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Orthonormal (Fourier and Walsh) Models of Time-
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Abstract—Estimation of time-varying changes in evoked poten-
tials (EP’s) has important applications, such as monitoring high-
risk neurosurgical procedures. We test the hypothesis that injury
related changes in EP signals may be modeled by orthonormal
basis functions. We evaluate two models of time-varying EP
signals: the Fourier series model (FSM) and the Walsh function
model (WFM). We estimate the Fourier and Walsh coefficients
with the aid of an adaptive least-mean-squares technique. Results
from computer simulations illustrate how selection of model order
and of the adaptation rate of the estimator affect the signal-
to-noise ratio (SNR). The FSM results in a somewhat higher
steady-state SNR than does the WFM; however, the WFM is
less computationally complex than is the FSM. We apply these
two orthonormal functions to evaluate transient response to
hypoxic hypoxia in anesthetized cats. Trends of the first five
frequencies (Fourier) and sequencies (Walsh) show that the lower
frequencies and sequencies may be sensitive indicators of hypoxic
neurological injury.

I. INTRODUCTION

ECENTLY, it has become apparent that EP's may be

monitored to capture transient or time-varying events in
the brain. For example, in neurosurgical procedures the time-
course of EP signals may be an important indicator of the
patient’s neurological function [1], [2]. Sudden transients or
unexpected time-varying changes may indicate neurological
dysfunction. New signal processing techniques that serve
this problem are required. Our efforts are directed toward
developing signal processing techniques both for estimating
time-varying changes in noisy EP signals and for understand-
ing the diagnostic significance of these changes [3]-[S].

In neurological monitoring, because the EP signals are
buried in significant (typically 0 to —15 dB) noise, the first
aim of any signal processing method is the enhancement
of the signal-to-noise ratio (SNR). A great deal of research
has been done to identify underlying EP signals from noise
[6]. Ensemble averaging is usually employed to enhance the
SNR. However, during the course of neurosurgical procedures
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the signal may be time-varying. For such an application, a
modification of the traditional procedure of ensemble aver-
aging is necessary. In a moving window averaging scheme,
for example, a specific number of sweeps may be averaged
at a time. Then, successively, a new sweep is added and
the oldest one discarded. Alternatively, in an exponentially-
weighted averaging scheme, older sweeps are weighted less
(by an exponential scale). This technique requires us to select a
priori a weighting (or forgetting) factor that controls the speed
of dynamic adaptation. Neither method constructs a model of
the signal that allows interpretation of the changes resulting
from injury.

We have observed that the EP signals undergo morpho-
logical changes characteristic of physiological or pathological
injury [7}. This observation made apparent to us the need to
construct models of the EP signal with a few parameters and to
utilize these parameters for diagnostic purposes. While others,
for example Norcia et al. [8], have analyzed time-domain as
well as spectral content of the EP signal, their methods are
not applicable to time-varying EP signals. Sgro ez al. [9] have
suggested a two-dimensional filter that may be suitable for
time-varying EP signals, but it is not suitable for an on-line
analysis since it requires acquisition of the complete ensemble
before filtering can be carried out. Previously we suggested an
adaptive filtering scheme, one that enhances the SNR and at
the same time adapts to time-varying changes in the signal [3].
We also developed the theory behind an adaptive Fourier linear
combiner {4]. Here, we propose that time-varying EP signals
be modeled by two orthonormal basis functions, Fourier and
Walsh. We employ an adaptive least-mean-squares (LMS)
technique to estimate the model parameters and to recover the
time-varying EP signal. We show that time varying changes
in the model parameters may be utilized to capture incidences
of neurological injury resulting from cerebral hypoxia.

II. EP MODELS

EP signals are obtained through repetitive stimulation of
the peripheral nervous system. Successive responses should be
similar. However, during the course of a complete monitoring
procedure time-varying changes may be expected to occur.
Typically. only the amplitudes and latencies of EP signals
are recorded. A small change in amplitude or latency may or
may not be diagnostically significant. In the course of routine
monitoring, amplitude may change without there being any
underlying pathology; for example, movement of the patient
may cause such a change. Latency is a more robust indicator
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" of pathological events, but its actual measurement (done by
detecting peaks and valleys in the EP signals) is prone to
errors. To avoid such errors, we propose modeling EP signals
by orthonormal basis functions [10]. In such a procedure, the
coefficients of the basis functions themselves may be used to
detect time-varying changes. In the following, we define two
orthonormal basis functions, Fourier and Walsh.

If d(t) is a piece-wise continuous signal whose power within
a time interval (tg,to + T') is finite, then there exists a model

M
d(t) = cmzm(t) (1
m=1
such that
to+T
/' [d(t)y — d'(t)]? < €
to

where ¢ can be arbitrarily small (but greater than 0), ¢,
is the mth coefficient of the series, M is the number of
coefficients, and z,, is a real-valued function that has the
following property:

to+T .
/ To(t) Tn(t) dt = {Eonstant if
t

0

ifm=mn
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A Fourier series model (FSM) of the signal, as well as a
Walsh function model (WFM), satisfies this definition. The
FSM represents the signal in the form of Sine and Cosine
functions, and the WFM represents the signal in the form
of Cal and Sal functions. We will later utilize one property
of the orthonormal representation (namely, that the signal of
interest can be reconstructed with a linear combination of
these functions) to recover the EP waveform. The EP signal
is assumed to be quasiperiodic. That is, the waveform repeats
following each successive stimulus, and the intervening signal
beyond the short latency EP signals is discarded from analysis.
The duration of the waveform of interest, or its period, is fixed
(40 ms, or 128 samples, for the examples presented in this
paper). However, the EP waveform, but not its period, may
vary with time.

An FSM of an EP waveform at time % is obtained for a
truncated series. Assume that the dc component is removed
by filtering.

M/2
dy, = Z em exp{(JmuwokT)

m=~-M/2

k=1,---.N (a)

where T is the sampling interval, wy is the fundamental
frequency, K = 1,---,N are the samples in d},mwqg is
the normalized frequency or the mth harmonic, and ¢, are
the complex coefficients. Assuming that the dc component is
removed by filtering and dj, is real, then (3a) can be expressed
as

M/2

= Z [@m Cos(mwokT) + by, Sin(mwokT)]
m=1

k=1,--.N (3b)

Gm, by, are the mth Fourier coefficients, and the model or-
der, by definition, is M. We choose the order M so that
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Fig. 1. Schematic of the adaptive estimator. The reference input X at time

k represents an orthogonal set of functions z1, - - - x s [Fourier or Walsh; (5)].
The adaptive estimator adjusts the weights W, (the respective coefficients)
so that the MSE between the observed signal dj, at time k and the estimated
signal d) is minimized. The LMS algorithm is employed for adaptation.

the truncated series represents more than 95% of the signal
power. The higher harmonics are assumed to contain too little
power or represent temporal features that hold little diagnostic
information.

Analogous to the FSM is the representation of EP signals
by a Walsh function model (WFM). The EP waveform at time
k (again assuming dc coupled signals and a truncated series) is

M/2
i, = Y e Wal(m, k,T)
m=1
M/2
> lam Cal(m. k, T) + by, Sal(m, k, T)]

m=1

k=1, ,N @

where Wal(m, k, T') is the mth Walsh function at time k. The
index m defines the sequency of the Walsh function (analogous
to normalized frequency for Fourier series) and M is the model
order. The Cal and Sal functions take the place of the Cos and
Sin functions and take advantage of computational simplicity,
given that their values are 1 or 0 [10].

III. ESTIMATION

In this section we present the algorithms to estimate the
model parameters, that is, to estimate the time-varying values
of the Fourier or the Walsh coefficients. The EP signal is
modeled as a quasiperiodic, time-varying Fourier series or
Walsh sequence. The duration, or the period, of the EP signal
is fixed; but its frequency or sequency components may
show unexpected variations as a result of neurological injury.
The background EEG, along with environmental interference,
usually adds considerable noise. For the purpose of analysis,
this noise may be considered to be additive and statistically
uncorrelated with the signal [6]. Hence, we employ an adaptive
estimation approach that eliminates uncorrelated noise by
minimizing the mean-squared error (MSE) between the noisy
signal and the signal model.
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Fig. 1 shows a schematic of this adaptive estimator. The
primary input to the estimator at the Ath sweep is the noisy
EP signal:

dk=8k+’l}k k=(A'1)N+17,AN

where k is the sample at time k,dj is the observed signal,
sk is the underlying true signal, v is the noise added to
this signal, A is the sweep number, and N is the number
of samples/sweep. The reference input to the estimator are
the Sin and the Cos or the Sal and the Cal functions. The
signal model is constructed from a linear combination of these
functions. The reference vector X is defined as

Xk = [Z1,k: T2k, -z k)T, where
FSM :z,; = Sin{rweT(k — (A —1)N)}
= Sin(rweTk) forr=1,2,---M/2;
and z, x = Cos{(r — M/2)weT(k — (A —1)N)}

= Cos((r — M/2)woTy) forr=M/2+1,--- M

WEM : 2, = Sal{r, T(k — (A ~ 1)N)}
forr=1,2,---,M/2
and ., = Cal{(r — M/2),T(k — (A - 1)N)}
forr=M/2+1,--- .M. (5)

The output dj, of the model is generated by a linear combi-
nation of the reference inputs, each one affected by a weight
w;, and adapted at each iteration k.

M
b= wikdi = Xg Wi, = Wi Xy ©6)

i=1

where Wi, = (w1, w2k, - ,wM,k]T is the weight vector that
we shall show is an instantaneous estimate of the Fourier or
Walsh coefficients.

The adaptive estimator minimizes the MSE between the
noisy input signal y and the signal model dj by adjusting
the weights w;,. The error signal is e, = dy — d}, and
the mean-squared error is MSE = E[e2]. Widrow ez al. [11],
[12] have established that the adaptive algorithm minimizes
the instantaneous squared error e,zc. In the steady state, the
optimum weight vector W* becomes

W*=R'P )

where R = E[X;, X7 is the input correlation matrix and P =
E[d.X]| is the cross-correlation vector. In our application,
given that the Cal and Sal functions are orthonormal and
the Sin and Cos functions can be made orthonormal with a
normalization factor of 1/2,

RFSM = (1/2)1 and PFSM = 2[0’17"'7aM/27b17"'7bM/2]
Rwrm =1  and Pwrm = [a1, -+, apg2, b1, -, bag)
(®)
and therefore
W™ = a1, -, an2,b1, -, bagya)- )

This means that the weights for the two filters defined in
this section converge, in steady state, to the Fourier and Walsh

coefficients for the respective models. In effect, the EP signal
dy, is modeled by either Fourier or Walsh functions of order M.

The Adaptive Algorithm

Different adaptive algorithms have been proposed [12]. We
use the simple but effective least mean square (LMS) algorithm
[11], [12]:

Wi = Wi+ 2uer Xy (10)

The adaptation rate of this estimator is governed by the pa-
rameter . The higher the value of p, the faster the adaptation,
and vice versa. However, too high a value of x may lead to
instability. From [11] the convergence condition is

(FSM: 0 < p < (2/M);
WEM:0 < u < (1/M)).
an

The learning curve of the adaptive algorithm is such that
the MSE decreases exponentially for each mode: (1 —
pA1), (1 — pAm), where A;(i = 1,---,m) are the
eigenvalues of the matrix R. In our algorithm, A; = A leads to
a uniform convergence of all the modes. The time constant for
convergence to the minimum MSE is 7 = 1/(4pA). Therefore,
from (8)

0< < 1/tr[R]

TFSM = 1/2u and

TwrMm = 1/4p. (12)

This result demonstrates an important advantage of selecting
a set of orthonormal basis functions as reference inputs. The
convergence is uniform and determined by the parameter u
only as the eigenvalues are identical. If the stability condition
in (11) is met, convergence can be achieved quite rapidly.

The steady-state MSE values for the FSM and the WFM are
described in the Appendix. Although the steady-state MSE is
a complex function involving several parameters (including
u, model order M, and the autocorrelation matrix of the
reference signal R), it shows a crucial linear dependence on
the parameter x when g is small. This result makes it clear
that faster adaptation is achievd by selecting a large u, but it
is achieved at the cost of a greater steady-state MSE.

IV. SIMULATIONS

We carried out several computer simulations to compare the
FSM and the WFM models, and to illustrate the performance
of the adaptive estimator. These simulations examine the
selection of model order, adaptation rate, transient response,
and steady state performance. For the purpose of these sim-
ulations we created an EP template by ensemble averaging
1000 sweeps that were recorded during the normal control
period of the experiment reported in this paper. This template
was considered to be the true signal s. For the purpose of our
simulations, we consider that the prestimulus signal constitutes
background brain activity or noise. This prestimulus noise
v was added to the EP template to generate a noisy sweep
dj, = sk +vk. The noise level was scaled to alter the SNR, and
several thousand noisy sweeps were generated in this manner.
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Fig. 2. Relative power spectra (a2, + b2,) for EP signals and pre-stimulus
noise. (a) Fourier model, (b) Walsh model. The insets show waveforms
produced when reconstruction is done using frequency/sequency terms up to
16, 32, and 64 (model orders 32, 64, and 128, respectively). The spectra for
A = 200 sweeps are averaged. (c) Relative power versus frequency (Fourier)
or sequency (Walsh) for prestimulus noise.

Model Order

It is important to select a proper model order to represent
the signal accurately. Truncation of either the Fourier or
the Walsh series produces a distortion of the time domain
signal, leading to possible inadequate representation of the
fine features of the waveform. Choice of an appropriate model
order becomes apparent from the discrete Fourier transform
and the Walsh transform. Fig. 2 plots the relative power,
defined as (a2, + b2,), at various frequencies (harmonics), in
the case of Fourier, or sequencies, in the case of Walsh. The
waveforms in the inset show that truncation of the Fourier
series results in a lowpass filtering or smoothing effect in
the reconstructed signal. Nevertheless, even with a smaller
order, reconstruction retains the significant features of the
EP signal [see inset, Fig. 2(a)]. A high order Walsh model
also adequately reconstructs the signal, but at lower orders
the Walsh function results in a fairly jagged waveform that
may not be clinically acceptable [see inset, Fig. 2(b)]. The

TABLE 1
COMPARISON OF THE FSM AND THE WFM (M:
MODEL ORDER ; k = 1--- N, No. SAMPLES /SWEEP)

WFM FSM
Memory (bytes) (M/8)k (M/2)k
Multiplications 1 2M+1
Calculations
Add/subtract 2M 2M
Steady-state % error:
/ N N
3 (s- onf/ 3 (s fY xt00
\k=1 k=1
M=32 5.6% 2.0%
M=64 2.7% 1.8%
M=128 1.7% 1.7%

ippearance can be cosmetically improved, if necessary, by
smoothing the reconstructed waveform. In practice, we select
1 model order high enough to include more than 95% of the
signal energy.

Table I compares the memory and computing requirements
for several models. We also show in Table I the steady-state
error (the normalized squared value of the difference between
each sample of the known template s; and the filter output
d;c at all frequencies or sequencies). While the errors are
comparable at M = 128 for the WFM and FSM, at model
orders below M = 32 the error is noticeably greater for the
WFM.

Next, we evaluated the effect of model order selection
and the adaptation parameter values for the two models. Fig.
2(c) shows that the power spectrum of noise overlaps the
Fourier and the Walsh spectra of the signal in Fig. 2(a) and
(b), although not completely. The insets in Fig. 2(a) and (b)
illustrate the EP template reconstructed using 16, 32, and 64
frequencies or sequencies for the FSM and WFM, respectively.
As expected, the template reconstruction improves as the
number of frequencies or sequencies used in the reconstruction
is increased.

Fig. 3 plots the SNR at successive sweeps for the two
models. The SNR is defined as

N N
SNR = {Zs‘i}/{z:(sk - ;)2}. (13)
k=1 k=1

In the steady state, that is after all the weights have converged,
there is some residual estimation error. The steady state error is
caused by truncation, which results from the selection of the
model order M, and misadjustment, which results from the
LMS algorithm. Increased steady state error due to truncation
at smaller model orders is apparent in Fig. 3. Truncation error
is noticeable for the WFM at model orders below M = 32.
Truncation error can be minimized by selecting a higher model
order, but at the cost of increased computations and memory
requirements (Table I). Also note that a larger model order
results in a larger misadjustment error.
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Fig. 3. Estimator response for various model orders. (a) FSM esti-
mator. (b) WFM estimator. For comparison, equivalent model orders
(A:M = 32,B:M = 64, and C:M = 128) and convergence rates
[ = 0.0003 (WFM) and 0.0006 (FSM)] are used.
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Adaptation

In order to study the adaptation properties of the algo-
rithm, we analyzed the database constructed previously. We
employed the adaptive LMS algorithm, where the parameter 4
governs the adaptation rate [see (12)]. Note that the adaptation
occurs at each sample, and therefore, a p value in the range
of 0.0001 (7 = 5000) achieves adaptation in about 50 sweeps
for an EP waveform with 128 sample points per sweep. The
higher the value of 1, the faster the adaptation, and this allows
us to track faster EP transients (Fig. 4). Unfortunately, a larger
value of p also results in a greater steady-state misadjustment
error [12]. This is actually quite apparent with the WFM [Fig.
4(b)]. To achieve a high steady-state SNR, it is important to
select a smaller value of p (although we may sacrifice some
transient response). Equation (A.2) in the Appendix suggests
that at higher levels of noise in the EP signals, the MSE would
be reduced by selecting smaller values of u.

Transient Response

A significant advantage of the adaptive estimator is that

SNR(db)

or-
0 40 80 120 160 200 240
Sweeps
(a)
40
30 \
o
T b
0 5 e
T 20 |
0 i 'B
c
10
0 40 80 120 160 200 240
Sweeps

(b)

Fig. 4. Estimator response for various adaptation parameter values. (a) FSM
estimator. (b) WFM estimator. In general, a larger value of p results in faster
adaptation but also greater steady-state misadjustment error (or lower SNR).
[M = 64, A:p = 0.0003,B:4 = 0.0007.C:p = 0.001 (WFM); and
A:0.0006. B:0.0014, C:0.002 (FSM)].

we can follow time-varying changes in the EP waveform. For
example, in Fig. 5 we abruptly alter the EP waveform. As
before, the simulation data contain experimentally recorded
EEG noise added to the known EP signal. During the first
100 sweeps, both the FSM and the WFM estimators (with
comparable model orders and 4 values) adapt until they reach
a steady state. After the abrupt change in the signal, there is
an initial sharp drop in the SNR. While both the estimators
reach a steady-state SNR in about 60 sweeps (Fig. 5), the
FSM estimator produces a slightly higher steady-state SNR.

V. EXPERIMENTAL STUDIES

We conducted an experimental study to evaluate the FSM
and WFM models of EP signals under normal and hypoxic
injury conditions. We carefully followed the transient response
of the FSM and the WFM estimators throughout the course of
brain injury and recovery. Our aim was to determine whether
the two estimators captured the incidence of hypoxia and
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Fig. 5. Transient response of the FSM and the WFM estimators. The EP
signal in the inset is abruptly changed to a new one at the 100th sweep.
Equivalent model orders and convergence times are used for comparison.
(p = 0.0007 (WFM) and 0.0014 (FSM); M = 64).
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whether changes in the model parameters provided any early
indications of injury.

We considered acute cerebral hypoxia as a model of brain
injury. Anesthetized cats were made hypoxic in order to
alter the response of their nervous system. The experimental
protocol was similar to the one described by McPherson
et al. [13]. The animals were anesthetized with ketamine
and acepromazine given intramuscularly (50 mg/kg/h and
1.1 mg/kg/, respectively). Anesthesia was maintained with
nitrous oxide and intravenous fentanyl (21.5 pg/h). After the
scalp, skin, and musculature were dissected, a ball-shaped
silver electrode with shielded cable was placed in a hole
approximately 1 cm lateral to the midline and just prior to
the coronal suture. A reference electrode was placed in a hole
drilled in the frontal bone, and stimulating electrodes were
placed percutaneously on the volar surface of the contralateral
leg. The anesthetized cat initially breathed normal air, but after
a period of adaptation, the cat breathed a hypoxic gas mixture
(8% O3). After the animal was anesthetized, electrical stimuli
of 0.2 ms duration were delivered at supra-threshold strength
(typically 20 mA) at the rate of 5.9/s. A commercial amplifier
(Nicolet Med80) acquired raw (unaveraged) EP sweeps. Each
sweep, which comprised 128 samples, was digitized at the rate
of 3200 samples/s (using an ISC-16 data-acquisition system,
RC Electronics). The data were acquired and analyzed on
an IBM-compatible, Intel 386 microprocessor-based personal
computer. Detailed experimental results are described by Vaz
[7]. The data in Fig. 6 show a transient loss in EP signal
amplitude, with the decline taking place over a span of about
4000 sweeps. When the cat was returned to normoxic air its
recovery was surprisingly quite rapid, taking place in less than
1000 sweeps. This result suggests that the proposed adaptive
algorithm is sensitive to transient changes resulting from acute
injury to the brain.

An inspection of the EP waveforms in the inset of Fig. 6(a)
and (b) reveals that besides changes in signal amplitude no-
ticeable changes occur in signal shape as well. We plotted the
time-varying changes in the mean amplitudes for the first five

SEP AMPLITUDE (P-P, microvolts)

T T T T T

e Y 0.6
SWEEPS
(20 thousand )

(@)

0.4

SEP AMPLITUDE (P-P, microvolts)

-30 T v T
0 0.2

o6 08 1
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(®)

Fig. 6. Transient amplitude response of somatosensory EP to hypoxic
hypoxia (8% inspired O2) and reoxygenation (reox.) in an anesthetized cat.
(a) FSM estimator, and (b) WFM estimator. The inset shows waveforms
estimated using the adaptive algorithms during control, 8% O, at the time
of recovery with 100% O3, and following full recovery [y axis: amplitude of
the somatosensory EP signal peak; x axis: number of sweeps with the scale
multiplied by 20 000; ¢ = 0.0007 (WFM) and 0.0014 (FSM)].

0.4

frequencies and sequences (FSM and WFM, respectively) at
each successive sweep throughout the course of the experiment
[Fig. 7(a) and (b)]. Quite surprisingly, the relative distribution
of various frequencies or sequencies shows distinct trends dur-
ing hypoxic injury and during recovery. Specifically, the first
frequency/sequency appears to respond strongly to cerebral
hypoxia in the early stages. The lower frequencies (1 to 3) also
appear to be the earliest to recover after reoxygenation. This
result suggests that time-varying changes in the signal model
can be used to examine the nature of neurological injury.

VI. DISCUSSION AND CONCLUSIONS

The FSM and the WFM provide alternative ways of model-
ing time-varying EP signals. Since these are orthonormal basis
functions, they possess some unique advantages. A relatively
few basis functions suffice, and a truncated set may also be
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Fig. 7. Time trends of mean amplitudes for (a) the first five frequencies
(FSM) and (b) the first five sequencies (WFM). Note the increased response of
the first frequency/sequency during the early stages of hypoxia (8% O3 ). Note
also the relatively rapid recovery of the lower frequencies/sequencies (1-3)
following reoxygenation (reox.). (y axis: mean amplitude; x axis: number of
sweeps with the scale multiplied by 20 000; ¢ = 0.0007 (WFM) and 0.0014

(FSM); mean amplitude is calculated as: 1/ Z,\,{g(afn + b2,). where am

and by, are the Fourier or the Walsh coefficients.

selected. The adaptive estimator employs the LMS algorithm,
which has the advantage of computational simplicity. Also,
since we use an orthonormal reference set, there is no eigen-
value spread and, as a result, convergence of all the model
coefficients is uniform; hence, no distortion occurs. In general,
the FSM requires a smaller model order and results in a higher
steady-state SNR. A high model order is desirable with the
WEM to achieve adequate signal representation. The jagged,
step-like appearance of the Walsh estimated waveform may
not be aesthetically acceptable. However, the WFM estimator
requires fewer calculations and smaller memory capacity and,
therefore, may be preferred to real-time applications (Table I).
For the two applications in this paper, both the FSM and the
WFM estimators produce similar results. The benefit of the
FSM is a somewhat higher steady-state SNR, an aesthetically

pleasing reconstruction of the EP waveform, and a more
traditional frequency domain interpretation of the signal.

The primary reason to select Fourier and the Walsh basis
functions is that they are orthonormal, and also that they
are mathematically well understood [10]. Another convenient
benefit of our selection is that the frequencies and harmonics
of the Fourier series are well understood and accepted in
clinical applications. Our experiments also show that the
time-varying response of various frequencies/sequencies to
neurologic injury occasionally differs. Therefore, an advantage
of our approach is that, in the course of estimation, we build a
model of the signal that may be useful for diagnostic purposes.
For example, our experimental studies appear to indicate
that the lower frequencies/sequencies are the more sensitive
indicators of hypoxic injury [13]. Our second selection, Walsh
basis, was chosen for its analogy to the Fourier basis and
its significant computational simplicity (Table I). The result
obtained in this paper, that the performance of the Walsh model
is only marginally inferior to that of the Fourier model, is
important if this algorithm is to be implemented in a real-time
system. We do not now know what diagnostic or computational
advantage basis functions other than Fourier and Walsh would
offer.

Selection of model order may be important in some appli-
cations where subtle changes in the waveform may have to
be discriminated. In this paper we truncate the model, and
truncation may result in some distortion. In practice this is
not a problem if the model order is high enough so that more
than 95% of the signal energy is represented. Of course, a
smaller model order has the advantage that fewer calculations
and less data storage space are required. The model order
selected affects the steady-state SNR. The higher the model
order, the higher the steady-state SNR. A smaller model
order results in a greater steady-state misadjustment (lower
SNR), but the advantage of the smaller model order is that it
requires fewer calculations. The reduced computational load
may be important in real-time monitoring. An indirect benefit
of EP signal modeling is data compression, that is to say,
at each sweep only the model coefficients need be saved;
individual sample values need not. Therefore, a smaller model
order representation requires less data-storage capacity. In the
current study, we do not adjust the model order dynamically
(that is, sweep by sweep) because it is not clear that any
improvement in SNR could be achieved whereas further signal
distortion is risked. However, (A.1) and (A.2) in the Appendix
do suggest the prospect of selecting an optimal model order
for achieving the desired MSE. Such an algorithm would be
very data-dependent.

The adaptation parameter p governs the convergence prop-
erties of the adaptation algorithm. As the result in the Ap-
pendix shows, a complex relationship exists between the
adaptation error € and the adaptation rate parameter u. A large
value of p allows the algorithm to track faster transients at
the expense of a greater adaptation error. As the simulation
results show, an SNR improvement of 10-20 dB with realistic,
experimental, or clinical somatosensory EP recordirigs can
be achieved for a p value in the range of 0.001-0.0001.
The steady-state SNR between 10 and 20 dB is reached in
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"about 100 sweeps. The SNR may vary during the actual
experiments. A more advanced algorithm could dynamically
alter the adaptation parameter u to a higher value in low-noise
situations. This would allow the algorithm to track more rapid
transients.

The adaptive LMS algorithm employed in this paper has
been shown to converge to the Wiener filter W™ [11], [12].
In the steady-state, the EP estimates are expected to converge
to the optimum Wiener filter. However, when the signals are
time-varying and when the signal and noise are correlated, this
conclusion will not hold true. In the experiments presented
here, the signals are indeed time-varying and the Wiener
filtering approach is not appropriate when real-time monitoring
must be carried out without a priori information. In certain
situations, the noise may be correlated with the signals, such
as when strong quasiperiodic alpha activity is present. In the
examples presented here, in which we analyzed the somatosen-
sory EP signals of cats under anesthesia, we did not observe
enhanced alpha activity. Periodic components of the electrical
interference, such as 60 and 120 Hz power line signals, will
not be cancelled by the method proposed here. This electrical
interference should be eliminated prior to data-acquisition by
analog notch filtering, or by an adaptive 60 Hz canceller [11].

Together, these signal models of EP and the adaptive
estimation algorithm serve as tools for monitoring transient
and time-varying EP signals. Our experimental study reveals
that the Fourier and Walsh models may be useful in examining
the time course of neurological injury. Since various frequen-
cies/sequencies respond differently to the neurological injury
and to recovery, they may be used to evaluate the nature and
extent of injury. Based on the experimental results presented
here, we hypothesize that the lower frequencies/sequencies
may be used as early indicators of the incidence of neu-
rological injury and their recovery. Evaluation with other
models of neurological injury, such as cerebral ischemia [14],
may be needed to confirm whether changes in the lower
frequencies/sequencies are universal indicators of brain injury.
Observations made under controlied experimental situations
remain to be tested in clinical environments where alterations
in evoked potentials due to injury have been reported [15].
Alterations occurring due to neurological injury must also be
discriminated from the effects caused by anesthetics. We did
not observe changes in model parameters with one anesthetic
(etomidate) [5]; however, other anesthetics {16] remain to
be studied. While we have observed that the responses of
the Fourier and Walsh models are similar, a more detailed
examination and additional experimental studies would be
needed to determine the relative clinical merit of the two
models. Note, however, that Fourier and Walsh analyses of
EEG signals have also produced similar results in tracking the
effects of anesthesia [17].

Brain monitoring in critical care situations, such as in
a neurological intensive care unit and in high-risk surgical
procedures, would benefit from signal models that help identify
risk to patients. In surgical situations, where the alteration
in an EP signal may occur unexpectedly, such as due to
occlusion of a cerebral artery [1], [2], [14], our algorithms
may be expected to supply a rapid indication. For example,

time trends of the changes in various frequencies/sequencies
may be continuously monitored for this purpose. Real-time and
on-line estimation and display would help in timely detection
of trauma to the brain and may lead to quick corrective actions.
The algorithms presented here, therefore, may conveniently be
employed in patient-monitoring systems.

VII. APPENDIX

An expression for steady-state error (that is, MSE), after
the statistical moments of the weight vector have converged,
can be derived and used in assessing the performance of the
proposed algorithm. The steady-state MSE consists of two
components:

& =€+ f(M), where

€ klim E[(sk — d},)?]is the adaptation error and
— 00

N/2

>

i=(M/2)+1
is the truncation error for model order M.

f(M) (af +67)

(A1)

A detailed expression is obtained following the derivative of
Vaz and Thakor [4]. The analysis assumes that 1) u < 1, and
2) noise vy, is zero-mean, stationary, and uncorrelated with the
signal, and autocovariance R, (i) = E[vgvg+;] = O beyond
a finite interval, ie., for i > L. If R; = E[XiXiT] is the
autocorrelation matrix of the reference vector, M is the model
order (in case of WFM, M is a power of 2, or M = 2"), then,
for the two models in this paper,

L
FSM: € = pR, ()M + 21y
=1

‘ M
(1 — p)'Ry(3) Z cos(jwot)
j=1
L

WFM: e = (ﬁ)Ru(O)TM (ﬁ) >

i=1
(1 - 2u) R, (i)tr[R; + R_y). (A2)

The detailed derivations are available from the authors upon
request.
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