco, la correlación entre la
desviación del segmento ST y el ritmo cardiaco, el intervalo del pico al fin de la onda T, la
relación señal a ruido y cambios en las pedientes ascendente y descendente del complejo
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QRS, se han considerado y posteriormente mostrado como parámetros significativos en la
discriminación de ambos tipos de episodios. Un análisis de discriminación entre los tres
tipos de episodios: isquémicos, relacionados con cambios de ritmo y cambios posturales,
y otro entre isquémicos y no isquémicos se han desarrollado para seleccionar el conjunto
de variables más significativas en cada caso. El conjunto de variables en cada caso han
sido analizados independientemente.
La segunda parte de la tesis tiene como objetivo la búsqueda de biomarcadores so-

bre el ECG de superficie que pudieran alertar de la aparición de arritmias ventriculares
malignas. Recientes estudios cĺınicos y experimentales han sugerido que abnormalidades
en la repolarización ventricular, y especialmente, en la última parte de ella, el intervalo
entre el pico y el fin de la onda T (Tpe), tienen un papel importante a la hora de gener-
arse una arŕıtmia ventricular. Además, las propiedades especificas de la restitución en el
tejido cardiaco juegan un papel importante en la aparición de reentradas. Por lo tanto,
la adaptación del intervalo Tpe ante cambios en el ritmo cardiaco se ha caracterizado y
comparado con la del intervalo QT , utilizando una base de datos adquirida con sujetos
sanos sometidos a una prueba de mesa basculante (tilt-test) y tres maniobras de Valsalva,
causando cambios en el ritmo cardiaco y por lo tanto en los intervalos y morfoloǵıa de la
repolarización. Los resultados de este estudio confirman que el intervalo Tpe se adapta a
cambios en el ritmo cardiaco mucho más rápido que el intervalo QT .
La generación de arritmias se ha estudiado normalmente excitando dinámicamente

a distintos ritmos cardiacos un miocito, un tejido cardiaco o el corazón completo. En
particular, se ha sugerido que la dispersión en la restitución de la duración de potencial
de acción (APDR) actúa como un potente substrato arritmogénico. En el último caṕıtulo
de ésta tesis, se desarrolla una completa metodoloǵıa para el cómputo de esta variable
de forma no invasiva desde el ECG de superficie, a través de la dinámica del intervalo
Tpe. Exactamente, el estimador incluye una compensación de la memoria del intervalo Tpe
ante cambios en el ritmo cardiaco. La capacidad del estimador propuesto para reflejar
dispersión en la restitución de la APD, se ha evaluado utilizando una combinación de
técnicas de procesado de ECG, modelado computacional y simulación. Espećıficamente, se
han usado registros de ECG de control para medir el estimador mientras que la capacidad
de proporcionar una cuantificación de la dispersión de la APDR a nivel de tejido se ha
evaluado usando una simulación de tejido ventricular 2D. Nuestros resultados evidencian
que el estimador propuesto proporciona una medida no invasiva de la dispersión de APDR
en ventriculo.
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Chapter 1

Introduction

1.1. Cardiovascular diseases

Cardiovascular disease is the leading cause of death in industrialized countries, followed
by cancer, accidents, diabetes, Alzheimer and AIDS. According to the World Health
Organization, cardiovascular disease causes 12 million deaths in the world each year and
will remain by far the top cause of mortality through 2030 [7]. According to the last report
of the American Heart Association [8], more than 80 million people in the United States
have one or more forms of cardiovascular disease (CVD) and these diseases claimed more
than 830 thousand lives, 34.3% of all deaths. In Spain, CVD represented a 32.5% of the
total number of deaths (4.297 deaths in Aragón, a 32.4% of the total), reported in Instituto
Nacional de Estad́ıstica (www.ine.es). These figures do justify any effort to reduce the
incidence of cardiovascular diseases, including prevention, diagnosis and treatment.

1.1.1. Coronary Artery Diseases and Arrhythmogenesis

Coronary artery diseases (CAD), which are caused by the narrowing of the coronary
arteries (infarction, angina pectoris, ...), induced more than 425 thousand deaths in Amer-
ica [8], being the single leading cause of death in western countries, and a major cause of
hospital admissions.
This narrowing of one or more coronary arteries leads to a diminution of blood in the

cardiac muscle with respect to the myocardial requirements, and this imbalance cause
myocardial ischemia. This transient blood flow reduction may cause chest discomfort,
referred to as angina pectoris. However, in other cases, there is no pain, being referred to
as silent ischemia. When ischemia is severe or lasts too long, such as in case of a totally
blocked coronary artery, it can cause a heart attack or myocardial infarction, leading to
the heart tissue death. Ischemia results in physiological modifications (structural and/or
functional abnormalities) in the myocardial ventricle, which are associated to arrhythmias
[9, 10, 11].
Some of CAD deaths occur unexpectedly and within a short time after symptoms

appear and are referred to as sudden cardiac death (SCD). SCD represents approximately
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20 per cent of all deaths and its incidence is similar in all western populations, where
estimates indicate that 1 out of 1000 subjects dies every year due to SCD [12]. The most
common sequence of SCD appears to be the degeneration of ventricular tachycardia (VT)
into ventricular fibrillation (VF), during which disorganized contractions of the ventricles
fail to eject blood effectively, often followed by asystole or pulseless electrical activity [13].
Reentry can be initiated even in normal and healthy hearts, but it is more common in
hearts with structural and/or functional abnormalities such as ischemia. Approximately
about 80% of SCD are related to ventricular fibrilations induced by ischemia [14].

1.1.2. Diagnosis

Some common methods used to diagnose CAD, for instance angiogram or coronary
catheterization to determine the location and severity, to treat CAD, such as coronary an-
gioplasty and stents to reduce narrowing in the artery, and to prevent SCD as implantable
cardioverter-defibrillator to act as an instant defibrillator in the event of arrhythmia, are
invasive and expensive. Therefore, developing less expensive and non-invasive tools to
help diagnosis and eventual therapy of cardiopathies is of great social and technological
interest. One of those is the electrocardiographic (ECG) signal which describes the elec-
trical activity of the heart recorded from electrodes on the body surface. It is a cheap
and non invasive technology, widely used to investigate and diagnose heart diseases such
as ischemia or some types of arrhythmia [15, 1].

1.2. The Electrocardiographic Signal (ECG)

The electrocardiographic (ECG) signal is a recording of the heart’s electrical activity
over time. It is one of the main clinical tools to examine the heart’s electrical activity with
several advantages such as being noninvasive, simple, cheap and very useful in the study
of cardiac pathologies. ECG signals are recorded from electrodes on the body surface.
According to the information needed to be extracted from the ECG, different types

of recordings are chosen. The 12-lead ECG, stress test or Holter recordings provide
information such as abnormalities of the electrical activity, irregular blood flow or areas
of the cardiac muscle which are damaged, and therefore can be used to determine the risk
of suffering infarctions or ventricular arrhythmias.

1.2.1. Electrical Activity of the Heart

Muscle cells and nerve cells (neurons) have the property of being excitable so they can
be stimulated to create a tiny electric current through their membrane. The electrical
membrane potentials of these cells follow a stereotyped signature which rapidly rises
(depolarization) and falls (repolarization) and it is known as action potential (see Fig.1.1).
The muscle cells of the wall of the heart, i.e. myocardium, are connected and allows
that electrical impulse spread throughout the heart. Electrical activity occurs before the
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mechanical part, and that is why electrical impulse is prior to the contraction of the
cardiac cell.

The normal electrical conduction of the heart allows electrical propagation to be trans-
mitted from the sinoatrial (SA) node (located on the upper part of the right atrium)
through both atria and forward to the atrioventricular (AV) node. AV node connects
atrial and ventricular chambers. After a delay, the stimulus is conducted through the bun-
dle of His to the bundle branches and eventually to the ventricular myocardium through
the Purkinje fibers. Purkinje fibers, located in the inner ventricular walls of the heart,
just beneath the endocardium, conduct rapidly the electrical impulse enabling the heart
to contract in a coordinated fashion. The delay in the AV node is extremely important.
It ensures that the atria have ejected their blood into the ventricles before the ventricles
contract [16].

Time ordered stimulation of the myocardium allows efficient contraction of all four
chambers of the heart, thereby allowing selective blood perfusion through both the lungs
and systemic circulation.

Electrical activity at cellular level

In order to study the surface ECG waveforms, the action potential properties of indi-
vidual cardiac cells should be understood.

At rest, the membrane potential, i.e. the voltage difference between the inside and
the outside of the cell, is negative. A sufficient stimulation of the myocardial cell creates
an action potential (AP) representing depolarization and repolarization of the myocardial
cell. During depolarization, positively charged ions cross the cell membrane through the
channels to which they are permeable, into the cell, while during repolarization they are
pumped out.

The myocardial action potential has 5 phases (numbered 0-4), and shown in Fig. 1.1:

Phase 4 corresponds to the resting membrane potential, and describes the mem-
brane potential when the cell is not being stimulated (-85 to -95 mV in ventricular
myocardium).

Phase 0 corresponds to the depolarization phase where an initial fast upstroke
results due to the opening of the inward fast Na+ channels. This opening causes a
rapid increase in the membrane conductance to Na+ (GNa) and thus a rapid influx
of Na+ ions (INa) into the cell; that is, a Na

+ current. The ability of the cell to open
the fast Na+ channels during phase 0 is related to the membrane potential at the
moment of excitation. If the membrane potential is at its baseline (about -85 mV),
all the fast Na+ channels are closed, and excitation will open them all, causing a
large influx of Na+ ions. If, however, the membrane potential is less negative, some
of the fast Na+ channels will be in an inactivated state insensitive to opening, thus
causing a lesser response to excitation of the cell membrane and a lower maximum
potential. For this reason, if the resting membrane potential becomes too positive,
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Figure 1.1: a) Action potential of a myocardial cell with its different phases indicated.b)
Ionic currents underlying the different phases (Reproduced from [1])
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the cell may not be excitable, and conduction through the heart may be delayed,
increasing the risk for arrhythmias.

Phase 1 represents an initial and brief repolarization and occurs with the inactiva-
tion of the fast Na+ channels. The transient net outward current causing the small
downward deflection of the AP is mainly due to the movement of K+ ions, carried
by the transient outward potassium current Ito1. Particularly the transient outward
potassium current Ito1 contributes to the ”notch” of some ventricular myocyte action
potentials.

Phase 2, also called ”plateau” phase of the cardiac action potential, is sustained by
a balance between inward movement of Ca2+ (ICa) through L-type calcium channels
and outward movement ofK+ through the slow delayed rectifier potassium channels,
IKs. This plateau phase prolongs the action potential duration and distinguishes
cardiac action potentials from the much shorter action potentials found in nerves
and skeletal muscle.

Phase 3, the ”rapid repolarization” phase, the L-type Ca2+ channels close, while
the slow delayed rectifier (IKs) K

+ channels are still open. This ensures a net
outward current, corresponding to negative change in membrane potential, thus al-
lowing more types of K+ channels to open. These are primarily the rapid delayed
rectifier K+ channels (IKr) and the inwardly rectifying K

+ current, IK1. This net
outward, positive current (equal to loss of positive charge from the cell) causes the
cell to repolarize. The delayed rectifier K+ channels close when the membrane po-
tential is restored to about -80 to -85 mV, while IK1 remains conducting throughout
phase 4, contributing to set the resting membrane potential.

Global electrical activity from the surface ECG

As the heart undergoes depolarization and repolarization, the electrical activity which
is generated spreads not only within the heart, but also throughout the body. The ECG
describes the different electrical phases of a cardiac cycle and represents a summation in
time and space of the action potential gradients generated in the cardiac tissue.
QRS complex reflects the ventricular depolarization of the myocardium, and its du-

ration represents to the time in which the impulse is traveling within the ventricles. On
the other hand, the T wave represent the heterogeneity of ventricular repolarization. The
formation of the T wave is dependent on both the sequence of ventricular activation and
the heterogeneities in AP characteristics throughout the ventricular myocardium.
Ventricular depolarization, QRS complex, is shorter than repolarization T wave due

to the fast conduction velocity of the electrical impulse in the ventricle. Repolarization
wave of the ventricle, the T wave, is smoother than the QRS due to the dispersion in
action potential durations (APD) of the different cells in the myocardium. In Fig.1.2, the
morphology and timing of action potential waveforms of different parts in the atria and
ventricles are shown, together with a representation of the resulting ECG measured on
the body surface.
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Figure 1.2: Morphology and timing of different action potentials from different regions of
the heart and the related ECG measured on the body surface.

1.2.2. ECG Recording and Leads

The electric waves in the heart are recorded in millivolts by the electrocardiograph.
These ECG waves are registered by electrodes placed on certain parts of the body which
are usually ten in number. An ECG signal presents different characteristics depending on
the location of the recording electrode. Simultaneous ECG recording in different positions
of the torso (channels or leads) provides time and spatial information about cardiac events.
The output from two electrodes is called lead and measures the voltage difference between
both.

In 1913, Einthoven named the leads between the three limb electrodes “standard lead
I, II and III” referring to the two arm electrodes and the left leg electrode. He studied
the relationship between these electrodes, forming a triangle where the heart electrically
constitutes the null point (see Fig. 1.3). The relationship between these standard leads
which reflect the electrical activity in three different directions forming 60o between them,
is called Einthoven’s triangle, and is used when determining the electrical axis of the heart.

The most commonly used lead system is the standard 12 lead ECG, that consists on
eight independent leads (referred to as unipolar precordial leads V 1-V 6 and the bipolar
limb leads I and II), and the remaining four leads (bipolar III and augmented limb
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Figure 1.3: Einthoven’s bipolar leads I, II and III, and precordial leads V1-V6.

leads: aV R, aV L and aV F ) that can be calculated using the independent ones. Each of
the 12 leads represents a particular orientation in space, as indicated below (RA = right
arm, LA = left arm, LL = left leg and RL = right leg):

Bipolar limb leads (frontal plane):

• Lead I: RA (-) to LA (+) (Right Left, or lateral)

• Lead II: RA (-) to left LL (+) (Superior Inferior)

• Lead III: LA (-) to LL (+) (Superior Inferior)

Augmented limb leads are derived from the same three electrodes as leads I, II, and
III (frontal plane):

• Lead aVR = RA −1
2
(LA+LL) = −I+II

2

• Lead aVL = LA −1
2
(RA+LL) = −I−II

2

• Lead aVF = LL −1
2
(RA+LA) = −II−I

2

Unipolar precordial leads V1-V6 (frontal plane) are placed directly on the chest as
shown in Fig. 1.3. Because of their close proximity to the heart, they do not require
augmentation. These unipolar leads measure voltage variations of electrodes V1-V6
with respect to the Wilson’s central terminal which is the average of the three limb
leads VW =

1
3
(RA+ LA+ LL).

The orthogonal lead system or Frank lead system (X, Y, Z) reflects the electrical
activity in three orthogonal leads (see Fig. 1.4) They are calculated from electrodes
placed on different points of the body (A, C, E, I, M, F, H) and a net of resistances from
which X, Y and Z are generated (see Fig. 1.4). In the literature, there are transformation
matrices such as Dower’s matrix which allows to synthesize the standard 12 lead ECG
from the three Frank leads and viceversa [17, 18].
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Figure 1.4: Original X, Y and Z leads, together with the resistances needed to calculate
them. Reproduced from [2].

Holter Recordings

Ambulatory electrocardiography (Holter) is a continuous ECG recording during long
periods (24-48 hours) using a reduced number of leads (usually two or three leads) while
the patient is doing hers/his usual daily activities [19]. This tool was originally used for
assessing the presence of various classes of beat abnormalities. Later applications of this
tool were expanded to detection of ST displacement, documentation of therapeutic effects
of anti-arrhythmic and anti-ischemic drugs, prediction of future cardiac events, heart rate
variability, pacemaker analysis, multi-channel ST analysis, QT repolarization and high
resolution ECG analysis for late potential and P-wave analysis. The electrodes used are
similar to those used during clinical standard ECG and they are connected to a tape
recorder.

This method makes it possible to study transient cardiac problems, problems that
“come and go” and could be missed during physical examination and routine electro-
cardiography (ECG) because these procedures permit only a few seconds of observation.
This kind of recordings are useful in diagnosing transient heart arrhythmias and transient
ischemia.
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Ischemic episodes are not always accompanied by anginal pain; in fact this so called
“silent ischemic” events are even more frequent in patients with coronary artery disease
than are the ones with chest pain [20]. Therefore, a non invasive tool as Holter that
continuously monitors the ECG during everyday activities, allows to diagnose “come and
go” ischemic episodes. The long duration and huge amount of data for these recordings
require some kind of automatization by signal processing techniques in order to effectively
detect potential ischemic events on the ECG signal.
Manually analyzing the data would take too long (at least the time of the recording),

this is why it is essential to use signal processing in order to interpret the recordings.
Ambulatory ECG recording suffers from the influence of external noise such as elec-

trical interferences, relative movement between the electrode surface and the skin, or
extra-cardiac electrical phenomena such as muscular activity or baseline variations gener-
ated by respiration. Therefore, signal processing techniques are needed to extract relevant
information from the ECG in a reliable way. Many of those signal processing techniques
in cardiac applications are nicely described in [15].

1.2.3. ECG Signal Description

Temporal Characteristics

As we described before, ECG represents the heart’s electrical activity over time and
therefore, it presents a characteristic pattern with five characteristic waves (P, Q, R S and
T), which are repeated every cardiac cycle:
P wave reflects the depolarization of the atrium (80-100 ms). During normal atrial

depolarization, P wave is upright over most of the standard 12-lead ECG and the absence
of the P-wave indicate diseases such as atrial fibrillation or sinoatrial node block.
Q, R and S waves compose the QRS complex that reflects the fast depolarization

of the ventricles (60-100ms). QRS complex presents a larger amplitude than the P wave
due to the larger muscle mass of the ventricles compared to the atria. Prolonged QRS
can indicate diseases such as bundle branch blocks.
T wave represents the repolarization of the ventricles (150-350ms) [21]. It is longer

in duration than depolarization (i.e., conduction of the repolarization wave is slower than
the wave of depolarization) and it is very rate dependent, unlike the P wave or the QRS
complex.
Some widely used repolarization indices (see Fig. 1.5) which are important in the

study of ischemia and arrhythmias, object of this thesis, are:

QT interval: time interval from the onset of the QRS complex (onset of the depo-
larization) to the end on the T wave (end of the repolarization). Therefore, the QT
represents the time for both ventricular depolarization and repolarization to occur,
and also roughly estimates the duration of an average ventricular action potential.
It is rate dependent. Duration about 350-400 ms.

ST segment: time interval from the end of the QRS complex to the onset of the T
wave. It is also called the isoelectric segment because it is the time at which the
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entire ventricle is depolarized and roughly corresponds to the plateau phase of the
ventricular action potential. Deviations of ST level can be caused by ischemia as it
will be seen later. Duration about 50-150 ms.

RR interval: time interval between two R waves that represents the cardiac cycle.
Duration about (600-1000 ms)

Tpe interval : time interval from the peak to the end of the T wave.

Tw interval: time interval comprising the width of the T wave.
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Figure 1.5: Different intervals measured on the ECG to compute the QT , T wave width
(Tw), T wave peak to T wave end (Tpe)and RR interval series. The ST level series is
calculated in this thesis by averaging the first 8 ms of the ST segment.

Frequency Characteristics

In order to apply correctly signal processing techniques, the frequency components of
each ECG waves should be known. In Fig. 1.6, the ECG spectrum and its components
are characterized [3].

1.2.4. Pathologies reflected in the ECG

Ischemia: Insufficient blood supply to the myocardium can result in myocardial
ischemia, injury or infarction, or all three. Atherosclerosis of the larger coronary
arteries is the most common anatomic condition to diminish coronary blood flow.
The branches of coronary arteries arising from the aortic root are distributed on
the epicardial surface of the heart. These in turn provide intramural branches that
supply the cardiac muscle. Myocardial ischemia generally appears first and is more
extensive in the sub-endocardial region since these deeper myocardial layers are
farther from the blood supply, with greater intramural tension and need for oxygen.
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Figure 1.6: ECG power spectrum and its components. Reproduced from [3].

Arrhythmia: It can be defined as an abnormal electrical activity in the heart. The
most common arrhythmias are atrial tachycardia that shows a narrow QRS complex
with heart rates above 100 beats/min and atrial bradycardia with a slow rhythm,
less than 60 beats/min. Ventricular arrhythmia generate Premature Ventricular
Contractions (PVC) and then produce shape and duration changes in the QRS
complex. Ventricular tachycardia is a fast heart rhythm that originates in one of
the ventricles of the heart. This is a potentially life-threatening arrhythmia because
it may lead to ventricular fibrillation, asystole, and sudden death.

1.3. Ischemia and its ECG manifestations

Myocardial ischemia can be defined as the imbalance between oxygen/nutrient delivery
with regard to myocardial requirements [22]. Ischemia is generally produced by a partial
occlusion of a coronary artery (coronary arteries represent the only source of blood supply
to the myocardium), reducing the blood flow, and consequently oxygen (hypoxia), glucose
or nutrients. In this case, when a supply reduction is produced, the imbalance is referred
to as “supply ischemia”. The term “demand ischemia” refers to a condition where an
increased oxygen demand caused by exercise, tachycardia or emotion, leads to a transitory
imbalance [23, 24, 25, 26].

Myocardial ischemia affects both depolarization and repolarization, leading to changes
of QRS complex, ST segment and T wave in the ECG. Study of such manifestations can
help to distinguish among the different types and degrees of ischemia, localize the time in
which those events occur, and identify the occluded coronary artery.

At cellular level, ischemia markedly influences the electrophysiological properties of
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the myocardial cells. The increased extracellular potassium level, [K+]o, during ischemia,
leads to a reduction of the resting membrane potential to less negative values (between
-60 and -65 mV). This is reflected on the ECG as a change in the TQ segment (base-
line). There is also a reduction in rate of rise of phase 0 (reduction of number of sodium
channels opened). This is reflected on the ECG as changes in the QRS complex such
as morphological changes [27], amplitude changes [28] and slope changes [29]. During
ischemia, fluctuations in calcium levels during systole and diastole produce changes in
the calcium currents of the membrane and in action potential durations (APD) [30, 31].
Ischemia results also in a decrease of the amplitude and duration of the AP, as shows
Fig. 1.7. AP waveform changes resulting in ST displacement, include alterations in the
duration, amplitude and and slope of phase 2. The ST segment displacement described in
the surface ECG during ischemia corresponds to a combination of the TQ segment change
(loss of resting membrane potential) and the real ST segment change (shorter APD).

Figure 2B depicts the action potential generated after the
seventh pacing stimulus at the node marked with X in Fig. 2A.
The main changes induced in the action potential by acute
ischemia are the following: 1) depolarization of the resting
potential from its normal value, 85.4 mV, to 74.1 and 66
mV in ischemia stages 1 and 2, respectively; 2) reduction of
peak-to-peak action potential amplitude (APA) from 125.2 mV
in normoxia to 105.6 and 87.7 mV, respectively; and 3) APD90

shortening from 138 ms in normoxia to 91 and 66 ms in stages
1 and 2 of early acute ischemia, respectively. Furthermore, the
ERP also changes in acute ischemia compared with its normal
value of 145 ms: in ischemia stage 1 it decreases to 115 ms,
whereas in ischemia stage 2 it is prolonged to 180 ms.
These results are consistent with previous experimental results
(6, 44, 45).
ULV and ULEB. Shocks of strength between 0.4 and 2.2A

were applied at CIs from 40 to 260 ms to determine ULV and
ULEB in normoxia and in stages 1 and 2 of early acute
ischemia. For the normal myocardium, ULV and ULEB occur
at CIULV of 220 ms and have values of 1.4A and 1.6A,
respectively. Thus shocks of strength between 1.4 and 1.6A
induce a single beat only, whereas sustained reentries are
induced by shocks of strength below 1.4A. In ischemia stage 1,
the ULV decreases to 0.8A, whereas the ULEB increases to
2.2A; both values are found at CIULV 180 ms. In contrast, no
arrhythmia, sustained or unsustained, is induced by any com-
bination of shock strength and CI tested in ischemia stage 2.
To explore what mechanisms underlie the change in ULV

due to acute ischemia, the present study compared, in normoxia
and ischemia, the Vm distributions at the end of the shock, the
shock-induced changes in action potential morphology, and the
evolution of the postshock electrical activity in the myocar-
dium for shocks below and above the ULV. The figures below

present such comparisons for shocks delivered typically at the
respective CIULV because these CIs correspond to the preshock
state of the myocardium most susceptible to reentry induction
at high shock strengths.
Vm distribution at shock end. Figure 3A presents the Vm

distribution at shock end on the top surface of the slice (Fig.
3A, left panel) and on a parallel plane through the middle of the
slice (Fig. 3A, right panel) in normoxia and acute ischemia.
The effect of the shock on the bottom surface of the slice is of
opposite polarity (not shown). In the figure, the Vm distribution
is shown for shocks of strength 0.8A and 1.4A. The shocks are
applied at the respective CIULV in normoxia and ischemia stage
1 as to better compare the mechanisms resulting in ULV
alteration. Because no ULV exists in ischemia stage 2, the
shock outcome is independent of the CI. For comparison of
postshock behavior, a CI of 240 ms was chosen in this case.
The Vm distribution at shock end incorporates both the

preshock state as well as the shock-induced VEP. It is the
starting point of the postshock activity; differences in this
distribution between normoxia and ischemia could manifest
themselves as differences in shock outcomes, and thus as
differences in electrical vulnerability. Figure 3A shows that,
consistent with a previous study from our group (17), shock-
end Vm on the surface (left) is stronger than that in the tissue
depth (right). Furthermore, increasing shock strength increases
the extent of the areas depolarized to more than 20 mV (red)
or hyperpolarized below 90 mV (blue), particularly in the
tissue depth (right panels). Finally, increasing the level of
ischemia leads to a decrease in the extent of areas depolarized
to more than 20 mV (red) and thus to an increase in the
amount of tissue depolarized to intermediate Vm (colored in
green and yellow). Differences in shock-end Vm distribution
are quantified in Fig. 3B, which presents the percentage of all
myocardial nodes in the slice experiencing depolarization
above 20 mV and hyperpolarization below 90 mV as a
function of shock strength and the level of acute ischemia. The
histograms demonstrate that ischemic tissue exhibits smaller
(in extent) shock-induced regions of positive polarization (Fig.
3B, right). These are regions of immediate postshock refrac-
toriness and, hence, play a pivotal role in the outcome of the
shock.
Shock-induced action potential morphology. To further in-

vestigate the effect of acute ischemia on shock-induced
changes in action potential morphology, the time course of Vm
after the shock was examined at various locations in the slice.
To illustrate our main findings, Fig. 4 presents the time course
of Vm at the nodes marked a and b in Fig. 3A. Nodes a and b
are representative of shock-induced positive and negative po-
larization, respectively. The time when shock occurred is
marked by a thick black line.
In normoxia, node a is at 32% repolarization when the shock

is applied. Both shocks induce depolarization that prolongs
APD90. Shock-induced changes in Vm ( Vm) and in APD90

( APD90) are 12 mV and 8 ms for the 0.8A shock, and 23 mV
and 13 ms for the 1.4A shock. In ischemia stage 1, node a is
at 27% repolarization; Vm is 10.7 and 21.5 V for the 0.8A and
1.4A shocks, respectively. However, despite the shock-induced
depolarization, APD90 in this case is shortened to 89 ms for the
0.8A shock ( APD90 2 ms) and does not change for the
1.4A shock ( APD90 0 ms). In ischemia stage 2, the shock
itself elicits an action potential at node a, which is of APD90

Fig. 2. A: activation maps in normoxia and in stages 1 and 2 of early acute
ischemia after the seventh pacing stimulus. Isochrones are drawn each 27.8 ms
from the onset of the seventh pacing stimulus (0 ms). Black color in the
ischemia stage 2 maps represents activation times 250 ms. B: time course of
the action potential at the node marked X in A. Vm, transmembrane potential.
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Figure 1.7: Simulation of an action potential in normoxia and two stages of ischemia,
stage I and a more severe stage II. Reproduced from [4].

In the initial phase of the normal cellular repolarization (Phase 1 to 2), all the cells are
in the plateau part of the transmembrane AP, and therefore a null gradient is generated.
This is reflected on an isoelectric or a positive quasi-isoelectric level in ST segment of the
surface ECG, which corresponds to the first part of the repolarization phase [16]. The elec-
trocardiographic effect of myocardial ischemia is the “injury current” which results from
partial depolarizations and reduced duration and amplitude of APs. When ischemia is
produced at the tissue, cells surrounding the affected area reduce duration and amplitude
of their AP, producing an AP gradient between normal and ischemic myocardial zones,
and therefore an “injury current” between both. This is reflected on the ECG through
changes in the ventricular repolarization period including the ST-T complex [25, 32, 33].
These changes in the ST segment and in the T wave are produced before the QRS com-
plex change, indicating that a more severe ischemia is needed to produce changes in the
depolarization phase [34].
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In clinical practice, diagnosis of myocardium ischemia is usually performed by evalu-
ating just the deviation of the ST segment, considered as an early ischemic marker. The
recommended criteria to diagnose changes in the ST segment requires that two or more
contiguous leads from the 12-lead ECG show a change in the ST segment of more than
0.1 mV [35].

The ST deviation pattern can correspond to a ST elevation or a ST depression de-
pending on different factors related to the ischemic process such as the degree of severity
or localization of the ischemic zone.

Electrocardiographic images of ischemia are different depending on whether the is-
chemic area affects mainly the sub-endocardium or the sub-epicardium. It should be
noticed that the subendocardial layer is the most susceptible to ischemia, being the most
distant from the source of blood supply. In the case of sub-endocardial ischemia, ST
depression appears at different intensities according to its degree [36], while in the case of
sub-epicardial, also called transmural ischemia, ST elevation and Q wave changes occurs
[37, 16]. In some patients, however, precordial ST depression might be the equivalent of
ST elevation [33], indicating an acute myocardium infarction of the posterior wall, caused
by the complete occlusion of the left circumflex coronary artery.

Despite the frequent use of ST deviation in clinical practise, several studies have shown
the limitations of using it as the only diagnostic tool due to its low specificity [33]. In
addition to ischemic ST episodes (IE), there are other ST events such as heart rate related
episodes (HRE), body position changes (BPCE) or conduction changes (CCE) which
also result in ST segment modifications being considered artefactual events when ischemia
is the target. The dynamics of the different ST events is different in each case. HRE
as well as IE are considered transient ST segment episodes (TE) and characterized by a
length and an extremum deviation. In contrast, BPCE and CCE, characterized with a
sudden shift in the ST level function, are denoted as sudden step events (SSE) and are
characterized by the time instance they occur.

1.4. Objectives and implications of the thesis

This thesis can be divided into two main parts. The first part (chapters 2 to 4)
is focused on ischemia detection in Holter recordings and how to cancel out other ST
episodes which also produce changes in the ST segment and are misidentified as ischemic
events. The second part aims at searching for arrhythmia risk markers by evaluating rate
adaptation of the T wave peak to T wave end (Tpe) interval (chapter 6) and by quanti-
fying dispersion in the action potential duration (APD) restitution(APDR), measured at
cellular level, from the surface ECG (chapter 7).

In the first part we have evaluated and improved an ischemia detector [38] based on
changes in the ST segment, on the “Long-Term ST database” (LTSTDB) [39]. This
database contains 24 hour duration records with a large number of human annotated
ischemic and non-ischemic ST-segment events, such as heart rate related events, body
position changes or conduction changes; giving a much more extensive tool to evaluate
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and develop ischemia detectors than the early “European Society of Cardiology ST-T”
(ESCDB) [40]. A new module has been included in the ischemia detector to cancel out
body position change (BPC) events misclassified as ischemic events. A BPC detection
technique [41] which has been applied to the RMS series of the QRS complex and ST
segment is used.
Additionally, it is shown that noise distribution of the KLT of both QRS and STT

complexes is more ’heavy-tailed’ than Gaussian noise due to outliers (e.g. artifacts, im-
pulsive noise, baseline wandering or ectopic beats). Then, a new BPC detector based on
the Generalized Likelihood Ratio Test (GLRT) for Laplacian noise distribution has been
derived and evaluated on different databases.
In the detection part, it has been shown that in addition to ischemic ST episodes

(IE), there are other ST events such as heart rate related episodes (HRE), body po-
sition changes (BPCE) or conduction changes (CCE) which also result in ST segment
modifications being considered artefactual events when ischemia is the target. Then after
dealing with the detection problem, several indices based on repolarization and depolar-
ization intervals have been used to classify and discriminate between different ST events
in Holter recordings. This will help us to understand better which ECG-based indices are
involved when ischemia is present and which ones change when non ischemic events with
ST segment deviation are misclassified.
The second part of this thesis aims at searching for risk markers. Dependence of ac-

tion potential duration (APD) to heart rate changes has been shown to provide relevant
information for arrhythmic risk stratification. APD restitution (APDR) curve character-
izes the relationship between action potential duration (APD) and the RR interval under
stationary conditions. Heterogeneities in ventricular myocardium make the APDR curve
present spatial variations that leads to APDR dispersion, which has been proposed to act
as a potent arrhythmogenic substrate. In particular, enhanced ADR dispersion has been
associated to ventricular tachycardia. In this thesis, it is shown a complete methodology
to quantify this index non-invasively from the surface ECG.

1.5. Organization of the thesis

Chapter 2: A modified ischemia detector based on the root mean square (RMS)
of the ST segment is presented. This ischemia detector is evaluated on the LTST
database including a module to cancel body position change events using the RMS
series of the ST segment and QRS complex. The content of this chapter has been
published in the proceedings of an international conference:

• Mincholé A., B. Skarp, P. Laguna. Evaluation of a Root Mean Square Based
Ischemia Detector on the LTST Database. XXXII Ann. Conf. Computers in
Cardiology. Lyon. IEEE Press. pp. 853-856. 2005

Chapter 3: This chapter presents a method for detecting body position changes
(BPC) on the ECG based on the Generalized Likelihood Ratio Test (GLRT) for
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Laplacian noise distribution. This detector is evaluated in two databases: one with
controlled BPCs which assesses the detector performance and the other with ECG
recordings of patients undergoing a percutaneous coronary intervention, where ECG
changes are abrupt but there are not BPCs, which assess the rate of false alarms.
A comparison between the performance of this GLRT-based detector that assumes
laplacian noise distribution and a previous one assuming gaussian noise has been
made.

Chapter 4: In this chapter, different types of episodes related to changes in the
ST segment: ischemic, heart rate related events and sudden step ST changes (body
position changes and conduction changes) have been analyzed and characterized.
The very similar signatures of ST modifications have led us to look for other ECG
indices such as heart rate-based indices, correlation between the absolute ST seg-
ment deviation and heart rate series, the interval between the Tapex and the Tend,
T wave amplitude, the signal-to-noise ratio and changes in the upward/downward
slopes of the QRS complex, to distinguish between them. Classification between the
different types of episodes has been performed showing the most significant indices
involved. This study has been published in:

• A. Mincholé, F. Jager, P. Laguna. Discrimination Between Ischemic and Arti-
factual ST Segment Events in Holter Recordings. Biomedical signal processing
and control, Vol. 5 pp. 21-31, 2010.

• A. Mincholé, F. Jager and P. Laguna (2007). Discrimination between Demand
and Supply Ischemia Episodes in Holter Recordings . 29th Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC07), Lyon, pp. 2579-2582

Chapter 5: This chapter introduces the Valsalva maneuver and characterizes the
changes in different repolarization indices during the strain. RR, QT , Tpe and Tw
(T wave width) intervals are analyzed under the hypothesis that during the strain
of the Valsalva maneuver an increase in the myocardium requirements is produced,
leading to a transient demand ischemia. This work has been published in:

• A. Mincholé, J. P. Mart́ınez Cortes, P. Arini, M. Risk, P. Laguna Lasaosa.
T Wave Width Alterations during Valsalva Maneuvers in Diabetic Patients.
Computers in Cardiology 2006. September. 2006. pp. 709-712

A database referred to as ANS-UZ DB, has been acquired to characterize changes
in the repolarization intervals generated by the tilt test and the Valsalva maneuver.
This database includes 15 control subjects of about 28 years old, and the signals
recorded were the 12-lead ECG, the blood pressure, photoplethysmographic signal,
the respiratory signal and the expiration pressure. A complete description of the
ANS-UZ DB and a study of changes in some repolarization indices is shown.
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Chapter 6: In this chapter, the T peak to T end interval (Tpe) adaptation to
sudden changes in heart rate is modelled, characterized and compared with the QT
rate adaptation, using the tilt test database described in chapter 5. Published in:

• A. Mincholé, E. Pueyo, P. Laguna. Transmural Differences in Rate Adaptation
of Repolarization Duration Quantified from ECG Repolarization Interval Dy-
namics. XXXVI Ann. Conf. Computers in Cardiology, Park City, pp. 597-600.
Septiembre. 2009

Chapter 7: This chapter aims at quantifying an arrhythmia risk marker, APD
restitution (APDR) dispersion, measured at cellular level, by making only use of
the surface ECG. The proposed estimate accounts for rate normalized differences
in the steady state T wave peak to T wave end interval (Tpe). A methodology was
developed for its computation, which includes compensation for the Tpe memory lag
after heart rate (HR) changes. The capability of the proposed estimate to reflect
APDR dispersion was assessed using a combination of ECG signal processing and
computational modeling and simulation. This study has been published in:

• A. Mincholé, E. Pueyo, J. F. Rodŕıguez, E. Zacur, M. Doblaré, P. Laguna.
Quantification of Restitution Dispersion from the Dynamic Changes of the
T wave peak to end, measured at the Surface ECG. IEEE Transactions on
Biomedical Engineering, 2011, doi:10.1109/TBME.2010.2097597.

• A. Mincholé, E. Pueyo and P. Laguna. Dispersion of APD restitution quantified
from the surface ECG. Journal of Electrocardiology, Volume 43, Issue 6, 2010,
Pages 643-644

• A. Mincholé, E. Pueyo, J. F. Rodŕıguez, E. Zacur, M. Doblaré, P. Laguna.
Evaluation of a Method for Quantification of Restitution Dispersion from the
surface ECG. XXXVII Ann. Conf. Computing in Cardiology, Belfast, 2010.



Chapter 2

Evaluation of a Root Mean Squared
Based Ischemia Detector on the
Long-Term ST Database

2.1. Introduction

Today 24-hour ECG monitoring is widely used to evaluate patients with suspected
or known coronary artery disease. The long duration and huge amount of data of these
recordings require some kind of automatization by signal processing techniques in order
to effectively detect potential ischemic events on the ECG-signal.
The ST deviation is considered the most sensitive marker to diagnose ischemia in

clinical practice, and therefore most ischemia detectors mainly relies on ST segment-
based indices [42, 43, 44, 45, 38], as it is described in section §2.1.1. By analysing changes
of the ST-segment (see Figure 2.1), silent ischaemia is often diagnosed with the help
of Holter recordings. However, ST segment changes can also result from other causes
such as heart rate related events, changes in the electrical axis of the heart due to body
position changes (BPC) and conduction changes among others. Reliable ST detectors
should distinguish between ischemic and non-ischemic ST changes, although this task
remains being a challenge [46].
Most of ST segment based detectors [42, 43, 44, 47, 38] were developed and tuned

using the European Society of cardiology ST-T database (ESCDB) [40]. ESCDB consists
of 90 annotated ambulatory ECG recordings from 79 subjects. Each record is two hours in
duration and contains two leads. ST segment and T-wave changes were identified in both
leads (using predefined criteria which were applied uniformly in all cases), and those event
onsets, extremum, and ends were annotated. However, the origin of each ST event was
not determined. A more recent database, the Long Term ST Database (LTSTDB) [39],
contains longer records (24 hour duration records) than the ESCDB with a large number
of human annotated ischemic and non-ischemic ST-segment events such as heart rate
related events, body position changes or conduction changes. Therefore, the LTSTDB
becomes a much more interesting and extensive tool to evaluate and develop ischemia
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Figure 2.1: Example of two beats where the QRS fiducial points, the segmented ST length
and the RR interval are represented.

detectors than the ESCDB.
In this work, the ischemia detector [38], based on the RMS of the ST segment and

developed and tuned using the ESCDB, is re-evaluated on the LTSTDB. Here, we group
together heart rate related (HRE) and ischemic events (IE), considered transient ST
segment episodes (TE) and characterized by a length and an extremum deviation, as the
target “group”, such that performance in the LTSTDB can be compared to performance
in the ESCDB. Therefore, BPC and conduction changes (CCE), also resulting in ST
segment deviations, need to be cancelled to avoid false detections. These two types of
events are characterized by sudden shifts of the ST segment which result in a step-like
signature in different ECG representations such as Karhunen-Loève Transform (KLT) or
the root mean square (RMS) of the QRS complex and the ST segment [46].
Besides revisiting and modifying the RMS-based ischemia detector [38] to improve its

performance under the new LTSTDB perspective, a module to cancel out false ischemic
alarms due to body position changes has been incorporated.

2.1.1. Automated Methods for Ischemia Detection in Holter
Recordings

A large variety of techniques to detect myocardial ischemia in long-duration ECGs have
been published. Most of them are based on the identification of ST segment deviations
and changes in the T wave morphology. Among the detection techniques using the time-
domain approach, there are some that set thresholds to the ST segment deviations [42, 43].
In the work [44], episode detection is based on the analysis of the 2-D path described by
the two ST deviations derived from the two ECG leads. Root mean square series of
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differences between each ST segment (or ST-T) and an averaged segment is used by [38].

Other studies are based on the analysis of the Karhunen-Loève transform (KLT) which
provides a very useful tool to estimate morphological changes. KLT maximizes the vari-
ability of the signal and concentrates in a few coefficients most of the signal information
[48]. KLT coefficient series of the ST segment and the QRS complex have been used in
[47] to detect ischemia. Also, the KLT coefficient series of the ST-T complex was used to
detect ischemic events [49].

Some of these detectors have been developed under the ESCDB database, obtaining a
performance in terms of sensibility/positive predictivity of 81.5%/82.5% ([43]), 84%/81%
([44]), 84.7%/86.1% ([38]), and 87.1%/87.7% ([47]). When [47] is applied to the LTSTDB,
performance lowers to 74.0%/61.4% as it is shown in [45].

The work in [45] presents a technique that combines ST level deviations and morpho-
logical KLT series of the ST segment and QRS complex that has been developed under
the LTSTDB [39] reaching a performance of 78.9%/80.7% when detecting significant ST
changes. Performance using the ESCDB improve up to 81.3%/89.2%.

Ischemic detectors described above are the ones with better performances in ESC and
LTST databases.

Other studies have analyzed the ST segment in the frequency-domain, showing that
ischemic beats contain lower frequencies than normal ones, [50]. In the time-frequency
domain, heart rate variability has been investigated to identify ischemic segments, [51].
Different scales in the wavelet transform have been used to describe and identify heart
beats. Their capability of discrimination between normal, ventricular premature and
ischemic beats has been studied by a linear discriminant analysis [52].

Other methods apply artificial intelligence techniques to classify individual ischemic
beats as a preliminary step for detection of ischemic episodes. Among these methods,
methods based on a variety of neural network architectures have been also presented
[53, 54, 55]. The work in [53] used information from the ST segment (ST deviation and
slope) together with a noise cancellation strategy and classified each beat as ischemic or
not getting a performance of 85%/88% using 47 out of 90 recordings of the ESC ST-T
database. The work in [54] used a set of three rules (ST-segment elevation, ST depression,
and T wave inversion or flattening) and was evaluated in the ESCDB (94%/79%).

Only a few of these methods explicitly address the real-time analysis case where less
information (only past and present) is available to take a decision and computational
restrictions could exist [43, 51]. A recent study providing a real-time execution combines
signal processing methods (time-domain analysis) to detect possible ischemic episodes
with artificial intelligence techniques to discriminate between ischemic and non-ischemic
episodes [56]. It has evaluated on the 48 freely distributed recordings of the the ESCDB
achieving 82.2%/79.48% and on the 43 freely distributed recordings of the LTSTDB,
lowering the performance to 85.28%/48.44%.



20 Chapter 2. Evaluation of a RMS-based ischemia detector

2.2. Methods

2.2.1. Long Term ST Database

The LTST DB [39] contains 86 24-hour duration ambulatory ECG records of 80 pa-
tients sampled at fs = 250 Hz. This database offers a very accurate representation of
“clinical world” data with two- or three-lead records with a great variety of lead combina-
tions. The leads used in the two-channel records included different pairs from: precordial
leads V2, V3, V4 or V5, together with modified limb lead III (MLIII); or lead V5 and
lead V2; or modified limb lead L2 (ML2) and modified lead V2 (MV2). The leads used
in the three-channel records included: a combination from leads V3, V4, V5, V6, II and
aVF, or Zymed’s EASI lead system [57] with the leads E-S, A-S and A-I.
Complete expert annotations have been provided for the database following three

different annotation protocols. Electrocardiogram waveform is not enough to diagnose
myocardial ischemia, so the gold standard for annotating a transient ST segment (TE),
IE or HRE, was based not only on ECG waveforms but also on detailed clinical informa-
tion from the subjects including other clinical investigations, the clinical history and the
opinion of expert annotators of the database [39]. Thus, a classification of a particular
episode can be driven by a previous knowledge about the patient rather than physiological
evidences. This is one limitation we should have in mind when analyzing the results.
Annotations include IE and other ST-segment events such as HRE, BPCE and

CCE, providing an extensive and tough tool to evaluate ischemia detectors.
One transient ST episode (TE) has to be significant to be annotated according to the

following rules: a) an episode beginning when the magnitude of the ST deviation first
exceeds 50 μV , b) the deviation must reach a magnitude of Vmin or more throughout
a continuous interval of at least Tmin s and c) an episode ending when the deviation
becomes smaller than 50 μV , provided that it does not exceed 50 μV in the following 30
s. A simplified figure of these parameters is shown in Fig. 2.2

µV
Vmin Tmin

µV
Vmin

Tmin

50µV Vmin

Tmin

ST deviation function

Vmin Tmin
µV

µV

µV

Figure 2.2: Simplified figure of the parameters Vmin and Tmin, used to annotate a signifi-
cant transient ST episode under different protocols.

Three different protocols A, B and C are set depending on Vmin and Tmin.

Protocol A: Vmin = 75 μV and Tmin = 30 s.
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Protocol B : Vmin = 100 μV and Tmin = 30 s.

Protocol C : Vmin = 100 μV and Tmin = 60 s.

Any significant sudden step-change of the ST level function accompanied by a simul-
taneous sudden step-change in QRS complex morphology was annotated as significant
BPCE or significant CCE, according to its nature. These two types of episodes related
to sudden step changes in the QRS complex and ST level are referred to as SSE.

2.2.2. Generation of global ST episode annotations from expert
lead annotations

Annotations are made independently in each lead of each recording, so they are at-
tached to the lead or leads where the episode is significant. However, since ischemia is a
global phenomena and the RMS series are derived using information of all the leads, we
have combined the lead by lead annotations. For transient ST episodes, IE and HRE,
the time which is first annotated in either lead is set as the onset limit and the time which
is last annotated in either lead, as the offset limit, as Fig. 2.3 shows. Also TE, including
both IE and HRE annotations, are merged together. In the case of SSE which are
annotated by single marks, these marks are combined by using a logical OR, as Fig. 2.3
shows.

Lead 1

Lead 2

Lead 3

Merged Episode

Lead 1

Lead 2

Lead 3

Merged SSE

Figure 2.3: Merged episode for three lead annotations and merged SSE marks (BPC or
CCE).

The number of different merged events for the different protocols are shown in Table
2.1. Ischemic and HR-related ST episodes which have and onset, extremum and end are
referred to as transient ST episodes.

2.2.3. ST segment changes detector

The RMS-based detector operates finding ST segment changes in the series resulting
from computing the root mean square (RMS) difference series between the ST segment
of a reference beat and the running beat. Then a threshold-based adaptive detector is
applied on the RMS series.
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Protocol A Protocol B Protocol C
Merged IE annotations 1158 747 580
Merged HRE annotations 378 173 100
Merged TE annotations 1487 903 660
Merged SSE 1563 1563 1563

Table 2.1: Number of different annotations (ischemic IE, HR-related HRE, both which
are transient episodes TE and sudden step change events SSE) after merging individual
annotations over the leads.

The structure of the detector is shown in Figure 2.4, and consists of a preprocessing
stage, estimation of the RMS series, a postprocessing stage and eventually the detection
algorithm.

ECG
xl(n)

Preprocessing
xiST,l(n) RMS series

estimation

y(θi)
Postprocessing

IRMS(n) Detection
algorithm

Events

Figure 2.4: Block diagram of the ST change detector presented in this work.

Preprocessing stage

Preprocessing techniques are applied individually on each lead of the raw ECG signal,
xl(n), where l is the corresponding lead and n is the sample index. This preprocessing
step consists of first applying a QRS detector (ARISTOTLE arrhythmia detector [58])
in order to find the QRS fiducial points of each ith beat (θi), defined as the center of
gravity of the QRS complex, and removing the non normal labeled beats.
Then, baseline wander attenuation is performed using cubic splines [15]. Eventually,

a rejection of noisy beats (those with differences in mean isoelectric level with respect to
adjacent beats larger than 400 μV ). In order to avoid the influence of electrical power line
interference and high frequency noise in the RMS difference series, the ECG was low-pass
filtered using a linear phase FIR filter with a cutoff frequency of 25 Hz. Note that the ST
segment frequency band is far below 15 Hz.
The ST segmentation (see Figure 2.1) is done selecting a fixed length window of 50

ms, xi
ST,l(n), starting from a heart rate related sample reference (n

i
ST0
) [59], and defined

as:

xiST,l(n) = xl(n
i
ST0
+ n) n = 0, ..., N − 1

with niST0 = θi +
40

1000
fs + 1.3

√
rri

1000
fs (2.1)
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where N = 50
1000
fs is the window length corresponding to 50 ms, fs is the sampling

frequency (250 Hz in the LTST database) and rri = θi − θi−1 represents the RR interval
at the ith beat in sample units.

RMS difference series estimation

In order to calculate the RMS difference series, a reference ST segment, xST,l(n), has to
be defined. This step is very important because a wrong reference ST segment would make
non ischemic events be detected as ischemic and ischemic be detected as non-ischemic.
In the old version of the ST segment detector [38], the first 100 beats were averaged
and the resultant ST segment used as the reference. However, when a recording begins
with an ischemic episode, the ST segment selected as the non ischemic reference is indeed
ischemic. We have derived a ST level series defined as the first sample of the ST segment
of each beat, xi

ST,l(1) with i = 1, ...,M whereM is the number of beats in each record. We
choose the lead with highest standard deviation, where an interval of 30 minutes called
“basal interval” is searched for when two restrictions apply: 1) having the shortest peak
to peak amplitude in the series, and 2) the whole interval series being below 4/3 of the
xiST,l(1) absolute median value of the recording. Within this “basal interval”, the middle
100 beats are averaged to calculate the reference beat in each lead xST,l.

Finally the RMS difference series, y(θi) is calculated using the following equation:

y(θi) =
1

L

L∑

l=1

√√
√
√ 1
N

N−1∑

n=0

(
xiST,l(n)− xST,l(n)

)2
(2.2)

where L is the number of leads of the recording. In this work we have included a normal-
ization factor 1

L
that accounts for different number of leads in the recording.

Post-processing stage

There are different factors such as motion artifacts that distort the RMS-series and
therefore, a post-processing stage is needed. This is done by rejecting beats whose signal-
to-noise ratio (SNR) differs more than 20 dB from the running exponentially averaged
SNR series with forgetting factor equal to 0.02. Latter, as outlier rejection, a median
filter of 5 beats length is subsequently used on the RMS series. This series is evenly
resampled to 1 Hz and an exponential running average (with forgetting factor equal to
0.05) is applied to smooth the series resulting in a RMS- series suitable for analysis and
denoted hereinafter by IRMS(n).
An example of this post-processing over the RMS series of heart rate related episodes

is shown in Fig. 2.5.

A second example of potentially ischemic episodes that exhibit the same variations
pattern, and may be due to coronary vasospasms (Prinzmetals angina) [16], is shown in
Fig. 2.6.
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Figure 2.5: Example of the postprocessing stage for the RMS series y(θi).

Detection algorithm

The final stage of the detector incorporates an adaptive threshold that looks for the
amplitude of the IRMS(n) series and accounts for the slow drift changes of the series.
When IRMS(n) overcomes that threshold, the detection starts and the threshold is no
longer adaptive until the IRMS(n) amplitude gets back under the threshold (see 2.7). The
threshold adapts itself by adding a fixed amount “η” (first parameter) to the baseline ξ(n)
of the IRMS(n) series, that is estimated as an exponential average applied on the RMS
series:

ξ(n) = ξ(n− 1) + β (IRMS(n)− ξ(n− 1)) (2.3)

where β is a second parameter that adjusts the speed in the adaptation of the baseline to
the IRMS(n) series. An episode is detected when:

IRMS(n) > ξ(n) + η (2.4)

for a period of more than 45 s, as Fig. 2.7 shows. Some extra rules are also included:

Baseline is not updated for those beats considered as ischemic.

Initial value of the baseline ξ(n), is estimated using the average value of the first
two hours of the recording. This rule is used to avoid artifacts at the very begin-
ning of the recording or missing ST episodes which have already started before the
recording.



2.2 Methods 25

y
(θ
i)

I R
M
S

Time [m]

0

0

0

0

75

75

75

75

150

150

150

150

700 800 900

RMS difference series (Recording ’s20591’)

Noisy beats with low SNR removal

Median Filtering

Resampling and exponential running averaging

Figure 2.6: Postprocessing stage for the RMS series y(θi) of annotated periodic ischemic
events.

Episodes shorter than 45 s are removed.

If a new episode began shortly after the previous one, less than 5 min, it was
considered to be the same episode.

Both parameters, β and η, are selected experimentally.
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Figure 2.7: Example of ST changes detection on the record “s20591” showing, in the
highest bar, the annotated ischemic events (protocol B) and in the lowest one the detec-
tions. The baseline estimation, ξ(n), (dashed line) and the threshold (dotted-dashed line)
are plotted over the IRMS(n) series.
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2.2.4. BPC cancellation

Body position changes are often manifested as shifts in the electrical axis and may be
misclassified as ischemic changes during ambulatory monitoring. Previous studies use the
Karhunen-Loève transform (KLT), which tracks morphological changes, to detect body
position changes [46, 41]. During these non ischemic events the QRS an STT signatures
change rapidly generating step-like function features in their KLT coefficient series.
In this work we have slightly modified a BPC detection technique [41] that was applied

to the KLT coefficient series of the QRS and ST-T complexes. This detection technique
consists of looking for peaks in the squared output of the matched filter of the QRS and
ST-T KLT coefficient series with a step-like function. During a BPC the morphological
changes observed in the QRS and STT complexes have a step-like change as shows Fig.
2.8(a). When convoluting these series with a step like function as the one shown in Fig.
2.8(b), we obtain a peak just in each BPC episode (Fig. 2.8(c)).
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Figure 2.8: Example of the detection strategy. (a): Simulated RMS series with a BPC
occurring at the time instant 1750 s. (b): step like function h. (c): Resulting detection
output after convoluting the KLT or RMS series with the step like function.

In this study, we modified the step-like function to improve performance, lengthening
it up to 504 s, 216 s in the two flat intervals with a linear transition of 72 s (see Fig. 2.9).
Instead of using the KLT coefficient series of the QRS and ST-T complexes, we have

used the RMS of the QRS complex and the ST segment. The KLT coefficient series
and the RMS track morphological changes in a similar way, so the same strategy may
be applied. A fixed threshold is applied to the squared matched filter output to detect
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Figure 2.9: Step function used in the BPC detector.

onsets and offsets of each BPC. The energy of each detected episode have to overcome a
minimum fixed by another threshold. These thresholds are described in [41, 60].
Additionally, we perform a flatness test which consists of forcing a flat interval before

and after each corroborated BPC detection. Finally a logic combination of detected events
in both series, QRS and ST-T, is done resulting the final BPC detections.
In the next chapter we will further describe the current BPC detection technique and

a more suitable detection technique will be proposed.

2.2.5. Performance Evaluation

Detector performance is assessed in terms of sensitivity (SE) and positive predictiv-
ity value (+PV ). Sensitivity is defined as the percentage of actual positives which are
correctly identified or detected, and positive predictivity as the percentage of detected
episodes which correspond to actual positives:

SE =
TP

TP + FN
× 100

+PV =
TP

TP + FP
× 100 (2.5)

where TP represents the true positives, FN the false negatives and FP the false positives.
The performance of the detector is computed by two types of statistics: the gross (g)

and the average (av) statistics [61]. In the gross statistics each episode has the same
weight while in the average statistics the same weight is given to each record.

2.3. Results

Since the detector looks for changes in the ST-segment, ischemic and heart rate related
events are combined in the sense of logical OR fuction in the performance analysis. The
annotation protocol B from the LTSTDB is used by default since it follows the same
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criteria as the ESCDB annotations in which the performance figures reached in terms of
sensitivity / positive predictivity (SE/+PV ) were 85%/86% [38].
In order to choose the optimum β and η values, η has been evaluated from 4 to 18 and β

from 0.1 to 0.0001. Then, the minimum distance of
√
(100− (SE))2 + (100− (+PV ))2,

where SE and +PV represent the percentages of sensitivity and positive predictivity
respectively, has been chosen to set β and η (see Fig. 2.10). Receiving operating charac-
teristics (ROC) curves that characterize the performance SE versus +PV corresponding
to the transient episode detection and obtained for different values of β and η, are shown
in Fig. 2.11. Selected values for SE and +PV are also shown.
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An example of detection of transient events in a complete recording is shown in Fig.
2.12. The annotated SSE, HRE and IE are indicated together with the detections. Note
that at time instants 930 m and 1005 m, two BPCs are found, so baseline is updated.
First, we should note that just a straight forward adaptation of the original RMS-based

detector [38], tuned in the ESCDB with the parameter values, η = 18.1 and β = 0.0083,
reduces its performance figures in the LTSTDB in terms of SE/+PV to 70.5%/68.2%.
See Table 2.2, “Original RMS”.
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Figure 2.11: ROC curves (SE versus +PV representations) have been calculated varying
β and η values.

After including in the preprocessing step the search for the“basal interval” to define
a reference ST segment xST (n), and modifying the detector as described in the Methods
section, the performance has improved up to SE/+PV : 78.0%/71.7% (using η = 11.8
and β = 0.0017). This is shown in Table 2.2, “No BPC det.”.

In order to evaluate the need of including a BPC detection technique, we have used the
information of the annotated BPC events and with this ideal BPC detector, the positive
predictivity has improved about a 6%. See Table 2.2, “Ideal BPC det.”

With the BPC detector described in [41, 60] applied to both RMS series from the
QRS complex and the ST segment, and modified as explained in section §2.2.4 using the
pair of RMS series from the QRS complex and the ST segment, the performance has not
improved remarkably (See Table 2.2, “Current BPC det.”).

If we are restricted to detect ischemia episodes and we just consider the heart rate
(HR) related ones as false positives, the detector performance increases in SE (see Table
2.2 “No HR events”) but decreases in +PV . Then showing the detector as suitable for
ischemic events but claiming for appropriate discrimination rules to increase +PV .

The performance analysis of the detector without the BPC cancellation technique, for
the three different protocols, is shown in Table 2.3 with fixed parameters values η = 11.8
and β = 0.0017.



30 Chapter 2. Evaluation of a RMS-based ischemia detector
I R
M
S

I R
M
S

I R
M
S

I R
M
S

0

0

0

0
0

20

20

20

20

40

40

40

40

60

60

60

60

80 100 150 200 250 300 350

400 450 500 550 600 650 700

750 800 850 900 950 1000 1050

1100 1150 1200 1250 1300 1350 1400

BPC Annot
HRE Annot
IE Annot
TE Detect

Time [m]

Recording ’s20111’

Figure 2.12: Example of RMS series of a recording with the baseline in dashed line and
the threshold in dotted-dashed line. In the rows above the RMS series, BPC (1st row),
HR-related (2nd row) and ischemic (3rd row) episode annotations ar indicated. In the last
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2.4. Discussion

The RMS-based detector [62] showed a significant drop in performance on the LT-
STDB compared to the results on the ESCDB (SE/ + PV : 84.7%/86.1%). The main
reason is due to the fact that the LTSTDB is much more diverse in the sense that it
includes several recordings where only body position changes are present, and most of the
recordings combine different types of ST episodes: ischemic and non ischemic. LTSTDB
was developed to contain a wide variety of real-world data and therefore it contains a
much greater number of non-ischemic events compared to the ESCDB. Besides, several
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SE(g) +PV(g) SE(av) +PV(av)
Original RMS
Original RMS 70.5% 68.2% 70.1% 62.0%
Modified RMS with Basal Interval Search
No BPC det. 78.0% 71.7% 79.5% 66.4%
Ideal BPC det. 78.0% 77.8% 79.5% 72.3%
Current BPC det. 77.0% 73.5% 77.9% 67.8%
No HR events 80.5% 60.5% 81.4% 52.9%

Table 2.2: Performance of the original (η = 18.1, β = 0.0083) and modified (η = 11.8,
β = 0.0017) RMS-based detectors on the LTSTDB. In the modified RMS detector, first
performance is shown without BPC detection, then using an ideal BPC detector, with
the current BPC detector and finally we are restricted to detect only ischemic events and
not HR events.

SE( g) +PV( g) SE( av) +PV( av)
Protocol A 57.1% 81.1% 60.0% 77.2%
Protocol B 78.0% 71.7% 79.5% 66.4%
Protocol C 86.7% 62.1% 87.4% 56.5%

Table 2.3: Performance of the RMS-based detector on the LTSTDB without BPC detec-
tion in the three protocols.

combinations of leads are present as it happens in the clinical praxis. This fact affects neg-
atively the detector performance, since ischemia is reflected differently in different leads.
Therefore, not only this RMS-based detector has decreased its performance when applying
to the LTSTDB, but also the rest of detectors that have published their results in both
databases. The detector published in [47] lowers its performance from 87.1%/87.7% in
the ESCDB to 74.0%/61.4% when applying to the LTSTDB, as it is shown in [45]. Also,
the detector presented in [45] lowers its performance from 81.3%/89.2% to 78.9%/80.7%,
and the realtime detector presented on [56] and evaluated on the 48 freely distributed
recordings of the the ESCDB achieves 82.2%/79.48% and on the 43 freely distributed
recordings of the LTSTDB, lowers the performance to 85.28%/48.44%.
The modifications included and the basal interval search provide remarkably improve-

ments in the performance analysis (Table 2.2, “No BPC det.”), while the BPC detector
hardly improves the results (Table 2.2, “Current BPC det.”). Nevertheless, the improve-
ment reached is not the maximum which is shown in Table 2.2, “Ideal BPC det.”. This
evidence the difficulties in developing a robust BPC detector in ambulatory recordings.
When comparing our results (78.0%/71.7%), obtained over the LTSTDB, to the ones

obtained by other detectors, we find the work in [45], whose performance reaches 78.9%/80.7%
when detecting significant ST changes in the B protocol. This technique has been devel-
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oped under the LTSTDB, and combines three sources of information, ST level deviations
and morphological KLT series of the ST segment and QRS complex. Another detec-
tor which provides a real-time execution and combines signal processing methods (time-
domain analysis) to detect possible ischemic episodes with artificial intelligence techniques
[56], has been evaluated on the 43 freely distributed recordings of the LTSTDB, reaching
a performance of 85.28%/48.44%, which is lower than the one presented in this work and
[45].
If we try to just detect ischemic events avoiding heart rate related changes the sensi-

tivity increases up to 81% (see Table 2.2, “No HR events”). This result suggests the need
for searching different ECG indices which help us to distinguish between different types
of ST events.
When observing Table 2.3, the protocol C is the most restrictive, having then less

annotated ischemic and heart rate related events what makes the detector improve the
sensitivity. On the other hand, the protocol A is the less restrictive having many annotated
episodes and making the sensitivity drop and the specificity improve.
In brief, the previous RMS detector has been modified and has improved the perfor-

mance on the LTSTDB. The modified detector is more general in the sense that it accepts
recordings with different number of leads without setting new parameters, and it does not
assume non ischemic reference beats in the beginning of the recordings.
However, the RMS-based ischemia detector, tuned in the LTSTDB, has decreased

the performance obtained in the ESCDB and claims for much more robust false alarm
cancellation rules, accounting for the very different nature of ST episodes. This opens
new working lines which will be developed in the next chapters. Improving the strategy to
detect and cancel out body position changes will be developed in chapter 3, and the search
for new indices from the repolatization or depolarization phases, which better discriminate
between ischemic and non ischemic ST episodes will be developed in chapter 4.



Chapter 3

GLRT-based Detection of Body
Position Changes from the ECG

3.1. Introduction

As we introduced briefly in the previous chapter, electrocardiogram variations due
to body position changes (BPC) are problematic in ambulatory recordings. Rotation of
the heart in relation to surface electrocardiographic (ECG) electrodes when a patient
turns to one side has been reported to cause ST-segment shifts, triggering false ischemic
alarms with continuous ST-segment monitoring [63]. In this work, we implemented a BPC
detector with the aim to be used in ST monitoring to cancel out this type of false positives
in ischemia detection. BPC detectors can also be used in other clinical applications such
as polysomnographic studies where these events can also be misinterpreted as false apnea
detections.
Changes in body position alter the relative angle between ECG electrodes and the

mean axis of the heart, leading to changes on the ECG projections. Therefore, BPC
produce significant changes in the ECG signal, specially in the QRS and ST-T complexes
[64, 65]. Fig. 3.1 shows an example of the morphologic changes of the ECG during a
BPC from supine to right lateral position at the time instant: 60 s. In Fig. 3.1(a) it is
observed how just at the BPC, the signal to noise ratio of the ECG seems to decrease,
and the amplitude of the QRS increases after the BPC. Fig. 3.1(b) shows the ECG in
the two positions. The complexes QRS and STT are the ones which higher morphologic
changes.
First studies explored the use of the Karhunen-Loève transform (KLT) in the detection

of BPC. In [66, 47], the series of feature vectors in the KLT space for both ST segment
and QRS complex were extracted to detect transient ST segment episodes and cancel
out the false positives due to shifts of the electrical axis of the heart. The underlying
architecture of the axis-shift detection procedure is a band-pass differentiation of the ST
segment and the QRS complex distance functions, since during an axis shift, those series
change rapidly, and during transient ST episodes, they hardly change (in the case of the
QRS complex morphology), or do it slowly (in the case of the ST segment morphology).
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Figure 3.1: Example of a BPC from supine to right lateral position in the time instant 60
s. (a) shows the ECG and (b) shows a closer view of a beat in the two positions.

Later studies used the KLT feature vectors of the QRS and ST-T complexes. They
constructed a combined KL-based distance function that reflected morphologic changes
in ST-T and mostly in QRS complex. A BPC detector was developed to search for step-
like patterns in gaussian noise [41] This BPC detector using a Bayesian approach and
assuming gaussian noise was also applied to the series of the vectorcardiogram (VCG)
angle series [60].

Measurements of R-wave duration defined as the time between two inflection points
adjacent to every R-wave peak, were used to identify changes in body position [67].
Intervals from the left inflection point to the peak of the R wave and from the R-wave peak
to the right inflection point were used to classify the BPC into four different positions.

In this study, the KLT of QRS and ST-T complexes are used to develop a generalized
likelihood ratio test (GLRT) based BPC detector.

3.1.1. Karhunen-Loève Transform

The Karhunen-Loève transform (KLT) is the optimum orthogonal transform for signal
representation in terms of minimizing the energy of a data set [68]. The corresponding
KLT basis are a set of orthogonal directions, computed as the eigenvectors of the corre-
lation matrix of the data set, and each KLT coefficient series represent the projection of
the data onto each direction. This transformation statistically maximizes the energy of
the first KLT coefficient, and each next coefficient in turn contains the highest remaining
energy.
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It is optimal in the sense that most of the signal information, in terms of energy, is
concentrated in a few coefficients. For example, it was shown that using a universal data
set of 100000 beats, the first four coefficients were sufficient to represent 90% of the ST-T
segment energy [49].
KLT is similar to principal components analysis (PCA) [69]. However, KLT maximizes

the energy, deriving its basis from the correlation matrix, while PCA maximizes the
variance, deriving instead its basis from the covariance matrix [70].
Therefore, KLT, applied to different ECG complexes, such as QRS and ST-T com-

plexes, is a useful tool to estimate or track the morphologic changes present in a postural
change.

3.2. Methods

3.2.1. Reference Material

The evaluation of the GLRT-based BPC detector is performed regarding two aspects:
first, the ability of the system to detect BPCs, and second, the false alarm rate of BPCs
in ischemic episodes. The first aspect is assessed using a database with healthy subjects
doing BPCs and referred to as “BPC database”. The second aspect is evaluated over
the “STAFF3 database” with subjects undergoing a percutaneous coronary intervention
(PCI). In both databases the standard 12-lead ECG was recorded with a sampling rate
of 1 kHz and an amplitude resolution of 0.6 μV.

Healthy Subjects: BPC database

The performance of the BPC detector is studied on an ECG database consisting of
twenty subjects (11 males/9 females, 32±9 years old). The BPC database was recorded
following the next protocol: supine-to-right side, supine-to-left side and so on. The com-
plete sequence was repeated five times with a duration of 1 min per BPC in order to give
more reliable statistical results. The interval between the changes (1 min) was chosen in
order to allow muscular activity and other artifacts to decay before the next BPC was
initiated. Further description of this database can be found in [41].

Subjects undergoing PCI: STAFF III database

The second database contains severe induced ischemic events. The study group con-
sisted of 83 patients undergoing a percutaneous coronary intervention (PCI), commonly
known as coronary angioplasty or simply angioplasty. In this intervention, used to treat
the stenotic (narrowed) coronary arteries, a balloon is inflated, blocking the artery in one
of the major coronary arteries. The recordings were done at the Charleston Area Medical
Center in West Virginia, USA. The locations of the dilations were the left anterior de-
scending artery (LAD), right coronary artery (RCA) or the left circumflex artery (LCX).
A control ECG, recorded in the patient room or catheterization laboratory prior to the
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procedure, and the angioplasty ECG were considered for each patient. In this study, the
control and angioplasty recordings are denoted with (c) and (a), respectively. A more
extensive description of the STAFF III database is found in [71, 72]. It is assumed in this
study that no BPCs occurred during the recording of this data. Although no one kept
track of body position changes during PTCA, it is highly unlikely that any of the patients
moved during surgery.

3.2.2. GLRT-based Detector

In the continuous, a random variable X has a probability density p(X, θ) which
depends on a parametric model θ. The likelihood of a set of observed data X =
{x1, x2, ..., xN}, all assumed to be independent and selected from the same population
or model θ, is defined by:

L(θ;X) =
N∏

i=1

p(xi; θ) (3.1)

Therefore, the likelihood is the joint probability density function of the observed sam-
ple set given a parametric model. In other words, the likelihood represents the probability
density of the sample set to come from the model θ [73]. Note that likelihood depends on
the number of samples of the data set, N .

Detection Theory: Generalized Likelihood Ratio Test (GLRT)

The detector that maximizes the probability of detection for a given probability of
false alarm is the likelihood ratio test as specified by the Neyman-Pearson theorem [74].

The Neyman-Pearson theorem states that when performing a hypothesis test between
two point hypotheses H0 and H1 on a data set ϕ, then the likelihood ratio test (LRT)
which rejects H0 in favour of H1 [74]:

Λ(ϕ) =
p(ϕ;H1)
p(ϕ;H0)

> γ (3.2)

maximizes the probability of detection (H1) for a given probability of false alarm (PFA)
α from which the threshold γ is obtained:

PFA =
∑

ϕ:Λ(ϕ)>γ

p(ϕ;H0)dϕ = α (3.3)

Λ(ϕ) is termed the likelihood ratio since it indicates for each value of ϕ, the likelihood
of H1 versus the likelihood of H0.
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Formulation of the problem as a Hypothesis Testing Problem

Step-like changes in the distance function have been observed when postural changes
occur. This observation is translated to a detection problem where a step-like pattern is
searched for in the observation window, and then a sliding window approach will be used
in the whole recording.
The distance function ϕl[n] computed on lead l, is considered to determine whether a

BPC has occurred (hypothesis H1) or only noise is present (hypothesis H0). The onset of
the observation interval occurs at the sliding time instant n = n0. A BPC is characterized
by the scaled unitary step-like signature s[n] which is disturbed by an additive random
Laplacian signal (noise) wl[n] with central value ml, referred to the l

th lead. This ml can
be interpreted as the DC level of ϕl[n] within the observation window. This model is
summarized as follows:

H0 : ϕl[n] =wl[n] n = n0, n0 + 1, ..., n0 +D − 1

H1 : ϕl[n] =al ∙ s[n− n0] + wl[n] n = n0, n0 + 1, ..., n0 +D − 1 (3.4)

where l = [1, ..., L] represents the lead where ϕl[n] is computed, al is the scaling factor of
the unitary step-like function s[n] and D represents the length of the observation window.
ϕ = [ϕ1 ϕ2 ... ϕL]

T and w = [w1 w2 ... wL]
T are L×D matrices and a = [a1 a2 ... aL]T

is a L× 1 vector, all representing information related to each of the orthogonal leads.
In this study, we modeled s[n] as a step like change:

s[n] =

{
1 if n = 0, ..., D

2
− 1

−1 if n = D
2
, ..., D − 1

(3.5)

where the length of s[n] is an even valued integer D. A BPC is manifested in ϕl[n] by
either a lower to upper level, or an upper to lower one, with equal probability. Therefore,
the scaling factor of the transition, al, is positive for upper to lower level and negative for
lower to upper. The absolute value of al represents half of the shift due to the BPC as it
is shown in Fig. 3.2.
The additive noise wl is supposed to be Laplacian with mean ml and variance σ

2. All
variables are supposed to be mutually independent and uncorrelated to the observation
signal ϕl[n].
The Neyman-Pearson theorem is used to develop the BPC detector. The probabilistic

model for the observed data ϕ under the hypothesis H0 and H1 are:

p(ϕ;H1) =
L∏

l=1

n0+D−1∏

n=n0

1

(2σ2)
D
2

exp

[

−

√
2

σ2
|ϕl[n]−ml − als[n− n0]|

]

p(ϕ;H0) =
L∏

l=1

n0+D−1∏

n=n0

1

(2σ2)
D
2

exp

[

−

√
2

σ2
|ϕl[n]−ml|

]

(3.6)

respectively. Then, the maximum likelihood ratio test (LRT) which rejects H0 in
favour of H1 is:
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Figure 3.2: Representation of al ∙ s[n− n0].

Λ(ϕ) =
p(ϕ;H1)
p(ϕ;H0)

=
exp

[
−
√
2
σ2

∑L
l=1

∑n0+D−1
n=n0

|ϕl[n]−ml − als[n− n0]|
]

exp
[
−
√
2
σ2

∑L
l=1

∑n0+D−1
n=n0

|ϕl[n]−ml|
] > γ (3.7)

This optimum detector LRT cannot be implemented because the PDF under H0 and
H1 in (3.6) contain the unknown parameters ml and al. The generalized likelihood
ratio test (GLRT) deals with unknown parameters as deterministic constants. Specif-
ically, it consists of substituting unknown parameters with their maximum likelihood
estimators (MLE). Utilizing the joint probability density function p(∙) of ϕ conditioned
on the two hypotheses, the GLRT results in:

ΛG(ϕ) =
p(ϕ; âl,H1 , m̂l,H1 ,H1)
p(ϕ; m̂l,H0 ,H0)

H1
≷
H0
γ (3.8)

where âl,Hi and m̂l,Hi denote their MLE under the hypothesis Hi. The unknown m̂l,Hi is
regarded as nuisance parameter.
Then, analogous to 3.7, the GLRT rejects H0 if:

ΛG(ϕ) =
exp

[
−
√
2
σ2

∑L
l=1

∑n0+D−1
n=n0

|ϕl[n]− m̂l,H1 − âl,H1s[n− n0]|
]

exp
[
−
√
2
σ2

∑L
l=1

∑n0+D−1
n=n0

|ϕl[n]− m̂l,H0 |
] > γ (3.9)

Calculation of the maximum likelihood estimation of ml,H0

In order to search for the maximum likelihood estimator of ml,H0 under the null hy-
pothesis, the PDF of ϕl needs to be maximized over ml,H0 .

p(ϕl) =
1

(2σ2)
D
2

exp

[

−

√
2

σ2

n0+D−1∑

n=n0

|ϕl[n]−ml,H0 |

]

(3.10)
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Maximizing (3.10) corresponds to minimize the following cost function:

J(ml,H0) =

n0+D−1∑

n=n0

|ϕl[n]−ml,H0 | (3.11)

∂J

∂ml,H0
= −

n0+D−1∑

n=n0

sgn(ϕl[n]−ml,H0) (3.12)

where sgn(∙) is the sign function. Recalling that sgn(ϕl[n] −ml,H0) = 1 if ml,H0 < ϕl[n]
and sgn(ϕl[n]−ml,H0) = −1 if ml,H0 > ϕl[n], ∂J/∂ml,H0 = 0 can be reached when ml,H0 is
equal to the median of the data samples [ϕl(n0), ..., ϕl(n0+D− 1)]. Then, the maximum
likelihood estimator of ml,H0 is:

m̂l,H0 = med(ϕl[n0], ..., ϕl[n0 +D − 1]) (3.13)

Calculation of the maximum likelihood estimation of ml,H1 and al,H1

Analogously to ml,H0 , the MLE of ml,H1 and al,H1 under H1 are obtained by maximiz-
ing:

p(ϕl) =
1

(2σ2)
N
2

exp

[

−

√
2

σ2

n0+D−1∑

n=n0

|ϕl[n]−ml,H1 − al,H1 ∙ s[n− n0]|

]

(3.14)

or, by minimizing the cost function J(ml,H1 , al,H1):

J(ml,H1 , al,H1) =

n0+D−1∑

n=n0

|ϕl[n]−ml,H1 − al,H1 ∙ s[n− n0]| (3.15)

To do so, both ∂J
∂ml,H1

and ∂J
∂al,H1

should be set to zero:

For ml,H1

∂J

∂ml,H1
= −

n0+D−1∑

n=n0

sgn(ϕl[n]−ml,H1 − al,H1 ∙ s[n− n0]) (3.16)

and this is set to zero when:

m̂l,H1 = med(ϕl[n]− al,H1 ∙ s[n− n0]) for n = n0, ..., n0 +D − 1 (3.17)

The signal ϕl[n]− al,H1 ∙ s[n− n0] represents under H1 the laplacian random signal
wl[n], which is centered at ml (see PDF in Fig. 3.3(a)).

ϕl[n] can be interpreted under H1 as the first half of wl shifted +al and the second
half shifted −al. Then, we can see the PDF of ϕl[n] − al,H1 ∙ s[n − n0] as the PDF
of the signal ϕl[n] shifted +al,H1 and −al,H1 , as shown in Fig. 3.3. Therefore, the
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median value of ϕl[n] − al,H1 ∙ s[n − n0] could be replaced by the median value
of ϕl[n], which would not require any knowledge of al. This replacement suffers
from the fact that at ml estimated as in Fig. 3.3(b), the signal ϕl[n] has few data
which will cause a big uncertainty in the estimation of med(ϕl[n]− al,H1 ∙ s[n−n0]).
m̂l,H1 = med(ϕl[n]) will be used as an initial estimate, and then iterate (see below).

0

0

0.5

0.5

ml

ml

ml − al ml + al

al

(a) PDF of the signal ϕl[n]− al,H1 ∙ s[n− n0]

(b) PDF of the signal ϕl[n]

Figure 3.3: (a) PDF of ϕl[n]− al,H1 ∙ s[n− n0]. (b) PDF of the signal ϕl[n].

For al,H1

∂J

∂al,H1
=−

n0+D−1∑

n=n0

s[n− n0] ∙ sgn(ϕl[n]−ml,H1 − al,H1 ∙ s[n− n0]) =

=
using(3.5)

−
n0+D/2−1∑

n=n0

1 ∙ sgn(ϕl[n]−ml,H1 − al,H1)−

−
n0+D−1∑

n=n0+D/2

−1 ∙ sgn(ϕl[n]−ml,H1 + al,H1) (3.18)
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if we replace ϕ̃l[n− n0] = ϕl[n]−ml,H1 :

∂J

∂al,H1
= −

n0+D/2−1∑

n=n0

sgn(ϕ̃l[n]− al,H1)−
n0+D−1∑

n=n0+D/2

−sgn(ϕ̃l[n] + al,H1)

= −
n0+D/2−1∑

n=n0

sgn(ϕ̃l[n]− al,H1)−
n0+D−1∑

n=n0+D/2

sgn(−ϕ̃l[n]− al,H1)

= −
n0+D−1∑

n=n0

sgn(ϕ̃l[n] ∙ s[n− n0]− al,H1) (3.19)

Thus, the MLE of al,H1 is:

âl,H1 = med(ϕ̃l[n] ∙ s[n− n0])

= med((ϕl[n]−ml,H1) ∙ s[n− n0]) for n = n0, ..., n0 +D − 1 (3.20)

Note that both m̂l,H1 and âl,H1 have to be estimated together, being alternatively opti-
mized. A proper initial estimate for ml,H1 has been shown in Fig. 3.3 to be the median
of ϕl[n]. This is then included in equation 3.20 to estimate âl,H1 , which is including in
equation 3.17 and so on until convergence.

GLRT detector T(ϕl)

Once m̂l,H0 , m̂l,H1 and âl,H1 have been obtained, logarithms of both sides in the equa-
tion (3.9) are taken, resulting in:

lnΛG(ϕl) = −

√
2

σ2

n0+D−1∑

n=n0

(|ϕl[n]− m̂l,H1 − âl,H1s[n− n0]| − |ϕl[n]− m̂l,H0 |)

=

√
2

σ2

n0+D−1∑

n=n0

(|ϕl[n]− m̂l,H0 | − |ϕl[n]− m̂l,H1 − âl,H1s[n− n0]|) (3.21)

Thus,

T(ϕl) =

n0+D−1∑

n=n0

(|ϕl[n]− m̂l,H0 | − |ϕl[n]− m̂l,H1 − âl,H1s[n− n0]|)
H1
≷
H0

√
σ2

2
ln(γ) (3.22)

As σ is assumed to be constant,
√
σ2

2
lnγ is comprised in a new threshold γ′.

This GLRT detector T(ϕl) includes two main terms:

First term: |ϕl[n] − m̂l,H0 | = |ϕl[n] − med(ϕl[n])| represents the absolute value of
the observation window centered at zero.
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Second term: |ϕl[n] − m̂l,H1 − âl,H1s[n − n0]| represents the absolute value of the
Laplacian noise wl centered at zero.

Fig. 3.4 shows an example to understand how this GLRT detector works. In this
example there is a step-like change (a = 10) centered at a window length D = 200 with an
additive Laplacian noise with mean m = 5 and standard deviation σ = 1. The detection
output is the sum of |ϕl[n]-m̂l,H0|−|ϕl[n]−m̂l,H1− âl,H1s[n−n0]| for n = n0, ..., n0+D−1.
The detection output accounts for the estimation of the amplitude a minus the amplitude
of the Laplacian noise centered at zero.
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Figure 3.4: Example of the BPC detection output using as an input signal ϕ[n], a BPC
change with a = 10 with a Laplacian noise of mean m = 5 and standard deviation σ = 1.
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In case of having several leads, the GLRT output is the sum of the GLRT outputs of
each lead l, as it is shown in equation 3.9 and it is referred to as T(ϕ) in the following
equation:

T(ϕ) =
L∑

l=1

T(ϕl) (3.23)

In order to accomplish the detection of several BPCs, the detector T(ϕ) repeats the
GLRT in successive, overlapping intervals of length D, i.e a sliding window, until the
entire signal has been processed.

3.2.3. BPC detection

In this work we measured the induced changes during the a BPC reflected on the
KLT-derived indexes estimated for the QRS and the STT complexes. The first four order
coefficients for each interval (with the largest representation strength) were considered.
The beat-to-beat dynamic evolution of the signal can be characterized by the study of
the coefficients time series evolution. The KLT was applied to different segments of
the ECG (QRS and the entire STT complexes) including ventricular depolarization and
repolarization.
The BPC detector follows the scheme shown in Fig. 3.5.

ECG
Preprocessing

Noise Stage

SNR, baseline

KLT series
GLRT-based

detector

Decision

Stage

BPCs

Figure 3.5: Block diagram of the BPC GLRT based detector presented in this work.

Preprocessing

The preprocessing of the ECG recordings consists of the following stages:

Baseline wander attenuation using cubic splines [75].

Synthesis of vectocardiographic (VCG) leads obtained from the 12-lead ECG, by
making use of the inverse Dower matrix [18].

QRS fiducial point detection using the ARISTOTLE detector [58].

Rejection of beats with low signal to noise ratio (SNR), estimated as the peak-to-
peak QRS amplitude over the RMS value of the high-frequency noise (above 25 Hz),
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differs more than 20 dB from the running exponentially averaged SNR series. The
forgetting factor of the exponential averaging is set to 0.02.

Rejection of beats with differences in mean isoelectric level with respect to adjacent
beats larger than 400 μV .

QRS and ST-T complex segmentations are done by selecting fixed length windows
of 130 and 600 ms, respectively as have their KLT basis. The QRS complex time
window is centered on the QRS fiducial points for all beats of the recording. The
ST-T complex time window starts from a heart rate related sample reference defined
in 2.1. Short ST-T complexes are lengthened up to 600 ms by appending zeros.

KLT coefficient series

In this section, the KLT coefficient series of the QRS and the ST-T complexes are
derived.

We have used a set of KLT basis (for QRS and STT complexes) derived using more
than 200000 preprocessed and selected waveforms as it is described in [76, 49]. The first
four KL basis functions derived for the QRS and STT complexes are shown in Fig. 3.6.

The first four order coefficient series for each interval (with the largest representation
strength) were derived by projecting each segmented QRS/ST-T complex over the the
first four KLT QRS/ST-T basis. They are referred to as αlk, where l is the lead and k is
the KLT order.

Distance functions, fQRS and fSTT , are derived for each lead l. These functions are
basically the distance series between each KLT coefficient series (in which only the first
four components are considered) and a mean reference value (r) estimated using the first
20 samples of the series.

f l(ti) =

(
4∑

k=1

(
αlk(ti)− α

l
k(r)

)2
)1/2

, l ∈ {X,Y, Z} (3.24)

where αlk(ti) if the kth order coefficient at ti estimated from the lth lead beat.

Two examples, one with high signal to noise ratio (SNR) and the other with low SNR,
of the first order coefficient series of the QRS and ST-T complexes normalized by the
mean complex energy is shown in 3.7.

These f l(ti) distance functions are resampled to 1 Hz.

GLRT-based Detector Stage

In order to use the GLRT-based detector, the step-like signature s[n] should be defined,
setting also the sliding window, which correspond to the length of s[n], D. s[n] is defined
in Fig. 3.8 and then D is set to 44 samples which correspond to 44 s because all the
distance functions are resampled to 1 Hz.
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Figure 3.6: KLT basis functions for the QRS and ST-T complexes.

The GLRT-based detector T(.), is applied to each of the six distance functions f lQRS(ti)
and f lSTT(ti), where l=[X, Y, Z], normalized by the square root of the mean energy of the
complex in each lead, obtained from the first fifty beats of the recording. The obtained
detection outputs (see Fig. 3.9), T(f lQRS(ti)) and T(f

l
STT(ti)) are combined as described in

the following equation:

T(ti) =
3∑
l=1

(λQRS · T(f lQRS(ti)) + λSTT · T(f lSTT(ti)) (3.25)

where λQRS and λSTT represent the weights of the QRS and STT detection outputs.

Although the largest changes during BPCs are usually related to the QRS complex it
is also desirable to keep the information of possible changes on the ST-T complex; and
therefore, values of λQRS = 0.8 and λSTT = 0.2 were selected as weights as in [41].
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Figure 3.7: Two examples, one with high SNR and the other with low SNR, of the first
order coefficient series of the QRS and ST-T complexes in the lead X, normalized by the
mean complex energy.

Decision Stage

We apply a fixed threshold η set to 0.55, to the combined output Λ′(ti), and thus,
both the beginning and the end of a single BPC may be detected as two separate events.
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In case that between the beginning and the end, there are more than one peak, we choose
the first one in the interval which is the maximum within a window of 40 seconds.

Besides, a BPC is characterized by a sudden change, which produce a peak in the
GLRT-based detector applied to the KLT coefficient series and flat intervals before and
after the BPC, which produce flat intervals near to zero because the GLRT detector in
those intervals estimate a = 0 under H1, and then the output is zero. In order to force
those flat intervals, BPCs with widths that exceed 55 s and widths at one quarter of the
maximum height between 19 and 39 seconds are excluded.

Some rules are included in the decision algorithm such as a refractory period which dis-
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qualifies detections made within a small time interval following the most recent detection.
The time interval is chosen as typically 10 s.

Noise Stage

Performance in the BPC database results to be very good (see section §3.3.1), while
the proposed detector does not work well in the STAFF III database, due to the large
number of false positives. Therefore, an extra stage is considered after analysing the
results, to be added to the detection scheme (Fig. 3.5). The idea consists of making use
of the information contained in the noisy beats which are rejected from the study and the
SNR estimated in the preprocessing stage, due to the fact that all recordings of the BPC
database present a very low SNR just during each BPC as shows Fig. 3.10.
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Figure 3.10: Example of the SNRs calculated in the fXQRS.

As it was shown and used in [41, 60], a BPC episode implies a few noisy beats around
its position (a noisy beat is a low SNR beat or a beat with high baseline wandering as
defined in the preprocessing). Noisy beats information does not improve detection, but do
help in rejecting false BPC detections, and then decreasing the false alarm rate, defined
as the number of false BPCs per hour. The noisy stage includes two rules for each BPC
detection: four noisy beats should be present in the surrounding 20 beats interval and a
minimum average SNR value between 20 and 80 should be reached, to be considered as a
BPC event.
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3.3. Results

Characterization of the KLT noise

First, the zero median noise of the KLT coefficient series of the QRS and STT com-
plexes is characterized. Fig. 3.11 show an example representing a normalized histogram
of the random signal wl with the median subtracted, together with the Laplacian and
gaussian probability density functions that maximize the likelihoods.

For each recording of the BPC database, stationary segments of the KLT coefficient
series have been selected, and their mean subtracted. These segments are concatenated
resulting in the zero mean KLT noise for each segment and for the STT/QRS complexes.
The maximum log-likelihood of the KLT noise assuming a gaussian PDF versus the max-
imum log-likelihood assuming a laplacian PDF, has been plotted in Fig. 3.12, for each
recording, and for STT/QRS complexes. Fig. 3.12 shows that for all BPC recordings and
for both STT and QRS complexes, the noise of their distance functions is more likely to
come from a laplacian PDF than from gaussian PDF. Since each recording has different
number of samples in the KLT noise, the likelihood values cannot be compared among
recordings.
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3.3.1. GLRT-based performance

The performance of the proposed GLRT-based detector is assessed in terms of sensitiv-
ity (SE) and positive predictivity value (+PV ) with average statistics (av), that assigns
the same weight to each recording, for the BPC database. For the STAFF-III database,
where it is assumed that there are not any BPC, performance is assessed in terms of the
false alarm rate defined as the number of false BPCs per hour. Performance of the GLRT-
based detector assuming laplacian noise is compared to the performance of LRT detector
assuming gaussian noise [41, 60]. In these works, the median absolute deviation (MAD)
[77] was used for outlier rejection. Results of these three strategies (laplacian, gaussian
and gaussian with MAD), with and without the noise rejection stage, are presented in
Table 3.1.

The GLRT detector with the constraints related to the width of the detector out-
put, described in section §3.2.3, presents a satisfactory performance in the BPC database
(SE/+PV : 94.2%/97.3%). However, when the detector is applied to the STAFF III
database where no BPCs are supposed, it lowers its previous performance (about RFA(a)=14
false alarms per hour). Some angioplasty recordings contain sudden step changes in the
KLT cefficient series as the example shown in Fig. 3.13. This recordings need the noise
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BPC database STAFF III database
SE(av) +PV(av) RFA(c) RFA(a)

Without Noise Stage
Laplacian 94.2% 97.3% 13.2 ± 16.0 14.1 ± 9.2
Gaussian 83.4% 95.2% 14.2± 14.1 11.9 ± 11.1
Gaussian (with MAD) 88.9% 96.7% 13.9± 14.3 12.1 ± 10.0
With Noise Stage
Laplacian 92.6% 99.3% 2.5 ± 7.2 1.7 ± 4.0
Gaussian 82.1% 99.7% 1.9 ± 5.8 1.4 ± 4.0
Gaussian (with MAD) 85.3% 99.4% 2.2 ± 5.7 0.9 ± 2.8

Table 3.1: Performance statistics for the BPC detectors on the BPC and STAFF III
databases. The false alarm rates RFA(a), and RFA(c) are expressed in terms of mean and
standard deviation.

stage in order to remove the false BPC detections.
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Figure 3.13: Example of false BPC detections in an angioplasty recording of STAFF III
database.

Performance assuming a gaussian noise and using the detector published in [41, 60]
with suitable width constraints, is lower as expected due to the PDF of the noise.
As expected, when including the noise stage after the detection algorithm, SE de-

creases to 92.6% and +PV increase in the BPC database to 99.3%. In the case of the
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STAFF III database, the number of false BPCs decrease considerable to RFA(c)=2.5 and
RFA(a)=1.7 episodes per hour.
Using the gaussian LRT detector with the noise stage, performance on the BPC

database is much lower (85.3%/99.4%), but performance on the STAFF III database
is a little bit better than with the GLRT detector.

3.4. Discussion

The aim of this study is to develop a BPC detector to eventually be used to cancel false
ischemic detections due to BPC in Holter or ambulatory monitoring . We have used the
KLT coefficient series to propose a model consisting of a hypothesis test. First, the PDF
of the ’noise’ wl[n] has been characterized under the hypothesis H0. The resulting KLT
noise in all recordings of the BPC database has been proven to have a higher likelihood to
come from a laplacian distribution than from a gaussian one, as shows Fig. 3.11 and Fig.
3.12. Therefore, when using the GLRT- based detector for laplacian noise, performance
should improve with respect to the LRT-based detector for gaussian distribution with the
MAD filter presented in [41, 60], and it does.
In the case of angioplasty recordings, where there is a complete cessation of blood flow

through a coronary artery, sudden changes in the ECG are produced, and those result in
step like changes in the KLT of the QRS and STT complexes. However, those events are
not likely to come from a BPC.
The false alarm rate significantly decreased when the noise stage was included in the

detection (from 14 to 2 detections per hour). However, although the false alarm rate in the
control recordings (same subjects who underwent the percutaneous coronary intervention)
is higher than during the PCI recordings. This could be explained because during the
control recording, subjects were awaken and some postural changes could have taken
place.
In the angioplasty recordings, the occlusion is complete and very fast, while most of the

ischemic events have a softer transient signature in the KLT coefficient series of the QRS
and STT complexes. Then, the false alarm rate would be lower in ambulatory recordings
or in ST monitoring, which are the targets, where ischemic events are less severe.
However, this detector when applied to the Holter recordings of the LTSTDB gets

similar results to the gaussian one presented in Table 2.2. This may be due to the lower
SNR of the ECG, baseline wandering or abrupt changes related to heart rate variations.



Chapter 4

Discrimination Between Ischemic
and Artifactual ST Segment Events
in Holter Recordings

4.1. Introduction

In chapter 1 and 2, we introduced how most of the techniques that automate ischemia
detection, rely on ST changes [38, 45]. However, in addition to ischemic ST episodes
(IE), there are other ST events such as heart rate related episodes (HRE), body position
changes (BPCE) or conduction changes (CCE) which also result in ST segment modi-
fications being considered artefactual events when ischemia is the target. Then, reliable
ST detectors should distinguish between ischemic and non-ischemic ST changes, although
this task remains being a challenge [46].
Ischemia could originate as supply or demand ischemia. “Supply ischemia” results

from a partial occlusion of a coronary artery, reducing the amount of oxygenated blood
to the myocardium, and “demand ischemia” refers to a condition where an increased
oxygen demand caused by exercise, tachycardia or emotion, leads to a transitory imbalance
[23, 24]. In the database we are using, the Long Term ST Database (LTST DB) [39],
ischemia is not classified as demand or supply. An ST event is annotated as IE when it is
associated with a patient with a clinical history showing evidences of cardiac pathology.
On the other hand, if there is an episode associated with an increase or alteration of heart
rate in the ECG and other clinical investigations do not suggest ischemia, these episodes
are annotated as HRE. Typically, the ST level is measured at the point J+80ms, or at
the point J+60ms if the heart rate exceeds 120 bpm [39]. This adaptation of the ST level
measurement point to heart rate is still a crude adaptation so it may produce ST segment
episodes with a similar signature to ischemic episodes generated by the T wave incursion
into the point where the ST level is measured. These ST events, that are not associated
to ischemia mechanisms, are denoted as HRE.
The dynamics of the different ST events is different in each case. HRE as well as IE

are considered transient ST segment episodes (TE) and characterized by a length and an
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extremum deviation. In contrast, BPCE and CCE, characterized with a sudden shift in
the ST level function, are denoted as sudden step events (SSE) and are characterized by
the time instance they occur.
The novelty of the present work lies in the use of several indices based on repolarization

and depolarization intervals to distinguish in Holter recordings between different events
scenarios called tasks:

Task 1 - Distinguishing between the three independent and different origin types of ST
events: the target IE, the artefactual HRE and the also artefactual SSE.

Task 2 - Distinguishing between the different ST level signatures: transient (TE) and
sudden step ST change (SSE).

Task 3 - Distinguishing between IE andHRE, both with a very similar ST level pattern,
so being the more problematic to differentiate by automatic ischemia detectors.

Task 4 - Distinguishing between IE and non ischemic events (NIE) in order to isolate
the ischemic problem.

The availability of the annotated LTST DB has provided the possibility of quantifying
the results of classifiers such as those presented in this work, always under the framework
in which the annotations were developed.
Previous studies have covered some of the proposals outlined in this article. Task 3,

distinguishing between IE andHRE, has not been the subject of much analysis due to the
fact that no other database provides annotations of HRE. There are two studies which
also use the LTST DB. In the work in [78], the selected features for classification were
changes of heart rate, changes of time domain morphologic parameters of the ST segment
and changes of the Legendre orthonormal polynomial coefficients of the ST segment, all
obtained at 20-second intervals at the beginning and at the extrema of each ST episode,
and achieving a sensitivity when classifying ischemia and heart rate related episodes of
77.9 % and a specificity of 73.9%. In a posterior work of Faganeli [79], they obtained
the best performance when combining the heart-rate features, the Mahalanobis distance
and the Legendre orthonormal polynomial coefficient features. They reached an average
sensitivity of 98.1% and average specificity of 85.2%.
Similarly to Task 4, the 2003 Physionet/Computers in Cardiology Challenge [80] con-

sisted of classifying ST changes as ischemic (IE) or non-ischemic (HRE, BPCE or CCE)
using a set of 43 freely available annotated records of the LTST DB as a training set and
the remaining 43 as a test set. Note that not all annotated ST change events from the
database were used, but only the selected subset. The top scoring entry of this challenge
[81] achieved a performance in terms of sensitivity/positive predictivity of 98%/83% con-
sidering only the change in ST level relative to the baseline ST level, provided by the
database and manually corrected by experts, and based on level thresholding within spec-
ified time windows.
To separate detection from classification problems, we assume the episodes are cor-

rectly detected so we take the manual annotations (onset, extremum and offset) provided
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with the database as the detection output and just focus on the classification problem.
Automatic detection rules in addition to the ones presented in chapter 2 and [62], can be
found in works by Garćıa [38] and Smrdel [45].

4.1.1. Multivariate discriminant analysis

Discriminant analysis is a statistical technique, widely used to study the differences
between two or more groups with respect to several variables simultaneously [82]. The
method generates a discriminant function (or a set of uncorrelated discriminant functions
to classify more than two groups), based on linear combinations of the variables, which
allows the best inter group classification. These functions are generated from a training
set and can be applied to the test set.

Differences between groups

Analysis of variance (ANOVA) provides a statistical test of whether or not the means
of several groups (classes) are all equal, and therefore generalizes t-test to more than
two groups [83]. In order to consider valid the results provided by ANOVA, the studied
variables should be normally distributed and with the same variances in the groups. In
case, this is not true, results from ANOVA should by taken into account with caution.
Multivariate analysis of variance (MANOVA) is a generalization form of ANOVA. It

is used in cases where there are two or more dependent variables. As well as identifying
whether changes in the independent variable(s) have significant effects on the dependent
variables, MANOVA is also used to identify interactions among the dependent variables
and among the independent variables.

Linear and Quadratic discriminant analysis

Linear discriminant analysis (LDA) is an statistical method to find a linear combina-
tion of features which better characterize or separate two or more classes (groups) [83].
The resulting combination is used as a linear classifier.
LDA approaches the problem by assuming that the probability density functions

(PDF) of the feature vectors in each class are gaussian distributed with different means
and a common covariance matrix (i.e., homoscedastic distributions). The Gaussian pa-
rameters for each class can be estimated from training set with, for example, the maximum
likelihood (ML) estimation. Under these assumptions, LDA minimizes the Bayes error in
each 1-dimensional subspace determined by each feature vector, and is called the Bayes
optimal classifier.
The quadratic classifier is a more general version of the linear classifier. Quadratic dis-

criminant analysis (QDA) assumes that the features which define the classes, are normally
distributed. Unlike LDA however, in QDA there is no assumption that the covariance of
each of the classes is identical.
Fisher’s linear discriminant (FDA) maximizes the variance between the classes and

minimizes the variance within the classes by maximizing the ratio of both variances [84],



56 Chapter 4. Discrimination between ischemic and artifactual ST events

and does not make any assumption. When the assumptions of LDA are satisfied, the
maximum separation between classes obtained by FDA is equivalent to LDA.

Feature or variable selection

Feature extraction involves simplifying the number of variables included in the model,
selecting the most significant ones and removing the ones with redundant information.
Besides, a large number of variables with respect to the size of the data set can lead to a
biased estimation of the discriminant functions that reduces the capability of the classifier
to generalize and discriminate in a new data set. A rule of thumb says that the number of
variables used should be lower than the square root of the number of cases of the smallest
group of the data set.
The most common approach to the variable selection is the forward-backward stepwise

approach, in which in each step a new variable is added (forward), or a previously included
variable is removed (backward), obtaining the variables with the highest discriminant
power according a specific selection criteria. In this study, the selection criteria is based
on the Wilks’ lambda and the F-statistic test.
Wilks’ lambda is a test statistic used in multivariate analysis of variance (MANOVA),

which calculates the ratio of within-groups sums of squares to the total sums of squares.
This represents the proportion of the total variance in the discriminant scores not ex-
plained by differences among groups. A lambda of 1.00 occurs when observed group
means are equal (all the variance is explained by factors other than difference between
those means), while a small lambda occurs when within-groups variability is small com-
pared to the total variability. A small lambda indicates that group means appear to
differ.
The test statistic in a F-test is the ratio of the between-group mean square value to the

within-group mean square value as defined in [85]. F-statistics is statistically significant
when F is greater than 3.68 for inclusion.
In each step, the variable with the less value of the Wilks’ lambda which fulfill the

criteria of a statistically significant F-statistics (F>3.68 for inclusion), is included in the
model. In each step, the model is evaluated, the variable with the less F-statistics value is
identified and rejected if this is less than 2.71 (F <2.71 for rejection). When none of the
variable fulfill the inclusion or the rejection criteria, then the variable selection process is
finished.

4.2. Materials and Methods

4.2.1. The Data: Long-Term ST Database

In this study, the Long-Term ST Database (LTSTDB) [39], described in 2.2.1 is used to
derive the ECG indices proposed. Expert annotations include IE and other ST-segment
events such as HRE, BPCE and CCE, providing an extensive tool to evaluate classifiers
aimed at distinguishing among ST episodes of different origin.
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Hereinafter we will denote the “ischemia group” as IG, the “heart rate related group”
as HRG and the “sudden step group”, comprising BPCE and CCE, as SSG. TG will
stand for the transient group composed of IG and HRG, and NIG will stand for the
non-ischemic group that comprises HRE, BPCE and CCE. A comprehensive scheme is
shown in Table 4.1.

ST events
︷ ︸︸ ︷

Ischemic group (IG)
}
Transient group

(TG)
Non-Ischemic
group (NIG)






Heart rate related group (HRG)

Axis Shifts
}
Sudden step group

(SSG)Conduction changes

Table 4.1: Summary of ST events grouping and their acronyms.

The classification evaluation of this work has been done for the three different sets
relative to the annotation protocols. The number of episodes of each type used for the
classification analysis in protocols A, B and C is shown in Table 4.2. The number of
analysed events is slightly lower than in the original database [39] (in square brackets in
Table 4.2) due to the fact that some episodes at the beginning of the record have not
got any onset annotations since their onsets start before the beginning of the records and
were excluded from the analysis.

Protocol A Protocol B Protocol C
IG [1795] 1788 (1163 ) [1130] 1126 (623 ) [857] 855 (505 )
HRG [516] 513 (358 ) [234] 232 (112 ) [116] 115 (54 )
SSG 2388 2388 2388
Total 4689 (1521 ) 3746 (735 ) 3358 (559 )

Table 4.2: Number of IE, HRE and SSE used in discrimination for each annotation
protocol. These numbers are a bit lower than in the original database (see text) that
are displayed in square brackets. The numbers in parentheses refer to episodes that
additionally allow reliable T wave delineation when these parameters are to be used.

When classifying IG and HRG, we have added T wave related variables which have
caused us to additionally remove manually those episodes with unreliable annotations in
the T wave delineation process, resulting in the number of episodes for protocols A, B
and C as presented in parentheses in Table 4.2.
Any significant sudden step-change of the ST level function accompanied by a simul-

taneous sudden step-change in QRS complex morphology was annotated as significant
BPCE or significant CCE, according to its nature (see Fig. 4.1).
Annotations are attached to the lead or leads where the episode is significant, so all

the study has been done considering the lead to which the annotated episodes are linked.
An example of ST traces in the four different cases can be found in Fig. 4.1.
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Figure 4.1: Example of the ST segment deviation caused by the four different annotated
episodes: (a) ischemic, (b) heart rate related, (c) axis shifts and (d) conduction change
events. The circles indicate the annotated onset, extremum and offset in transient episodes
and the occurrence time in the sudden step changes. Time “0” is referred to the extremum
in TE, or occurrence time in SSE.

4.2.2. ECG Preprocessing and Beat Identification

Before deriving index series from the ECG, typical preprocessing techniques are applied
on the raw ECG signal, xl(n), where l is the corresponding lead and n is the sample
index. This preprocessing stage consists of first applying a QRS detector [58] in order to
find QRS fiducial points of each ith beat (θi) and selecting only normal beats classified
according to [58], then baseline wander attenuation using cubic splines is performed [75]
and finally those beats with differences in mean isoelectric level with respect to adjacent
beats larger than 400 μV are rejected. There are different factors such as motion artifacts
that distort the ECG signal so an extra beat rejection rule is applied for those whose
signal-to-noise ratio (SNR), estimated as the peak-to-peak QRS amplitude over the RMS
value of the high-frequency noise (above 25 Hz), differs more than 20 dB from the running
exponentially averaged SNR series. The forgetting factor of the exponential averaging is
set to 0.02 as in [62].
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4.2.3. T wave delineation

An ECG delineation system based on the wavelet transform (WT) has been used
for T wave location and delineation. This delineator has been previously described and
evaluated in standard databases [86].

The WT provides a description of the signal in the time-scale domain, allowing the
representation of the temporal features of a signal at different resolutions; therefore it is a
very suitable tool to analyze the different patterns which have different frequency content
(QRS complex, P and T wave) occurring in the ECG. The multiscale approach allows to
attenuate noise at rough scales, and then to refine the precision of the positions with the
help of finer scales.
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Figure 4.2: Example of T wave onset and end delineation.

The process for multiscale T wave detection and delineation consists of first defining a
T wave search region window for each beat, relative to the QRS position and function of
the recursively computed RR interval. Within this window, at least two local maxima in
the 4th scale, exceeding a threshold, need to be found in order to asses the presence of a
T wave. The zero crossing between them are considered as T wave peaks. Depending on
the number and the polarity of the found maxima there are six different possible T waves:
positive (+), negative (-), biphasic (+/- or -/+), only upwards and only downwards . If
the T wave is not found in the 4th scale the process is repeated over the 5th scale. The
onset (offset) of the T wave is identified by finding the crossing point of the WT signal
with a threshold defined by a fraction Kon (Koff ) of the first (last) significant maximum
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(WTmax) of the WT modulus (see figure 4.2). If a local minimum is found before the
threshold is crossed, the local minimum is considered as the onset (offset).

4.2.4. Indices for the discriminant analysis

In this work, different ECG features (I) and their transient variations (ΔI), mea-
sured from repolarization, depolarization and heart rate indices have been used in the
discriminant analysis.

In order to distinguish between both transient episodes, IG and HRG, these features
have been computed over three different intervals (I1, I2 and I3) of 20 s duration each
(the duration was selected empirically), located as described in Fig. 4.3a. I1 is defined as
20 s interval ending at the sample where the episode begins, I2 as 20 s interval starting at
the sample of the episode onset and I3 as 20 s interval centered at the extremum episode
sample. The changes of the mean feature value in interval Ik with respect to Ij (ΔIjk)
have been computed and proposed as indices for the classification analysis (see eq. 4.1).

ΔIjk =

∑

i∈Ik

I(i)

NIk
−

∑

i∈Ij

I(i)

NIj
j, k = 1, 2, 3 and j 6= k (4.1)

where i is an integer denoting the ith beat order in interval I and NIk and NIj are the
number of beats contained in interval Ik and Ij respectively.

Alternatively, when discriminating between the three types of events including IG,
HRG and SSG, only two intervals are considered since SSG is characterized by a unique
mark. For SSG two intervals of 20 s each is defined; I1, just before the event and I2,
just after, which is going to be paired to the I3 interval of the TG group (IG plus HRG)
when the two ST signatures are to be discriminated (see Fig. 4.3b).

All the indices are computed over the ECG after the preprocessing stage. Some of
them are shown in Fig. 1.5.

Repolarization indices

As has been previously described, the ST level is a common marker of ischemia and
has therefore been included in the classification analysis. The underlying mechanism
responsible of the shift in the ST level is the injury current produced between normal
and ischemic myocardial zones [16]. The ST level series is estimated at each ith

beat and lead by averaging 8 ms (to make the measurement more stable) of the
preprocessed ECG signal starting from a heart rate related sample reference (niST0)
[59] and defined in equation 2.1.

Changes in the deviation of the ST level are denoted as ΔIST12 , ΔIST13 and ΔIST23 .
The absolute values of these changes in the ST level series are also considered for
the classification analysis and denoted as |ΔIST12 |, |ΔIST13 | and |ΔIST23 |.
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Figure 4.3: a) For discriminating between transient events, the three different intervals
I1, I2 and I3 used to compute ΔI12, ΔI13 and ΔI23 are shown. b) For sudden step events,
only two intervals I1 and I2, are defined.

The root mean square (RMS) of the difference of the ST segment with respect to
the ST of a reference beat (IRMS) is analysed. The hypothesis here is that differences
in the area under the ST segment is a more robust measurement than the ST level
itself, since it includes information about changes in energy of this segment [38].

In order to avoid the influence of high frequency noise in the calculation of the RMS
difference series, the preprocessed ECG signal is further low-pass filtered using a
linear phase FIR filter with a cutoff frequency of 25 Hz at the ST segment.

The ST segmentation and the reference beats in each lead are performed as in section
§2.2.3. Finally a first RMS difference series, yl(θi) is calculated using the following
equation:

yl(θi) =

√√
√
√ 1
N

N−1∑

n=0

(
xiST,l(n)− xST,l(n)

)2
(4.2)

where l is the corresponding lead.

As an outlier rejection, a median filter of 5 beats length is subsequently used on the
yl(θi) series. This series is evenly resampled to 1 Hz and an exponential running
average (with a forgetting factor set to 0.05) is applied to smooth the series resulting
in a RMS- series suitable for analysis and denoted hereinafter by IRMS.
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The Karhunen-Loéve transform (KLT signature) of the ST-T and QRS complexes
are also analysed. Body position changes are often manifested as shifts in the elec-
trical axis and may be misclassified as ischemic changes during ambulatory moni-
toring. These shifts in the electrical axis and therefore in the ECG, are manifested
as abrupt changes on the QRS and STT complexes, property which can be used to
discriminate ischemia from other events.

Previous studies have used the Karhunen-Loéve transform (KLT) to detect non-
ischemic episodes such as body position changes or conduction changes [41]. During
these non-ischemic events the QRS signatures also change rapidly (generally over a
period of half a minute) generating step function features in KLT coefficient series
which are useful for discriminating “from just” episodes restricted to repolarization
changes. Besides, the KLT of the QRS and ST segment has already been used
in differentiating between true ischemic ST segment changes and non-ischemic ST
deviations caused by axis shifts [66]. The distance functions used for each complex
(QRS and ST-T) at time (θi) are simply the distance series between each normalized
KLT coefficients vector (in which only the first four components are considered) and
a mean reference value (α̃lj):

IeKL,l(θi) =

√√
√
√

4∑

j=1

(
αlj(θi)− α̃

l
j

)2
(4.3)

with αlj(θi) being the j-th order KLT coefficient at beat i estimated for the l-th lead.
The αlj(θi) coefficient series is estimated using adaptive filtering to remove noise
uncorrelated to the signal, thus improving the KLT estimation [49]. A compromise
between noise reduction and convergence time is reached using a step-size parameter
for the LMS algorithm of μ = 0.10, that yields a SNR improvement in the series
of 10 dB, with a convergence time of one beat [49]. An extra reduction of noise
was achieved by applying a median filtering and a smoothing to the KLT trends
resulting in the KLT series denoted as: IeKLQRS and I

e
KLST-T

. As an alternative, we
used the first order Mahalanobis distance functions in order to calculate the KLT
series as follows:

ImKL,l(θi) =

√√
√
√

4∑

j=1

(
αlj(θi)

σ(αlj(θi))

)

(4.4)

where σ(αlj(θi)) is the standard deviation of the KLT coefficient series over the beat
series.

We applied the same post processing procedure as previously explained and obtained
the KLT coefficient feature vectors denoted as ImKLQRS and I

m
KLST-T

.

The width of the T wave was measured as a potential feature related to repolar-
ization dispersion and eventually related also to ischemia [87], in each lead of the
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ECG. Delineation was done using a wavelet-based ECG delineator [86]. Changes of
the T wave width across the three intervals are denoted as ΔITw .

Alternatively, changes in the interval from the peak (Tapex) to the end (Tend) of the
T wave (Tpe) are measured in each lead. Tpe has been proposed as a marker related
to transmural dispersion [88] and also as a more robust measurement than T width
since it avoids uncertainties in the detection of T onset when ST elevation occurs.
These changes measured in each ST episode are denoted as ΔITpe .

The amplitude of the T wave has been taken into account as T wave morphology
has been shown as a useful marker of acute transmural ischemic change. It is also
a measure of the repolarization dispersion generated by ischemia [89]. Changes in
the T wave amplitude (ΔITA), measured referring to the voltage level at the Tend
fiducial point, have been computed using the delineation marks defined previously.

QT interval provides information of repolarization dispersion and also is strongly
and inversely related to heart rate. The adaptation of the QT interval to the HR has
led us to include these changes of QT as a variable for the discrimination between
events. Differences in the QT interval have also been measured (ΔIQT).

The correlation between the heart rate series (IHR) and the IRMS of the ST level
calculated previously within an interval (Iρ) of 60 s centered at the onset of the
annotated ST episode has also been evaluated as a potential discriminator of HRG
episodes and referred to as ρ. This has been calculated after resampling the series
to an even sampling frequency of 1 Hz in the following way:

ρ =
∑

k∈Iρ

(IRMS(k)− μRMS)(IHR(k)− μHR)
NσRMSσHR

(4.5)

where μRMS and μHR are the mean, and σRMS and σHR are the standard deviation of
the IRMS and IHR series respectively in Iρ, and N the number of samples at the Iρ
interval.

Depolarization indices

Alterations in the late steepest slope of the QRS complex has been proposed as an in-
dex to quantify ECG changes in supply ischemia [29]. The conduction velocity reduction
generated by ischemia has a strong effect on the downward stroke of the QRS complex,
which reduces its amplitude and its slope considerably. Therefore changes in the steepest
slopes of the QRS complex referred to as the early (Se) and late (Sl) slopes are considered
in the classification analysis. Se and Sl can be sequenced either upward/downward or
downward/upward depending on the QRS morphology. The QRS slope series are com-
puted from the processing during the QRS delineation [86], using the second scale-wavelet
transform maximum (minimum) that corresponds to the maximum (minimum) derivative
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Figure 4.4: In the upper figure, the QRS complex of the raw ECG signal and, in the lower
figure, its second scale wavelet transform are shown. The maximum and minimum of the
wavelet transform correspond to the two steepest slopes. Note that zero crossing of the
wavelet transform corresponds with the peak of the QRS complex.

of the QRS complex (see Fig. 4.4). At the latter stage, the slope series is recomputed by
normalizing the QRS amplitude to give the unit mean value at the I1 interval, so the unit
dimension of the slope will be Hz instead of μV/s . Changes in the absolute values of
these series (early and late QRS slopes) across the three intervals are taken into account
and denoted as ΔISe and ΔISl.

Heart rate indices

Changes in the heart rate corresponding to the three intervals are also measured
(ΔIHR). The absolute value of these changes are also analysed and referred to as |ΔIHR|.
The mean heart rate values at intervals I1 and I3 were computed and denoted as IHR1 and
IHR3 respectively.

Signal to noise ratio (SNR) index

With the aim of accounting for the higher noise in SSG or HRG in comparison with
IG, the SNR index (ISNR) has been considered as introduced in section 4.2.2.
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4.2.5. Performance Evaluation: Statistical Analysis

First monovariate ANOVA discriminant analysis is performed for each variable so
as to establish the individual significance for classification performance. Multivariate
discriminant analysis has been used to pick out the ECG indices that best classify different
types of episodes. The stepwise approach is then applied, using the Wilk’s Lambda
minimization as the criteria for inclusion and removal of variables (F =3.84 for inclusion
and F=2.71 for rejection)[82]. The classification results are calculated using the cross-
validated estimation (leave-one-out). A rule of thumb says that the number of variables
used should be lower than the square root of the number of cases of the smallest group
of the data set.
Five variables were calculated to asses the classification performance: sensitivity (SE),

specificity (SP), positive predictivity value (+PV), negative predictivity value (-PV) and
exactness (EX). SE, +PV, SP and -PV when clustering between two groups, are defined
as follows:

SE =
TP

TP + FN
+ PV =

TP/N1

TP/N1 + FP/N2

SP =
TN

TN + FP
− PV =

TN/N2

TN/N2 + FN/N1

while EX, also called accuracy, is defined as:

EX =
TP + TN

N1 +N2

where TP represents the true positives, FN the false negatives, FP the false positives,
TN the true negatives and N1 and N2 are the number of elements belonging to the group
“1” and “2” respectively. The normalization factors (N1 and N2) when estimating the
+PV are due to the imbalance of the number of elements in each group involved in the
discriminant analysis (see table 4.2).
When clustering among more than two groups (three groups in this study), SE and

SP have no meaning. Then, performance is assessed by the confusion matrix and the EX,
now defined as:

EX =
TP1 + TP2 + TP3
N1 +N2 +N3

where TP1, TP2 and TP3 are the true positives of each of the three groups and N1, N2
and N3 correspond to the number of elements in each group.

4.3. Results

4.3.1. Classification between IG, HRG and SSG

For the ANOVA classification, variables related to the T wave delineation such as
ΔIQT, ΔITA , ΔITw and ΔITpe , have not been included because body position changes
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Variables IG HRG SSG p-value
ΔIRMSST [μV] 38.7 ± 33.7 24.9 ± 21.3 −0.2± 20.1 0
ΔIST [μV] −65.0 ± 181.5 −58.8± 107.9 −0.4± 73.9 5.1 E − 53
|ΔIST| [μV] 152.3 ± 119.0 106.9± 60.2 47.7± 56.4 9.8 E − 247
ΔIHR [bpm] 7.2 ± 15.5 18.9± 18.2 1.8± 8.6 2.4 E − 107
|ΔIHR| [bpm] 12.1 ±12.0 22.1 ± 14.1 6.5 ± 5.9 1.4 E − 164
I
HR3
[bpm] 90.5 ± 24.1 110.2 ±21.3 82.6 ± 17.5 1.4 E − 95

I
HR1
[bpm] 83.3 ± 17.9 91.3 ±15.6 80.8 ± 18.0 8.1 E − 18

|ΔIeKLST-T | 0.5± 0.6 0.3 ±0.3 0.1± 0.1 9.7 E − 227
|ΔImKLST-T | 1.4 ± 1.4 1.0± 0.9 0.2± 0.2 3.7 E − 281
|ΔIeKLQRS | 0.1 ± 0.2 0.1 ± 0.1 0.1 ± 0.1 2.7 E − 15
|ΔImKLQRS | 0.5 ± 0.5 0.6 ± 0.6 0.3 ± 0.2 5.9 E − 85
ΔISNR −7.0 ±69.3 −36.3 ± 79.7 −15.0 ± 31.6 8.2 E − 16
Iρ 0.2 ± 0.5 0.4 ± 0.5 −0.08 ± 0.5 7.9 E − 69
ΔISe [Hz] 0.11 ± 6.8 0.71 ± 5.11 −0.2 ± 7.1 0.09
ΔISl [Hz] 1.29 ± 8.0 1.9± 6.3 −8E − 5 ± 7.5 2.0 E − 7

Table 4.3: Summary of the means and standard deviations (mean ± std) of different
indices variations used in classification analysis at the annotated ischemic (IG), heart
rate related (HRG) and sudden step ST change- (SSG) groups applying protocol B,
between intervals I1 and I3 (in SSG, I3 is replaced by I2). The p-value of each feature is
also shown.

linked to high noisy beats make T wave delineation problematic. In Table 4.3, means and
standard deviations of each index for each type of episode are shown for protocol B.

Multivariate linear discriminant analysis results for classifying the three groups (IG,
HRG and SSG) are presented in terms of the confusion matrix in Table 4.4 for the
three protocols A, B and C. The selected set of features V ordered by significance of the
classification for each annotation protocol is also included below the confusion matrix.

The group dispersion diagram obtained with the two discriminant functions, F1(V)
and F2(V), for protocols A, B and C, are shown in Fig. 4.5.
For protocol B, when using the quadratic discriminant analysis, the accuracy is 82.4%,

and the probabilities to classify correctly the IG, HRG and the SSG are 55.7%, 76.3% and
95.6%, respectively. Results are similar to the ones obtained with the linear discriminant
analysis.

4.3.2. Classification between different ST level patterns: TG and
SSG

As regards distinguishing between different ST signatures, the TG and the SSG,
results are shown in Table 4.5 in terms of SE, SP and EX. The most significant variables
selected by the classification analysis for each protocol are also shown.
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PREDICTION
Type Prot A (EX=72.0%) Prot B (EX=82.3%) Prot C (EX=85.4%)

IG HRG SSG IG HRG SSG IG HRG SSG

PERCENTAGE IG 50.8 25.6 23.6 59.7 21.3 19.0 62.8 18.5 18.7
OF EVENTS HRG 12.3 67.4 20.3 15.9 66.4 17.7 14.8 64.3 20.9

(%) SSG 4.2 7.1 88.7 2.0 3.5 94.6 3.5 1.9 94.6

{ΔIRMSST , IHR3 , {ΔIRMSST , |ΔIHR|, {ΔIRMSST , |ΔI
e
KLST-T

|,
Included Set |ΔIeKLST-T |, |ΔIHR|, |ΔIeKLST-T |, Iρ, |ΔIHR|, |ΔImKLQRS |,

of Variables Iρ, |ΔImKLST-T |, |ΔImKLST-T |, IHR3 , IHR3 , ΔISNR,
V ΔISNR, ΔIST, ΔISNR, ΔIST, Iρ and ΔIST}

|ΔImKLQRS |, |ΔI
e
KLQRS

|, ISe and ISl}

|IST| and |ΔIRMSST |}

Table 4.4: Summary of the linear classification performance in terms of the confusion
matrix for the annotation protocols A, B and C. The selected sets of variables for the
prediction, V , are displayed beneath the confusion matrix.

Prot A (EX=82.7%) Prot B (EX=90.5%) Prot C (EX=93.0%)

Events SE(%) SP(%) SE(%) SP(%) SE(%) SP(%)

TG vs SSG 71.6 93.3 76.8 98.3 78.3 99.0

Included Set {ΔIRMSST , |ΔI
e
KLST-T

|, {ΔIRMSST , |ΔI
e
KLST-T

|, {ΔIRMSST , |ΔI
e
KLST-T

|,

of Variables |ΔIHR|, Iρ, |ΔIHR|, Iρ, |ΔIHR|, Iρ,
V |ΔImKLST-T |, IHR3 , |ΔImKLST-T |, IHR3 , |ΔImKLST-T |, IHR3 ,

ΔISNR, ΔISl and ΔISe} ΔISNR, ΔISl and ΔISe} ΔISNR, ΔISl and ΔISe}

Table 4.5: Summary of the linear classification performance in terms of sensitivity (SE),
specificity (SP) and exactness (EX) between transient events TG (ischemic plus heart
rate related episodes) and sudden ST shifts (SSG) for the annotation protocols A, B and
C. The variables included for the classification for each protocol are also shown.

In order to represent the linear discriminant punctuation classifying the TG and SSG
for the three protocols, box plots have been used (see Fig. 4.6). Each box plot represents
the 25-75th percentile and the line within the box denotes the mean.
Using the same variables, the quadratic discriminant analysis has been used to classify

the events. Results are slightly better than the ones reported for the LDA. For protocol
B, the accuracy has improved up to 92.1%, being the sensitivity to detect transient events
84.3% and the specificity 96.5%.

4.3.3. Discrimination between the ischemic group (IG) and the
heart rate related group (HRG)

For classifying IG and HRG events, we have first used all the variables except the T
wave related indices, reaching an accuracy of 77.2% for protocol B. The selected set of
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Figure 4.5: Group dispersion diagrams for the discriminant functions F1(V) and F2(V),
obtained using the set of features, V , giving the best performance for protocols A, B and
C. The standard deviation and the mean value of each group distribution are also shown.

variables for protocol B used in the linear classification analysis is: V ={IHR3 , |ΔI
e
KLST-T

|,
ΔIST, |ΔIHR|, ΔIRMS, Iρ, |ΔImKLQRS |, |ΔI

e
KLQRS

| and ΔISNR}.
In order to improve the discrimination performance, we have added the T wave related

variables and included changes between the three different intervals I1, I2 and I3.
The mean and the standard deviation of several variables evaluated in the discriminant

analysis for the two different groups (IG and HRG) are presented in Table 4.6. The
performance analysis and the p-value of the discrimination between the groups have also
been evaluated for each variable individually.
Table 4.7 shows the classification performance for protocol B, in terms of SE, SP, +PV

and -PV, obtained when adding new T wave related variables in the stepwise approach and
also a summary of the performance and the selected set of variables for protocols A and C.
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Variables IG HRG p-value
ΔIRMSST13 [μV] 37.4± 24.8 22.8± 16.2 4 E − 09
ΔIST13 [μV] −69.87± 148.2 −26.54± 107.6 0.003
|ΔIST13 | [μV] 140.28± 84.53 98.8± 49.5 6 E − 07
|ΔIHR12 | [bpm] 3.8± 4 8.4± 7.1 2 E − 21
|ΔIHR13 | [bpm] 10.07± 9.4 19.16± 11.14 6 E − 19
IHR3 [bpm] 85.6± 19.9 103.6± 20.7 2 E − 17
ΔIQT13 [ms] −5.2± 28.2 −30.6± 34 1.2 E − 16
ΔIQT23 [ms] −3.8± 24.9 2.5± 30 8 E − 16
ΔITw13 [ms] −18.1± 27.1 −32.9± 40.3 1 E − 06
ΔITpe13 [ms] −5.8± 14.2 −12.9± 22.2 1 E − 05
|ΔIeKLQRS12 | 0.03± 0.03 0.02± 0.02 0.008

|ΔIeKLST-T13 | 0.03± 0.03 0.02± 0.02 6 E − 08
|ΔImKLST-T12 | 0.04± 0.3 −0.06± 0.3 0.046

ΔISl23 [Hz] 0.35± 5.87 1.75± 5.19 0.02
ΔISe23 [Hz] −0.41± 5.06 0.87± 4.12 0.01
Iρ −0.16± 0.5 0.36± 0.5 1 E − 04
ΔISNR13 −4.2± 70.4 −39.7± 84.4 2.3 E − 06
ΔITA13 [μV] −37.2± 271.2 −116.8± 201.9 0.003

Table 4.6: Summary of the mean and the standard deviation (mean ± std) of different
indices variations used for the classification analysis of the annotated ischemic (IG) and
heart rate related episodes (HRG). The p-value of those indices is also shown.
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Set of Variables V (ordered by relevance) SE SP +PV -PV EX

P |ΔIHR12 | 78.7 54.5 63.4 71.9 75.0

R {|ΔIHR12 |, ΔIQT23} 80.5 67.0 70.9 77.4 78.4

O {|ΔIHR12 |, ΔIQT23 , |ΔIST13 |} 81.0 68.8 72.2 78.3 79.1

T {|ΔIHR12 |, ΔIQT23 , |ΔIST13 |, ΔIST13 } 80.3 79.5 79.6 80.2 80.2

O {|ΔIHR12 |, ΔIQT23 , |ΔIST13 |, ΔIST13 , IHR3} 83.5 76.8 78.2 82.3 82.5

C {|ΔIHR12 |, ΔIQT23 , |ΔIST13 |, ΔIST13 , IHR3 , |ΔI
e
KLST-T13

|} 82.7 82.1 82.2 82.6 82.6

O {|ΔIHR12 |, ΔIQT23 , |ΔIST13 |, ΔIST13 , IHR3 , |ΔI
e
KLST-T13

|,

|ΔIHR13 |} 83.8 81.3 81.7 83.4 83.4
L
{|ΔIHR12 |, ΔIQT23 , |ΔIST13 |, ΔIST13 , IHR3 , |ΔI

e
KLST-T13

|,

|ΔIHR13 |, |ΔI
e
KLQRS12

| } 84.0 85.7 85.5 84.3 84.3

B {|ΔIHR12 |, ΔIQT23 , |ΔIST13 |, ΔIST13 , IHR3 , |ΔI
e
KLST-T13

|,

|ΔIHR13 |, |ΔI
e
KLQRS12

|, ΔImKLQRS23
} 84.5 86.6 86.3 84.8 84.8

A
{IHR3 , ΔIST13 , |ΔI

e
KLST-T13

|, |ΔIHR13 |, ΔIRMSST23 ,

ΔITpe12 , |ΔI
e
KLQRS12

|, |ΔImKLQRS13
|, ΔISNR12 ,

|ΔIHR12 |, |ΔI
e
KLST-T12

|, |ΔImKLST-T12
|} 76.0 76.5 76.4 76.1 76.1

C
{|ΔIHR12 |, ΔIHR13 , ΔIST13 , ΔIRMSST23 , ΔISl23 , IHR3 ,
ΔISNR12} 86.5 81.5 82.4 85.8 86.0

Table 4.7: The improvement in linear classification performance between IG and HRG
episodes in terms of SE, SP, +PV, -PV and EX, in each step of the method for protocol
B, is shown. A summary of the performance together with the selected set of variables
for protocols A and C is also shown.
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Figure 4.6: Linear discriminant punctuation for classifying between the transient group
(TG) and the sudden step group (SSG) for the three protocols.

The discriminant punctuation between IG and HRG calculated analogously to the
the discrimination between TG and SSG is shown in Fig. 4.7.

4.3.4. Classification between IG and NIG

The performance analysis when distinguishing between IG and NIG (HRE, BPCE
and CCE) reaches an exactness of 87.5% for protocol B. A summary of the classification
performance is shown in Table 4.8.

Applying QDA to the same sets of variables, results are similar to LDA. For protocol
B, the sensitivity in the classification between ischemic and non ischemic events is 71.9%,
the specificity 93.6% and the accuracy 87.1%.

Classification of episodes on each recording (patient) has been calculated using leave
one out over recordings. The percentages of patients whose sensitivity, specificity and
exactness are within the ranges: less than 50%, from 50% to 60%, from 60% to 70% and
so on until more than 90% are shown in figure 4.8.
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Figure 4.7: Discriminant punctuation for classifying between the ischemic (IG) and the
heart rate related (HRG) group for the three protocols.

Prot A (EX=79.0%) Prot B (EX=87.5%) Prot C (EX=91.0%)

Events SE(%) SP(%) SE(%) SP(%) SE(%) SP(%)

IG vs NIG 65.0 87.7 74.2 93.2 77.7 95.6

Included Set {ΔIRMSST , |ΔI
e
KLST-T

|, {ΔIRMSST , |ΔI
e
KLST-T

|, {ΔIRMSST , |ΔI
e
KLST-T

|,

of Variables ΔISNR, Iρ, |ΔImKLST-T |, ΔISNR, |ΔImKLST-T |, ΔISNR,
V ΔIST, |ΔImKLST-T |, Iρ, ΔISl, Iρ, ΔISl

ΔISe and ΔISl} ΔISe and |ΔIHR|} ΔISe and |ΔIHR|}

Table 4.8: Summary of the classification performance in terms of sensitivity (SE) and
specificity (SP) between the ischemic group IG and the non ischemic group NIG for the
annotation protocols A, B and C. The set of variables, V , included for each protocol are
also shown.

4.4. Discussion

4.4.1. Classification between IG, HRG and SSG

In the first part of this work we have approached the task of classifying the three
different types of ST events, IE, HRE and SSE, obtaining an accuracy of 82.3% and
using a set of 11 indices for protocol B (see Table 4.4). The ordered index set proposed
as significant by the step wise approach is shown for each protocol. Note that the two
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Figure 4.8: Percentages of recordings whose sensitivity, specificity or exactness when
detecting ischemia, are within different ranges.

most significant indices are ΔIRMSST followed by |ΔIHR|. The first shows a first attempt
to classify the two different patterns of the ST level, the transient TG and the sudden
step group SSG, while the second shows greater differences within the TG, between IE
and HRE.

If we analyze each index individually (see Table 4.3), ΔIRMSST associated to changes
in energy of the ST segment, is higher in the IG (38.7 μV ) than in the HRG (24.9
μV ) and hardly changes in the SSG (-0.2 μV ). These results agree with indices ΔIST
and |ΔIST|, which show greater values in the TG (more in the IG than in the HRG)
than in the SSG group, where the ST level change is abrupt and with low amplitude.
However, ΔIST does not appear among the first selected classification variables (see Table
4.4) because ΔIRMSST contains similar information and it is a more robust measurement
to noise present in the ECG.

Heart rate related indices show higher increments during HRE (|ΔIHR| w 22.1 bpm)
in comparison with IE (w 12.1 bpm) and SSE (w 6.5 bpm). The heart rate value at the
extremum is also higher in mean during HRE (w 110.2 bpm) than during IE (w 90.5
bpm) and much more than in SSE (w 82.6 bpm).
The KL- based indices, associated to changes in the QRS and ST-T complexes and

mostly used to detect body position changes in the ECG [41], show higher differences
between the TG and the SSG than within the TG (IG and HRG).

The early and the late QRS slopes show differences between the transient (ΔISl w 1.56
Hz) and the sudden step group (ΔISl w 0.06 Hz ).
Index Iρ, associated to the correlation between the heart rate and the RMS of the ST

segment is higher in mean in HRG events (w 0.4) than in IG events (w 0.2), showing
that an increase of heart rate in IE could be secondary to the oxygen demand-supply
imbalance while in HRE, the ST segment change is directly the result of T wave incursion



74 Chapter 4. Discrimination between ischemic and artifactual ST events

into the ST segment because of the high heart rate. SSG events hardly show correlation
in mean (w −0.08).
In terms of protocols, protocol C, with the least number of transient events and the

most restrictive, achieves the highest accuracy when classifying, followed by protocols B
and A, the least restrictive. This is in accordance with the fact that protocol C retains
only the very evident episodes.

4.4.2. Classification between different ST level patterns: TG and
SSG

The very different origins and patterns of the ST level in the TG and the SSG result
in the accuracy of distinguishing between these two groups increasing up to 90.5% for
protocol B (see Table 4.5). The sensitivity when classifying the TG is 77% and 98% for
the SSG.
Most variables included in the classification analysis rely on changes in the ST segment,

ΔIRMSST , associated to changes in the area defined by the ST segment, being the most
significant index, followed by |ΔIeKLST-T |. This agrees with the fact that they have different
ST level patterns.
KL-based indices of the ST-T and QRS are suggested in the literature as markers

for the detection of body position changes [41] that are associated to sudden step ST
changes, agreeing with our results that propose |ΔIeKLST-T | as a significant parameter in
the discrimination. This index accounts for the complete repolarization feature, adding
which could be missed by just looking at the ST segment exclusively.
ST level is also a crucial parameter for classification. Calculation of the deviation of

the ST in mean for TG (w 130μV ) is higher than in the SSG (w 48μV ).
Information about heart rate is also included in the discriminant function. |ΔIHR|

shows greater changes in mean of heart rate during TG (w 12 bpm) in comparison to
SSG (w 2 bpm).

4.4.3. Discrimination between the ischemic group (IG) and the
heart rate related group (HRG)

A first attempt in distinguishing between IE and HRE without using T wave related
indices achieved an accuracy of 77.2% for protocol B. However, the accuracy increases up
to 84.8% when we add those indices related to the repolarization dispersion as described
in section 4.2.4 (see Table 4.7).
Note that the variables with lower p-values are those related to heart rate and QT

interval and thus the first ones included in the step wise approach are |ΔIHR12 | and ΔIQT23
(see Table 4.6).
HRE are mostly associated to more remarkable changes in heart rate than IE and

in order to group these episodes the first variable included in the classification analysis
is |ΔIHR12 | (w 3.8 bpm in mean for IG and w 8.4 bpm for HRG). However, heart rate
acceleration is also a key factor to induce ischemia in patients with coronary occlusion
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and therefore other indices in addition to the heart rate change related to changes in
the ST segment are needed to avoid overlapping with the HRG. Regarding the IG,
in [90] it is claimed that much larger number of the records of the LTST DB contain
demand ischemic episodes, related to heart rate. However, episodes in the database are
not clinically classified as demand or supply episodes. Besides, care should be taken in
the sense that not all episodes in HRG are associated with an increase in heart rate. In
about 10% of the episodes, heart rate is oscillating or even decreasing.
QT interval changes are typically adapted to changes in the RR interval, therefore the

QT interval is hardly shortened in IE (w 4 ms) while in HRE it is reduced by about 28
ms.
Alterations in the late steepest slope has been proposed as an index to quantify ECG

changes in supply ischemia, with the result that QRS slopes were considerably less steep
during prolonged (w 4 minutes) artery occlusion [29]. However, in short term (w 1
minute) angioplasty episodes, discrepant slope variations were found [91]. Our results
show no systematic changes and agrees mostly with [91].
A greater shortening in the T width, in mean, is observed in HRE (w -32 ms) while in

IE it is lower (w -18 ms). A similar behaviour is observed in ΔITpe where the shortening
is greater in HRE. Both indices are closely related to heart rate with the difference that
Tw interval adapts slower to heart rate changes than Tpe interval [92].
In general, transmural or epicardial ischemia is reflected in ST elevation while sub-

endocardial ischemia shows ST depression [16]. Our results (Table 4.6) show depression
in the ST level function during IE (v −70μV in mean) and agrees with [16] due to the
fact that most of ischemic events in Holter recordings are sub-endocardial. The absolute
deviation of the ST level is higher in IE (v 144μV in mean) than in HRE (v 93μV ) as
expected.
The amplitude of the T wave is reduced during both types of episodes, being lower

during HRE in comparison to IE. The depression of the T wave agrees with [93], which
states that epicardial ischemia increases the peak T amplitude while endocardial ischemia
produces a size-dependent reduction in T amplitude. As we commented above most of
the IE in Holter recordings are subendocardial.
Finally, note that in [78] it is also presented a discrimination between IG and HRG,

reaching a sensitivity of 77.9% and a specificity of 73.9%. Without including T wave
related variables, we obtained similar results. In this work, we added T wave related
indices and achieved an increase up to 84.5% in sensitivity and up 86.6% in the specificity.

4.4.4. Classification between IG and NIG

When the classification target is ischemia, we observe that the two first variables that
best distinguish between IG and NIG are those related to the ST segment: ΔIRMSST
and |IeKLST-T |. Note that these indices are also the most significant when distinguishing
between different ST segment patterns (TG and SSG). The reason is that the IG has a
much higher change in the RMS of the ST segment and also in the ST-T complex than
HRG and SSG (see Table 4.3).
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In relation with the Physionet/Computers in Cardiology Challenge, our results are
comparable with [81] (EX=90.7% in [81] and EX=87.5% with our method), being the
ST level change a very substantial parameter for distinguishing between IG and NIG.
However, [81] uses indices such as changes in the ST level manually corrected by experts
while our method is fully automated.
Performance on recordings rather than on episodes, is shown in figure 4.8. This figure

shows the percentages of recordings which sensitivity, specificity or accuracy are below
50%, between 50% an 60% and so on. An important implication of Fig. 4.8 is that more
than 70% of the recordings have the specificity above 90% and more than 60% of the
patients have well classified more than 70% of the ischemic episodes. About 80% of the
patients have an exactness of more than 70%.

4.4.5. General Remarks

An important limitation of this study is that although the expert annotations are
used as gold standard, classification of a particular episode can be driven by a previous
knowledge about the patient rather than physiological evidences. Also, the usage of
different lead configurations in this database adds difficulties when classifying.
In addition to use the magnitude of the feature change to account for the dynamic

effects of ST episodes, we have also considered to use the percentage change. However,
this strategy was not as significant as the one related to the magnitude of the change
when inserted in the discriminant analysis
Due to the fact that some indices have leptokurtic distributions, a logarithmic trans-

formation has also been tested. However, it has been discarded as no improvement was
reached. This is in concordance with some studies that show that linear discriminant
analysis is relatively robust even when there are modest violations of the assumptions of
homogeneity of variances and normal distributions of indices [82].
In linear discriminant analysis, the covariance matrix of each of the classes is assumed

to be identical. Quadratic discriminant analysis is a more general classifier where a
different covariance matrix is estimated for each class. The usage of quadratic discriminant
analysis has not improved the performance (about ± 0.5% in exactness). Besides, the
obtained performance in test set is similar to the one obtained in the training set. These
results suggest that no improvement could be reached in linear classification and non linear
statistical techniques such as artificial neural networks and support vector machines could
be explored as alternative classifiers. Non-linear indices to differentiate normal states from
ischemic ones such as shifts in the Shannon’s entropy could also be studied [94].



Chapter 5

Repolarization changes induced by
Autonomic Nervous system testing.
The ANS-UZ Database

5.1. Introduction

As we studied in the previous chapter, many repolarization features change during
ischemia. However, other factors than ischemia also generate changes in the repolariza-
tion such as modifications of the autonomic nervous system. The autonomic nervous
system is an important modulator of ventricular repolarization and arrhythmia vulner-
ability. Cardiac repolarization is known to play an important role in arrhythmogenesis,
and autonomic activity is known to alter repolarization. In order to study those repolar-
ization changes and their potential use, we have used two tests: Valsalva maneuver (VM)
and tilt test trial.

In subsection §5.2, repolarization intervals are studied during VM in a database of
diabetic patients. In particular, the T wave width evolution is studied to assess whether
the VM is accompanied with early signs of ischemia and if those are measurable by T
wave shortening. The hypothesis for this T wave shortening is that endocardial action
potentials could reduce their duration as a consequence of an initial demand ischemia
generated by the VM while epicardial action potentials duration remains unchanged so
reducing the overall T width.

Based on the experience gained from this study in diabetic patients, we have acquired a
database consisting of volunteers without any previous cardiovascular disease undergoing
a tilt test trial, and three different Valsalva maneuvers. A complete description of the
database, referred to as ANS-UZ DB, is done in section §5.3. Repolarization changes
during those tests are also reported.



78 Chapter 5. Repolarization changes induced by ANS tests. ANS-UZ DB

5.2. Repolarization changes during Valsalva maneu-

ver in diabetic patients

The Valsalva maneuver is used as a test to evaluate the performance of the autonomic
nervous system (ANS), which provides automatic, involuntary regulation of several body
functions including the cardiac muscle activation. This regulation is controlled by the
activation of the sympathetic and the parasympathetic autonomous branches [95].

The maneuver is performed by having the subject conduct a maximal, forced expira-
tion against a pressure of 40 mmHg, and holding this for about 15 seconds. Before, during
and after this maneuver, the expiratory pressure and the electrocardiogram (ECG) are
monitored and registered. The Valsalva maneuver leads to hemodynamic changes in heart
rate (HR), blood pressure and cerebral blood flow and may be divided into four phases.
See figure 5.1.
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Figure 5.1: Response of the arterial pressure and the heart rate during the Valsalva
maneuver describing the four phases.

When the strain starts, contraction of the thoracic cage compresses the lungs and
causes a large rise in intrathoracic pressure (the pressure measured in the space between
the lungs and thoracic wall). This rise in intrathoracic pressure compresses the vessels
within the chest. Aortic compression results in a transient rise in aortic pressure (Phase
I), which causes a reflex bradycardia due to baroreceptor activation. Because the thoracic
vena cava also becomes compressed, venous return to the heart is compromised, resulting
in a large fall in cardiac output. This leads to a secondary fall in aortic pressure (Phase II),
and as aortic pressure falls, the baroreceptor reflex increases HR. After several seconds,
arterial pressure (both mean and pulse pressure) is reduced, and HR is elevated. When
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the subject starts breathing again, the sudden loss of compression on the aorta can cause
a small, transient dip in arterial pressure and further reflex increase in HR (Phase III).
When compression of the vena cava is removed, venous return suddenly increases causing
a rapid rise in cardiac output several seconds later which leads to a transient increase
in arterial pressure (Phase IV). Arterial pressure overshoots during Phase IV because
the systemic vascular resistance is increased due to sympathetic activation that occurred
during Phase II. HR reflexively decreases during Phase IV in response to the transient
elevation in arterial pressure [96].
This maneuver generates a diminution in the blood flow that could lead to an initiation

of myocardial ischemia. In the first phase, the ischemia is subendocardial since suben-
docardium is the first affected region by the myocardial blood flow. The transmembrane
action potential duration of ischemic cells gets shorter in the first minutes of a coronary
occlusion at the endocardium, then reducing the dispersion in duration between endo and
epicardium, and so generating a narrowing of the T wave [16, 30, 31].
Ischemia modifies action potentials in amplitude and duration what may alter ven-

tricular repolarization dispersion (VRD). VRD is related to the variance among recovery
times throughout ventricular myocardium as a result of differences in both activation
times and action potential duration and morphology. An increased VRD implies a modi-
fication of the T wave morphology. New experimental studies seem to point out T wave
duration as a good quantifier of VRD [97].
In this work, we study the evolution of the T wave duration during the different

phases of Valsalva maneuver, in order to evaluate the extent of flow reduction and their
manifestation on the T wave width as a marker of early ischemia at the endocardium
cells. The T wave duration is measured by an automatic delineator of the T onset and T
end and their values at different time instants of the maneuver are compared.

5.2.1. Methods

Population

The database consists of single-lead ECG and expiratory pressure records before, dur-
ing and after the VM in 27 diabetic patients: 12 women (2 with diabetes type I and 10
with diabetes type II) and 15 are men (4 with diabetes type I and 11 with type II). The
age of the patients range from 28 to 76 with a mean of 48 years and the duration of the
diabetes range from 1 to 45 years with a mean of 13 years [98].
Diabetes may alter the autonomic nervous system and it has been demonstrated that

autonomic conditions directly affect the ventricular myocardium causing differences in
QT interval that are independent of the HR [99].

Repolarization series

An ECG delineation system based on the wavelet transform (WT) has been used for
QRS and T wave location and delineation [86] and it has been previously described in
chapter 4. T width series (Tw), T wave peak to end (Tpe), and QT intervals have been
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computed. The root mean square series (RMS) of the the ST level has been derived with
the same technique we used in [62] and chapter 2.

Then, we have distinguished five different stages where the median of each repolar-
ization series is calculated: 5 seconds before the start of the VM (bef), during the 5
seconds immediately after the beginning of the VM (VM1), from 5 s to 10 s within the
VM (VM2), between the 10

th second and the end of the VM (VM3) and finally during 5
seconds immediately after the end of the VM (aft).

Student’s t test

Student’s t test is one of the most commonly used techniques for statistically testing a
hypothesis on the basis of a difference between sample means; that is, the t test determines
a probability that two populations are the same with respect to the variable tested. It
is analogous to one-way Analysis of Variance (ANOVA), and therefore, Student’s t test
considers the same two hypothesis: (1) gaussian distribution of the groups and (2) equal
variances in both groups. However, it is generally believed that the t test is conservative
for a sample from a long-tailed symmetric distribution [100]. Also, if variances of both
groups are clearly different, then there are modifications of the t test that overcome this
problem [101].

In this study we use the paired t test, consisting of a sample of matched pairs since
subjects are tested prior, during and after the VM.

5.2.2. Results

We have compared the median value of each repolarization series in the interval before
the VM interval with the ones during and after the VM. To do so, the paired Student’s t
test is used in order to assess whether the means of Tw in each two periods are statistically
different from each other. Results in terms of p-value and 95% confidence interval (C.I.)
are shown in Table 5.1

Delineation of the T wave onset using the WT method, in contrast with the rest of
significant points, had not been validated before, due to the absence of databases with
manual T wave onset annotations. Therefore we studied the behavior of the delineator
by varying the threshold Kon trying to find the Kon value at which the shortening of the
T wave is better observed.

We tested evenly distributed Kon values from 1.5 to 7, performed the delineation
process and calculated the differences in T width between before VM (bef) and during
either VM1, VM2 or VM3. The p-values obtained from the Student’s t test are shown
in figure 5.2. A minimum in the p-value is not reached because determination of T wave
onset is bounded by the local minimum protection rule, which does not move further the
onset even if the Kon is extremely reduced. Figure 5.2 seems to point out 4 to 4.5 as
optimal values for the Kon fraction. In our results we have used Kon = 4, as proposed in
[86].
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p-value C.I.
HRVM1 −HRbef [bpm] 0.08 [-7.3, 0.5]
HRVM2 −HRbef 0.002 [2.4, 9.6]
HRVM3 −HRbef 4 ∙ 10−8 [10.6, 18.3]
HRaft −HRbef 2 ∙ 10−12 [15.0, 21.0]
Tw,VM1 − Tw,bef [ms] 2 ∙ 10−5 [-26.6, -11.7]
Tw,VM2 − Tw,bef 9 ∙ 10−6 [-36.6, -16.7]
Tw,VM3 − Tw,bef 5 ∙ 10−6 [-35.7, -16.8]
Tw,aft − Tw,bef 0.12 [-14.7, 1.8]
Tpe,V M1 − Tpe,bef [ms] 0.47 [-2.5, 5.3]
Tpe,V M2 − Tpe,bef 0.78 [-6.0, 4.6]
Tpe,V M3 − Tpe,bef 0.05 [-7.8, -0.1]
Tpe,aft − Tpe,bef 0.17 [-9.3, 1.7]
STVM1 − STbef [μV ] 0.76 [-1.0, 1.4]
STVM2 − STbef 0.94 [-1.9, 1.8]
STVM3 − STbef 0.61 [-2.1, 3.5]
STaft − STbef 0.9 [-2.0, 2.2]
QTVM1 −QTbef [ms] 0.005 [2.1, 11.2]
QTVM2 −QTbef 0.04 [0.1, 7.7]
QTVM3 −QTbef 0.07 [-0.4, 10.4]
QTaft −QTbef 0.38 [-7.0, 2.8]

Table 5.1: Differences in heart rate (HR), T wave width (TW ), interval from T apex to
T end (Tpe), QT interval (QT ), and RMS value of ST segment (ST ) between the different
segments during and after the VM (VM1, VM2, VM3, aft) with respect to the 5 second
segment previous to the maneuver (bef).

5.2.3. Discussion and conclusions

Table 5.1 shows a statistically significant shortening in Tw during the VM strain (p =
2 ∙10−5), which enlarges again after the release, attaining a width similar to the one before
the maneuver (p = 0.12). The increased HR does not seem to be the responsible since
after the VM, the HR is even higher than during VM whilst T wave has recovered its
original width (see figure 5.3). This observation might evidence the viability of the T
width to mark very early signs of ischemia and its potential use for ischemia monitoring
like in coronary care unit, etc.
T width shortening seems to result from a width reduction from the onset to the

T peak rather than from the peak to the T wave end Tpe. This may be related to
the spatial distribution of action potential modifications which will require some deeper
clinical investigations. T wave is also very sensitive to cardiac axis shifts and either a
change of body posture or the compression of thoracic cage during the strain, may result
in it.
The differences in HR between before the VM and during the first 5 seconds of it are
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Figure 5.2: Significance (p-value) of the Student’s t test for the differences between T
wave width before VM and in the the 5s segments (initial, medium and final) of the VM,
as a function of the Kon values used in the T wave onset delineation process.

not yet statistically different (p = 0.08). However the HR after the first 5 seconds of the
maneuver is increasing during and even after VM and the divergences are statistically
significant.

ST segment changes are not statistically significant between before and during and
after VM. This supports the fact that compression of the arteries and flow reduction due
to the effort during VM does not cause a severe ischemia, rather just the initial blood
flow reduction which is perceived by the T width shortening as a result of a shortening
in duration of the action potential at the endocardium, the first affected part when flow
reduction occurs [30, 31].

QT shows an adaptation to the increment of HR in the beginning of the VM but after
the second 10, QT interval is not following the shortening which occurs with RR interval.
As diabetes may alter the autonomic nervous system and autonomic conditions directly
affect the ventricular myocardium, the QT adaptation to RR may be impaired and this
may be the explanation of the observed behaviour.
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Figure 5.3: The figure shows in dashed lines the duration of the VM strain. The repolar-
ization series: HR (dotted-solid line), T wave width Tw, the RMS of the ST segment and
the QT interval, are also shown.

5.3. Acquisition of a Tilt Test and Valsalva Maneuver

Database

After analyzing the results in diabetic patients in the previous section, a database
of healthy volunteers undergoing different autonomic nervous system tests is acquired.
The purpose is to explore the extrapolation of previous results to healthy patients and
to evaluate repolarization changes in the tilt test where the ANS modifications are more
controlled. This database records several biomedical signals with different sampling fre-
quencies, making use of the generic acquisition system Biopac MP150. This database
consists of 17 recordings undergoing a tilt test trial and three Valsalva maneuvers. These
trials are established tests for cardiovascular autoregulatory function by provoking blood
pressure changes which result in heart rate (HR) fluctuations. These fluctuations in HR
result in changes of the different repolarization indices which are described below.

5.3.1. Biopac MP150

In order to record and acquire several biomedical signals, we have used the Biopac
MP150 data acquisition and analysis system which consists of the following units:

MP150 acquisition system: It connects up to sixteen analog input channels plus
two analog output channels, sixteen digital leads and a synchronization input. It
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consists of a dual analog-digital converter (ADC) of 16 bits and maximum sampling
frequency of 400 kHz for each channel.

Universal Interface module UIM100C: It is used to connect 100-series amplifier mod-
ules and signal cables to the acquisition module MP150. The UIM100C also provides
a direct link to the analog and digital I/O lines of the MP device when collecting
or sending data to external equipment.

Amplifiers: The amplifiers can be of general purpose as the DA100C to amplify
different type of signals or specific for an specific type of signal. In our case we
have use the specific amplifiers ECG100C (ECG signals), RSP100C (respiratory
signal) and PPG100C (photoplethysmographic (PPG) signal). Also, we have used
the transducer TSD160A to monitor differential pressure that is connected to the
amplifier DA100C.

Sensors and transducers: we have used different sensors or transducers that mon-
itor biomedical signals, such as disposable Ag-AgCl to measure potential over the
body surface, TSD201 transducer to measure abdominal or thoracic expansion and
contraction while breathing, TSD160A to monitor differential pressure, and photo-
electric pulse transducer TSD200 to measure changes in infrared reflectance resulting
from varying blood flow.

Biopac MP150 allows us to acquire standard 12-lead ECG using the Biopacs ECG100C
amplifier and disposable Ag-AgCl electrodes with a hardware amplification of 1000. Be-
sides, allows to synchronize external analog signals such as the blood pressure signal
acquired from the Finometer device.

Finometer

This device measures the blood pressure in a continuous way and non invasively by the
volume-clamp method, first introduced by Czech physiologist Peñaz in 1967. With this
method, finger arterial pressure is measured using a finger cuff and an inflatable bladder
in combination with an infrared plethysmograph, which consists of an infrared light source
and detector. The infrared light is absorbed by the blood, and the pulsation of arterial
diameter during a heart beat causes a pulsation in the light detector signal.
The first step in this method is determining the proper unloaded diameter of the finger

arteries, the point at which finger cuff pressure and intra-arterial pressure are equal and
at which the transmural pressure across the finger arterial walls is zero. Then the arteries
are clamped (kept at this unloaded diameter) by varying the pressure of the finger cuff
inflatable bladder using the fast cuff pressure control system.
A servo-controller system usually defines a target value or setpoint and a measured

value that is compared with this setpoint. In the servo-controller the setpoint is the
signal of the plethysmograph (unloaded diameter of the arteries) that must be clamped.
The measured value comes from the light detector. The amplified difference between
the setpoint and measured value, ”the error signal,” is used to control a fast pneumatic
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proportional valve in the frontend unit. This proportional valve modulates the air pressure
generated by the air compressor, thus causing changes in the finger cuff pressure in parallel
with intra-arterial pressure in the finger so as to dynamically unload the arterial walls in
the finger. The cuff pressure thus provides an indirect measure of intra-arterial pressure.
The device has also a height sensor to account for the difference in pressure between the
heart and the finger due to the different altitudes. From these measurements, the device
is able to reconstruct the arterial blood pressure. The device is connected to a PC by
a parallel port, or by four analog inputs and four analog outputs to record the different
signals in a synchronized way.
Finometer works with a sampling frequency of 200 Hz, quantification of 12 bits and

resolution of 0.25 mmHg/LSB. Digitalized signal is converted into an analog in the device
and gets into an analog input to the interface UIM100C to be resampled and digitalized
by the MP150 (with a sampling frequency of 250 Hz and 16 bits of quantification). As a
consequence, this blood pressure signal is delayed 5 seconds (introduced by the DAC of
the Finometer) with respect of the other signals acquired directly in the Biopac MP150.

Photoplethysmographic signal (PPG)

Pulse photoplethysmography (PPG), introduced by Hertzman (1938), is a simple and
useful method for measuring the relative blood volume changes in the microvascular bed
of peripheral tissues and evaluating peripheral circulation.
The PPG signal is recorded from the index finger using the Biopacs PPG100C amplifier

with the TSD200 transducer with a sampling frequency of 250 Hz.

Software

The MP 150 (BIOPAC Systems) records the data with the software AcqKnowledger3.9.
The format ’acq’ was converted into the MIT format with WFDB header file format.

5.3.2. Description of the Database

The database was acquired at the Centro Politécnico Superior in the University of
Zaragoza and consists of 12 lead ECG, blood pressure, respiratory, PPG and expiratory
pressure (EP) signals recorded from seventeen healthy volunteers (11 males and 4 fe-
males). These volunteers are aged from 25 to 33 years old, without any previous history
of cardiovascular disease, and have undergone a head-up tilt test trial and three Valsalva
maneuvers according to the following protocol:

Head-up Tilt Test trial

• 4 minutes in the supine position as shown in Fig. 5.4 (left).

• 5 minutes in the orthostatic position at an angle of 70◦ as shown in Fig. 5.4
(right).

• 4 minutes back in the supine position
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Figure 5.4: Pictures of the supine and the orthostatic position at an angle of 70◦

degrees, which are held during the tilt test trial.

The three Valsalva maneuvers are done in standing position as it is shown in Fig.
5.5 (left).

• 2 minutes in the standing position

• At the end of an expiration, straining during 15 seconds (Expiratory VM).
Strain pressure of more than 40 mmHg

• Resting in standing position 2.5 minutes

• After a deep inspiration, straining by VM during 15 seconds (Inspiratory VM).
Strain pressure of more than 40 mmHg

• Resting in standing position 3 minutes

• After a deep inspiration, straining by VM during 30 seconds (Long inspiratory
VM). Strain pressure of more than 40 mmHg

• Resting in standing position 2.5 minutes

The recorded signals and their sampling frequencies are:

12-lead ECG (1000 Hz)

Blood pressure measured in the finger (250 Hz)

Respiratory signal (125 Hz)

Pulse photoplethysmography signal (250 Hz)

Expiratory pressure (125 Hz)

Fig. 5.6 shows an example of two ECG leads, V2 and V4, the PPG signal, the
respiration signal, the blood pressure signal and the expiratory signal during the recording
of the inspiratory Valsalva maneuver. The beat to beat interval increases while the PPG
and blood pressure signals decreases during the Valsalva strain. The respiratory signal is
held, as expected, during the strain whose pressure is in this case, above 80 mmHg.
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Figure 5.5: Picture of a volunteer performing the Valsalva maneuver.

5.3.3. Repolarization changes during autonomic nervous system
testing

Tilt test and Valsalva maneuvers are commonly used to evaluate the autonomic ner-
vous system (ANS) response to changes in the venous return. The autonomic system
manages all internal functions such as blood pressure, blood flow, and sweating. Auto-
nomic tests measure how the systems in the body that are controlled by the autonomic
nerves respond to stimulation.

Repolarization intervals

ECG delineation is performed using a wavelet-based delineator [86]. In each subject,
the lead with the highest signal to noise ratio (SNR), estimated as the maximum T wave
amplitude over the RMS value of the high-frequency noise (above 25 Hz) of the interval
between the ST segment to the end of the P wave, is selected. In our database, leads V2,
V3 or V4 have always been the leads with highest SNR. RR, QT , T width Tw and T peak
to T end Tpe interval series are computed from the ECG delineation marks in the selected
lead, after visually examining and removing the erroneous delineation marks. The T wave
amplitude TA series computed as the difference between the ECG amplitude position at
the T wave end and the one at the T wave peak, is also computed.

Head-up Tilt test

Tilt test trial is commonly used to diagnose orthostatic hypotension or syncope. When
a normal person is tilted, blood pressure does not drop dramatically because the body
compensates for this posture with an increase in heart rate (HR) and constriction of the
blood vessels in the legs. Therefore, the common HR signature is an abrupt increment
when the person is tilted.
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Figure 5.6: Example of some recorded signals: 2 ECG leads, V2 and V4, PPG, respira-
tory, blood pressure, heart rate and expiratory signals, during the inspiratory Valsalva
maneuver.

An example of the repolarization interval series described before during the tilt test
trial are shown in Fig. 5.7. The ECG signal changes when the person is tilted. As we
described in chapter §3, body position changes produces changes in the main complexes
QRS and ST-T. In the ECG signal in Fig. 5.7, it is just observed that the QRS amplitude
changes. The T wave amplitude also decreases during the tilt, but this is due to the
body position change which affects the whole STT complex. The HR increases during
the orthostatic position at 70◦ as expected, to compensate for the blood pressure drop.
The T wave width Tw decreases during the tilt and seems to have a similar memory effect
to the QT interval. QT adapts slowly to changes in heart rate as many publications
have reported [1]. However the Tpe interval seems to adapt faster than QT interval to
the abrupt HR changes generated by this tilt test protocol. This systematic observation
along the database has led us to study Tpe rate adaptation and compare it to QT rate
adaptation in chapter 6.
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Figure 5.7: Example of different repolarization intervals and an ECG lead during the tilt
test.

Valsalva maneuver

Valsalva maneuver activates both branches of the autonomic nervous system: sym-
pathetic and parasympathetic. In healthy subject, the reflex response for the Valsalva
maneuver includes tachycardia and peripheral vasoconstriction during strain, followed by
an overshoot in blood pressure and bradycardia after release of strain. Therefore, this
test generates also changes in the repolarization intervals which also play an important
role in arrhythmogenesis.

An example of the expiratory Valsalva maneuver, where the strain starts at the end of
an expiration, is shown in Fig. 5.8. The strain pressure is about 70 mmHg. HR slightly
decreases 80 bpm after the strain (due to the increase in blood pressure) and then it
increases during the rest of the strain and even after the strain up to more than 120 bpm
to decrease abruptly afterwards to less than 60 bpm. The first HR decrease is hardly
noticed in the repolarization indices. Just the Tpe interval changes which is in agreement
with the observation of a fast response of the Tpe to HR changes.
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The posterior increment in HR reaches more than 120 bpm due to a drop in blood
pressure, make the ECG waves modify their morphology. Then, we can notice that
repolarization intervals reduce their length but when HR is above 110 bpm, delineations
of the T wave onset and end are affected.
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Figure 5.8: Example of different signals during the expiratory Valsalva maneuver. The
ECG signal is expressed in mV, the HR in beats per minute (bpm), the RR, Tw, Tpe and
QT intervals are expressed in ms and the expiratory pressure in mmHg.

Fig. 5.9 shows an example of the inspiratory Valsalva maneuver where the strain is
done after a deep inspiration. The HR signature only differ from the expiratory Valsalva
maneuver in the HR increment before the strain. In this example the expiratory pressure
(EP) is about 80 mmHg, but the maximum HR reached is about 100 bpm what makes
easier the delineation procedure. Then, all repolarization intervals follow the RR changes,
being the Tpe faster in the rate adaptation than the QT interval. In this example it can
be observed the respiratory sinus arrythmia, specially after the strain.
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Figure 5.9: Example of different signals during the inspiratory Valsalva maneuver.

The last example in Fig. 5.10 corresponds to the long inspiratory Valsalva maneuver,
where the strain is maintained during 30 seconds exerting a maximal expiration pressure.
The signature is similar to the standard inspiratory maneuver but the HR decreases
slightly before finishing the strain and increases again until the end. HR vary from 140
bpm to 60 bpm. Those variations make the T width series hardly follows RR changes at
hight HR. In this example, a respiratory sinus arrhythmia is observed before and after
the strain.
The short term changes of HR and blood pressure make the ECG waves change their

morphology, so the ECG delineation is affected. We observe systematic behaviours in the
repolarization intervals, but we are not able to draw definitive conclusions in Valsalva
maneuver.
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Figure 5.10: Example of an ECG signal and different repolarization intervals during the
long inspiratory Valsalva maneuver.



Chapter 6

Characterization of Tpe rate
adaptation

Clinical and experimental studies have suggested that abnormalities of ventricular
repolarization, and therefore in the QT interval, play a role in the genesis of ventricular
arrhythmias [102, 103]. In particular, QT interval prolongation correlates to an increased
duration of cardiac action potential and has been considered as an indicator of arrhythmic
risk [104]. However, there is growing evidence that an increase in action potential duration
and QT interval prolongation by themselves cannot accurately predict the arrhythmic
risk [105]. Besides, as QT interval is known to be influenced by changes in heart rate,
the use of heart rate correction is crucial in the estimation of QT interval prolongation.
QT/RR hysteresis and restitution have been investigated mostly in studies of QT interval
adaptation to abrupt changes in pacing rate [106]. QT interval and action potential
duration (APD) response to an abrupt change in HR are characterized by two phases: an
initial fast adaptation and a subsequent slow adaptation as reported in [107, 106]. Studies
of this QT response suggest that longer time lags in the QT rate adaptation have been
associated to the propensity of suffering ventricular arrhythmias [108]. Other QT related
indices, such as the temporal QT variability has been studied as markers of the clinical
risk of drug-induced proarrhythmia in dogs [109].

Other ECG markers have been proposed in the last years; most of them related to the
T wave, and specially in the last part of it, the interval between the T wave peak and the
T wave end (Tpe) [110]. Tpe interval has been suggested to be a predictor of ventricular
arrhythmias in an increasing number of studies involving animal and human data. Spatial
heterogeneity in cardiac repolarization can mainly be assessed through changes in T wave
morphology in particular in its descending limb [111]. In turn, these changes can result
in electrical re-entry and the triggering of arrhythmic events such as Torsades de Pointes
(TdP) [112].

As QT interval, prolonged Tpe interval has been found in patients with hypertrophic
cardiomyopathy [113, 114], inducible ventricular tachycardias VT [111] and long QT syn-
drome (LQTS) [115] and also in arrhythmic events in patients with Brugada syndrome
[116]. Furthermore, Tpe has been suggested to be a predictor of arrhythmias such as
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Torsades de Pointes (TdP) [115].
Differences in the time course of repolarization of the different cells in the myocardium

cell types have been shown to contribute to the inscription of the T wave of the electro-
cardiogram (ECG). Tpe interval is generally accepted to reflect differences in the time for
completion of repolarization at different regions in the ventricle and it is used clinically
as a measure of dispersion of repolarization [111, 115]. Some studies have proposed Tpe as
an index of transmural dispersion of repolarization [117, 118], while others have claimed
that Tpe does not correlate only with transmural dispersion of repolarization but it also
includes other heterogeneities, such as apico-basal ones [119, 120]. Anyway, changes in
this parameter are thought to be capable of reflecting changes in spatial dispersion of re-
polarization, and thus may be prognostic of arrhythmic risk under a variety of conditions
[118].
The rate dependence of Tpe interval is still an issue. Previous studies characterizing

Tpe rate dependence are controversial, with Tpe shown to be independent of HR by some
authors [121] and markedly HR dependent by others [122]. In this study we characterize
Tpe rate adaptation, and compare it with QT rate adaptation.
In brief, dispersion in repolarization has been associated with life-threatening arrhyth-

mias [123] as well as restitution characteristics of the tissue which are very important in
the occurrence of reentry [124]. Therefore, the study of the rate adaptation of the T peak
to T end interval is well motivated.

6.1. Methods

6.1.1. Mathematical formulation

The model shown in Fig. 6.1, previously proposed to quantify QT rate adaptation
[108], is used to characterize the Tpe dependence on RR. The input xRR[n] and output
yTpe [n] denote the RR and the Tpe series of each recording after interpolation and resam-
pling to a sampling frequency of fs = 1 Hz.

xRR[n] FIR filter
(h)

zRR[n]
gk(., a)

ŷTpe [n]
+

v[n]

yTpe [n]

Figure 6.1: Block diagram describing the [RR, Tpe] relationship consisting of a time
invariant FIR filter (impulse response h) and a nonlinear function gk(., a) described by
the parameter vector a. v[n] accounts for the modeling error.

The first block corresponds to a time invariant N-order FIR filter with impulse re-
sponse:

h = (h[1] ... h[N ])T ∈ RN (6.1)
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and with an output denoted by zRR[n]. Impulse response h includes information about the
memory of the system, that is, a characterization of the influence of a history of previous
RR intervals on each Tpe measurement. Therefore, zRR[n] represents a surrogate of xRR[n]
with the memory effect of Tpe compensated for.

The length N of vector h was set to 150 samples that correspond to 150 seconds,
which widely exceeds the Tpe and the QT memory lag for the data population used in
this study. N also agrees with [5] which claim that on average, RR intervals of the past
150 beats (approximately 2.5 min) are required to model the QT response accurately.

The second block is the function gk(., a) which is dependent on the biparameter vector:

a = [a0 a1]
T ∈ R2 (6.2)

gk(., a) represents the relationship between the RR interval and the Tpe interval once
the memory effect has been compensated for (i.e. under stationary conditions), and it is
particularized and optimized for each subject using one (k) of the ten regression models
described below.

The output of the model ŷTpe [n] is defined as:

ŷTpe [n] = gk(zRR[n], a) (6.3)

In vector notation, zRR, is the convolution between the input vector xRR and the impulse
response h, and can be expressed as:

zRR = xRR ∗ h = h ∗ xRR = XRRh (6.4)

where XRR is the convolution (Toeplitz) matrix of xRR:

XRR =











xRR[N ] xRR[N − 1] . . . xRR[2] xRR[1]

xRR[N + 1] xRR[N ]
. . . xRR[2]

...
. . . . . .

xRR[D − 1]
...

xRR[D] xRR[D − 1] . . . xRR[D −N + 2] xRR[D −N + 1]











(6.5)

Note that XRR is a (D−N)xN matrix, where N is the length of the filter h and D is the
length of the signal xRR[n].

Ten different biparametric regression models that span from a linear to a hyperbolic
relationship, as described in [108], are considered for gk(., a), and the one that best fits
the data of each subject is identified.
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Linear: yTpe [n] = g1(zRR[n], a) = a0 + a1zRR[n] (6.6)

Hyperbolic: yTpe [n] = g2(zRR[n], a) = a0 +
a1

zRR[n]
(6.7)

Parabolic: yTpe [n] = g3(zRR[n], a) = a0 zRR[n]
a1 (6.8)

Logarithmic: yTpe [n] = g4(zRR[n], a) = a0 + a1 log(zRR[n]) (6.9)

Shifted Logarithmic: yTpe [n] = g5(zRR[n], a) = log(a0 + a1 zRR[n]) (6.10)

Exponential: yTpe [n] = g6(zRR[n], a) = a0 + a1 exp(−zRR[n]) (6.11)

Arc tangent: yTpe [n] = g7(zRR[n], a) = a0 + a1 arctan(zRR[n]) (6.12)

Tangent Hyperbolic: yTpe [n] = g8(zRR[n], a) = a0 + a1 tanh(zRR[n]) (6.13)

Arc sin hyperbolic: yTpe [n] = g9(zRR[n], a) = a0 + a1 arcsinh(zRR[n]) (6.14)

Arc cosine hyperbolic: yTpe [n] = g10(zRR[n], a) = a0 + a1 arccosh(1 + zRR[n]) (6.15)

The optimum values of the FIR filter response h, vector a, and function gk are searched
for, by minimizing the difference between the estimated output ŷTpe [n] (see (6.3)) and the
Tpe interval series yTpe [n], for each subject independently using the whole recording.
In order to identify the system parameters, h and a, the least square estimator between

yTpe and ŷTpe , both in vector notation, is computed. To do so, the following cost function
could have been minimized:

J(h, a) =
∥
∥yTpe − ŷTpe

∥
∥2 (6.16)

However, as described in [108], this optimization problem is an ‘ill-posed’ problem
which can have multiple solutions. When dealing with ‘ill-posed’ problems, a regulariza-
tion term including a priori information of the solution, can be added. This study uses
the Tikhonov regularization [125].
In previous studies, rate dependence of QT and action potential duration (APD) of

myocardial cells have been modelled as exponential decays. As Tpe accounts for differences
in the repolarization times, we propose to regularize, penalizing the deviations of h from
having an exponential decay.
To measure this deviation, we propose to use the same Tikhonov matrix used for

regularizing the QT rate adaptation [126]:

D =










τ −1 0 . . . . . . 0
0 τ −1 0 . . . 0
... 0 τ −1
...
...

. . . . . .

0 0 0 τ −1










(6.17)

Note that in case of h having an exponential decay expressed as h[n] = e−λn = τn, then
‖Dh‖ = 0.
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In order to calculate τ , h is initialized as an exponential function h[n] = τn, where the
parameter τ is swept from 0 to 1. For each of these h vectors, a0 and a1 are estimated
using the linear regression model g1. The τ value which generates the minimum mean
square error between yTpe and ŷTpe is selected to define the regularization matrix D. To
reduce the number of steps in the optimization stage, h, a0 and a1 are initialized using τ .
Then, the estimator used for the optimization is a regularized least square estimator:

{h∗, a∗, k∗} = arg min
{h,a,k}

(∥
∥yTpe − ŷTpe

∥
∥2 + β2 ‖Dh‖2

)

= arg min
{h,a,k}

(∥
∥yTpe − gk(zRR, a)

∥
∥2 + β2 ‖Dh‖2

)
(6.18)

where β is the regularization parameter which control how much weight is given to the
energy of ‖Dh‖ relative to the energy of the residual

∥
∥yTpe − ŷTpe

∥
∥, and whose value is

obtained by using the “L-curve” criterion [127]. L-curve plots the relation between the
regularization term (‖Dh‖) and the residual term (

∥
∥yTpe − ŷTpe

∥
∥) for a range of β. This

plot has a characteristic L-shaped corner that correspond to a tradeoff between both and
that value for β is selected (see Fig. 6.2).
Regarding k∗ in (6.18), in order to account for the inter-subject variability in the

[RR, Tpe] relationship, the regression function gk(., a) is determined as the one that min-
imizes the mean square error for each subject independently. Then, the cost function to
be minimized for each regression function is:

J(h, a) =
∥
∥yTpe − ŷTpe

∥
∥2 + β2 ‖Dh‖2 (6.19)

where the first term corresponds to the residual energy of the model and the second
one corresponds to the regularization energy. Note that ŷTpe(h, a) = gk(zRR, a), with k

corresponding to the kth regression model.

Restrictions: The estimation of h is subject to two constraints: the sum of the h
components is 1 (

∑N
i=1 h[i] = 1), to ensure normalized filter gain, and all the components

of h are non-negative (h[i] ≥ 0), to give a physiological plausible interpretation.
In [108], the way of minimizing the cost function 6.19 was using a global optimization

technique DiRect [128], and then projecting to obtain h[i] ≥ 0. In this work we have
reformulated h, in order to incorporate both constraints into the cost function, and we
have used a “Quasi-Newton” optimization method to minimize the new cost function.
This is shown in section §6.1.2.

6.1.2. Optimization including restrictions

As described in the previous subsection, for each recording and each regression model,
the optimum h∗ and a∗ are estimated by minimizing the cost function in equation 6.19.
The estimation of h is subject to two constraints: the sum of the h components is 1

(
∑N
i=1 h[i] = 1) and all the components of h are non-negative (h[i] ≥ 0). The inclusion



98 Chapter 6. Characterization of Tpe rate adaptation

0.25

0.20

0.15

0.10

0.05

0
∥
∥yTpe − ŷTpe
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Figure 6.2: Example of a L-curve which represents the relation between the regularization
term ‖Dh‖ and the residual term

∥
∥yTpe − ŷTpe

∥
∥. The selected β is also shown.

of both constraints in the estimation of h is done in this study by defining h[i] = h̃[i]2
∑
h̃[i]2
,

and optimizing over h̃ without any constraints. Note that for notation simplicity, we use∑
h̃[i]2 ≡

∑N
i=1 h̃[i]

2

Then, we use a function:

J̃(h̃, a) = J

(
h̃2

∑
h̃[i]2
, a

)

with h[i] =
h̃[i]2
∑
h̃[i]2

(6.20)

defined in the whole domain, and over which, unconstrained optimization techniques can

be used. Note that h̃2 is defined as h̃2 =
[
h̃[1]2, h̃[2]2, . . . , h̃[N ]2

]
.

The new cost function (J̃) is optimized over h̃ and over a. The estimated ŷTpe depends
on the regression function gk (ŷTpe = gk(zRR, a)), which depends on h by the relationship

zRR = xRR ∗h. Then, in order to differentiate the cost function J̃ with respect to the first
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variable vector h̃, the chain rule is applied:

∂J̃

∂h̃
=

∂J̃

∂gk(., a)
∙
∂gk(., a)

∂h
∙
∂h

∂h̃
+ β2

∂ ‖Dh‖2

∂h
∙
∂h

∂h̃
(6.21)

where the first part is applied to estimation error and the second part is applied to the
regularization term (regularization term does not depend on gk).

The derivative ∂h
∂h̃
, also called Jacobian matrix, is defined as the matrix of the

derivatives of a vector-valued function with respect to another vector. After a
perturbation, dh̃ of the vector h̃, which is the effect on h?








dh[1]
dh[2]
...

dh[N ]







=









dh[1]

dh̃[1]

dh[1]

dh̃[2]
. . . dh[1]

dh̃[N ]
dh[2]

dh̃[1]

dh[2]

dh̃[2]
. . . dh[2]

dh̃[N ]
...

...
. . .

...
dh[N ]

dh̃[1]

dh[N ]

dh̃[2]
. . . dh[N ]

dh̃[N ]
















dh̃[1]

dh̃[2]
...

dh̃[N ]








Therefore, the derivative:
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∂h̃
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. . . 2h̃[N ]
∑
h̃[i]2−2h̃[N ]3

(
∑
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



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Calculation of ∂J̃
∂gk(.,a)

:

J̃ =
∥
∥yTpe − ŷTpe(h, a0, a1)

∥
∥2 + β2 ‖Dh‖2 =

=
∥
∥yTpe − gk(zRR, a)

∥
∥2 + β2 ‖Dh‖2 =

= (yTpe − gk(zRR, a))
T (yTpe − gk(zRR, a)) + β

2(Dh)T (Dh)

Therefore 1,
∂J̃

∂gk(., a)
= −2 ∙ (yTpe − gk(zRR, a))

T (6.23)

Calculation of ∂gk(,a)
∂h
:

Taking into account that gk depends on zRR, and zRR = xRR ∗h = h ∗xRR on h (this
convolution can be written as a product using the convolution (Toeplitz) matrix of
xRR (XRR), resulting that zRR = XRRh):

∂gk(zRR, a)

∂h
=
∂gk(zRR, a)

∂zRR
∙
∂zRR
∂h
=
∂gk(zRR, a)

∂zRR
∙XRR (6.24)

1d(Ax+ b)T (Ax+ b) = 2(Ax+ b)TAdx, where A is a matrix and x and b are vectors.
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∂gk(zRR,a)
∂zRR

is a matrix since ∂gk(zRR, a) and ∂zRR are vectors. Besides, a perturbation

of the ith element of the vector zRR, produces an effect only on the i
th element of

the vector gk(zRR, a), and then
∂gk(zRR,a)
∂zRR

is a diagonal matrix. Then, the diagonal

of ∂gk(zRR,a)
∂zRR

is calculated for the ten regression models as shown in Table 6.1.

Model (gk) diag
(
∂gk(.,a)
∂zRR

)
∂gk(.,a)
∂a0

∂gk(.,a)
∂a1

Linear a0 + a1 zRR a1 1 1 zRR

Hyperbolic a0 +
a1
zRR

− a1
z2RR

1 1
zRR

Parabolic a0 z
a1
RR a0 a1 z

(a1−1)
RR za1RR a0 log(zRR) z

a1
RR

Logarithmic a0 + a1 log(zRR)
a1
zRR

1 log(zRR)

Shifted log log(a0 + a1 zRR)
a1

(a0+a1∙zRR)
1

a0+a1 zRR

zRR
a0+a1 zRR

Exponential a0 + a1 exp(−zRR) −a1 exp(−zRR) 1 exp(−zRR)

Arc tangent a0 + a1 arctan(zRR)
a1

1+z2RR
1 arctan(zRR)

Tan. hyp. a0 + a1 tanh(zRR)
a1

cosh(zRR)2
1 tanh(zRR)

Arcsin hyp a0 + a1 arcsinh(zRR)
a1√
(1+z2RR)

1 arcsinh(zRR)

Arccos hyp a0 + a1 arccosh(1 + zRR)
a1√

(zRR)
√
(2+zRR)

1 arccosh(1 + zRR)

Table 6.1: Summary of the derivatives of the different functions gk(zRR, a) of the ten

regression models with respect to zRR and a. diag
(
∂gk(.,a)
∂zRR

)
is the diagonal of the

matrix ∂gk(.,a)
∂zRR

. 1 represents a N-length vector of ones. All mathematical expressions
are element-wise.

The derivative ∂‖Dh‖
2

∂h
:

∂ ‖Dh‖2

∂h
= 2(Dh)TD (6.25)

Eventually, ∂J̃
∂h̃
can be computed by introducing equations 6.22, 6.23, 6.24 and 6.25

into 6.21.
In order to differentiate the cost function J̃ with respect to the second variable vector

a = [a0, a1]
T , the chain rule is also applied:

∂J̃

∂a
=

∂J̃

∂gk(., a)
∙
∂gk(., a)

∂a
(6.26)

The first term is already calculated in equation 6.23, while the second term is a Nx2
matrix where the first column corresponds to ∂gk(.,a)

∂a0
and the second column to ∂g(.,a)

∂a1
,

both computed in Table 6.1.
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The optimum values, h∗ and a∗ in (6.18), are determined by using a “Quasi-Newton”

optimization technique described in [129] which use the gradients ∂J̃
∂ĥ
and ∂J̃

∂a
.

Optimization technique

In this work, a Quasi-Newton optimization method, the BFGS (Broyden-Fletcher-
Goldfarb-Shanno), is used to minimize the cost function J̃(h̃, a) [129].
Quasi-Newton methods are from the family of the descent methods with the advantage

of an improved convergence rate with respect to the widely known steepest or gradient
descent. They are based on Newton methods but instead of computing the Hessian matrix
(matrix of second partial derivatives) of the function to be minimized, this is estimated
by analysing successive gradient vectors. Other advantages of this method with respect
to Newton methods include that the hessian matrix is not required to be derived and
implemented, to be inverted, and to check whether it is a positive definite matrix.
Then, the BFGS Quasi-Newton method estimate the Hessian (or the inverse Hessian)

matrix preserving symmetry and positive definiteness. In each step, the estimation of the
Hessian matrix is updated using the gradient information [129].
The BFGS method has super-linear convergence, i.e. faster than linear but slower

than quadratic.
In order to compute the step size along the descent direction, obtained by the Quasi-

Newton method, a parabolic and a golden ratio line searches were used [101].

6.1.3. Population

From the ANS-UZ database described in chapter 5, fifteen ECG recordings of the
head-up tilt test trial (§5.3.3, are used to characterize Tpe rate adaptation. The protocol
generates two step-like RR changes with stabilized RR intervals after each of them. 12-
lead ECGs are recorded during the whole test at a sampling frequency of 1000 Hz.
ECG delineation is performed using a wavelet-based delineator [86]. In each subject,

the lead with the highest signal to noise ratio (SNR), estimated as the maximum T
wave amplitude over the RMS value of the high-frequency noise (above 25 Hz) of the
interval between the ST segment to the end of the P wave, is selected. In the ANS-UZ
database, leads V2, V3 or V4 have always been the leads with highest SNR. RR, QT and
Tpe intervals are computed from the ECG delineation marks in the selected lead, after
visually examining and removing the erroneous delineation marks.

6.1.4. Quantification of the results

Tpe rate dependence is characterized using the model of Fig. 6.1. The time required
for Tpe to complete 90% of its rate adaptation, denoted by t90, is computed by setting a
threshold of 0.1 to the cumulative sum of the filter impulse response, c[n]:

c[n] =
N∑

i=n

h[i], leading to
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t90 =
1

fs
argmax

n
(c[n] > 0.1) (6.27)

An analogous procedure is used to calculate t70, t50 and t25 by replacing the threshold
0.1 in (6.27), with 0.3, 0.5 and 0.75, respectively. Note that the cumulative sum c[n],
represents the response of a step function to the FIR filter h[n].
Additionally, the adaptation rate is quantified as r[n] = (1−c[n])∙100, which represents

the percentage of the total Tpe adaptation reached at time instant n.

6.2. Results

Tpe interval is found to have a very fast adaptation to HR changes as compared to
the QT interval. Fig. 6.3 shows an example of a tilt test recording with two sudden RR
changes, to which the Tpe interval adapts in a shorter time than the QT interval.
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Figure 6.3: Rate adaptation of the Tpe and QT interval in a tilt test recording showing
two abrupt RR changes.

An example of the reconstruction of the yTpe [n] and yQT[n] series, after estimating
h[n], the regression model k and the coefficient vector a are shown in Fig. 6.4. The
reconstructions ŷTpe [n] and ŷQT[n], shown in black solid lines, begin after 150 seconds
corresponding to the length of the filter h[n]. The estimated regression models in this
example are different for the QT (linear model) and for the Tpe series (parabolic model).
The optimal regression functions gk(., a) that characterize the [zRR, Tpe] relationship

are found to be linear, gk(zRR[n], a)=a0 + a1 ∙ zRR[n], in 33% of the recordings , hyper-
bolic, gk(zRR[n], a)=a0 +

a1
zRR[n]

, in 20%, and hyperbolic tangent, gk(zRR[n], a)=a0 + a1 ∙
tanh(zRR[n]), in 20%.
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Figure 6.4: On the left, an example of how the reconstruction ŷQT (in black solid line) of
the QT interval series yQT (in gray dots), is obtained by xRR through the estimations of
h[n] and gk(., a). In this example, the optimum regression model for the QT interval is
the linear one (k=1). In the right part, analogously for the Tpe, the reconstruction ŷTpe
(in black solid line) is shown. The optimum model regression in this case is the parabolic
function (k=3). In dashed gray line, the linear function is also depicted for comparison
purpose.

The adaptation profiles h[n] for QT and Tpe, representing the memory of the system,
are different as it is shown in Fig. 6.5. The initial estimations for h[n] = τn, where τ
is defined for the regularization matrix, are shown in dashed gray lines. The cumulative
sums c[n], which represent the filter response to a step function, are also shown in Fig.
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6.5, indicating a more transient signature in the QT response with respect to the Tpe one.
Besides, the memory lag t90 is longer for QT than for Tpe interval.
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Figure 6.5: An example of the adaptation profile, h[n], and its cumulative sum, c[n], for
the Tpe and QT intervals of a subject undergoing a tilt test protocol. In dashed lines,
the corresponding exponential functions h[n] = τn used in the initialization of h[n] with
the τ value used in the regularization matrix. When showing c[n], which represents the
response of h[n] to a step function, the memory lags t90 are also shown for both intervals.

Table 6.2 shows the mean across subjects of the time for 90% (t90), 70% (t70), 50%
(t50) and 25% (t25) of the whole Tpe rate adaptation. Results are compared to those
corresponding to the QT interval.

QT Tpe
t90 [s] 74.1 ± 25.4 23.5 ± 29.7
t70 [s] 40.8 ± 15.9 11.4 ± 16.6
t50 [s] 19.3 ± 8.9 5.6 ± 7.8
t25 [s] 4.2 ± 2.9 1.5 ± 1.9

Table 6.2: Mean ± std across subjects of the time for 90% (t90), 70% (t70), 50% (t50) and
25% (t25) of the complete rate adaptation.

In Fig. 6.6, the median, first and third quartile of the Tpe adaptation rate, r[n] (see
section §7.2.3), across the 15 recordings are shown and compared to those of the QT
interval.
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Figure 6.6: Median, first and third quartile of the adaptation rates, r[n], of Tpe and QT
intervals.

6.3. Discussion

There are clinical studies which suggest Tpe to be practically independent of HR [121],
while other studies claim that it is markedly rate dependent [122]. An argument in favor
of Tpe to be rate dependent is that Tpe interval accounts for differences of APDs in different
cell regions and APDs are known to be rate related [106]. In this study, Tpe rate adaptation
has been characterized, showing that it is rate related and it has a short memory lag.

Tpe takes about 25 s in mean to complete 90% of its rate adaptation and only 11 s to
complete 70% of the whole adaptation. This is in contrast to QT rate adaptation, which
has a pronounced memory effect, with about 74 s to complete 90% of its rate adaptation.
However, this t90 value of 74 s in mean for the QT adaptation is lower than the t90
reported in [108], which is around 120 s. This may be due, among other reasons, to the
younger age of the control subjects of the tilt test database used in this study. While Tpe
dependence on a previous history of RR intervals presents a fast decay in one phase, in
the case of the QT interval, the decay is performed in two phases, a fast one and a slow
one, in concordance with observations from previous studies [106].

APD in ventricular myocytes (epi, mid and endocardial cells) are known to have a slow
adaptation [106], which is performed in two phases: a fast initial one and a subsequent
slow adaptation. In [5], APD has been shown to require around 2 min. in midmyocardial
cells, and 3 min. in epicardial cells, to reach a new steady state after a step HR change.
However, while the fast phases of APD rate adaptation are different in both cell types, with
midmyocardial cells presenting faster decay than epicardial cells, they do have similar slow
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Figure 6.7: Simulated action potential (AP) duration (APD) rate adaptation in humans
for CL of 1000 to 600 to 1000 ms for endocardial (Endo; top), midmyocardial (Mid;
middle), and epicardial (Epi; bottom) cardiomyocytes. Data information extracted from
[5].

phases (see fig. 6.7). Therefore, measures such as Tpe, which accounts for contributions
of different cell types, would not have slow phase (it has been compensated) and the fast
phase would include the maximum difference among the fast phases of the different cells
in the tissue.
We should note that when characterizing Tpe rate adaptation, differences in heart rate

accelerations and decelerations have not been accounted for. In the case of the QT interval
or the APD, rate adaptation has been shown to be longer after HR decelerations than
after HR accelerations [106, 5].



Chapter 7

Quantification of Restitution
Dispersion measured at the surface
ECG

7.1. Introduction

The underlying mechanisms of lethal arrhythmias which contribute to the primary
cause of death in the industrialized world, i.e. cardiovascular disease, are poorly under-
stood [8]. The generation of arrhythmias has been widely studied by dynamically pacing
cardiac myocytes, cardiac tissue or whole hearts [130]. These experimental results have
revealed that heart rate (HR) dependence of action potential duration (APD), also called
restitution kinetics, is thought to be critical in activation instability and, therefore, pro-
vides relevant information for ventricular arrhythmic risk stratification [131, 132]. The
dynamic APD restitution (APDR) curve, measured using the so-called dynamic restitu-
tion protocol, quantifies the relationship between the APD and the RR interval (inverse
of HR) at steady-state when pacing at different RR values [133, 134].
Individual APDR curves have been reported to play an important role in the develop-

ment of ventricular arrhythmias and APDR curves containing steep slopes are thought to
induce alternans of APD and block propagation leading eventually to arrhythmia [135].
On the contrary, for shallow slopes, APD disturbances are smaller and eventually return
to a stable activation [134]. This relationship between steeply sloped APDR curves and
propensity of ventricular arrhythmia has been characterized under the condition of con-
stant rapid pacing. However, it is unlikely that the conditions used to demonstrate this
phenomenon experimentally apply to the clinical situation, where the induction of ven-
tricular tachyarrhythmias is typically associated with the interruption of normal cardiac
rhythm by only a few premature beats. Besides, several studies have reported that APD
restitution is markedly heterogeneous, both on endocardium using non-contact mapping
[136] and on epicardium [137] in humans, and in a guinea pig heart model [138]. Then,
theories related to increased dynamic heterogeneity of repolarization have been reported
[139].
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Heterogeneities in the ventricle lead to non uniform restitution properties, which makes
APDR curves present spatial variations [138]. Dispersion is a measure of that spatial
variation. Recent studies have suggested that dispersion in the APDR curves may act as a
potent arrhythmogenic substrate [137, 124]. A recent modelling study has provided further
theoretical evidence that regional differences in APD restitution are an arrhythmogenic
substrate that can be concealed at normal heart rates, independently of the steepness of
the APD restitution curve [140]. Additionally, increments in that dispersion have been
associated with greater propensity to suffer from ventricular tachycardia/fibrillation [141].

The main limitation on the usability of APDR dispersion as a risk index is that its
quantification requires invasive procedures [136]. In this study we propose a method
to indirectly estimate dispersion of restitution slopes by making only use of the surface
electrocardiogram (ECG). We propose an ECG measure that quantifies dispersion in the
dynamic APDR slopes by characterizing the relationship between the distance from T
wave peak to T wave end (Tpe) and the RR interval under different stationary conditions.

Tpe interval is generally accepted to reflect differences in the time for completion of
repolarization at different regions in the ventricle. Some studies have proposed that Tpe
is an index of transmural dispersion of repolarization [117], while others have claimed
that Tpe does not correlate only with transmural dispersion of repolarization but it also
includes other heterogeneities, such as apico-basal ones [119, 120].

Each value of the APDR curve represents a stationary state corresponding to a spe-
cific HR value, and, therefore, the ECG measurement proposed to estimate restitution
dispersion should in principle be computed using ECG segments of stable HR regimes.
Since those type of segments are difficult to get in clinical practice, we propose to use
the methodology described in chapter 6, that overcomes that restriction by modeling the
dependence of the Tpe interval on a history of previous RR intervals and compensating
for the Tpe memory lag.

Our proposed ECG-based estimate of APDR slope dispersion, is evaluated on a
database of ECG recordings from healthy subjects undergoing a tilt test trial. In this
trial, step-like heart rate changes are generated, which are used in this study to measure
dynamic changes of the Tpe, and compute the proposed estimate.

The capability of the proposed ECG measurement to provide estimates of APDR slope
dispersion at tissue level has been assessed by simulating electrical propagation in a 2D
tissue representing a slice across the human left ventricular wall, and computing pseudo-
ECGs. An electrophysiologically detailed human ventricular cell model, the ten Tusscher
2006 model [142], is used to generate action potentials. Pacings at different RR intervals
are simulated to compute dynamic APDR curves, and eventually APDR slope dispersion.

A comparison of the proposed ECG estimate evaluated from the simulated pseudo-
ECGs and from the tilt test ECG recordings shows that simulated data is in good agree-
ment with clinical/experimental data. Additionally, using the 2D simulated data we
confirm that the proposed ECG estimate is a measure of APDR slope dispersion at tissue
level.

This chapter is outlined as follows: section §7.2 presents the method used to estimate
APDR slope dispersion from the surface ECG and describes the 2D tissue modeling and
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simulation; section §7.3 contains the results that show the capability of the proposed ECG
measurement to provide estimates of the APDR slope dispersion and section §7.4 and §7.5
present the discussion and the main limitations of the study.

7.2. Materials and Methods

This section mainly includes the quantification of APDR dispersion from ECG-based
estimates; and the introduction of a 2D modeling and simulation to assess the proposed
estimates. Section §5.3.3 introduces the data and ECG signal processing delineation
procedures. In section §7.2.2, the relationship between ventricular APDR slope dispersion,
denoted by Δα, and its surface ECG estimate, denoted by Δ̂α

ECGs

, is presented for the case
of stable RR segments (see Fig. 7.1 left). Hereinafter, “the hat” (̂) refers to estimates
from the ECG. The difficulty of getting stable RR segments made us compensate for the
Tpe memory lag after HR changes (section §7.2.3), and use it in the derivation of the ECG
estimate for APDR slope dispersion for the case of unstable RR segments, denoted by

Δ̂α
ECGc

. In section §7.2.4, the 2D ventricular tissue model used to evaluate the extent to
which ECG estimates reflect the underlying restitution dispersion is described. Simulated
APDR dispersion from the 2D model, denoted by ΔαSIM, and its corresponding estimate

measured from the pseudo-ECG, Δ̂α
pECG

, are computed (see Fig. 7.1 right).

7.2.1. Population and ECG delineation

The head-up tilt test trials of the 15 volunteers without any previous cardiovascular
disease, from the ANS-UZ database described in chapter 5, have been used to compute
the proposed estimations from the ECG. The protocol generates two step-like RR changes
with stabilized RR intervals after each of them. 12-lead ECGs are recorded during the
whole test at a sampling frequency of 1000 Hz.
ECG delineation is performed using a wavelet-based delineator [86]. In each subject,

the lead with the highest signal to noise ratio (SNR), estimated as the maximum T wave
amplitude over the RMS value of the high-frequency noise (above 25 Hz) of the interval
between the ST segment to the end of the P wave, is selected. In the ANS-UZ database,
leads V2, V3 or V4 have always been the leads with highest SNR. Tpe interval series is
computed from the ECG delineation marks in the selected lead, after visually examining
and removing the erroneous delineation marks.

7.2.2. Quantification of restitution dispersion using stable RR
segments of the surface ECG

We propose a method to indirectly compute dispersion in dynamic APDR slopes within
the ventricle, by making only use of the surface ECG (see Fig. 7.1, bottom-left).
Tpe interval reflects differences in the time for completion of repolarization by different

cells spanning the ventricular wall. Therefore, and based on [124, 117], the Tpe interval
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Figure 7.1: Outline of the methods used in this study. Crossed arrow shows a desirable
but unaccessible connection. Tasks 1, 2 and 3 represent the different comparison tasks to
be done in section §7.3. See subsections for details.

can be expressed in terms of APDs as follows:

Tpe = APDlast − APDmin −ΔAT (7.1)

where APDmin corresponds to the cell with the minimum APD among those which are
currently repolarizing at the T wave peak instant (time instant when the maximum re-
polarization gradient sum occurs) and APDlast is the APD of the last cell to repolarize.
ΔAT represents the activation time delay between both cells with APDmin and APDlast,
as shown in Fig. 7.2. Note that in this work Δ is considered as a difference operator
which is applied in this case to activation times at two spatial sites. This ΔAT delay
hardly changes with RR for RR intervals above 600 ms [143, 142]. Therefore, changes in
the Tpe under variations of the RR interval can be obtained as:

∂Tpe

∂RR
=
∂APDlast

∂RR
−
∂APDmin

∂RR
(7.2)

where ∂ΔAT/∂RR has been neglected, under the premise that RR intervals above 600
ms are considered.
If we restrict (7.2) to the dynamic protocol, where each value of the APDR curve

represents a steady-state APD value (Fig. 7.3), and the regions with APDmin and APDlast



7.2 Materials and Methods 111

Time [ms]

ΔAT

APDmin

APDlast

Tpe

0 250 500

Figure 7.2: Representation of the Tpe interval in terms of APDs and delay of activation
times (ΔAT ).

remain fixed when varying RR, then:

∂T dynpe
∂RR

=
∂APDdynlast
∂RR

−
∂APDdynmin
∂RR

(7.3)

where T dynpe and APD
dyn refer to the steady values of Tpe and APD for each RR interval.

Hereinafter, the superindex “dyn” refers to the dynamic protocol. In case of having only
pairs of steady-state values, [RR, T dynpe ], the derivatives in (7.3) may be approximated by
increments Δ:

∂T dynpe
∂RR

≈
ΔT dynpe
ΔRR

(7.4)

where ΔT dynpe and ΔRR represent the variations in Tpe and RR, respectively, between two
stable ECG segments at different RR intervals.
If we let αlast and αmin denote the slopes of the dynamic restitution curves at the

regions corresponding to APDlast and APDmin, respectively:

αi =
∂APDdyni
∂RR

where i = {last,min}, (7.5)
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the spatial difference Δα = (αlast − αmin) (see Fig. 7.3), which measures dispersion of
restitution slopes, can be estimated from the ECG by introducing (7.5) into (7.3) and
(7.4), resulting in:

Δ̂α
ECGs

=
ΔT dynpe
ΔRR

(7.6)

where the superindex “ECGs” indicates that quantification of restitution dispersion is
done by using stable ECG segments, as required in the dynamic protocol, at two different
RR intervals. Δ at left hand side of (7.6) refers to a difference of restitution slopes
occurring at two regions, while both Δ at right hand side refer to beat interval differences
associated with two RR levels.
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Figure 7.3: Dynamic restitution curves (APDR) in two regions corresponding to APDmin
(dashed line) and APDlast (solid line). Slopes αmin and αlast are estimated for a change
in the RR interval.

Note that in cases of e.g. ventricular wedges, where Tpe includes mainly transmural
heterogeneities, APDlast and APDmin would correspond to APDs at the midmyocardium

and epicardium, respectively, and therefore, Δ̂α
ECGs

would represent and estimation of
transmural dispersion of restitution slopes.

7.2.3. Quantification of restitution dispersion using unstable RR
segments of the surface ECG

Stable RR segments, needed to measure the rate related increment ΔT dynpe in Eq. (7.6),
are difficult to obtain in the clinical practice. In order to overcome this limitation, we use
the methodology proposed in chapter 6 to compensate for the Tpe memory lag after RR
changes. In the previous chapter we were interested in the rate adaptation of Tpe interval,
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characterized by h, while in this chapter we are interested in the steady-state relationship
[Tpe/RR], characterized by gk(zRR, a).
As we explained, zRR(n) represents a surrogate of xRR(n) with the memory effect

of Tpe compensated for, and the function gk(., a), dependent on the parameter vector
a = [a(0), a(1)]T , represents the relationship between the RR interval and the Tpe interval
once the memory effect has been compensated for (i.e. under stationary conditions).
After h and gk(., a) have been optimized, we can make use of zRR(n) as a surrogate

of the running RR series that would generate a truly stationary period in the running
repolarization interval Tpe. Then, the ith pair [zRR(i), Tpe(i)] represents the surrogate for
the RR interval and the Tpe interval measured in an stable ECG segment. Therefore,
the estimate of restitution dispersion derived in (7.6) can be replaced with the following
equation, obtained by differentiating (6.3) with respect to zRR:

Δ̂α
ECGc

=
∂Tpe

∂zRR

∣
∣
∣
∣
zRR=z̄RR

=
∂gk(zRR, a)

∂zRR

∣
∣
∣
∣
zRR=z̄RR

(7.7)

The above expression has the advantage of avoiding the need for stationary ECG segments.
The superindex “ECGc” indicates that the quantification of restitution dispersion from
the ECG is done by compensating for the Tpe memory lag using the model described in

Fig. 6.1. This estimate is a robust alternative to Δ̂α
ECGs

(see Fig. 7.1 bottom-left). In
(7.7), the derivative is evaluated at the mean zRR value, z̄RR, of the complete recording.

7.2.4. Computational modeling and simulation

Computational modeling and simulation is used in this study to assess how the pro-

posed estimates evaluated from the ECG, Δ̂α
ECGs

and Δ̂α
ECGc

, represent dispersion of the
APDR slopes at tissue level (see Fig. 7.1, right).
Propagation of the electrical activity in a left ventricular 2D tissue slice is simulated

using the human ten Tusscher action potential model [142], with numerical integration
performed as described in [144], with a 0.02 ms time step and 0.01 cm space step. The
ten Tusscher model [142] describes the principal ionic currents through the cardiac cell
membrane with high degree of electrophysiological detail for the three types of cells in
the ventricular wall: endocardial, midmyocardial and epicardial cells. The 2D tissue slice
used in this study is 7.5 cm long by 1 cm wide, representing the base to apex and the
endocardial to epicardial distances, respectively, as shown in Fig. 7.4. Conductivity of
the tissue along the fiber direction is set to σL= 0.0013 mS with a membrane capacitance
of 1 μF/cm2, obtaining a maximum conduction velocity of 71 cm/s. Perpendicular to the
fiber direction, the conductivity is 60% lower, σT= 0.00052 mS, resulting in a conduction
velocity of 42 cm/s, which is comparable to the average velocity of 44 cm/s recorded in
vivo and across the arterially perfused transmural wedge preparation [145]. A transmural
linear variation of the helix fiber angle from +60 degrees at the endocardium to -60 degrees
at the epicardium is assumed based on [146].
As illustrated in Fig. 7.4, two areas in the subendocardium are stimulated simulta-

neously with a 2 ms square stimulus pulse of 1.5 times diastolic threshold: 1 cm at the
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Figure 7.4: 2D tissue slice used in the simulation, with indication of the default cell
type distribution across the ventricular wall, and sensor positions used for pseudo-ECG
computation.

top of the base and 0.5 cm at the bottom of the apex, based on the activation sequence
reported for an isolated human heart in [6]. Transmural heterogeneities are included in
the 2D tissue preparation by using two cell types: midmyocardial and epicardial cells. In
order to match the complete activation sequence of [6] and to account for the influence of
Purkinje fibers, endocardial cells in the simulated preparation are replaced with midmy-
ocardial cells, known to have longer APDs. This is justified by the fact that Purkinje cells
have longer APDs than midmyocardial cells and much longer than endocardial cells. The
coupling between Purkinje and endocardium makes endocardial cells enlarge their action
potentials [145], leading to APDs values similar to those simulated in our preparation.
The APD in the different regions across the 2D tissue slice are in agreement with the
range reported in [147], where left ventricular wedge preparations from non-failing human
hearts were optically mapped.
The distribution of cell types in the simulated tissue are 80% of midmyocardial cells

and 20% of epicardial cells [148]. To represent possible heterogeneities in human hearts
and measure a range of plausible restitution dispersion values, the effect of varying the



7.3 Results 115

percentages of cell types within the ventricular wall is evaluated by considering additional
distributions of 65/35% and 90/10% of midmyocardial/epicardial cells. For each cell type
distribution, APDR curves are computed by pacing the 2D tissue preparation at different
RR intervals, following the so-called dynamic restitution protocol [134]. Dispersion of
APDR slopes at tissue level is denoted by ΔαSIM and is computed from the results of the
2D simulation as follows:

ΔαSIM =
∂APDdynlast
∂RR

−
∂APDdynmin
∂RR

(7.8)

where APDdynmin and APD
dyn
last are defined as described in section §7.2.2. Estimations of

ΔαSIM are computed from pseudo-ECGs using (7.6). The pseudo-ECGs, each one mea-
suring the extracellular potential at one of the sensor positions shown in Fig. 7.4 (Fig.
7.1, bottom-right), are computed as in [149]. The corresponding estimations are:

Δ̂α
pECG

=
∂T dynpe
∂RR

(7.9)

where T dynpe represents the Tpe interval measured from one of the pseudo-ECGs using the
dynamic protocol.

Calculation of pseudo-ECG.

Considering the bi-domain model, myocardium is considered as a single cell along
which, the action potential (AP) is propagated [150]. Then, the extracellular potential in
a 2D tissue, can be computed as:

u(−→r ) = −
γ

4π

σi

σe

∫∫
−→
∇ ′um(

−→r ′) ∙
−→
∇ ′
[

1

|−→r ′ −−→r |

]

da (7.10)

where σi represents the intracellular conductivity (a weighted average between the longi-
tudinal and transversal intracellular conductivities) and σe, the extracellular conductivity.−→
∇ ′um(

−→r ′) is the gradient of membrane voltage in the differential of area da, and |−→r ′−−→r |
represents the distance from the sensor position to da. γ is a scale factor that accounts
for the intracellular and extracellular volume differences.

7.3. Results

This section presents the different comparison tasks shown in Fig. 7.1. In section
§7.3.1, the 2D ventricular model is evaluated, with APDR estimates measured from
pseudo-ECGs checked to be within the physiological range measured from ECG recordings
(Task 1 in Fig. 7.1). In section §7.3.2, the capability of the proposed estimate measured

from the pseudo-ECG (Δ̂α
pECG

) to quantify APDR dispersion at tissue level is assessed
(Task 2 in Fig. 7.1). In §7.3.3, ECG estimates evaluated in tilt test recordings and APDR
dispersion ΔαSIM are compared (Task 3 in Fig. 7.1). Additionally, section §6.2 provides a
characterization of Tpe rate adaptation.
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7.3.1. Evaluation of the 2D simulations. Comparison between
pseudo-ECGs and clinical ECGs

The human ventricular model used in this study has been shown to reproduce ex-
perimentally observed data on APD restitution in single cells from the endo, epi, and
midmyocardial regions of the ventricle [151]. Also, conduction velocity restitution mea-
sured in a 1D cable of cells has been validated using experimental data [151].
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Figure 7.5: Isochronic representation (in milliseconds) of ventricular activation: (a) exper-
iment results reproduced from [6]; (b) 2D tissue simulations when pacing at RR intervals
of 450 ms, 1000 ms and 1450 ms.

The 2D tissue preparation built in this study yields an activation sequence that is
in good agreement with the experimental results reported in [6], as illustrated in Fig.
7.5. Simulated activation sequences are shown for three different pacing RR intervals,
450 ms, 1000 ms and 1450 ms, leading to the observation that activation times have
similar patterns in the three cases. Fig. 7.6 shows a simulated sequence of isochronic
voltage representation during steady-state pacing at 1000 ms, with indication of the timing
corresponding to the T wave peak and T wave end in the pseudo-ECG from pecg3, and
of the regions where APDmin and APDlast are computed. Since our 2D preparation
includes only transmural heterogeneities, the time instant corresponding to the peak of
the T wave coincides with the time at which complete repolarization of the epicardium
occurs, whereas T wave end coincides with the total repolarization of the tissue. The
effect of varying the cell type distribution across the ventricular wall on the isochronic
voltage representation at the T wave peak instant is shown in Fig. 7.7, for pacing RR
intervals of 450 ms, 1000 ms and 1450 ms. In all isochronic voltage representations, for
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different pacing rates and cell type distributions, the epicardium is completely repolarized
at the T wave peak instant.
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Figure 7.6: Top panel: simulated sequence of isochronic voltage representation during
steady-state pacing at 1000 ms. The position of the two cells corresponding to APDmin
for the peak of the T wave and APDlast for the end of the T wave, are shown with a gray
point. Bottom panel: derived pseudo-ECG from pecg3.

Although we could have defined APDmin as the APD of any cell region chosen along
the T peak wave front shown in Fig. 7.6, that region should remain fixed for the different
RR levels to be able to apply equation (7.3). Note that in the simulations shown in Fig.
7.7, APDmin remains fixed at different RR levels as needed.

In Fig. 7.8, equation(7.1) is justified for the whole RR interval using the 80/20%
cell type distribution. The difference APDdynmin − APD

dyn
last − ΔAT is compared with the

steady state T dynpe interval computed at different sensor position (pecg3).Note that ΔAT
is constant during the whole RR range.

An indirect validation of the simulated restitution properties in the 2D tissue is per-
formed by first comparing steady-state T dynpe values computed at different RR intervals in
tilt test ECGs and in simulated pseudo-ECGs. Fig. 7.9 shows three regions corresponding
to simulations using cell type distributions of 65/35%, 80/20% and 90/10%. Each region
represents the range of steady-state [RR, T dynpe ] curves computed for pseudo-ECGs at eight
different sensor positions. The steady-state [zRR, Tpe] curves obtained from the tilt test
recordings are superimposed in the same graphic. Note that when the percentages of
epi- and midmyocardial cells are more similar (65/35%), the difference between APDmin
and APDlast is higher and, therefore, the Tpe interval is longer than the ones for 80/20%
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Figure 7.7: Isochronic voltage representation at T wave peak time instant using three
different cell type distributions (mid/epi) and pacing RR intervals of 450 ms, 1000 ms
and 1450 ms.

and 90/10% cell type distributions. Simulated values of Tpe at different RR intervals for
65/35% and 80/20% (default) cell type distributions are found to be within the range
of values measured from the tilt test recordings. However, simulated Tpe values for the
90/10% percentage are outside the range of the tilt test recordings.
After confirming the good agreement in the repolarization [RR, T dynpe ] values be-

tween pseudo-ECGs and clinical ECGs, the restitution dispersion estimates are also com-
pared. Fig. 7.10 shows a comparison of pseudo-ECG-based estimates of APDR disper-

sion, Δ̂α
pECG

, in (7.9), at sensor positions pecg3 and pecg5, and ECG-based estimates,

Δ̂α
ECGc

, in (7.7), obtained from the tilt test recordings. Both the average difference be-

tween Δ̂α
pECG

(computed in pecg3 and pecg5) and Δ̂α
ECGc

, and the average percentage
of the difference are shown in Table 7.1. Differences are below 20% in mean, which are



7.3 Results 119

 

 

600 800 1000 1200 1400

RR [ms]

0

50

100

150

200

250

300

350

400
A
P
D
d
y
n
[m
s]

APDdyn
last

APD
dyn
min

APDdynlast-APD
dyn
last-ΔAT

T dynpe (pecg3)

Figure 7.8: For 80/20% cell type distribution, APDR curves and their relation with
steady-state T dynpe interval derived from pecg3.

within physiological variability limits.

7.3.2. Assessment of APDR dispersion quantified from the pseudo-
ECG

APDR slope dispersion at tissue level, denoted by ΔαSIM, in (7.8), has been computed

for each of the three cell type distributions. ΔαSIM is used to assess whether Δ̂α
pECG

,
computed from pseudo-ECGs, is a good estimate of APDR slope dispersion. Fig. 7.11

shows the comparison between ΔαSIM and Δ̂α
pECG

computed at sensor positions pecg3,
pecg4 and pecg5 for the default cell type distribution 80/20%. The error between

ΔαSIM and Δ̂α
pECG

from pecg3 and pecg5 relative to the slope range is found to be 4%
in average, while from pecg1 is 5% and from pecg4, is 6%.

7.3.3. Agreement between simulated APDR dispersion and es-
timates from clinical ECGs

Three stationary ECG segments during the tilt test protocol, corresponding to the
end of each stage at supine, standing and back supine positions, are used to compute

Δ̂α
ECGs

. Estimates computed at the mean of the corresponding RR range, are shown in
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Figure 7.9: Steady-state T dynpe as a function of RR from tilt test recordings (in squares) and
from simulations. For the simulations, the regions correspond to cell type distributions
of 65/35%, 80/20% and 90/10%, and each region represents the influence of computing
steady-state [RR, T dynpe ] curves for pseudo-ECGs at different sensor positions.

Fig. 7.12, where they are compared to values of ΔαSIM, representing simulated APDR

slope dispersion at tissue level. Without assuming stationary ECG segments, Δ̂α
ECGs

is

replaced with Δ̂α
ECGc

, in which the Tpe memory lag is compensated for. A comparison

between Δ̂α
ECGc

(in circles) and ΔαSIM is shown in Fig. 7.13. The dashed lines depicted in
Fig. 7.13 represent the derivatives of the optimal gk(., a) function in the zRR range for each

recording. These derivatives evaluated in the mean zRR value are our estimates Δ̂α
ECGc

.
According to the results shown in Fig. 7.12 and Fig. 7.13, there is a good agreement

between simulated APDR slope dispersion and the ECG estimates Δ̂α
ECGs

and Δ̂α
ECGc

,

particulary for Δ̂α
ECGc

, in which the effects of Tpe rate adaptation are compensated for.

Quantification of the results shown in Fig. 7.12 and Fig. 7.13 is presented in Table
7.2, where average values of the individual differences between simulated ΔαSIM and the

two ECG estimates, Δ̂α
ECGs

and Δ̂α
ECGc

, are computed. Expressions of those differences

as percentages are also included, being 30% in average for Δ̂α
ECGs

, and 20% for Δ̂α
ECGc

.

As expected, results for the cell type distribution 90/10% show higher differences due
to the fact that Tpe values from the pseudo-ECG are not within the range of our clinical
data.
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Figure 7.10: APDR slope dispersion estimates from the tilt test recordings (Δ̂α
ECGc

) and

from the pseudo-ECGs (Δ̂α
pECG

) derived from two sensor positions (pecg3 and pecg5),
and three cell type distributions (mid/epi: 65/35%, 80/20% and 90/10%).

7.4. Discussion

APDR dispersion is considered as an important risk marker in the development of
ventricular arrhythmias [137, 124, 141] and is measured at tissue level. In this study,
APDR dispersion, measured at tissue level, has been quantified from the surface ECG,
using a novel methodology. To our best knowledge, this is the first time that APDR
dispersion is quantified non-invasively by measuring changes in the steady-state Tpe with
respect to changes in RR interval. First, a 2D tissue ventricular model has been built
and indirectly validated, and the proposed estimate measured at pseudo-ECGs is shown
to properly quantify APDR dispersion at tissue level. Then, estimates measured at the
acquired ECG recordings are found to be in agreement with the simulated APDR disper-
sion. Additionally, results from the Tpe rate adaptation study show that Tpe adapts faster
to changes in HR than the QT interval.

7.4.1. Evaluation of the 2D ventricular model

We have evaluated the 2D ventricular tissue model used in this study. First, the
underlying model of the 2D simulation has been reported to reproduce experimentally
observed data on APD restitution in single cells from epi, endo and midmyocardial regions
correctly [151, 142]. Characteristics of the 2D tissue model built in this work, such
as dimensions, conduction velocities in the fiber direction [142] and perpendicular to it
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Simulated - Measured Cell Percentage Average (%) [ms / ms]

Δ̂α
pECG

(pecg1) - Δ̂α
ECGc (65/35%) -0.0096 (-19%)

(80/20%) -0.0107 (-23%)

Δ̂α
pECG

(pecg3) - Δ̂α
ECGc (65/35%) -0.0066 (-2%)

(80/20%) -0.0100 (-21%)

Δ̂α
pECG

(pecg5) - Δ̂α
ECGc (65/35%) -0.0090 (-17%)

(80/20%) -0.0085 (-11%)

Table 7.1: Average value across subjects of the difference between the estimates measured

from the simulated pseudo-ECGs in pecg1, pecg3 and pecg5 (Δ̂α
pECG

), and from the

tilt test recordings Δ̂α
ECGc

. Different percentages of cell types have been used to derive
the pseudo-ECGs.
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Figure 7.11: APDR slope dispersion, ΔαSIM, for the cell type distribution 80/20%, and
the proposed estimate measured from the pseudo-ECG in pecg3, pecg4 and pecg5.

[145], transmural variation of the fiber angle [146], and heterogeneity of cell types across
the ventricular wall [148], are in agreement with experimental studies. The simulated
activation sequence is layered and agrees with the one of an isolated human heart section
reported in [6].

Experimental studies in canine wedge preparation [88] show that in case of having
transmural heterogeneities only, the time instant of the T wave peak corresponds to
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Figure 7.12: APDR slope dispersion, ΔαSIM, computed as a function of RR for three cell

type distributions. For each tilt test recording, Δ̂α
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values are shown in circles at the
mean of the corresponding RR interval range.

the complete repolarization of the epicardium. This agrees with the results of our 2D
simulations, which include only transmural heterogeneities, where the peak of the T wave
in pseudo-ECGs coincides with the total repolarization of the epicardium in the central
part of the tissue (see the isochronic voltage representation in Fig. 7.6). This has been
observed for pacing at different RR intervals and also for different cell type distributions
(see Fig. 7.7).

Although we could have defined APDmin as the APD of any cell region chosen along the
T peak wave front shown in Fig. 7.6, that region should remain fixed for the different RR
levels to be able to apply equation (7.3). In Fig. 7.7, it is shown that in our simulations,
the only region that remains in the T peak wave front for different RR levels is at the
center of the epicardium (minimum APD at the T peak wave front).

The APD in the different cell regions of the 2D tissue slice are within the range of
APDs of the sub-endocardium, midmyocardium and sub-epicardium reported in [147].

Steady-state T dynpe at different RR levels obtained from simulated pseudo-ECGs are in
agreement with those measured from ECG control recordings (see Fig. 7.9). Restitution
properties have also been evaluated by comparing the simulated estimations of APDR

slope dispersion Δ̂α
pECG

, derived from the pseudo-ECGs, with the values obtained from
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of RR. For each tilt test recording, Δ̂α
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values are shown in circles at the mean of the
surrogate RR interval range together with the derivative of the optimal gk(., a) function
over the corresponding RR range.

the tilt test recordings. Results in Table 7.1 and Fig. 7.10 show that simulated values in
pecg3 and pecg5 are within the range measured in ECG recordings. Sensor positions

pecg3 and pecg5, located in the middle part of the tissue, are used to derive Δ̂α
pECG

due
to their similarity to the precordial leads V2, V3 and V4, used to compute the estimates
in the tilt test recordings.

7.4.2. Assessment of APDR dispersion quantified from the pseudo-
ECG

As Fig. 7.11 shows, Δ̂α
pECG

, measured from the pseudo-ECG provides a quantification
of APDR slope dispersion ΔαSIM at tissue level, being the mean error relative to the slope
range below 6%. This result shows that APDR dispersion at tissue level is properly
quantified using the proposed non-invasive estimates.

7.4.3. Agreement between simulated APDR dispersion and es-
timates from clinical ECG data

Two APDR slope dispersion estimates from the surface ECG were proposed: one

computed from stationary ECG segments, Δ̂α
ECGs

; and the other compensating for the
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Cell Percentage Average [ms/ms]

ΔαSIM - Δ̂α
ECGs

(65/35%) -0.0117 (-29.5%)
(
ΔαSIM−Δ̂α

ECGs

ΔαSIM
∙ 100

) (80/20%) -0.0119 (-29.5%)
(90/10%) -0.0221 (-120.9%)

ΔαSIM - Δ̂α
ECGc

(65/35%) -0.0052 (-20.2%)
(
ΔαSIM−Δ̂α

ECGc

ΔαSIM
∙ 100

) (80/20%) -0.0053 (-19.8%)
(90/10%) -0.0137 (-116.8%)

Table 7.2: Average value across subjects of the differences between simulated dispersion

of restitution slopes ΔαSIM at tissue level and their ECG estimates Δ̂α
ECGs

and Δ̂α
ECGc

.

Tpe hysteresis on RR, Δ̂α
ECGc

.

In some cases, the estimates Δ̂α
ECGs

differ considerable from the ΔαSIM values. Re-
viewing RR trends from those recordings, non stable RR periods are observed. Averaged

differences between Δ̂α
ECGs

and ΔαSIM, are of 30% of the value in mean. If we do not

assume stable ECG segments and compensate for the Tpe memory effect using Δ̂α
ECGc

,

results improve considerably. Averaged differences between Δ̂α
ECGc

and ΔαSIM, which
also account for inter subject variability, are of about 20%. If we take into account the

individual differences, the averaged difference between ΔαSIM and Δ̂α
ECGc

is -0.0052, half

of the one between ΔαSIM and Δ̂α
ECGs

(-0.0117). Besides the good agreement between
ΔαSIM and the corresponding ECG estimates, a similar behaviour of the derivatives of
the optimal gk(., a) functions over each corresponding RR range is observed. Also, our
results are in accordance with the slope values reported in [122] for healthy subjects.

The estimate Δ̂α
ECGc

shows promising results to extend this method to evaluate ar-
rhythmic pathologies related to restitution dispersion.

7.5. Limitations of the Study

The 2D simulation does not incorporate a 3D geometry of a left ventricle wall to
compute APDR dispersion. Also, heterogeneities other than transmural ones, e.g. apex
to base, were not included, which could shed light on the understanding of the Tpe. Those
considerations could have led to different sites associated with APDmin and APDlast,
as described after equation (7.1). However, they would not imply any change in our
methodology. Also, it is worth mentioning that the dispersion quantified in our study
is that accounted for by the Tpe interval, which does not necessarily correspond to the
maximum dispersion in the tissue.

Healthy subjects have been used to evaluate the proposed methodology to non-invasively
quantify restitution dispersion. The next step will be to apply the methodology to esti-
mate restitution dispersion in patients who experienced VT or VF and compare it with
control subjects.
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Tilt test recordings were obtained from subjects aged 25 to 33 years old with no
previous history of cardiovascular disease. However, the data used for the development of
the human ventricular action potential model used in this study are not always specific
of young healthy hearts.



Chapter 8

Conclusions and Future extensions

In this section a summary of the most important contributions of this thesis and the
potential future extensions are presented.

8.1. Conclusions

8.1.1. Ischemia detection in Holter recordings and body posi-
tion change detection

A previous ischemia detector developed within the ESC DB framework and based on
the root mean square of the ST segments with respect to a reference ST segment, has been
modified and has improved its performance on a more extensive database, the Long-Term
ST Database (LTST DB). In this database, ST episodes of different origin are present,
making a much more challenging scenario for the detector. The modified detector is more
general in the sense that it accepts recordings with different number of leads without
setting new parameters, and the search for non ischemic reference beats.
As expected, the detector decreases the performance obtained in the ESC DB when

it is applied in the LTST DB obtaining a sensitivity of 73% and a positive predictivity
of 78% , claiming for much more robust false alarm cancellation rules, accounting for the
very different nature of ST episodes. This opened new working lines as detecting and
cancelling out body position changes.
We have developed a body position change detector based on the generalized likelihood

ratio test (GLRT) for laplacian noise distribution, which is applied to the Karhunen-
Loève transform coefficient series of the QRS and STT complexes. Its performance is
shown to be higher than a previous detector developed for gaussian noise distribution.
However an extra stage has been needed to decrease the false alarm rate in a database
with patients undergoing a percutaneous coronary intervention, where not body position
changes are present. Information of the noise in the ECG signal is used and it is shown
that the occurrence of a BPC is associated with noisy beats. The performance about
92% in sensitivity and 99% in positive predictivity, makes the detector very useful in ST
monitoring. However, in ambulatory monitoring with a lower SNR of the ECG, baseline
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wandering and abrupt changes related to heart rate variations, the applicability should
be further studied.

8.1.2. Classification of ST episodes

ST segment changes provide a sensitive marker in the diagnosis of myocardial is-
chemia in Holter recordings. However, not only the mechanisms of ischemia result in ST
segment deviation, but also heart rate related episodes, body position changes or conduc-
tion changes among others, which are considered artifactual events when ischemia is the
target. In order to distinguish between them, the very similar signatures of ST modifica-
tions has led us to look for other ECG indices such as heart rate-based indices, correlation
between the absolute ST segment deviation and heart rate series, the interval between
the Tapex and the Tend, T wave amplitude, the signal to noise ratio and changes in the
upward/downward slopes of the QRS complex.

A linear discrimination analysis between the three types of events: ischemia, heart
rate related episodes and sudden step ST changes (body position changes and conduction
changes) has been performed on the LTST DB, reaching an accuracy of 82.3%. The
differences in the number of episodes between groups, cause the step wise classification
approach to focus first on classifying sudden step ST changes Then, changes in energy of
the ST segment has been the first feature selected to classify transient and sudden step
changes. The second input variable is related to heart rate and attempts to discriminate
between the IG and HRG.

If we focus on distinguishing between different ST signatures, transient episodes (is-
chemic and heart rate related) and sudden step ST changes, it results in a sensitivity
of 76.8% and a specificity of 98.3%. When classifying ischemia from heart rate related
episodes, both with a very similar ST level pattern, a sensitivity of 84.5% and a speci-
ficity of 86.6% are reached. Finally, for separating ischemia from any other ST event, a
sensitivity of 74.2% and a specificity of 93.2% are obtained.

The results notably improve when trying to distinguish between the two very different
ST level patterns: transient and sudden step. As expected, the first included indices
are ΔIRMSST and |I

e
KLST-T

| related to changes in energy of the ST segment and the ST-T
complex respectively.

For ischemia detectors based on changes in the ST segment, discrimination between
IE and HRE, both very similar patterns in the ST level function, is a very useful tool for
automatic screening of Holter episodes. The results show that further information such
as heart rate indices, the QT interval or KL-based indices from both repolarization and
depolarization, help in discriminating between them, allowing the sensitivity/specificity
to increase to 84.5%/86.6%.

In order to diagnose pathological problems, we have attempted to discriminate between
ischemic and non ischemic events. In this case, we achieved an accuracy of 87.5%, being
changes in the ST energy the first selected feature.
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8.1.3. Characterization of Tpe rate adaptation

We have used a time invariant model to describe the [Tpe/RR] relationship, in which
the RR interval series is considered as the input and the Tpe intervals series as the output.
The first block represents a time invariant FIR filter and the second a biparametric func-
tion that accounts for intra-subject variability. The hypothesis of this work relies on the
fact that current Tpe interval is influenced by a history of previous RR intervals. There-
fore, the first system represent the memory of the Tpe with respect to the RR interval
and the second one, the relationship between the Tpe and the RR intervals under steady-
state conditions. Identification of each of the two blocks, where the input and output
of the system are known, has been done by using the least mean square estimator. In
order to optimize this ill posed problem, a regularization term to stabilize its solution has
been used. Besides, to include the two restrictions described in section §6.1.2, in the cost
function to be optimized, we have reformulated the problem and used the QuasiNewton
optimization technique reducing the computational time with respect to the optimization
solver used for the QT .

Results show that Tpe is practically synchronous with HR changes and much faster
than QT interval adaptation. In the ANS-UZ database of control and young recordings
(about 28 years old), the time to complete 90% of the HR adaptation is about 23 seconds
for the Tpe interval while for the QT interval, it takes 75 seconds.

Besides, the fast Tpe rate adaptation correlates to a reported fast HR adaptation of a
transmural 1D fiber [5].

The ANS-UZ database was acquired at the University of Zaragoza in the framework of
this study and consists of 12 lead ECG, blood pressure, respiratory, pulse photoplethys-
mography and expiratory pressure signals recorded from seventeen healthy volunteers.
These volunteers underwent a tilt test trial and three different Valsalva maneuvers as
described in chapter 5.

8.1.4. Quantification of action potential duration restitution (APDR)
dispersion from the surface ECG

Action potential duration restitution (APDR) curves present spatial variations due
to the electrophysiological heterogeneities present in the heart. Enhanced spatial APDR
dispersion in ventricle has been suggested as an arrhythmic risk marker. In this study we
have proposed a method to non-invasively quantify dispersion of APDR slopes at tissue
level by making only use of the surface electrocardiogram (ECG). The proposed estimate
accounts for rate normalized differences in the steady state T wave peak to T wave end
interval (Tpe). A methodology has been developed for its computation, which includes
compensation for the Tpe memory lag after heart rate (HR) changes. The capability of
the proposed estimate to reflect APDR dispersion has been assessed by using a combina-
tion of ECG signal processing and computational modeling and simulation. Specifically,
ECG recordings of control subjects undergoing a tilt test trial are used to measure that
estimate, while its capability to provide a quantification of APDR dispersion at tissue
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level is assessed by using a 2D ventricular tissue simulation. From this simulation, APDR
dispersion, denoted as ΔαSIM, is calculated, and pseudo-ECGs are derived. Estimates of
APDR dispersion measured from the pseudo-ECGs show to correlate with ΔαSIM, being
the mean relative error below 5%. A comparison of the ECG estimates obtained from
tilt test recordings and the ΔαSIM values measured in silico simulations at tissue level
show that differences between them are below 20%, which is within physiological variabil-
ity limits. These results provide evidence that the proposed estimate is a non invasive
measurement of APDR dispersion in ventricle.

8.2. Future extensions

8.2.1. Ischemia detection in Holter recordings and body posi-
tion change detection

Extrapolation of the body position change detector to Holter recordings in order to
be used together with the ischemia detector. This would decrease the number of
false positives due to BPC.

8.2.2. Classification of ST episodes

In this work we have focused on the search for features which better discriminate
between ischemic and non ischemic episodes, referred to as feature extraction. A
future extension would be the use of more complex classifiers than the linear or the
quadratic ones [94].

Significant features extracted from the discriminant analysis between ischemic and
non ischemic ST events could be included in the ischemia detector. This would
improve performance by reducing the number of false positives.

8.2.3. Characterization of Tpe rate adaptation

In order to characterize the Tpe rate adaptation, a time-invariant model has been
used. However, differences in heart rate accelerations and decelerations have not
been accounted for. In the case of the QT interval or the APD, rate adaptation has
been shown to be longer after HR decelerations than after HR accelerations [106, 5].
A time-variant model can be formulated in order to account for HR accelerations
and decelerations and also to normal changes occurring with time.

Besides characterizing the Tpe rate adaptation in control recordings, it would be
interesting to study it in pathological conditions to stratify the arrhythmic risk as
done with the QT interval rate adaptation 6.1. Also, in the evaluation of drugs that
leads to cardio toxicity, this Tpe rate adaptation time could be analysed as a potential
biomarker to predict drug-induced arrhythmias. Indeed, some publications point
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out different T wave features as alternative predictors (to QT or QTc) of malignant
arrhythmias such as Torsades de Pointes [152, 153].

8.2.4. Action potential duration restitution (APDR) dispersion
from the surface ECG

With respect to the 2D model, a future extension would be to use a 3D geometry
with a torso model to derive APDR dispersion at tissue level and compare it with
results derived with the 2D model.

To compute the ECG estimate, we have used the Tpe interval measured in the lead
with higher SNR. The information of the Tpe interval measured in different leads
could result in a more robust or complementary measurement.

A natural future extension of this work is to test the proposed estimate in patho-
logical conditions as patients which have already suffered an arrhythmic episode
or which are prone to suffer it. We expect to measure enhanced values of APDR
dispersion as some publications point out [141, 137, 124].

Some drugs (mostly class III potassium channel blocker drugs for treatment of ar-
rhythmias) lengthen the APD differently in different parts of the myocardium which
may lead to develop malignant ventricular arrhythmias [153]. The proposed esti-
mate can be used to identify those drugs.

Pseudo-ECG represents the extracellular potential without considering a torso model.
Then, a future work would be to evaluate the proposed estimate on unipolar elec-
trograms (EGM).

Ischemia results in physiological modifications (structural and/or functional abnor-
malities) in the myocardial ventricle, which are associated to arrhythmias [9, 10, 11].
Previous studies have shown that the main effects of ischemia on the electrical resti-
tution curve are to lower action potential durations (APD) 1.7 and reduce its slope.
This has lead to a controversy [154] taking into account that electrical alternans,
precursor of ventricular fibrillation (VF) are known to be enhanced by a steep ERC
slope and ischemic hearts with a shallower slope than normal hearts are related to
arrhythmia [135]. We expect that the lower action potential durations in ischemic
cells lead to an increase of restitution dispersion such that the proposed estimate can
measure. This would explain the propensity of ventricular fibrillation in ischemic
hearts.
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A. Mincholé, J. P. Mart́ınez, P. Arini, M. Risk, P. Laguna. “T Wave Width Al-
terations during Valsalva Maneuvers in Diabetic Patients”. Proc. Computers in
Cardiology, vol. 32, pp. 709-712, Valencia (Spain), 2006.
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[49] P. Laguna, G. Moody, J. Garćıa, A. Goldberger, and R. Mark, “Analysis of the ST-
T complex of the electrocardiogram using the Karhunen-Loéve transform: Adaptive
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[154] L. Romero, J. M. Ferrero (Jr), J. Sáiz, B. Trénor, and M. Monserrat, “Effects of
acute ischemia on the restitution curves of myocardial tissue: A simulation study,”
pp. 525–528, Computers in Cardiology, 2004.








