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Abstract

The appearance of wearable devices in the field of biomedicine marks an
important milestone in the evolution of technology applied to health care
and personal well-being. These devices have revolutionized the way the
physiological parameters and daily activities of the individual aremonitored.
Their development is based on the advanced miniaturization of sensors
and signal processing systems, allowing real-time capture and analysis of
critical data such as heart rate, blood oxygenation, and physical activity level,
among others. This innovation not only facilitates constant and preventive
health monitoring, but also opens new avenues for the personalization of
medical treatment and rehabilitation.

Wearable devices come with certain limitations that must be carefully con-
sidered in the design of signal processing algorithms. One of the main
challenges is the quality of the data collected in uncontrolled environments.
Unsupervised recordings can be susceptible to variations in device place-
ment, extrinsic movements, and varying environmental conditions, which
can result in inaccurate or incomplete measurements, especially when these
recordings are made during daily life. Additionally, the very nature of
the sensors used in these devices, as well as the biological signals they
record, tends to produce data with a higher level of noise and artifacts, since
there is a trade-off situation between the optimal place in signal quality
and comfortability terms. This is particularly noticeable in signals such as
photoplethysmography.

To counteract these drawbacks, it is imperative to adapt and develop robust
analysis methods that can handle these inherent imperfections in the data.
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This includes preprocessing techniques for artifact removal, as well as
more sophisticated analysis algorithms that can extract useful information
even from incomplete data. This thesis presents several methods and their
applications in the context of chronic disease monitoring using wearable
devices. Specifically, it investigates applications for identifying sleep apnea
and monitoring depression and anxiety.



Resumen y Conclusiones

La aparición de los dispositivos wearables en el ámbito de la biomedicina
marca un hito importante en la evolución de la tecnología aplicada al cuidado
de la salud y el bienestar personal. Estos dispositivos han revolucionado la
forma en que se monitorizan los parámetros fisiológicos y las actividades
cotidianas del individuo. Su desarrollo se basa en la miniaturización
avanzada de sensores y sistemas de procesamiento de señales, permitiendo
la captura y análisis en tiempo real de datos críticos como la frecuencia
cardíaca, la oxigenación sanguínea y el nivel de actividad física, entre otros.
Esta innovación no solo facilita una vigilancia constante y preventiva de
la salud, sino que también abre nuevas vías para la personalización del
tratamiento médico y la rehabilitación.

Los dispositivos wearables conllevan ciertas limitaciones que deben ser
cuidadosamente consideradas en el diseño de algoritmos de procesamiento
de señales. Uno de los desafíos principales es la calidad de los datos recogi-
dos en entornos no controlados. Las grabaciones no supervisadas, real-
izadas en la vida cotidiana del usuario, pueden ser susceptibles a variaciones
en la colocación del dispositivo, movimientos extrínsecos, y condiciones
ambientales variables, lo cual puede resultar en mediciones imprecisas o
incompletas. Adicionalmente, la naturaleza misma de los sensores utiliza-
dos en estos dispositivos, así como de las señales biológicas que registran,
tiende a producir datos con un mayor nivel de ruido y artefactos. Esto es
particularmente notable en señales como la fotopletismografía.

Para contrarrestar estos inconvenientes, es imperativo adaptar y desarrollar
métodos de análisis robustos que puedan manejar estas imperfecciones
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inherentes a los datos. Esto incluye técnicas de preprocesamiento para la
eliminación de artefactos, así como algoritmos de análisis más sofisticados
que puedan extraer información útil incluso de datos incompletos. En esta
tesis se presentan algunos de estos métodos, así como aplicaciones de los
mismos en la monitorización de enfermedades crónicas con dispositivos
wearables. En concreto, se presentan aplicaciones para el screening de apnea
del sueño y para la monitorización de la depresión y la ansiedad.



Agradecimientos

Esta tesis no sería posible sin un gran número de personas. Espero no
dejarme a nadie.

Quiero empezar agradeciendo el esfuerzo de mis directores, coautores
de todos los trabajos que forman este manuscrito. Raquel, has estado
presente en todas mis fases formativas en esta Universidad, desde primero
de carrera, pasando por el máster y el TFM hasta este momento. Eres
incansable, dedicada y aprendo de cada conversación contigo. Espero seguir
haciéndolo. No se me borra de la cabeza el día que me acerqué a tu despacho
a preguntarte por una oferta de TFM y salí con un plan de doctorado. No
me arrepiento. De Jesús también puedo decir que he aprendido un gran
número de cosas. Aunque todavía recuerdo con terror su corrección de
mi primer artículo -estaba todo en rojo-, forma parte inseparable de mi
crecimiento profesional en estos años. Con él compartí el que de momento
es de largo el mejor congreso en el que he estado. En este espacio también
quiero agradecer a Edu, que si bien no ha sido un director más ha estado
cerca; a David, especialmente presente en mis primeros pasos; y a Pablo,
cuyas indicaciones encierran siempre una gran sabiduría.

No puedo menos que dar las gracias a todos mis compañeros del día a
día. Especialmente a los que han estado durante todo este viaje. Cristina y
Pablo, habéis sido los mejores compañeros que uno puede desear. Vuestras
conversaciones han sido imprescindibles para mantener el ánimo, y de
ellas han surgido también nuevas ideas y enfoques que hoy se plasman
en estas líneas. A este núcleo también pertenece Rodrigo, que aunque no
ha estado desde el primer día ha sido un compañero de fatigas en la etapa



VI

intermedia-final. No me olvido tampoco del resto de mis compañeros de
laboratorio, que por desgracia ya no están por aquí. Spyros, Javi, Carmen,
Estela, Andrés. . . os tengo mucho cariño.

En general quiero agradecer estos años a todo el grupo BSICoS. Habéis sido
unos grandes compañeros de los que he aprendido innumerables cosas
durante estos años. Las tardes de deporte han sido un desahogo inigualable
de la presión del doctorado.

También quiero agradecer a la gente del STARgroupdeKuopio, en Finlandia.
Sigue indeleble el recuerdo de aquella comida con Samu, donde todas las
cabezas se giraron hacia mí cuando se propuso que nuestra colaboración
incluyese estancias de investigación. Agradezco mucho la confianza que
pusieron en mí para esta gran -y fría- experiencia. Gracias a Salla, Marika,
Juuso y Tim por hacer mi estancia más amena y permitirme vivir la
experiencia finlandesa completa.

Me reservo las últimas líneas para aquellos que más quiero. A mis padres,
que me han querido y apoyado durante tantos años. Siempre me pusieron
todas las facilidades para llevarmis estudios hasta el final, que no se limitaron
a la universidad. Gracias a ellos soy lo que soy. Carlos, no te pongas celoso,
estas palabras también van por ti. En estos momentos recuerdo con especial
cariño a los que no están, mis abuelos, que seguro que estarían orgullosísimos
de esto, como lo estuvieron de todo lo que hacía su nieto. También te lo
agradezco a ti, Paula, por aguantar todos estos años a mi lado a pesar de ser
un cabezón. Han sido años de grandes cambios y grandes decisiones, que
me han hecho crecer como persona a tu lado. Espero que sean muchos años
más. Acabo estas líneas agradeciendo a mis amigos -no pongo nombres
porque por suerte para mí sois muchos-, por todos esos momentos de
esparcimiento, confidencias y "comentadas" en general. Lleváis conmigo
toda la vida. Os quiero mucho.



1
Introduction

1 Context and motivations

Wearable devices have become key tools in monitoring health and wellness.
Their application spans various areas, from preventive medicine to chronic
disease management, promoting greater personalization and precision
in healthcare. Wearable devices, which embody a spectrum of sensors
and computational capabilities, have transitioned from niche applications
to mainstream adoption due to their potential to offer continuous, real-
time insights into an individual’s physiological states and activity levels.
Continuous monitoring of physiological parameters such as heart rate, blood
pressure, glucose levels, electrodermal activity, and blood oxygen saturation
allows early detection of anomalies, facilitating timely medical interventions.
For example, wearables can detect irregular heartbeats or poor sleep, having
the potential to alert both the user and healthcare providers to potential
issues before they become critical. Wearables also track physical activity,
sleep patterns, and other lifestyle factors. By providing real-time feedback,
they encourage healthier habits and increased physical activity. Features
such as step counting, calorie tracking, and sleep analysis help individuals
set and achieve personal health goals [1, 2]. In addition, some wearables
offer stress monitoring and guided breathing exercises, which contribute to
mental well-being. In general, the integration of wearables in health and



2 Chapter 1. Introduction

wellness represents a significant shift towards proactive and personalized
healthcare, empowering individuals to take an active role in managing their
health.

The data generated by wearable devices are invaluable for medical research,
offering large longitudinal datasets that were previously unattainable. This
has implications for personalizedmedicine, where treatments can be tailored
to the individual’s unique physiological makeup and lifestyle, potentially
improving outcomes and reducing healthcare costs. In addition, the comfort
and convenience of noninvasive techniques suggest widespread adoption by
the general population, facilitating early screening and detection. Central
to this evolution is the integration of biomedical engineering with signal
processing techniques, which transform raw data into actionable health
metrics. This convergence facilitates a more nuanced understanding of the
human body, which extends beyond traditional clinical settings to everyday
life. However, this rapid advancement is highly challenging. The issues
related to data privacy, security, and accuracy of wearable devices are
areas of ongoing concern. The precision of data interpretation, crucial for
making health-related decisions, is heavily based on the sophistication of the
algorithms used, which must be continually refined in line with advances in
our understanding of human physiology and the environment. This thesis
focuses on developing robust methodologies to estimate informative health
parameters from wearable device signals.

The continuous monitoring of biomedical signals is both the primary
advantage and the main challenge faced by wearable devices. Movements,
variations in environmental conditions, and daily physiological changes
generate numerous scenarios that must be considered. Motion artifacts and
low signal-to-noise ratios are frequent issues, and current algorithms are
not entirely reliable in addressing these challenges. Many of the commonly
used metrics were developed prior to the advent of wearable devices
and were based on signals obtained from clinical devices in controlled
environments. Consequently, these initial algorithms assumed a certain
level of signal quality, with significantly fewer artifacts present. Therefore,
signal processing methodologies have had to evolve to account for these
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new conditions. This work outlines the primary challenges that must be
addressed in the short term throughout the entire signal processing chain
and proposes solutions for some of these critical points.

This proposal extends beyond the methodology to include practical applica-
tions. In addition to examining the algorithms themselves, their application
in two promising areas for wearables is addressed: mental illnesses, such as
depression and anxiety; and obstructive sleep apnea. Mental illnesses have
become a focal point in contemporary society due to their high incidence
and severity. Disorders such as major depression and generalized anxiety
are highly disabling. The implementation of wearables as a monitoring tool
is presented as a promising approach to personalize and track treatment.
In addition, the fields of psychiatry and psychology may benefit from the
numerical metrics derived from biosignals, which would supplement their
primarily subjective tools and measures. On the other hand, obstructive
sleep apnea, a disease with a very high incidence but significant underdiag-
nosis, is particularly highlighted. Wearables possess the ability to analyze
biosignals during the night, including those closely related to sleep apnea,
such as peripheral oxygen saturation. This thesis analyzes their use as a
screening tool and proposes a new and promising index to alert users.

2 Objectives

The objective of this thesis is to investigate robust and noninvasive methods
for assessing the autonomic nervous system using wearable devices. This
study draws on all previous research derived from electrocardiograms, as
well as more recent pulse rate variability studies based on photoplethys-
mography. The signals acquired from the wearable devices have distinctive
characteristics that must be addressed specifically to achieve comparable
results. Progress in these objectives brings society closer to a deeper un-
derstanding of the human body, particularly the autonomic nervous and
cardiovascular systems, through extensive biosignal recordings from both
patient and general populations. In addition, the applications of wearable
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devices are being investigated for the screening of obstructive sleep apnea
and monitoring stress reactivity, one of the physiological mechanisms al-
tered in mental illnesses such as major depression and generalized anxiety,
proposing their use in the follow-up of these diseases.

The specific objectives of this thesis are:

1. General methods for reliable ANS assessment using wearable devices

Long-term unsupervised recordings (ideally 24 hours a day, 7 days a
week) exposed to motion and changing conditions present a specific
challenge for wearable devices. However, some of these issues are
common to most of them, so it is possible to outline a common
methodology. The primary objective of the thesis is to explore the
impacts of missing data in order to ensure reliable monitoring.

2. Smartphone app development for PPG recording

The flashlight and camera of a smartphone can be employed to obtain
the pulse photoplethysmography signal. This technology allows for
the use of this device for monitoring some health-related parameters.
In contrast to other wearables, such as smartwatches, it does not allow
continuous recording while performing daily tasks. Additionally, it
has specific challenges that are detailed in this thesis, such as a larger
amount of motion artifacts. However, the universality of smartphones
is an advantage that makes it a very attractive technology.

3. Application of wearables to mental illness

Mood disorders are one of the major health problems in today’s
society. The introduction of wearables for monitoring these patients
can provide an additional layer of information for professionals, adding
objective data, such as stress reactivity assessment measures, to a field
where analysis is almost exclusively based on subjective parameters.
The objective is to analyze whether stress reactivity can be evaluated
with a smartphone in the same way as it is done with commercial
pulsioximeter devices.

4. Application of wearables to obstructive sleep apnea screening
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Obstructive sleep apnea is highly undiagnosed and its gold standard
for diagnosis is polysomnography, which results in a cumbersome
procedure. During this test, the patient has to spend one night in a
hospitalmonitored by a variety of sensors. The path to this test involves
self-detection of symptoms, such as daytime sleepiness, which, when
reported to the physician, can lead to a recommendation to perform
the test. Therefore, automatic alert and screening systems may greatly
enhance the identification of a disease that poses significant long-term
risks. This thesis explores the use of signals from commercial wearable
devices, such as pulse photoplethysmography and peripheral oxygen
saturation, as inputs for a sleep apnea screening model.

3 Structure of the thesis

The thesis is organized as follows:

• Chapter 2 presents an introduction to wearable devices in the context
of health monitoring, along with the biosignals they provide and
related physiology. This chapter aims to provide the reader with the
tools to understand what information these devices provide and how
they can be used to assess the autonomic nervous system through
heart rate variability.

• Chapter 3 focuses on the examination of the pathologies under study:
mental illness and obstructive sleep apnea. Although the core of
the thesis emphasizes general methodologies relevant to various
applications, practical instances are included to demonstrate how
robust analysis of biosignals from wearable devices can enhance
conventional techniques.

• Chapter 4 is dedicated to themethods shared by the following chapters,
with special emphasis on the description of the processing chain as a
whole, composed of distinguishable but interdependent parts, from
signal acquisition to the computation of heart rate variability metrics.
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• Chapter 5 is a small study conductedwith an innovative device: a band
with a piezoelectric sensor that records peripheral venous pressure.
Since respiratory movements significantly influence venous return,
metrics derived from this signal have been utilized to evaluate the
parasympathetic autonomic system. The research described in this
chapter generated the following publication:

– Diego Cajal, David Hernando, Jesús Lázaro, Eduardo Gil, Annie
Alvis, Monica Polcz, Bret Alvis, Kyle Hocking, Colleen Brophy
& Raquel Bailón. Parasympathetic Characterization Guided by
Respiration From Wrist Peripheral Venous Pressure Waveform. 2020
Computing in Cardiology, Rimini, Italy, 2020, pp. 1-4. Oral
communication.

• Chapter 6 focuses on exploring the impact of data loss on heart
rate variability metrics. The study includes a simulation to assess
the degradation of various metrics in both the time and frequency
domains, together with Poincaré plots. In addition, a gap-filling
technique has been introduced to address data loss and ensure reliable
metrics. This technique has been compared with other methods
through simulation and a real-world application using an Apple
Watch. The research described in this chapter generated the following
publication:

– Diego Cajal, David Hernando, Jesús Lázaro, Pablo Laguna,
Eduardo Gil & Raquel Bailón. Effects of Missing Data on Heart Rate
Variability Metrics. Sensors 2022, vol. 22, no. 15, 5774. Journal
article. Corresponding author.

• Chapter 7 investigates the use of pulse photoplethysmography ob-
tained using a smartphone camera to monitor patients with mental
illness such as depression and anxiety. The application has been
developed specifically for this work, applying the most robust error-
correction methods from the previous chapter. This work currently
continues with the development of a system that combines the mobile
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application with cloud-based metric computation and a user interface
for healthcare professionals where results are displayed. The aim of
this project is to provide numerical and objective metrics in a field of
medicine primarily guided by subjective evaluations. The research
described in this chapter generated the following publications:

– Diego Cajal, Concepción de la Cámara, Mar Posadas-de Miguel,
Noel Torrijos, Óscar Nadal, Teresa Blanco, Sara Siddi, Pablo
Armañac, Eduardo Gil, Jesús Lázaro & Raquel Bailón. Evaluation
of Stress Response Using Smartphone PPG for Anxiety and Depression
Monitoring Journal article. Corresponding author. Pending
revision.

– Diego Cajal, Mar Posadas-de Miguel, Concepción de la Cámara,
Spyridon Kontaxis, Jesús Lázaro & Raquel Bailón. Smartphone
PPG Validation for a Depression Assessment Protocol. 2022 IEEE
e-Health and Bioengineering Conference (EHB), Iasi, Romania,
2022, pp. 1-4. Oral communication.

– Diego Cajal, Mar Posadas-de Miguel, Concepción de la Cámara,
Spyridon Kontaxis, Jesús Lázaro & Raquel Bailón. Smartphone
PPG Validation for a Depression Assessment Protocol. I Young
Researchers Meeting CIBERESP-BBN 21-22 November 2022.
Poster.

• Chapters 8 and 9 are dedicated to the study of a screening tool for
obstructive sleep apnea using a pulse photoplethysmographic signal
and peripheral oxygen saturation, common signals from wearable
devices. Sleep apnea is widespread and significantly underdiagnosed,
which can cause serious complications. Creating this kind of appli-
cation can be beneficial in preventing complications and improving
patient well-being. The research described in this chapter generated
the following publications:

– Diego Cajal, Eduardo Gil, Pablo Laguna, Carolina Varon, Dries
Testelmans, Bertien Buyse, Chris Jensen, Rohan Hoare, Raquel
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Bailón & Jesús Lázaro. Obstructive Sleep Apnea Screening by Joint
Saturation Signal Analysis and PPG-derived Pulse Rate Oscillations.
IEEE Journal of Biomedical and Health Informatics, vol. 28, no.
1, pp. 228-238, 2024. Journal article. Corresponding author.

– Diego Cajal, Eduardo Gil, Pablo Laguna, Carolina Varon, Dries
Testelmans, Bertien Buyse, Chris Jensen, Rohan Hoare, Raquel
Bailón & Jesús Lázaro. Sleep apnea severity stratification by an FFT-
based PPG-derived index. 2022 12th Conference of the European
Study Group on Cardiovascular Oscillations (ESGCO), Vysoké
Tatry, Štrbské Pleso, Slovakia, 2022, pp. 1-2. Oral communication.

– Diego Cajal, Eduardo Gil, Pablo Laguna, Carolina Varon, Dries
Testelmans, Bertien Buyse, Chris Jensen, Rohan Hoare, Raquel
Bailón & Jesús Lázaro. Estratificación de la severidad de la apnea del
sueño mediante un índice derivado de PPG basado en FFT. Jornada de
Jóvenes Investigadores del I3A, vol. 10 (Actas de la XI Jornada
de Jóvenes Investigadores del I3A – 16 de junio de 2022)Oral
communication.

• Chapter 10 is dedicated to summarizing the conclusions and main
findings of the thesis. It recapitulates the key objectives of the research
and synthesizes the most significant discoveries from each chapter.
It also reflects on the limitations of the study, proposes directions
for future research, and concludes by emphasizing the importance
of developing objective noninvasive tools for health diagnosis and
monitoring in the context of personalized healthcare and emerging
medical technologies.
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2
Wearables, biosignals and phisiology

1 The wearable revolution

Years following the creation of the first wireless electrocardiogram by
Polar Electro in 1977, the entry of smartphone manufacturers in the mid-
2010s greatly contributed to the expansion and advancement of wearable
devices [1]. Today, the prominent brands dominating this market segment
include giants such as Apple, Google (Fitbit), Garmin, Polar, Samsung,
and Xiaomi. Pioneering devices such as the Garmin 101 have paved the
way for the development of progressively advanced models, which now
incorporate an extensive array of sensors, facilitating a broader spectrum of
applications. Contemporary devices are often equipped with optical sensors
capable of recording pulse photoplethysmography and monitoring oxygen
saturation levels. Many of them also integrate electrical sensors designed
for electrocardiography and electrodermal activity measurement. This suite
of sensors is further enhanced by the incorporation of temperature sensors,
pedometers, altimeters, gyroscopes, and GPS modules. Together, these
sensors allow the tracking of various health and fitness metrics, such as
heart rate, stress levels, sleep patterns, steps taken, distance traveled, speed,
and elevation gain [2].

Health and fitness remain the main applications of wearable technology [3]:
features such as fall detection on smart watches enable prompt identification



12 Chapter 2. Wearables, biosignals and phisiology

and notification of caregivers, addressing a major health concern with
serious consequences, particularly for the elderly [4]; consistent monitoring
of physical activity and calorie consumption can encourage individuals to
adjust their exercise and diet routines, thus fostering a healthy lifestyle [5];
observing physical activity and vital signs has demonstrated advantages
for patients with chronic diseases [6, 7]; etc. Monitoring applications have
transformed the healthcare sector from reactive to proactive prevention-
oriented interventions, allowing users to have greater responsibility and
control over their health [8].

Several categories of devices exist: smartwatches, fitness bands, fitness
trackers, smart shoe insoles, wearable biometric tracking devices, and smart
garments. Within the purview of this thesis, smartphones are classified as
wearable devices. These instruments, which generally serve as the central
nodes for connectivity with additional gadgets, are proficient in executing
accelerometry, positioning, and gyroscopic measurements. Moreover,
smartphones possess the capability to capture pulse photoplethysmographic
signals through the camera and conduct voice characteristic analysis via the
microphone. Furthermore, fingerprint readers enable secure authentication
for access or signal recording, thus ensuring the protection of privacy. The
ubiquitous presence of smartphones presents significant potential for this
technology [9].

A recent market analysis suggested that the demand for wearable devices
would grow if their practicality and perceived ease of use were improved [8].
Although designing wearable devices is outside the scope of this thesis,
researchers should consider these factors when creating new metrics or
adapting existing ones for wearables. Wearable devices should increasingly
incorporate novel health and wellness monitoring metrics that are compre-
hensible and straightforward to interpret for end users. This strategy could
foster a positive feedback loop, where wider use of wearables produces
more data, thus facilitating the investigation of new metrics or the addition
of existing ones in innovative contexts.
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2 Biosignal acquisition and interpretation

The utility of wearable devices is determined by their ability to record
various biological signals, which are continuously generated by the human
body during normal functioning. These signals can originate from diverse
sources such as electrical, chemical, acoustic, andmechanical [10]. Although
invasivewearables, such as subcutaneously implantable chips, may represent
promising future developments, the focus on noninvasive techniques
reflects a pragmatic approach given their current predominance and ease
of adoption by the general population. The acquisition, processing, and
analysis of signals obtained through noninvasive methods, particularly for
the monitoring of chronic diseases, are the focus of this thesis. Specifically,
attention is given to three types of signals that can be recorded on the body’s
surface: pulse photoplethysmography, electrocardiography, and peripheral
venous pressure.

Medical specialists are trained in visually evaluating certain biosignals, such
as electrocardiograms, to identify conditions such as arrhythmias. However,
signal processing methods are essential for revealing concealed details and
even during visual analysis, eliminating noise and correcting the baseline is
vital. The varied nature of biosignals allows for their recording using optical
(pulse photoplethysmography, peripheral oxygen saturation), electrical
(electrocardiography, electromyography, electroencephalography, electro-
dermal response), mechanical (plethysmography, airflow measurement,
ballistocardiography), acoustic (phonocardiogram, voice recording), and
chemical sensors (glucose measurement). Often, a single device can record
multiple signals simultaneously, enabling the integration of various sources
of information into a cohesive model. This diversity necessitates a wide
array of techniques for researchers, from preprocessing tasks like filtering
and normalization to integrating data into complex models, including deep
learning algorithms. Intermediate processes pose significant challenges,
such as pulse detection in photoplethysmographic and electrocardiographic
signals, managing data loss, and separating components linked to different
signal sources. Before detailing the methodology used in this thesis, which
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is presented in Chapter 4, it is crucial to describe the signals to be analyzed.
A thorough understanding of the nature, origin, and physiological relation-
ships of these biosignals is essential to uncover the underlying information.
Likewise, insights gained from biosignal analysis must contribute to a deeper
understanding of the natural processes of the human body that produce
these signals.

2.1 Pulse photoplethysmography

Pulse photoplethysmography (PPG) represents an essential biosignal within
the context of wearable technology, being widely incorporated in devices
such as smartwatches, fitness trackers, and armbands (see Figure 1). PPG is
a noninvasive technique employed to measure changes in blood volume
within the microvasculature of tissues. The method operates by illuminating
the skin with a light source and detecting variations in the intensity of the
reflected or transmitted light. These variations correspond to changes in
blood volume that occur during the cardiac cycle.

The PPG sensor comprises two essential components: a light source and a
photodetector. The light source emits light directed toward the skin, while
the photodetector measures the amount of light that is either reflected or
transmitted (see Figure 2). Hemoglobin present in blood exhibits light
absorption properties, showing particular sensitivity to wavelengths within
the near-infrared and visible spectrum. Throughout the cardiac cycle,
pulsatile changes in blood volume within the skin’s blood vessels lead to
variations in the local hemoglobin concentration, which in turn affect how
light is absorbed. During systole, an increase in blood volume within the
tissues results in heightened light absorption, leading to a decrease in the
intensity of the detected light. Conversely, during diastole, the blood volume
decreases, allowing more light to be detected.

The PPG signal provides insights into variations in blood flow and the
oxygenation of peripheral tissues. The signal comprises a pulsatile com-
ponent, which correlates with heartbeats, and a continuous component,
which is associated with light absorption by tissues and the non-pulsatile
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Figure 1: Examples of wearable devices that use PPG sensors. From top
left, clockwise: Apple Watch PPG sensor using green LEDs; Polar OH1+
armband; a smartwatch sharing pulse rate estimations with a smartphone;
and a runner using a fitness tracker. From [11–14].

blood component. PPG can provide information on several cardiovascular
parameters, including heart rate, heart rate variability, oxygen saturation,
and arterial stiffness. Peripheral oxygen saturation (SpO2) is determined
by pulse oximetry, a method that employs two light wavelengths, one red
and one infrared, to differentiate between the light absorption properties of
oxygenated and deoxygenated hemoglobin. The ratio of the light intensities
detected at these two wavelengths is utilized to compute SpO2. More details
of this process are given in Chapter 9.

Several factors can impact the accuracy of these measurements, including
patient movement, inadequate peripheral perfusion, dark nail polish, and
intense ambient light conditions. Smartphones can also measure PPG by
using the camera and flash. When the fingertip is placed over the camera and
flash, the device captures light variations by averaging the intensity of each
frame. Health applications then process these signals to calculate heart rate
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Figure 2: Operation of a reflection PPG. This is the type of PPG provided
by smartwatches, smartphones and devices placed on the forehead, arm and
temple. It is opposed to the transmittance PPG, where the photodiode is
facing the LED, provided by fingertip pulse oximeters and earlobe devices.
Adapted from [15].

and, in certain cases, heart rate variability. The accuracy of these smartphone
measurements may be compromised by the same factors that affect pulse
oximeters or smartwatch readings, with additional complications arising
from movement and applied pressure. Moreover, current smartphone
cameras lack infrared capabilities, preventing direct SpO2 measurement,
although attempts have been made to estimate it from PPG signals [16].
Despite these challenges, the ease of use and accessibility of smartphones
make them a powerful tool for basic health monitoring.

2.2 Electrocardiography

Cardiac myocytes are activated by electrical impulses that trigger muscle
contraction and act as transmitters in the nervous system. These impulses
create an action potential throughmuscle tissue, facilitated by ion exchanges.
Each phase of the cardiac cycle corresponds to a specific waveform in
the ECG (see Figure 3). Atrial systole at the beginning of the heartbeat
generates the P wave, followed by a brief pause that corresponds to the
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Figure 3: ECG waveform. The P wave corresponds with atrial depolar-
ization; the QRS complex represents ventricular depolarization; and the
T wave corresponds to ventricular repolarization. The R-R interval is the
standard metric for measuring the time between heartbeats.

delay introduced by the atrioventricular (AV) node. After the electrical
impulse exits the AV node, it is transmitted to the ventricles, triggering
ventricular systole. This event is visible on the ECG as a series of three
waves known as Q, R, and S, commonly referred to collectively as the QRS
complex. Ventricular systole, and consequently the QRS complex, is brief
due to the rapid conduction of the Purkinje system, and exhibits a larger
amplitude compared to the P wave due to the greater number of cells
in the ventricles relative to the atria. The final waveform, the T wave, is
produced by repolarization of the ventricles during diastole. Electrodes
placed on the chest, arms, and legs enable the detection of these waves, a
technique known as electrocardiography (ECG). This electrode distribution
permits the separate analysis of various combinations, referred to as leads,
which record the heart’s electrical activity along different spatial axes,
enabling noninvasive monitoring of physiological and pathological patterns.
Consequently, the ECG is considered the gold standard for diagnosing
conditions such as arrhythmias, heart blocks, and myocardial infarction.

Due to the transient nature of certain conditions, such as arrhythmias,
specialists often prescribe the use of portable ECG devices known as
Holter monitors. These devices record cardiac activity over long periods.
Despite their lightweight design and use of fewer leads, prolonged usage
is not advised due to potential skin irritation caused by the electrodes,
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which prevents screening applications. Moreover, even with ongoing
miniaturization, these devices can be uncomfortable, primarily because of
the cables that transmit signals from the electrodes to the device. Some
manufacturers have begun producing single-lead Holter monitors, such
as the Bittium MiniSnap, which eliminate these cables. As an alternative
to Holter-type devices, there are also approaches such as the armband
proposed in [17], capable of long-term ECG recordings.

In the context of wearable technology, chest straps and smartwatches are the
mostwidely accepted devices [18, 19], both utilizing single-lead ECGs. Chest
straps employ two electrodes placed on the chest, held by an elastic band,
with signals transmitted wirelessly to another device, such as a smartphone
or smartwatch. These signals are recorded throughout the duration of wear;
however, prolonged use may lead to irritation, restricting their use primarily
to exercise contexts. Smartwatches likewise use single-lead ECGs, utilizing
two electrodes: one positioned on the back of the watch in contact with the
skin, and the other on the crown, where the opposite hand’s fingers are
placed [20]. This is equivalent to lead I of a standard ECG. Within this lead,
theQRS complex, indicative of ventricular systole, can be seen. The ventricles
contract involving numerous cells almost instantaneously, resulting in a
high-energy spike wave. This unique morphological and energetic profile
significantly aids in the automatic identification of heartbeats.

Due to their comfort, smartwatches are suitable for longer periods of wear
but cannot record ECG continuously. This limitation is due to the need
to touch the smartwatch with both hands, since the electric loop must
be closed, restricting recordings to short durations. Although enabling
individuals to record ECG data for the evaluation of palpitations, syncope,
and sudden death risk is promising, its effectiveness must still be thoroughly
validated [21]. One way to overcome this limitation is through synergy
with other continuous monitoring signals, such as PPG. For arrhythmias,
PPG might offer sensitive markers that, although not very specific, could
encourage users to conduct an ECG. Another drawback of smartwatches is
the single-lead limitation, which may be sufficient for sports and fitness
applications, but remains a limitation for healthcare purposes. Nonetheless,



2. Biosignal acquisition and interpretation 19

studies have demonstrated the feasibility of using smartwatches to record
both frontal and precordial leads [22], potentially expanding their clinical
applications.

2.3 Peripheral venous pressure

Peripheral venous pressure (PVP) is a measurement of the blood pressure
within the peripheral veins, typically measured in the limbs. This parameter
is important in assessing the fluid status and venous return to the heart. PVP
is often used in clinical settings as an indirect indicator of central venous
pressure (CVP, see Figure 4), which reflects right atrial pressure and provides
insight into cardiac function and intravascular volume status. Its uses
include managing blood volume in scenarios of dehydration, hemorrhage,
or heart failure; examining venous blockages and thrombosis; and providing
guidance for intravenous treatment [23, 24].

As venous pressure is much lower compared to arterial pressure, precise
placement of the piezoelectric sensor over the vein is necessary. Some
methods incorporate the use of ultrasound alongside piezoelectric sensors
to image the veins, a technique known as compression sonography [25]. In
addition, PVP waveforms can be affected by the respiratory cycle. During
inspiration, negative intrathoracic pressure can reduce venous pressure,
while expiration can increase it. This respiratory variation can be particularly
pronounced in PVP measurements. The compliance of the venous walls
can also affect the waveform. Increased venous compliance can result in a
more flattened waveform, while decreased compliance (e.g., due to venous
congestion) may produce a sharper waveform.

PVP is typically measured using a catheter inserted into a peripheral vein,
such as the cephalic or basilic vein in the arm. Recent studies have explored
noninvasive methods to measure venous pressure using piezoelectric
sensors [27, 28], with the aim of providing continuous monitoring without
the risks associated with invasive catheterization. In this thesis, the PVP
signal is acquired using a wrist-worn device known as NIVA, which stands
for noninvasive Venous Waveform Analysis, engineered by VoluMetrix
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Figure 4: Comparison of CVP and PVP and relation with the ECG. CVP
is composed of several waves: a (atrial contraction), c (tricuspid valve
elevation into the right atrium), x (downward movement of the contracted
right ventricule), v (back-pressure wave from blood filling the right atrium)
and y (tricuspid valve opens in early ventricular diastole). These waves are
not present in PVP, which has a pulsatile waveform similar to the PPG.

(Nashville, TN). The development of this device was motivated by some
recent results of peripheral intravenous analysis that showed it is a promising
indicator in blood volume assessment and hemorrhages [29, 30]. In
Chapter 5 it is investigated how this signal can provide respiratory-guided
parasympathetic markers.

2.4 Auxiliar signals

The signals discussed below are not the main focus of this thesis but have
been used in various stages of the methodology. Although these signals
can be integrated with data from wearable devices, they are typically not
included in the sensor arrays of the most common wearables. These signals
are utilized either for verification purposes or as a provisional solution until
it becomes possible to depend solely on signals from wearable devices.
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Figure 5: NIVA device. This device designed by Volumetrix (Nashville,
TN) measure the changes in PVP in the wrist using a piezolectric sensor.
From [26].

Respiratory effort

The respiratory effort signal is obtained by a plethysmography band placed
on the chest. When breathing in, the chest widens, stretching the band. The
increased tension on the sensor is reflected as an increase in the signal. The
opposite occurs on expiration. It should be noted that the movement of the
chest does not necessarily indicate that air is entering or leaving the lungs.
In diseases such as obstructive sleep apnea, the patient may make breathing
movements at the torso level, but the airflow may be interrupted by the
collapse of the upper airway.

Here, an application of this signal is evident, as it is crucial to determine
whether an apnea is caused by obstruction (obstructive apnea) or by a lack
of respiratory effort (central apnea), which are differentiated processes.
Breathing is an involuntary action controlled by the autonomic nervous
system. This signal also provides information about this system.
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Nasal pressure

Nasal pressure is among the signals monitored during polysomnography,
the test used to diagnose sleep apnea. It assesses the air pressure entering
and exiting the nose during breathing through a sensor placed in a cannula.
Under normal breathing, an oscillatory signal similar to the respiratory
effort is recorded. However, this signal diminishes in amplitude or vanishes
entirely during apneic events. This signal is crucial in identifying the cessa-
tion of airflow during apnea, while respiratory effort helps to distinguish
between obstructive and central events, as previously mentioned.

3 Phisiology

3.1 Autonomic nervous system

The autonomic nervous system (ANS) is a division of the nervous system
responsible for controlling most visceral functions of the body, including
the heart rate, blood pressure, sweating, and gastrointestinal motility. Its
primary role is to assist in maintaining a stable internal environment,
a process referred to as homeostasis [31]. The ANS provides sensory
input to the central nervous system (CNS), which includes the brain and
spinal cord, regarding the status of the internal organs. It is responsible
for evoking sensations such as hunger, thirst, and nausea, which facilitate
the maintenance of homeostasis through voluntary behaviors like drinking
or eating. Although the ANS can evoke these perceptions and behaviors,
its primary regulation occurs unconsciously. Internal stimuli, detected
by various sensors within the viscera, trigger compensatory mechanisms
that are primarily mediated by centers in the spinal cord, brainstem, and
hypothalamus. The ANS can also function through visceral reflexes, which
are neural connections that do not require processing by the brain, thus
enabling rapid, subconscious reflex responses [32].
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Sympathetic and parasympathetic divisions

The signals that return to the organs, known as efferent signals, are trans-
mitted by the ANS through two subdivisions: sympathetic and parasym-
pathetic. Both motor divisions communicate with the organs through a
two-neuron pathway. The first neuron, known as the preganglionic neu-
ron, has its cell body located within the CNS, while the second neuron,
known as the postganglionic neuron, resides in an autonomic ganglion
and is connected to smooth muscle, cardiac muscle, glands, or walls of
the gastrointestinal tract, as shown in Figure 6. It is important to note that
not all tissues receive innervation from both divisions; for example, most
blood vessels, glands, and smooth muscle are primarily influenced by the
sympathetic division. Although sympathetic and parasympathetic stimuli
can induce both inhibitory and stimulatory effects, as demonstrated in
Table 1, they generally exert antagonistic effects in the same organ.

The sympathetic nervous system, often referred to as the "fight or flight"
system, prepares the body for stressful or emergency situations by increasing
heart rate, dilating airways to improve oxygen intake, dilating pupils, and
redirecting blood flow from the gastrointestinal tract to muscles.

Table 1: Autonomic effects on various organs [32]. Sympathetic and
parasympathetic branches usually have opposite effects on the same tissue.

Organ Sympathetic effect Parasympathetic effect

Pupil Dilated Constricted
Heart Increased rate Slowed rate
Blood vessels Most often constricted Most often little or no effect
Bronchi Dilated Constricted
Gut Decreased peristalsis and tone Increased peristalsis and tone
Liver Glucose released Slight glycogen synthesis
Blood Increased coagulation None
Skeletal muscle Increased glycogenolysis and strenght None
Kidney Decreased urine output None
Glands Vasoconstriction and slight secretion Stimulation of copious secretion
Sweat glands Copious sweating Sweating on palms of hands
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These responses, essential for rapid physical activity and heightened
alertness, are mediated by neurotransmitters such as norepinephrine and
epinephrine. In contrast, the parasympathetic nervous system, known as
the "rest and digest" system, promotes relaxation and recovery by slowing
the heart rate, constricting the airways, and stimulating digestive processes.
The primary neurotransmitter involved is acetylcholine, which facilitates the
restoration of the body to a calm state and supports energy conservation.

Although they often have antagonistic effects, the parasympathetic and
sympathetic systems act in a coordinated manner to maintain internal
balance. This coordination is exemplified in Table 1. During periods of rest,
the predominance of parasympathetic tone ensures a low heart rate and
relaxed breathing, while stimulating peristaltic movements in the intestine
and other parts of the gastrointestinal tract, thus aiding digestion. In contrast,
during a sprint to catch an arriving bus, sympathetic tone predominates,
leading to bronchodilation and increased heart rate and contractility to meet
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the increased demand for oxygen and blood in tissues. Simultaneously,
the strength of skeletal muscle contractions is enhanced, and peristaltic
movements are inhibited.

ANS interacts with the central nervous system, particularly the hypothala-
mus and brainstem, which integrate signals from various parts of the body
and coordinate appropriate responses. These interactions ensure that physi-
ological homeostasis is maintained, allowing the body to pose significant
health challenges, affecting cardiovascular function, thermoregulation, and
other critical systems. Understanding the autonomic nervous system is
essential for developing treatments for a variety of conditions, ranging from
heart failure to gastrointestinal disorders.

3.2 Autonomic control of the cardiorespiratory system

The cardiorespiratory system, comprising the heart, blood vessels, and
lungs, is intricately regulated by the ANS, which ensures that the bodymeets
its metabolic demands efficiently (see Figure 7). ANS is crucial in modulat-
ing heart rate, blood pressure, and respiratory rate to maintain homeostasis
and respond to varying levels of physical activity or stress. The sympathetic
nervous system increases heart rate and cardiac contractility, which boosts
cardiac output and enhances blood flow to muscles and vital organs. This
is mediated by the release of catecholamines, such as norepinephrine and
epinephrine, which bind to adrenergic receptors in the heart and vascula-
ture. In addition, the sympathetic nervous system causes bronchodilation,
widening the airways to improve oxygen uptake, and increasing respiratory
rate to facilitate greater oxygen delivery to the bloodstream. In contrast, the
parasympathetic nervous system reduces heart rate and decreases cardiac
output through the action of acetylcholine on muscarinic receptors in the
heart. The parasympathetic nervous system primarily influences heart
rate through the vagus nerve, which slows heart rate and helps maintain a
resting state. Its effect on the respiratory system is less direct but generally
promotes a more relaxed breathing pattern, consistent with states of rest.
The balance between sympathetic and parasympathetic activity is vital for
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maintaining cardiovascular and respiratory homeostasis. During exercise or
stress, the sympathetic nervous system dominates, ensuring that adequate
oxygen and nutrients are delivered to muscles and organs by increasing
heart rate and respiratory rate. In contrast, during rest, the parasympathetic
nervous system predominates, reducing these rates to conserve energy and
maintain baseline bodily functions. Dysregulation of the ANS can lead
to various cardiovascular and respiratory disorders. Conditions such as
hypertension [33], heart failure [34, 35], and arrhythmias [36] can be the
result of imbalances in autonomic control. Similarly, autonomic dysfunction
is related to conditions such as sleep apnea [37] and mood disorders [38].
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Control of the heart

Certain cells within heart tissue possess the ability to become self-excited, a
property primarily concentrated in the sinoatrial (SA) node, also known
as the sinus node, located in the wall of the right atrium (see Figure 8).
The SA node comprises a group of cells with a high degree of automatism
that, under normal physiological conditions, regulate the cardiac rhythm,
functioning as the heart’s natural pacemaker. The self-excitation of SA
node cells generates electrical impulses in a rhythmic manner, which are
transmitted through rapid conduction pathways across the atria. These
electrical impulses, called action potentials, induce atrial muscle contraction,
a process known as atrial systole, during which blood is pumped from the
atria into the ventricles. At this juncture, the action potential reaches the
AV node, where it experiences a brief delay, allowing for complete atrial
emptying. Following this delay, the action potential rapidly propagates
through the ventricles via the Purkinje system, initiating ventricular systole,
which propels blood out of the heart and into the tissues. The final phase
of the cardiac cycle is diastole, characterized by the relaxation of the heart
muscle and repolarization of the cells, preparing them to respond to the
next action potential.

Although the heart is capable of autonomously pumping blood, even
continuing to beat outside the body due to its self-excitatory capability,
the body does not require a uniform blood supply throughout the day,
necessitating external regulation. For example, during emotional arousal or
physical exercise, the heart rate increases, while it decreases during sleep.
As illustrated in Figure 8, the heart is innervated by both the sympathetic
and parasympathetic divisions of the autonomic nervous system. The
parasympathetic division, primarily through the vagus nerve, innervates
the SA and AV nodes, reducing self-excitation of the SA node cells and
thereby decreasing heart rate. It also reduces the excitability of the AV
node, prolonging the delay at this junction and extending the duration of
the heartbeat. In contrast, sympathetic division exerts opposing effects:
it increases the heart rate by stimulating the SA node and enhances the
excitability of all cardiac cells, facilitating the transmission of electrical
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impulses. In addition, it increases the force of heart muscle contraction.

Both types of autonomic stimulation can act rapidly and produce distinct
effects: the parasympathetic nervous system is capable of completely
halting the rhythmic excitation of the SA node, while the sympathetic
nervous system can triple the normal heart rate and double the force of
contraction [32]. Activation of the sympathetic nervous system results in
the release of norepinephrine, which binds to beta-adrenergic receptors in
the SA node. This interaction accelerates the depolarization rate of the nodal
cells, resulting in an increased heart rate. In contrast, the parasympathetic
nervous system decreases heart rate by releasing acetylcholine from the
vagus nerve. Acetylcholine binds to muscarinic receptors in the SA node,
causing hyperpolarization of the nodal cells. This hyperpolarization reduces
the depolarization rate, thereby resulting in a slower heart rate.

3.3 Heart rate varibility

Earlier sections discussed methods for acquiring biosignals related to the
cardiorespiratory system, as well as how these signals are regulated by the
ANS. Consequently, it can be inferred that analyzing these signals enables
the extraction of information concerning the ANS. This presents a significant
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advantage, as the direct acquisition of signals from the ANS is complex and,
at present, cannot be achieved in a noninvasive way. This discussion focuses
on heart rate variability (HRV), a powerful technique that leverages the
regulatory influence of the ANS on the SA node.

Oscillatory patterns in heart rate and blood pressure, along with their
correlation with the respiratory cycle, have been recognized since the 18th
century [40]. In the 19th century, cyclical changes in arterial pressure, known
as 10-second waves, were discovered by Mayer [41]. However, the broad
clinical significance of heart rate oscillations around a mean heart rate was
not fully realized until the 1960s, with the advent of computer technology.
Numerous studies have demonstrated that autonomic monitoring through
HRV has the potential to predict major bodily disorders, some of which are
life-threatening, that can be prevented using minimally invasive devices
and techniques. HRV reflects the integrated response of the cardiovascular
system to various influences [42], and has also contributed to elucidating
previously poorly understood mechanisms of autonomic control.

Under normal conditions, a healthy heart does not maintain a constant
interval between beats; instead, the heart rate continuously fluctuates
in response to various internal and external stimuli. HRV reflects these
fluctuations in the intervals between consecutive heartbeats and serves as
an indicator of the heart’s capacity for short-term adaptation. Furthermore,
HRV has been shown to be a valuable tool for the prognosis, diagnosis, and
monitoring of diseases [37, 42–47]. HRV has proven useful in a wide range of
conditions, including myocardial infarction [42], diabetic neuropathy [43],
essential hypertension [44], ischemic heart disease, congestive heart failure,
Chagas disease [45], monitoring of cardiac transplant recipients [46], and
even depression [47].

Typically, HRV is derived from the ECG. HRV can be assessed by identifying
the P waves in an ECG recording and calculating the P-P intervals, i.e., the
time intervals between consecutive heartbeats. Nevertheless, due to the
relative simplicity associated with the detection of QRS complexes, the
beat-to-beat interval is often determined from the R-R interval in practical
applications. HRV analysis can be performed using temporal, frequential,
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Figure 9: Example of a tachogram. The R-R interval physiologically
fluctuates around a mean heart rate.

and nonlinear methods, each offering unique information on how the
autonomic nervous system modulates cardiac function. Although time and
frequency domain metrics have traditionally been the focus of research,
newer approaches, such as Poincaré plots, have become integral to HRV
analysis, providing prognostic information in conditions such as myocardial
infarction, chronic heart failure, and sudden infant death syndrome [48].

To obtain HRV indices, it is necessary to calculate the R-R intervals as
the difference between two consecutive R waves, i.e., the inverse of the
instantaneous heart rate. The representation of this signal is called the
tachogram (see Figure 9), where oscillations around a mean value are
clearly depicted.

Variables such as the mean heart rate can be directly derived from the
tachogram. The variance, as a measure, reflects the total fluctuations
in heart rate around the mean, thereby representing the total power of
HRV, regardless of its origin. Despite this limitation, simple time domain
parameters remain valuable for evaluating HRV. Sympathetic activation
typically results in tachycardia, which is usually accompanied by a significant
reduction in total power, while vagal activation produces the opposite
effect [37]. Tachycardia is observed as an increase in mean heart rate, i.e., a
shortened R-R interval, while the corresponding reduction in total power is
evidenced by a decrease in variance. In a study by [46], cardiac transplant
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recipients, whose hearts are non-innervated, exhibited a 96% reduction in
HRV, underscoring the role of the ANS inmodulating heart rate fluctuations.
This finding implies that HRV is primarily an indicator of neural modulation
by the ANS.

More informative variables can be observed in the frequency domain. Several
methods can be employed to estimate the power spectral density, either
directly from the event series, which are intrinsically unevenly sampled,
or through interpolation to obtain an evenly sampled signal. According
to the Nyquist-Shannon sampling theorem, this spectrum cannot contain
information above half the sampling rate, which in this case is the heart
rate as the information is sampled beat-to-beat. Three components can
be distinguished: a very low frequency component (VLF, < 0.04 Hz); a
low frequency component (LF, 0.04− 0.15 Hz), which is usually related
to the activation of the sympathetic and parasympathetic divisions of the
ANS; and a high frequency component (HF, 0.15− 0.4Hz), related to the
parasympathetic division. The latter corresponds mainly to the frequencies
of respiratory sinus arrhythmia (RSA, i.e., shortened R-R intervals during
inspiration and prolonged during expiration), although, depending on the
respiratory rate, these bounds may not be precise, and special methods
should be applied (see Chapter 4).

The significance and association of these components with physiological
processes have been extensively studied since the 1980s, following the
foundational work of Akselrod et al. in 1981 [49]. In their research, they
demonstrated, through the monitoring of selective autonomic blockade
effects in dogs, that the HF component is related to parasympathetic
modulation, whereas the LF component is associated with both sympathetic
and parasympathetic activity, as well as the renin-angiotensin system. This
novel approach enabled the differentiation of modulations attributable to
each motor division of the ANS noninvasively, a distinction previously
achievable only through invasive methods [45]. Consistent findings were
also reported in humans [50], indicating that the LF component of HRV
increases from supine to standing positions, suggesting a connection between
postural changes and autonomic control mediated by blood pressure and
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baroreflex mechanisms within this frequency range. In addition, controlled
respiration was shown to enhance the HF component, demonstrating
its relationship with respiration. This increase in the HF component,
accompanied by a significant reduction in the LF component, was also
observed by Pagani et al. [51].

Later in the same decade, Sands et al. observed that in cardiac transplant
recipients, the prominent peak at the respiratory rate, i.e., the HF component,
was either absent or substantially diminished, suggesting that vagal innerva-
tion is essential for RSA [46]. Despite extensive research, the physiological
significance of the VLF band remains unclear, although it has been suggested
that it is associated with cyclic fluctuations in peripheral vasomotor tone
related to thermoregulation [52]. Moreover, achieving precise spectral
estimation in this frequency band demands extended recordings, during
which the signal might not stay stationary, adding complexity to the analysis.

These studies have led to the following conclusions regarding HRV: 1) the
respiratory oscillations, identified as the HF component, serve as a marker
of parasympathetic (vagal) modulation; 2) the rhythm corresponding to
vasomotor waves, identified as the LF component, serves as a marker of both
sympathetic and parasympatheticmodulations; and 3) these rhythms exhibit
a reciprocal relationship analogous to that characterizing sympathovagal
balance [45].

In addition to time and frequency-domain metrics, non-linear and symbolic
metrics have been developed in recent years to uncover hidden information
in HRV that traditional methods may not reveal. HRV metrics are discussed
in detail in Chapter 4.

Variability measurements using wearables

Despite advances in technology, HRV measurement from the ECG still
requires the use of contact electrodes, such as adhesive strips or textile-based
sensors. This requirement limits their practicality and acceptance for daily
monitoring, particularly among nonpatient populations. Alternatively, PPG
allows for the monitoring of pulse rate variability (PRV) by detecting pulse
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signals. Although PRV differs from HRV, it can serve as a substitute in many
practical applications [53, 54].

Several commercial wristband wearables claim to measure PRV using PPG
on the wrist, although few studies have validated these measurements
against ECG-derived HRV [55], revealing significant limitations in the
robust estimation of variability metrics. Therefore, there is a clear need in
themarket for noninvasive systems that provide reliable HRV/PRV estimates
at low cost and are widely accepted by the general population. In addition,
numerous wrist devices offer heart rate information; however, while several
studies have validated PRV obtained from PPG signals recorded on the
finger and forehead [56], very few have validated PRV from wrist-based
PPG during daily life. Most studies that extract heart rhythm information
from wrist-based PPG signals focus only on mean heart rate. However,
accurate HRV analysis requires the detection of each individual pulse, a
task that is often compromised in ambulatory conditions. The proliferation
of wearable devices necessitates further investigation of the degradation of
HRV metrics due to incomplete recordings, where pulse detections may be
lost due to noise and movement.
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3
Pathology under study

1 Chronic mental health conditions

This thesis addresses techniques for monitoring the autonomic nervous
system in obstructive sleep apnea and chronic mental health conditions.
These diseases are very different from each other, but the common pattern
is their long duration and slow progression. This temporal characteristic
makes wearable devices very useful as screening and monitoring tools.

Chronic mental health conditions, such as depression, anxiety disorders,
schizophrenia, and bipolar disorder, represent long-term psychological
disturbances that persist for extended periods, often impacting individuals’
daily functioning, quality of life, and social relationships. These conditions
are characterized by their enduring nature and the recurrent or continuous
symptoms that can fluctuate in intensity over time. In contrast to acute
mental health episodes, which typically resolve within a brief time span,
chronic mental health conditions necessitate continuous management and
treatment to lessen their impact and help the individual maintain a fulfilling
life. The complexity of chronic mental health conditions arises from their
multifactorial etiology, involving a combination of genetic, environmen-
tal, psychological, and neurobiological factors. The management of these
conditions often necessitates a multidisciplinary approach, including phar-
macological interventions, psychotherapy, lifestyle modifications, and social
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support systems. This thesis investigates the monitoring of patients with
major depressive disorder and generalized anxiety disorder by measuring
stress reactivity with wearable devices.

Major Depressive Disorder (MDD) is a prevalent and serious mental health
condition characterized by persistent feelings of sadness, hopelessness, and
a loss of interest or pleasure in most activities. These symptoms significantly
impair daily functioning and can affect various aspects of life, including
work, relationships, and physical health. MDD is more than just experienc-
ing occasional low moods; it involves a deep and sustained depressive state
that can last for weeks, months, or even longer if untreated. The diagnosis of
MDD is based on specific criteria outlined in the Diagnostic and Statistical
Manual of Mental Disorders (DSM-5). To meet these criteria, an individual
must experience at least five of the following symptoms for a minimum
of two weeks: depressed mood, diminished interest or pleasure in activi-
ties, significant weight change or appetite disturbance, sleep disturbances
(insomnia or hypersomnia), psychomotor agitation or retardation, fatigue
or loss of energy, feelings of worthlessness or excessive guilt, difficulty
concentrating or making decisions, and recurrent thoughts of death or
suicide [1]. The etiology of MDD is complex and multifactorial, involving
genetic predisposition, neurobiological factors such as neurotransmitter
imbalances (e.g., serotonin, norepinephrine), hormonal influences, and
psychosocial stressors. Despite its prevalence, MDD remains a leading cause
of disability worldwide, with significant personal and societal burdens.
Early diagnosis and effective treatment are critical in improving outcomes
and reducing the risk of chronicity and relapse.

Generalized Anxiety Disorder (GAD) is a chronic mental health condi-
tion characterized by excessive, uncontrollable worry about a variety of
everyday issues, such as health, work, social interactions, and routine life
circumstances. This worry is disproportionate to the actual likelihood or
impact of the feared events and is often accompanied by physical symptoms
like restlessness, fatigue, difficulty concentrating, irritability, muscle tension,
and sleep disturbances. These symptoms manifest on the majority of days
over a period of at least six months, substantially impairing the individual’s
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capacity to function in daily activities. The diagnosis of GAD, according to
DSM-5, requires the presence of excessive anxiety and worry that the indi-
vidual finds difficult to control. Additionally, the anxiety must be associated
with at least three of the following symptoms: restlessness or agitation,
being easily fatigued, difficulty concentrating, irritability, muscle tension,
and sleep disturbance [1]. The exact cause of GAD is not fully understood,
but it is believed to involve a combination of genetic, neurobiological, and
environmental factors. Additionally, individuals with a family history of
anxiety disorders may be at a higher risk of developing GAD, suggesting a
genetic predisposition. GAD is a common disorder that can be debilitating
if left untreated. However, with appropriate intervention, many individuals
can achieve significant relief of symptoms and improve their overall quality
of life.

1.1 Relationship with stress reactivity

The human body functions as a dynamic system, constantly adjusting to its
environment to maintain homeostasis. Interactions with the environment
create various situations typically classified as either stressful or relaxing.
Beyond the subjective feelings these situations produce, the ANS regulates
energy expenditure during relaxation by decreasing heart rate, expanding
blood vessels, and slowing breathing. The opposite processes occur in
stressful or threatening situations. Although this physiological response is
innate and shared by all mammals, providing an evolutionary advantage [2,
3], it can be affected by factors such as chronic stress, GAD, and MDD [3–7].

Numerous studies have documented diminished stress reactivity in indi-
viduals with depression and anxiety [3, 4, 6, 8–14]. This hyporeactivity is
interpreted as a reduction in parasympathetic withdrawal and parasym-
pathetic overactivation during stress, although the literature on the latter
is inconsistent [4]. Some studies, however, indicate increased reactiv-
ity [7, 15–17], while others report both trends depending on the type of
stressor [18, 19]. The causality of altered stress reactivity remains unclear: it
may be a risk factor for developing GAD and MDD, or these disorders could
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be the cause. Alternatively, a shared pathway might exist that includes
GAD, MDD, and compromised stress reactivity [18, 20].

1.2 Wearable monitoring

Understanding the pathophysiology of GAD and MDD is rudimentary
compared to other diseases, mainly due to the challenges in studying brain
changes [21]. Evaluation of these disorders often relies on subjective assess-
ments, including symptoms that frequently overlap between conditions [21].
Thus, it is crucial to investigate objective metrics to improve understanding
and personalize treatment for depression, anxiety, and related disorders.
Assessment of ANS through HRV provides objective data that complements
other techniques, such as neuroimaging. High HRV levels at rest and greater
reactivity are associated with attention and emotion processes that facilitate
adaptive stress responses, better regulation, and executive function [3].
In addition, HRV can improve the understanding of interactions between
various pathologies with established connections, such as the relationship
between depression and sleep apnea or cardiovascular disease, which are
also examined by HRV [3, 19, 22].

1.3 Main challenges

Although stress reactivity has gained significant traction in academic re-
search, it remains a relatively unexplored field in clinical practice. This
suggests that many challenges still need to be identified. For healthcare
professionals to incorporate measurements from wearable devices, these de-
vices must provide valuable and interpretable information that is applicable
in clinical practice. Therefore, it is crucial to clarify which metrics are most
appropriate and, importantly, when these measurements should be taken.

Wearable devices enable continuous monitoring, making periodic measure-
ment feasible, provided the device has the capability to measure physiologi-
cal variables uninterruptedly. Throughout the day, individuals encounter
various situations that activate the ANS to adapt, making this approach
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useful for gathering as much information as possible. Recording all ANS
states throughout the day would allow for a comprehensive analysis of
stress reactivity, though it is important to note that not all observed states
necessarily reflect a specific stress reactivity. Reactivity is best evaluated in
response to specific events or in states of significant variability, allowing
clearer response patterns to emerge.

This same variety of situations poses a difficulty in assessing whether
changes in the ANS are appropriate responses to the context. Other
approaches, such as random sampling, may present challenges if the user is
engaged in an activity that impedes precise measurement, is not wearing
the device at that moment, or if the sample does not adequately represent
the range of situations experienced throughout the day. Additionally, it
is well-known that the ANS undergoes 24-hour cyclic changes, known as
circadian rhythms, which should also be considered. However, it is worth
noting that circadian rhythms do not uniformly affect all ANS systems,
nor do they present in the same way in all individuals; individual factors
such as sleep and activity patterns may influence ANS rhythms, potentially
requiring personalized adjustments inmeasurements [23, 24]. Although this
methodology generates smaller volumes of data, it facilitates interpretation,
processing, and storage. Moreover, it allows for a certain level of labeling,
linking ANS states with a specific activity or emotion through a notification
system that prompts the user to report their current state.

Another approach might involve controlled data collection, in which the
subject is asked to perform specific tasks designed to induce stress or re-
laxation, thus allowing changes to be measured in a controlled manner.
However, this approach has the drawback of depending on the user’s collab-
oration and willingness to complete the tasks. Additionally, a habituation
phenomenon may occur, where repeated exposure to stress-inducing tasks
reduces their effect in subsequent applications. It should be noted that the
degree of habituation may vary depending on the task, the interval between
sessions, and the individual; therefore, a rigorous protocol could include
task variations to minimize habituation in longitudinal studies.

This leads to the next challenge: adherence to monitoring. All monitoring
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or treatment processes face adherence issues, but these may be particularly
complex in patients with mental disorders, such as anxiety or depression.
The design of notifications, tasks, and even the feedback provided to the
patient must be carefully studied so that monitoring is not intrusive and
encourages its use. Surveys and other data collected via smartphones must
strike a balance that allows for the necessary information to be obtained
without becoming tedious. As mentioned, these surveys can provide context
to objective measurements. For example, they may include questions about
recent activity, current emotional state, whether the user is indoors or
outdoors, etc. Monitoring the emotional state of patients may also provide
independent value to healthcare professionals and can be carried out through
standardized tests, keywords, diaries, or even the use of emoticons.

Another major challenge is the complexity and heterogeneity of mental
disorders. The symptoms experienced by patients may be diverse, making
it necessary to investigate their relationship with available metrics and to
develop new metrics that enable a deeper understanding of how these
symptoms interact to shape the clinical picture.

Finally, this set of challenges is complemented by the intrinsic difficulties of
using wearable devices for health monitoring. Issues such as robustness
in data analysis, usability, data security, and cost must also be considered
along with the previously mentioned aspects. In particular, the protection
of data collected by these devices requires careful design of information
flow, data encryption, and compliance with privacy regulations.

2 Obstructive sleep apnea

Obstructive Sleep Apnea (OSA) is a syndrome caused by repetitive episodes
of total or partial interruption of respiratory flow during sleep due to block-
ades produced by intermittent relaxation of the upper airway muscles (see
Figure 10). Obstructive respiratory events are the cause of sleep fragmen-
tation, hypoxemia, hypercapnia, and increased sympathetic activity [25].
The list of symptoms can include daytime sleepiness, cognitive impair-



2. Obstructive sleep apnea 49

Figure 10: Airway obstruction during OSA. Extracted from [33].

ment, memory loss [26], together with comorbidities such as hypertension,
cerebrovascular artery disease, coronary artery disease, congestive heart
failure, and atrial fibrillation [27, 28]. Moreover, the incidence of both fatal
and non-fatal cardiovascular events is substantially greater in untreated
individuals with severe OSA compared to healthy individuals [29]. OSA
prevalence ranges from 9% to 38% in the general adult population, being
much higher in the elderly groups [30]. Furthermore, prevalence is expected
to increase in the general population due to the obesity and overweight
epidemic [31]. OSA underdiagnosis was estimated as 93% for women and
82% for men by Young et al. [32]. The rise in obesity rates combined with
the widespread implementation of screening may have influenced these
statistics over time.

For decades, the gold standard for diagnosis included polysomnography
(PSG) performed in a clinical environment. The patient is requested to
sleep in a medical center while constantly monitored, making this test
uncomfortable and having some impact on natural sleep. Recently, the use
of out-of-center sleep testing with limited channels was included in the
diagnostic criteria for adult OSA, although it commonly underestimates the
number of obstructive respiratory events per hour compared to PSG [27].
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Obstructive respiratory events are usually measured by the apnea-hypopnea
index (AHI). This index, which is the total count of apneas and hypopneas
normalized by sleep time in hours, has been a matter of controversy since
its introduction in OSA diagnosis and severity rating [34, 35].

Patients are classified as having mild, moderate, or severe OSA based on
their AHI score. However, despite its widespread clinical use, the AHI may
not always capture the true clinical impact of OSA, which has prompted
growing concern among researchers and clinicians. One limitation of the
AHI is its focus solely on event frequency without considering the duration
of each respiratory event. Events that last longer can cause more significant
oxygen desaturation and physiological stress compared to shorter events.
This means that two patients with the same AHI may experience different
levels of physiological impact depending on the duration of their apnea
and hypopnea episodes. As a result, relying on AHI alone could lead to
an underestimation of the disease’s severity for patients with prolonged
respiratory events, potentially affecting treatment decisions. Moreover,
the AHI does not measure the degree of oxygen desaturation associated
with each episode. In clinical practice, patients with the same AHI might
have very different levels of oxygen desaturation, which can significantly
impact cardiovascular health. Studies have shown that low oxygen levels
during sleep are linked to higher risks of hypertension, stroke, and other
cardiovascular diseases. By overlooking oxygen desaturation levels, the
AHI may not fully represent the cardiovascular burden of OSA, potentially
limiting its effectiveness in identifying high-risk patients who might benefit
from early intervention. Additionally, the AHI does not capture daytime
symptoms, such as excessive sleepiness, fatigue, or cognitive impairment,
which are common in patients with OSA. These symptoms can significantly
affect a patient’s quality of life and have serious implications for public
health, as they contribute to higher risks of motor vehicle accidents and
reducedwork productivity [36]. The absence of symptomatology assessment
in the AHI makes it challenging to assess the full impact of OSA on a
patient’s daily functioning, which can lead to insufficient treatment for
those who suffer primarily from these non-respiratory symptoms. Overall,
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while the AHI has been useful for the initial categorization of OSA, its
limitations in representing the multidimensional nature of the disease call
for a more comprehensive diagnostic approach. Researchers have proposed
alternative indices that incorporate event duration, oxygen desaturation, and
symptomatology to provide a more complete assessment of OSA severity.
Integrating these aspects could lead to improved treatment strategies and
ultimately better outcomes for patients with OSA. Despite this, AHI remains
the main measurement in OSA diagnosis [27].

2.1 Wearable monitoring

The early diagnosis of OSA is important, as it can cause several major health
problems [37]. The underdiagnosis of OSAwould be reduced by developing
novel techniques for massive screenings in the general population. Among
these techniques, HR dynamics assessment is appealing, as it can be applied
to signals recorded at home using wearables. The variability of the heartbeat
period is known to be related to sleep breathing disorders. Zwillich et al. [38]
discovered that most apneas, excluding those without oxygen desaturations,
are associatedwith bradycardia episodes and that bradycardias becamemore
markedwhen the length of the apnea and the desaturation of oxyhemoglobin
increase. In 1984, Guilleminault et al. [39] described the cyclic variation
of the heart rate (CVHR), a bradycardia pattern during apnea, followed
by abrupt tachycardia in restoration of airflow. This pattern has been an
object of study, including frequency-domain analysis [40], morphology
variations [41] and automatic detection [42]. Shiomi et al. [40] discovered
an augmented very low frequency (VLF) component of heart rate (0.008-
0.04 Hz) in OSA patients synchronized with episodes of absence of air
exchange or hypoxemia, that occurred at a cycle length of 25-120 seconds.
They also described a VLF peak during OSA episodes, likely related to
the CVHR oscillation frequency, itself related to the frequency of apneas.
Stein et al. [41] set a 20% of sleep time with CVHR as a threshold to predict
AHI ≥ 15. They proposed that, although Guilleminault identified CVHR as
a valuable method for observing OSA, it was not implemented by the late
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twentieth century because of technological challenges. They also pointed
out back in 2003 that this technique should be included as a part of routine
Holter reports.

PRV is a well-known alternative that offers a high correlation with HRV even
in non-stationary situations [43]. Khandoker et al. [26] demonstrated that
PRV could be used to distinguish OSA events from normal breathing during
sleep, although several variability measures were significantly different
from the HRV reference during OSA events. Analogously, Lázaro et al. [44]
demonstrated that PRV can be used as an HRV surrogate in apnea detectors
based on decreases of amplitude fluctuations of the PPG (DAP). Later,
Lazazzera et al. [45] combined DAP, PRV, and peripheral oxygen saturation
(SpO2) for the screening of OSA in adults. In [46], Hayano et al. presented
an automatic detection of the CVHR pattern from a PPG signal for its use in a
commercial wearable watch device. This algorithm is based on the detection
of every cycle on the pulse-to-pulse interval (PPI) signal. Magnusdottir et
al. [47] used CVHR combined with cardiopulmonary coupling to identify
sleep apnea.

2.2 Main challenges

The monitoring of sleep apnea faces several important challenges due to
the complexity of the condition and the current technological limitations.
Obtaining a precise and accessible diagnosis is a major challenge. Home-
based monitoring devices offer convenience, but often lack the precision
and detailed data for a complete diagnosis, leading to partial evaluations.
Continuous noninvasive monitoring remains a major challenge in evaluating
sleep apnea, and the progress in creating noninvasive sensors that provide
both comfort and precise long-term information is ongoing. Although some
wearable devices can track sleep, they typically have difficulty accurately
identifying sleep apnea.

Wearablemonitoring is challenged by the occurrence ofmotion artifacts, even
during periods when the user is at rest. Involuntary nocturnal movements,
particularly in patients with disturbed sleep, often involve the limbs and
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can affect signal quality. Therefore, accurate treatment of these motion
artifacts is essential to ensure reliable data processing. In addition, precise
monitoring requires the observation of various elements such as breathing,
airflow, oxygen saturation, and cardiac rhythm. The absence of signals such
as the electroencephalogram or nasal pressure poses significant challenges
in identifying arousals or conducting sleep staging.

A notable challenge in the detection of respiratory events is the variability in
the annotation of events between experts [48–50]. This inconsistency reveals
a significant degree of subjectivity and highlights that event labeling is
highly dependent on the interpretation of the individual scorer. Factors such
as differences in experience, understanding of event definitions, and even
institutional guidelines can contribute to these discrepancies. This variability
complicates the process of building reliable datasets, which are essential
for training and validating detection algorithms. The lack of consistency
in labeling makes it difficult to standardize sleep apnea assessments and
creates additional obstacles for developing automated detection systems.
For machine learning algorithms, in particular, training on inconsistently
labeled data may reduce their performance, as the algorithms might learn
to detect patterns that are more specific to the labeling style of individual
scorers than to the actual physiological events.

This variability is also explained by methodological reasons. The American
Academy of Sleep Medicine (AASM) establishes a standardized framework
for scoring apnea and hypopnea events; however, certain aspects remain
open to interpretation. For example, the AASM guidelines do not detail
the exact methodology for computing airflow based on nasal pressure
signals. Different institutions may employ different algorithms, such as
low-pass filtering or peak detection, to obtain the envelope of this signal,
leading to inconsistencies in how airflow reduction is perceived and scored
in different patients. Furthermore, the AASM guidelines do not provide
specific instructions on how to establish a standard baseline for airflow to
use as a reference for evaluating reductions. Similarly, they lack guidance
on setting a baseline for SpO2. Without a clear method for determining this
baseline, clinicians and technicians face difficulties in accurately quantifying
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airflow reductions. This baseline is essential because it allows scorers to
determine the percentage reduction in airflow necessary to classify events as
hypopneas or apneas. Different approaches to establishing the baseline can
lead to significant variations in the estimated severity of respiratory events.
This further reduces the reproducibility of apnea severity assessments,
complicating comparisons between studies or clinical settings. These
ambiguities underscore the potential value of wearable devices that employ
consistent, automated algorithms to detect and score apneic events in a
standardizedmanner. With a carefully calibrated and transparent algorithm,
devices could minimize subjectivity by automating the processing of nasal
pressure signals, calculating a stable baseline, and establishing standardized
thresholds for event classification. This consistency could improve the
reliability of apnea severity metrics, allowing clinicians to track changes in a
patient’s condition with greater precision and ultimately contributing to
more uniform and objective assessments in various clinical settings.

Early detection and personalized treatment present additional challenges.
Adherence to the use of a wearable device as a screening tool in daily
life presents a significant challenge, particularly in the context of chronic
conditions such as sleep apnea. For a wearable device to be effective, it must
strike a balance between functionality and comfort. The device should be
minimally intrusive to avoid disrupting the user’s daily activities or sleep
patterns. This means that it should be lightweight, comfortable, and easy
to wear, with a design that seamlessly integrates into the user’s lifestyle.
In addition to physical comfort, the device must offer meaningful real-
time feedback to engage the user actively. Feedback mechanisms, such as
personalized alerts or progress summaries, can motivate users by providing
insight into their health trends and the impact of positive behavioral changes.
Furthermore, long-term adherence often depends on the perceived utility of
the device beyond just data collection. If the wearable provides actionable
information, such as tips to improve sleep quality or reminders about healthy
sleep practices, it becomes a tool for proactive health management rather
than merely a diagnostic device. Such features can significantly improve
user engagement and adherence over time, leading to more reliable data
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collection for clinicians.

Regarding personalized treatment, sleep apnea exhibits significant variabil-
ity between individuals. Monitoring systems must adapt to these differences
to provide accurate and individualized diagnoses [51]. In addition, integrat-
ing monitoring with treatment is critical. For example, optimizing therapies
such as Continuous Positive Airway Pressure (CPAP) requires real-time
adjustments of device parameters based on current monitoring data [52].
With more comprehensive long-term data, clinicians can adjust treatment
plans based on real-world evidence of the patient’s sleep behavior rather
than relying solely on isolated polysomnography results from a single night
in a clinical setting [53, 54]. When integrated with CPAP or other therapeutic
devices, wearables could enable real-time feedback loops, automatically
adjusting treatment parameters in response to changes in physiological
states during sleep.

Lastly, data privacy and security are crucial concerns in monitoring sleep ap-
nea. Sleep monitoring data is sensitive and must be adequately protected to
ensure patient privacy. Secure data transmission and storage are particularly
important in home environments and with devices connected to the cloud,
as the potential for breaches and unauthorized access remains a significant
risk. These protections are especially relevant for individuals in professions
where sleep apnea can be disabling, such as truck drivers, whose roles
demand high levels of alertness for public safety. In addition, in such cases,
false positives in the detection of sleep apnea could be especially harmful,
potentially leading to unnecessary restrictions or job limitations based on
inaccurate data. Advances in technology, more accurate and comfortable
portable devices, and remote diagnostic systems are essential to overcome
these challenges, promoting safer, more reliable, and accessible management
of sleep apnea.
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4
General methodology

for robust ANS monitorization

1 Methodological framework

Robust monitoring of ANS through HRV using wearable devices requires
an adaptation of the entire processing chain. Signals from these devices
often have a lower signal-to-noise ratio compared to their analogous clinical
devices, as they are exposed to continuous changes in the environment and
movement artifacts. Devices like smartwatches are designed to be worn
throughout the day, both at rest and during movement, walking, running,
or performing daily tasks. For a wearable device to be adopted by users, it
must ensure a certain level of comfort, which is not as necessary in clinical
devices. This implies less tight sensors and less intrusive measurement
points. Smartwatches are again a good example of this. Compared to a pulse
oximeter placed on the finger, a point with a high capillary density, using
a clip that provides a firm hold, the PPG of a smartwatch is obtained
on the wrist, with much lower capillary density, and usually a looser
fit. Additionally, it is a reflective PPG, in contrast to the transmissive
configuration of pulse oximeters. Although both signals are PPG and
measure changes in blood volume at nearby peripheral points, the processing
has to be necessarily different.
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Figure 11: Processing chain for HRV metrics. Essential blocks in green,
optional in grey. Within the framework of comprehensive ANS evaluation
employing wearable technology, the components that are optional in
controlled environments become essential.

The simplest processing chain (see Figure 11) of an ECG/PPG signal to
obtain HRV/PRV consists of beat/pulse detection and metric extraction.
These metrics can be as simple as the mean or standard deviation of the
detection series. Typically, a filtering stage is included before detection
to remove high-frequency noise and baseline wander. This chain may be
sufficient in a clinical setting, with the patient at rest and analyzing metrics
such as the ones mentioned, which are statistically very robust.

It is necessary to acknowledge the importance of this processing block,
particularly because most event detection algorithms are typically applied
to signals that lack a baseline. The application of high-frequency denoising
is considered trivial, yet highly advantageous, to the extent that omitting
it would be a significant oversight. In reality, the concept of denoising is
more complex than this, since a filter with these characteristics removes only
noise from frequencies outside the band where physiological information
is expected to be found. Therefore, it would be appropriate to consider a
separate denoising processing block following the filtering block to remove
the noise in the targeted band. Although this thesis does not address this
block, it is worth noting that there are sophisticated denoising algorithms
available. The application of these algorithms may be optional, although
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their use can be highly beneficial, especially in the context of wearable
devices. For example, techniques that involve deep learning and adaptive
filtering have shown promising results in improving signal quality while
preserving important characteristics [1–3].

As the setting becomes less controlled and more complex metrics need to be
analyzed, it is necessary to include additional processing blocks. Two main
sets of blocks can be distinguished: those introduced before beat/pulse
detection and those introduced afterward.

Accurate detection faces challenges such as movement artifacts, which occur
briefly and entirely obscure the signal, as well as low-quality segments. The
latter can be defined as segments with a poor signal-to-noise ratio that last
longer than artifacts. This usually occurs due to poor sensor attachment,
displacement from the optimal measurement point, or moderate to light
movements where the signal is not completely lost. Although high-energy
artifacts may seem the most harmful, they are actually the easiest to detect
and therefore to eliminate. On the other hand, borderline segments can be
overlooked and produce false positives in detection. As will be seen in later
chapters, this type of error is the most harmful to robust monitoring. To
address these issues, it is recommended to add two blocks: one for artifact
removal and the other for signal quality assessment.

Both blocks are intended to select the signal segments where beat/pulse
detection is performed, discarding the rest. The artifact removal block
should completely discard the affected segments while allowing non-
corrupted segments for further processing. This is not always easy to
achieve and becomes more challenging as the energy of the artifacts more
closely resembles that of the signal and as their duration decreases. In the
literature, there are also methods that aim to clean corrupted segments
using information before and after the event [4]. This approach is not
recommended for obtaining robust HRV metrics, as it can lead to false
detections or significantly displaced detections from the actual beat/pulse
(see Figure 12). Instead, the goal should always be to obtain a detection
series that is as reliable as possible, without the presence of false positives,
even if this results in an increase in false negatives.
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Figure 12: Erroneous detection in an ECG affected by artifacts. Top:
Corrupted ECG. The artifact has been simulated in order to compare the
actual beats with the automatically detected ones. Bottom: The filtered ECG
is shown in black, while the clean ECG appears in gray. Green dots indicate
correct detections, and red dots represent incorrect ones. The third heartbeat
is missed due to a significant reduction in the QRS amplitude. The fifth
heartbeat is misaligned because the artifact mimics a short-duration peak,
masking the QRS complex.

On the other hand, the signal quality assessment block should provide
a measure of how reliable the detections in a given segment can be,
allowing the option to either discard segments or continue processing
them, while associating a confidence level with the metrics. Again, the
decision becomes more difficult as the signal-to-noise ratio approaches
the borderline. In most cases, it is preferable to use a criterion to discard
borderline segments, as they can produce metrics that seem reliable, leading
to incorrect conclusions. Furthermore, trying to utilize the maximum



2. Artifact removal in PPG signals 69

number of segments undermines one of the main advantages of wearable
devices, namely the large volume of data they provide.

Consider the case of a sleep apnea screening tool. If the user wears a
smartwatch throughout the night, it is likely they will do so on subsequent
nights. Therefore, if during the first night the user constantly moves or
wears the watch strap loosely, the quality assessment block should mark the
signals as unusable, opting to wait for the next night to take measurements.
Similarly, analyses can be performed over several consecutive nights before
issuing a verdict. Leveraging the volume of measurements and redundancy
should be a key principle in applications involving continuous-usewearables.

After these two blocks, a beat/pulse detector should process the clean
segments. This detector produces a series of events where false positives
and false negatives may occur. These can cause distortions in variability
metrics, potentially leading to different effects depending on the specific
metric. These effects, as well as methods for error correction, are the focus
of the study presented in Chapter 6.

2 Artifact removal in PPG signals

Motion artifact removal is an absolutely necessary task to obtain robust
metrics in wearable environments. Devices are continuously exposed to user
movements, regardless of the type of sensor used. From the lightest activity
to intense exercise, movements can appear in the signal as segments, usually
of high energy, where the waveform is completely distorted or masked.
Typically, artifacts are understood as segments of limited duration associated
with a specific movement, although it is possible that a series of movements,
such as those performed while running or in other sports disciplines, may
produce artifacts over longer intervals. Artifacts should be delimited to
exclude those portions from the subsequent analysis. In this thesis, this
task is defined as separate from signal quality detection, explained below,
where a qualitative assessment is made on the overall signal quality. In the
first case, the aim is to remove corrupted segments from the signal. In the
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second, evaluate whether the rest of the signal is of sufficient quality for
robust ANS analysis.

Provided a zero-mean signal, x[n], one of the most elementary algorithms
for delimiting artifacts is the moving median threshold. Using a sliding
window strategy, themovingmedian x̃[n] is calculatedwithin eachN-sample
window centered on the sample n.

x̃[n] = med{x[i]};∀i ∈ [n−N/2 + 1, n+N/2]. (4.1)

x̃[n] is then summed with a constant value K1 higher than 0 and used as a
threshold, x̃th[n], for each signal sample:

x̃th[n] = x̃[n] +K1;K1 ∈ (0,∞). (4.2)

In the case that any sample within the window exceeds the threshold
(∃i ∈ [n−N/2+1, n+N/2] | x[i] > x̃th[i]), the entire window is discarded.

In real-time applications, it is necessary to introduce a delay of N/2 samples
to account for future values following the current sample n. This approach
ensures higher accuracy by incorporating information from both past and
future samples. Conversely, using a non-delayed method, which relies solely
on the N − 1 samples preceding n, would be less precise as it depends on
values further from the target sample and ignores the information provided
by subsequent samples.

This method can be very effective in stationary conditions, where the signal
power does not change over time, since the median, if the window is large
enough, is practically unaffected by power changes and artifacts. Alternative
versions of this method use the moving standard deviation in place of the
moving median [5]. The moving standard deviation xσ[n] is computed with
an unbiased estimator as

xσ[n] =

√∑
i(x[i]− x̄[n])2

N − 1
;∀i ∈ [n−N/2 + 1, n+N/2], (4.3)
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where x̄[n] is the mean of the signal within the window, estimated as

x̄[n] =
1

N

∑
i

x[i];∀i ∈ [n−N/2 + 1, n+N/2]. (4.4)

This allows the threshold to adapt to power changes. Given the condition
that x[n] has zero mean, the standard deviation increases with increasing
power and vice versa. A proportional threshold might be more suitable in
this scenario, as it allows for a less restrictive threshold at higher power levels
and a more stringent one at lower powers, thereby reducing the likelihood
of false positives and negatives, respectively. The threshold, xthσ [n], should
be calculated as

xthσ [n] = K2 · xσ[n];K2 ∈ (1,∞) (4.5)

Again, in the event that any sample within the window exceeds the threshold
(∃i ∈ [n−N/2+1, n+N/2] | x[i] > xthσ [n]), the entire window is discarded.
The moving median absolute deviation, xMAD[n], can be used instead of the
standard deviation, obtaining similar results. The xMAD[n] is computed as

xMAD[n] = med{|x[i]− x̃[n]|};∀i ∈ [n−N/2 + 1, n+N/2] (4.6)

and the threshold as

xthMAD[n] = K3 · xMAD[n];K3 ∈ (1,∞). (4.7)

It should be noted that xMAD[n] and xσ[n] are proportional if x[n] is normally
distributed. Figure 13 illustrates an example of the three thresholds applied
to an identical segment. Observe that x̃th[n] is flattened relative to the others
due to a non-proportional threshold.

These algorithms are very easy to implement and are highly effective against
short-duration, high-energy artifacts, but are much less effective against
artifacts that produce subtle distortions. They are also useful for identifying
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Figure 13: Artifact identification using sliding windows of 10 seconds.
(N = 2560 at 256 Hz sampling rate). PPG in black, thresholds in red. In the
event that any sample of the PPGwithin the 10-second interval surpasses the
threshold, the entire interval is rejected (red shade). First: x̃th[n] threshold
with K1 = 1.3. Second: xthσ [n] threshold with K2 = 1.5. Third: xthMAD[n]
threshold withK3 = 2.

outliers in detection sequences, as is covered in Section 5. The specified
thresholds may be used separately or in combination. Furthermore, the
text has focused solely on upper thresholds, but it is also possible to define
lower thresholds in a similar manner.

2.1 Hjorth parameters

In order to remove artifacts in PPG signals, a modified version of x̃th[n]
can be applied, focusing on parameters derived from the signal instead of
the signal itself. Hjorth parameters were originally described as a method
for the qualitative description of encephalographic signals [6]. Bo Hjorth
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described these parameters in 1970, naming them Activity (H0), Mobility
(H1), and Complexity (H2) [6]. The artifact detector used in this thesis sets
upper and lower limits for the Hjorth parameters, as proposed in [6, 7],
calculated from signal data within sliding windows with a certain overlap.
The signal, window size, and overlap are specified in each study in the
following chapters. Provided a zero-mean signal, x[n], theHjorth parameters
are defined as:

Activity : H0[m] = w̄0[m]

Mobility : H1[m] =

√
w̄2[m]

w̄0[m]
(4.8)

Complexity : H2[m] =

√
w̄4[m]

w̄2[m]
− w̄2[m]

w̄0[m]
,

where w̄i represents the i-th order spectral moment. w̄i is estimated using
the temporal expression of the moments in the m-th window of N samples:

ˆ̄wi[m] ≈ 2π

N

mN∑
n=(m−1)N+1

(xi/2[n])2. (4.9)

The thresholds are calculated as in Equation 4.2, usingH0[m],H1[m] and
H2[m] extracted from the signal x[n]. In this scenario, the values are not
assigned to each individual sample n; instead, they are assigned to each
window m. Consequently, the task is not to identify whether a sample
within the window exceeds the threshold. Instead, it involves verifying that
all window parameters H0[m], H1[m] and H2[m] are within the permissible
range. If any parameter fails to satisfy this criterion, thewindow is discarded,
consistent with the methods explained previously.

Hjorth parameters are related to intelligible characteristics of the signal.
Activity is a measure of the variance or average power of the signal. In the
context of artifact detection, it allows to set a maximum threshold to detect
energy peaks, which are typical of pronounced artifacts (see Figure 14).
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Figure 14: Artifact identification using Hjorth parameters. First: PPG
shown in black, with automatically identified artifacts highlighted in red.
Since theHjorth parameters are calculated over awindow, some uncorrupted
signal segments are also eliminated. Second, Third and Fourth: Dashed lines
with dots represent the Hjorth parameters. Note that they are sampled at
each dot, representing the window center, contrary to the signal. Unallowed
regions are shaded with red.

Mobility is related to the mean frequency of the signal. Signals with a low
mean frequency have low mobility, and vice versa. Given that the focus
is on cardiac signals, these signals are constrained to specific frequency
ranges. Consequently, permissible ranges are established, beyond which
the oscillations are regarded as being generated by artifacts. Complexity
is related to the bandwidth of the signal spectrum. Signals that are more
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similar to a sinusoid have a lower complexity than those composed of
many frequencies. The presence of artifacts may increase or decrease the
complexity of the signals, so upper and lower thresholds are set.

3 Signal quality assessment

In this thesis, it was not deemed necessary to include a specific signal quality
assessment method for the studies presented. However, a brief review of
some commonly employed methods is warranted. The necessity of such an
approach is largely dependent on the application context. Generally, it can be
asserted that the need for a quality assessment method increases in scenarios
involving continuous monitoring, particularly in variable environments
where user awareness is minimal. For example, this block may be less
critical in monitoring scenarios where the user is required to perform a
task for a predetermined period while being recorded. This is the case
in the study presented in Chapter 7, where the user’s active interest in
maintaining a position that ensures a clear signal is relied upon. In these
situations, it is beneficial to provide feedback to the user, such as visualizing
the signal, enabling them to adjust their position or stay still to optimize
signal quality. In contrast, in the context of a device like a Holter monitor or
a smartwatch, which is worn throughout the day under varying conditions,
the role of this block becomes more crucial. Although the user is aware of
the use of the device, it is inevitable, and indeed desirable from a practical
standpoint, that they do not constantly focus on it, allowing them to engage
in normal daily activities. Consequently, there are periods where signal
quality deteriorates significantly. Identifying these periods is essential to
ensure robust monitoring.

The methodology in the literature is varied and most studies recommend
the use of a quality index in some form [8–11]. These indices provide a
quantitative measure of the quality evaluated, incorporating specific criteria.
Such criteria may include factors ranging from similarity to a signal template
to a combination of certain statistical qualities, such as skewness, peakedness,
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and kurtosis, among others. Alternatively, some authors employ machine
learning algorithms, such as neural networks, in their approaches [12, 13].
Despite differing methods, all share the common objective of determining
whether a signal should be discarded or allowed to proceed through the
processing chain. Some studies suggest specific processing algorithms
based on the quality of each signal [14]. Another strategy could consist of
continuing with the processing chain in any case, assigning the final metrics
an uncertainty index inversely proportional to the signal quality.

4 Event detection

Observing ANS activity via HRV or PRV entails examining the fluctuation
between consecutive heartbeats. Consequently, the first task is to identify
the timing of each beat or pulse, based on whether the ECG or PPG signal is
under review. Although the techniques employed for this purpose differ
significantly, the underlying principle remains consistent: the identification
of waveforms that correspond to physiological phenomena. For clarity, the
term event detection is used to refer to this process in both ECG and PPG
signals.

4.1 Event detection in ECG signals

While a full ECG provides extensive details about the heart, HRV techniques
focus solely on identifying QRS complexes. These are the most easily
identifiable waves due to their significant energy concentrated over a brief
interval. Consequently, they serve as a dependable reference for assessing
the heart’s periodic activity and its variability.

A delineator based on the wavelet transform has been used to detect events
in ECG signals [15]. The wavelet transform is used to decompose the ECG
signal into various scales, allowing the identification of specific temporal
characteristics of the ECG waves. A notable advantage of the wavelet
transform lies in its ability to analyze the signal at multiple resolutions,
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which is particularly useful for detecting the distinct components of the ECG,
each of which has a unique frequency content. The initial detection focuses
on theQRS complex, themost prominent component of the ECG. Themethod
involves identifying the ridges of maxima in the wavelet transform that
exceed predefined thresholds. To confirm the presence of a QRS complex, a
zero-crossing in the wavelet transform is sought. This process is repeated
across multiple scales to ensure robust detection even in the presence of
noise or artifacts. Upon detecting the QRS complex, the algorithm advances
to the delineation of the individual waves (P, Q, R, S, T) by identifying
the peaks, as well as the onset and offset of these waves. This delineation
utilizes information derived from the maxima, minima, and zero crossings
of the wavelet transform across different scales. The multiscale approach
inherent in the wavelet transform is central to this method, as it allows the
ECG signal to be processed with varying levels of detail, thus achieving a
more precise and robust delineation.

Recent advances in wavelet-based ECG analysis continue to emphasize
the importance of multiscale methods. Studies have further refined these
techniques, integrating machine learning to improve the accuracy of wave
detection and classification. For example, deep learning models combined
with wavelet transform are increasingly being used to enhance the precision
of QRS complex detection, even in challenging conditions with high noise
levels [16]. On the other hand, there is ongoing research into deep learning
techniques that do not rely on wavelets or any kind of feature engineering,
showing excellent results [17]. These approaches make use of convolutional
neural networks (CNN) [18, 19], CNN combined with long short-term
memory (LSTM) models [20], bilateral LSTM [21], transformers [22, 23],
and the promising U-net architecture [24].

4.2 Event detection in PPG signals

The PPG waveform does not present a distinct characteristic corresponding
to ventricular contraction, as observed in the QRS complex of the ECG.
Notably, the PPG lacks any representation of the electrical activity of the
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Figure 15: PPG pulse detection. Top: PPG signal in black with event
detections in red. Bottom: PPG derivative in black with event detections in
red. The green line shows the adaptive threshold, which is divided into
three distinct phases. Following each peak detection, the threshold stays
steady for a refractory period. Next, it linearly declines to a minimum value,
set as a fraction of the previous maximum. Lastly, the threshold remains
fixed until the subsequent detection.

heart. Instead, the information it provides is only indirectly related to cardiac
function, as it reflects the pulsatile nature of blood flow in the peripheral
microvasculature, primarily arterioles. This pulsatility produces a rounded
waveform, in which distinguishing fiducial points becomes increasingly
challenging, particularly in the presence of noise. Consequently, achieving
robust monitoring is considerably more difficult in devices that record PPG,
compared to those that record ECG.

The pulse detection algorithm used in this study is based on the method
described in [25]. This algorithm enhances the abrupt upslope of the signal
by applying a filtering transformation. Specifically, a linear-phase finite
impulse response low-pass differentiation filter is utilized, which is designed
using a least-squares technique. After obtaining the derivative of the PPG
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signal, an adaptive thresholding process is implemented to identify the
maxima.

The adaptive threshold comprises three phases (see Figure 15). Initially,
following each detection, the threshold is kept constant for a refractory period
of 300ms. It then declines in a linear fashion to reach aminimum, specified as
a fraction (30%) of the preceding peak value. Finally, the threshold remains
constant until the subsequent detection. This technique was originally
developed tomanage the amplitude fluctuations commonly observed during
apneic episodes, where a fixed threshold would be inadequate. However, it
has also shown strong performance under other conditions [26, 27].

5 Event correction

Interval series can be represented with the interval function dIF(tk), defined
by

dIF(t) =
K∑
k=1

(tk − tk−1)δ(t− tk). (4.10)

This function is defined continuously, with zero values for all t other than
tk, such that each event occurring at time tk is represented by a unit impulse
function δ(t− tk) scaled by the length of the preceding interval [28, 29].

Missing data detection (false negatives) is usually based on detecting
physiologically abnormal increases in the interval series that suggest that at
least one heartbeat is missing. Missing beats produce outliers in dIF(tk) at
each tk corresponding to events after a gap. A moving median threshold
is used as an outlier detection rule. First, dIF(tk) is filtered with a median
filter of order 2L to produce an expected interbeat interval dEIBI(tk) for each
event tk [30]:

dEIBI(tk) = med{dIF(ti)}; ∀i ∈ [k − L+ 1, k + L]. (4.11)
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The interval at tk is marked as a false negative if the equation

dIF(tk) > (α× dEIBI(tk)) (4.12)

is satisfied, i.e., if the interval is longer than α times the expected interval,
being α ∈ [1,∞). Conversely, false positive produces an abrupt shortening
of the interval as a result of the introduction of a spurious beat between two
actual beats. The interval at tk is considered a false positive if the equation

dIF(tk) < (β × dEIBI(tk)). (4.13)

is satisfied, i.e., if the interval is shorter than β times the expected interval,
being β ∈ (0, 1).

Eliminating false positives is crucial, as they are often more harmful than
false negatives, resulting in the loss of a reliable reference. Proper design of
the prior blocks, namely artifact removal and signal quality assessment,
is necessary to minimize their presence during this phase. Detecting false
positives, as shown in Figure 16, proves particularly difficult when false
negatives are present. The act of setting thresholds involves choosing
between excluding every potential anomaly or adopting a more lenient
threshold in order to preserve true positives. Nonetheless, the balance
between eliminating true positives and permitting false positives should
lean towards reducing false positives. Once identified, false positives should
be eliminated from the tk series, and dIF(tk) recalculated.

In contrast, managing false positives is relatively straightforward, as is
detailed in Chapter 6, particularly when starting with a series of reliable
detections, i.e., free of false positives. Because it is relatively simple to rectify
a false negative, implementing a stringent threshold for false positives—
which may occasionally exclude true positives—is not overly detrimental, as
these instances can be addressed similarly to false negatives. This should be
considered in line with the principle of "garbage in, garbage out." If one
aims to perform an effective event correction, it must be acknowledged that
even the best algorithm cannot correct a series of events riddled with errors.
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Figure 16: Outlier detection in the event series. Events located within
the gray shaded area are incorrectly identified due to the artifact influence.
Top: PPG signal. Detected pulses are marked with red dots. Center: PPG
derivative. Bottom: Outlier detection in the interval function. Red shaded
areas delimits values outside the allowed range. Intervals in red stems have
been identified as outliers; however, some are still undetected.

5.1 Ectopic beats

Detection errors are not the only anomalies requiring correction in the event
series. The presence of ectopic beats, which originate outside the SA node,
introduces outliers into the data that, if not eliminated, adversely affect the
metrics.
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In controlled environments, such as hospitals equipped with multi-lead
ECG systems, where detection errors are minimal, ectopic beats can be
addressed using specialized methodologies, as in [31]. In contrast, within
the context of automatic detection in variable environments, examined in
this thesis, the presence of ectopic beats becomes indistinguishable from
detection errors. Consequently, it is recommended to avoid employing
methodologies that do not account for this overlap.

The methods outlined in this section are specifically designed to identify
outliers within the series. Thus, they are equally effective for detecting
ectopic beats. The subsequent treatment of these anomalies follows the same
principles, both because the primary goal is to eliminate or replace outliers
in line with statistical consistency, and because distinguishing between
ectopic beats and detection errors is impractical in this context.

6 Variability metrics

6.1 Time domain

Methods in the time domain are the most basic and straightforward means
to evaluate HRV. They involve simple statistical analyses conducted directly
on the R-R interval series or the inter-beat interval (IBI) series. Calculating
variability metrics from the PPG is analogous, utilizing the interval between
consecutive pulses in place of the R-R interval. Another series exists, known
as the normal-to-normal interval series (N-N series), which denotes the
time between QRS complexes resulting from sinus node depolarization,
i.e., the R-R intervals after excluding ectopic heartbeats. To simplify the
notation, the interval function dIF(tk) is used, assuming that both ectopics
and detection errors have been eliminated.

The mean heart rate (MHR), determined as the mean of the inverses of
the R-R intervals, is a key indicator because it reflects the level of sinus
node activation and remains a reliable metric even for segments of less than
a minute [32]. It is usually measured in beats per minute (bpm). Given
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dIF(tk)withK events, the mean is calculated using an unbiased estimator
as:

dIF =
1

K

K∑
k=1

dIF(tk). (4.14)

When dIF is measured in seconds, the MHR, expressed in bpm, is calculated
as:

MHR =
60

dIF
. (4.15)

Another straightforward metric to calculate is the standard deviation of the
normal-to-normal interval (SDNN). This metric corresponds to the square
root of the variance and thus serves as a measure of the total variability
power. SDNN, expressed in milliseconds, is calculated as:

SDNN = 1000 ·

√∑K
k=1(dIF(tk)− dIF)

K − 1
, (4.16)

SDNN, as a measure of total variability, does not differentiate which division
of the autonomic nervous system influences this variation. Metrics that
provide a better distinction of variability components include the root mean
square of successive differences (RMSSD). This metric is computed from the
differences between successive intervals rather than from the R-R intervals.
As it gauges the magnitude of interval changes, it indicates the variability
rate. Thus, RMSSD is intimately linked to and shows a strong correlation
with the HF component of the spectrum. The RMSSD is computed in
milliseconds as:

RMSSD = 1000 ·

√∑K
k=2(dIF(tk)− dIF(tk−1))2

K − 1
. (4.17)
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Figure 17: PSD estimates from the same record using different methods.
The estimates exhibit substantial differences. Top: Fourier-based spectral
estimation. Bottom: Averaged Lomb-Scargle periodograms.

6.2 Frequency domain (I). Spectral estimation

As mentioned in Chapter 2, frequency analysis allows the distinction of
neural control elements within HRV. In this thesis, power spectral density
(PSD) estimation has been performed using both the fast Fourier transform
(FFT) and Lomb-Scargle periodograms. Figure 17 illustrates examples of
these estimates. It should be noted that, despite being derived from the same
recording, the estimates generated by the two methods show significant
discrepancies. Chapter 6 demonstrates how these estimates change when
faced with missing data along with robust correction methods.

Fourier-based spectral estimation

As Fourier-based methods require evenly sampled signals, estimations
are performed on the heart rate modulating signal, m(t), obtained from
the Integral Pulse Frequency Modulation (IPFM) model [33]. This model
assumes that the effects of the ANS on the SA node can be described by a
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Figure 18: IPFMmodel diagram. The input functionm(t)modulates the
variability, resulting in the event series tk.

band-limited, zero-mean signalm(t), with pulses triggered whenever the
integral of this function reaches a predefined threshold (see Figure 18).
Given a heartbeat time occurrence series (tk), the IPFM model relates the
series withm(t) as:

k =

∫ tk

0

1 +m(τ)

T
dτ, (4.18)

k being the number of the current heartbeat and T the mean heart rate.
According to [34], this technique produces more accurate spectra compared
to those obtained from the interpolated R-R series using traditional interpo-
lation methods such as cubic splines, thus avoiding spurious components
and low-pass filtering effects. Furthermore, it allows the interpolation of
the R-R series even under missing data conditions, as detailed in [31]. The
major drawback of this method is the use of a constant heart rate. Although
during short time periods the assumption of stationary conditions can be
made, it is not realistic during long periods. In addition, stationarity can
hardly be assumed in a context of wearable monitoring, where the user can
perform a wide range of activities during a day. To overcome this, a version
of the method known as Time-Varying IPFM (TVIPFM) model has been
used [35, 36]. This modifies Equation 4.18 into

k =

∫ tk

0

1 +m(τ)

T (τ)
dτ =

∫ tk

0
dHR(τ)dτ, (4.19)

where dHR(t) is the instantaneous heart rate. Note that T → T (t). In this
approach, k is generalized to continuous time, being k(t) the continuous beat-
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order function such that k(tk) = k, and dHR(t) is obtained by differentiating
k(t) with respect to t [35]. Then,m(t) is computed as

m(t) =
dHR(t)− dmHR(t)

dmHR(t)
, (4.20)

dmHR(t) representing the slow variations of the heart rate. This signal is
obtained by low-pass filtering dHR(t) at 0.04 Hz.

Assuming stationarity in the analyzed segments,m(t) spectral density is
estimated using Welch’s method, a non-parametric method that estimates a
signal PSD by means of modified periodogram averaging. This technique
reduces the variance of the estimate while sacrificing spectral resolution.
First, m(t) is sampled at 4 Hz, obtaining m[n]. For a segment mi[n] of N
samples extracted from the signal m[n], the periodogram Si(f) is calculated
as the Fourier transform of the biased estimate of the autocorrelation
sequence:

Si(f) =
1

N

∣∣∣∣∣
N−1∑
n=0

mi[n]e
−j2πfn

∣∣∣∣∣
2

. (4.21)

Amodified periodogram is an adapted version of the periodogram that aims
to reduce spectral leakage by minimizing discontinuities at the boundaries
of the data segment. This is achieved by applying a window function w(n)

of length N samples, same as the segment, to the signal segment before
computing the Fourier transform. Thus, the modified periodogram Smod

i (f)

is calculated as

Smod
i (f) =

1

NW

∣∣∣∣∣
N−1∑
n=0

w[n]mi[n]e
−j2πfn

∣∣∣∣∣
2

, (4.22)

where W is a normalizing factor equal to the energy of w(n). The average is
calculated by generating Nper modified periodograms for each signal using
sliding Hamming windows with a certain overlap:
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SWelch(f) =
1

Nper

Nper∑
i=1

Smod
i (f). (4.23)

Averaged Lomb-Scargle periodograms

Averaged Lomb-Scargle PSD estimation makes use of Lomb-Scargle peri-
odograms, a nonparametric spectral estimation based on a least-squares fit
of sinusoids in data samples [37]. The main advantage of this method is
that it can be used directly on unevenly sampled interval series, even in the
presence of missing data. Estimates on heart rate representations are shown
to be more accurate than in beat interval representations [34]. Therefore,
Lomb-Scargle periodograms are computed on the inverse interval function
dIIF(tk), defined as:

dIIF(t) =
K∑
k=1

1

(tk − tk−1)
δ(t− tk). (4.24)

Thus, Lomb-Scargle periodograms are computed as:

SLomb(f) =
[
∑K

k=1(dIIF(tk)− dIIF) cos(2πf(tk − τ))]2

2σ2
∑K

k=1 cos
2(2πf(tk − τ))

+
[
∑K

k=1(dIIF(tk)− dIIF) sin(2πf(tk − τ))]2

2σ2
∑K

k=1 sin
2(2πf(tk − τ))

, (4.25)

where the value of τ is defined as

tan(4πfτ) =

∑K
k=1 sin(4πftk)∑K
k=1 cos(4πftk)

, (4.26)

being dIIF and σ2 the mean and variance estimates of dIIF(tk) respectively.
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6.3 Frequency domain (II). Component separation

The previously established methods facilitate the analysis of different fre-
quency components of variability. As discussed in Chapter 2, three primary
frequency bands can be distinguished: VLF, LF, and HF. Traditionally,
fixed frequency intervals have been employed: 0 to 0.04 Hz for VLF, 0.04
to 0.15 Hz for LF, and 0.15 to 0.4 Hz for HF. However, the validity of these
intervals has been called into question [38–40]. The RSA component is not
consistently confined to the classical HF band. It frequently overlaps with
the LF component and may exhibit power beyond 0.4 Hz.

In response to this limitation, the scientific community has developed
methods for more precise spectral separation. These approaches often
incorporate respiratory information to more accurately localize the RSA
componentwithin the spectrumor to fully disentangle it fromnonrespiratory
components. The drawback of these methods, however, is their reliance on
the availability of respiratory data, which is not always accessible. While it
is sometimes possible to infer this information from ECG or PPG signals,
the robustness of such inferences is highly dependent on signal quality.

For this reason, the traditional frequency windows remain widely used as
they are effective inmany applications. In this thesis, both classical frequency
intervals and respiratory-driven component separation approaches are used.

Band selection using respiratory rate estimated from variability

One of the most straightforward methods for accurately assessing the RSA
component involves estimating the respiratory frequency from HRV of
PRV. This estimation can be performed using the spectral density of the
respiratory signal, if such data are available, or inferred from the variability
signal when the respiratory signal is unavailable. In a wearable environment,
where access to the respiratory signal is uncommon, the latter approach is
typically required.

A critical consideration with this method is the assumption of a distinct
and stationary respiratory component, which holds in relaxed conditions,
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Figure 19: RSA band delimitation based in respiratory rate. Bands are
centered in the respiratory rate (red dot), estimated from respiratory signals
or other signals with respiratory modulation. Top: Fixed width. In this
example, the bandwidth is 0.1 Hz. Bottom: -3 dB bandwith.

such as when the user is silent or during controlled-breathing experiments.
In such cases, respiratory frequency estimation is achieved by identifying
the peak in the PSD of variability within a predefined range of expected
frequencies.

However, in practical applications, the respiratory component often exhibits
significant power at several frequencies, particularly when the user is
speaking or engaged in different activities, making this method less suitable
for continuous monitoring in wearable devices. To enhance the robustness
of this approach, an initial evaluation of the sharpness of the spectrum can
be incorporated, with estimation being performed only if the spectrum
exceeds a defined sharpness threshold.

In this thesis, the approach without sharpness detection is employed, as
is applied in a controlled breathing experiment (see Chapter 5). Under
these conditions, a single-component spectrum is expected. The metronome
respiratory frequencies used in this experiment are lower than those in
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the classic HF band, i.e. below 0.15 Hz, making it necessary to center the
respiratory band in the appropriate frequencies. Once the center frequency
of the band is determined, the lower and upper limits are established using
two methods: fixed bandwidths and -3 dB bandwidth (see Figure 19).

Spectral coherence

RSA band identification using spectral coherence depends on the variability
signal combinedwith a respiratory signal. This signalmay be true respiration
or a proxy created from ECG or PPG signals, significantly influenced by
breathing patterns, such as slope transit time or the width of the main
wave [41, 42]. Spectral coherence, Cxy(f), measures the linear correlation
between the two signals x(t) and y(t) at various frequencies. It takes real
values between 0 and 1, with higher values indicating a stronger correlation
at a given frequency. Formally, it is defined as

Cxy(f) =
|Sxy(f)|2

Sxx(f)Syy(f)
, (4.27)

where Sxx(f) and Syy(f) represent the spectral densities of the signals x(t)
and y(t), respectively, estimated using periodograms (see Equation 4.21).
Sxy(f) denotes the cross-spectral density, which is the Fourier transform of
the cross-correlation between the two signals.

Contiguous frequencies exceeding a certain threshold around the estimated
respiratory rate are selected to delineate the RSA band (see Figure 20). This
threshold is determined as the 95th percentile of one hundred realizations
of Gaussian white noise, ensuring that the observed coherence is statisti-
cally significant. Additional conditions may be imposed to ensure robust
evaluation. This thesis excluded frequency bands narrower than 0.015 Hz.

Orthogonal Subspace Projection

The last reviewed method is Orthogonal Subspace Projection (OSP) [36, 43].
In this approachm[n] is decomposed by the respiratory signal, r[n], sampled
at the same points, into a component linearly related to respiration, m̂r[n],
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Figure 20: RSA band delimitation based in spectral coherence. Top:
Spectral coherence between HRV and a respiration-modulated signal. The
dashed line represents the threshold that defines the RSA band. Center:
HRV spectral density. Bottom: Spectral density of a respiration-modulated
signal. In this example, the slope transit time (see Chapter 5).

and a residual component, m̂⊥[n], which contains other modulators. Unlike
previous methods, this approach does not focus on dividing a single PSD
into frequency bands; rather, it separates the modulating signal into two
distinct signals to estimate two separate PSDs.

OSP is used to decompose a signal when provided with a reference, in this
case a respiratory reference. The initial step involves the construction of a
subspace characterized by the basis V , which is indicative of respiratory
activity. OSP was originally suggested in [44] for the decomposition of the
tachogram and used wavelet transforms applied to the respiration signal to
establish V . In this thesis, delayed versions of r[n] were used instead.

Consideringm[n] and r[n] signals consisting ofN samples and p as the order
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of the model, m[n] can be projected onto a subspace V with dimensions
(N − p+ 1)× p, defined by all variations in r[n]:

V =



r[0] r[1] . . . r[p− 1]

r[1] r[2] . . . r[p]

... ... . . . ...
r[N − p] r[N − p+ 1] . . . r[N − 1]


. (4.28)

A projection matrix P with dimensions (N − p+1)× (N − p+1) is created
as

P = V (V TV )−1V T . (4.29)

Then m = {m[p− 2],m[p+ 1] . . .m[N − 1]} is composed, and m̂r and m̂⊥

are computed as

m̂T
r = PmT (4.30)

and

m̂⊥ = m− m̂r. (4.31)

Note that m̂r[n] and m̂⊥[n] consist of N − p + 1 samples, since p + 1

samples are required to compose V . This approach is analogous to fitting
an autoregressive moving average model that describes the interactions
between m[n] and r[n]. Refer to [36] for a comprehensive discussion on this
topic. Once these signals are obtained, their PSDs, Ŝmr(f) and Ŝm⊥(f), can
be estimated by any of the methods described above. Figure 21 illustrates the
OSP decomposition of m[n], presenting one scenario where the respiratory
rate exceeds the LF range and another where it is within the LF range.
Observe that the former scenario is expected to yield results comparable to
the conventional fixed LF and HF ranges, whereas the latter scenario results
in significantly different outcomes.
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Figure 21: OSP decomposition. Top panel: Respiratory rate outside LF band.
Bottom panel: Respiratory rate within LF band. Inside each panel, left side top to
bottom: Respiratory signal, modulation of the heart rate, modulation linearly
related with respiration, and residual component. Inside each panel, right
side top: Respiratory signal (blue) and modulation of the heart rate (gray)
spectra. Inside each panel, right side bottom: Modulation of the heart rate
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6.4 Frequency domain (III). Metrics computation

The main metrics in frequency-domain HRV analysis include:

• The low-frequency power (PLF), that represents both sympathetic and
parasympathetic activity of the ANS.

• The high-frequency power (PHF), primarily associated with parasym-
pathetic activity and closely related to respiration.

• The LF powermeasured in normalized units (PLFn), used to emphasize
the balance between the LF and HF components of HRV, providing
a clearer picture of the relative contributions of sympathetic and
parasympathetic activity, independent of the overall variability.

• The PLF/PHF ratio. This ratio has been widely used as an indicator
of sympathetic-parasympathetic balance. A high value suggests
sympathetic dominance, while a low value indicates parasympathetic
dominance. However, this metric has been subject to criticism as an
indicator of sympathovagal balance [45, 46], and exhibits a lack of
robustness when PHF approaches values close to zero.

PLF and PHF are determined by applying trapezoidal integration to the PSD
within their respective frequency ranges. PLF is consistently integrated over
the interval 0.04 to 0.15 Hz, whereas the HF band’s boundaries can either
be the classic window of 0.15 to 0.4 Hz; or adjusted based on respiration
guidance, as explained before. PLFn is computed as PLF/(PLF+PHF).

OSP decomposition method requires adapted frequency-domain metrics.
Spectral powers Pr,LF+HF, representing the parasympathetic nervous system,
and P⊥,LF, representing the sympathetic, are calculated by integrating
Ŝmr(f) and Ŝm⊥(f) over 0.04-Fmax Hz and 0.04-0.15 Hz, respectively, using
trapezoidal numerical integration. Fmax is the upper limit of the spectrum,
calculated as half of the MHR, which can be seen as the Nyquist criterion,
since heart rate is inherently sampled beat to beat.



6. Variability metrics 95

To address concerns about the traditional PLF/PHF ratio as a measure of
sympathovagal balance, a new decomposition-based version of this index
was proposed in [43], described as

R =
P⊥,LF

Pr,LF+HF
, (4.32)

since Pr,LF+HF and P⊥,LF may be a more precise representation of parasym-
pathetic and sympathetic activity than PHF and PLF [43, 45, 47]. However,
when the coupling between cardiorespiratory signals is weak,Rmay assume
excessively large values [47]. This issue can be alleviated by normalizing R
to become

R′ =
P⊥,LF

Pr,LF+HF + P⊥,LF
. (4.33)

R′ is analogous to the conventional normalized ratio, PLFn, in which the
spectral power within the LF band is normalized against the total spectral
power across all combined bands [36].

6.5 Lagged Poincaré plots

Lagged Poincaré plots serve as graphical tools to illustrate interbeat dy-
namics. These graphs display variability by charting the IBI series against
itself with a certain lag, usually 1, creating a scatterplot that outlines the
phase space of the series (see Figure 22). A spread distribution of the
points signifies increased variability. Poincaré plots have become essential in
HRV analysis, proving to offer valuable prognostic insights into myocardial
infarction, chronic heart failure, and sudden infant death syndrome [48].
Recent findings have validated the reliability of Poincaré plots even in ultra-
short-term monitoring [49]. The main challenge with Poincaré plots lies in
the absence of clear quantitative metrics to describe the key characteristics
of the plot. In this context, the ellipse fitting method has been selected [48].
An ellipse is tailored to align with the point distribution, and geometric
indices are derived. These indexes are as follows:
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Figure 22: Lagged Poincaré plots. Left: Lagged Poincaré Plot with one-beat
lag. Right: Ellipse fitting method.

• SD1: the standard deviation of the projection of points on the ellipse
axis perpendicular to the line of identity. This measure is related to
the fast beat-to-beat variability and RMSSD:

SD1 =
RMSSD√

2
. (4.34)

• SD2: the standard deviation of the projected points along the line-of
identity, that measures long term dynamics of HRV.

• SD1/SD2: the ratio, to describe the relationship between these compo-
nents.

• S = π· SD1 · SD2: the area of the ellipse, related to overall variability.
It is proportional with the variance of the N-N interval, and thus with
SDNN2

• Md: the mean data distance to the ellipse centroid (euclidean norm).

• Sd: the standard deviation to the ellipse centroid (euclidean norm).

SD1 and SD2 are also related to SDNN as

SDNN =

√
SD12 + SD22

2
. (4.35)
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5
Respiration-guided ANS

evaluation from wrist PVP

1 Objectives and motivations

This study continues the work of Hernando et al., who evaluated the
utility of the non-invasively acquired PVP signal as an indicator of the
ANS [1, 2], which was preceded by investigations that used the signal
obtained invasively in pigs [3]. Hernando et al. demonstrated that PVP
measured fromNIVA, that actually measures changes in PVP (i.e., a pressure
derivative), in the volar aspect of the wrist and PPG in the same place (see
Chapter 2), is a reliable surrogate for HRV under resting conditions. In
addition, they found a significantly higher power within the HF band at
PVP, defined as the band centered at the respiratory rate. It suggests that
PVP may provide improved respiratory rate information, perhaps because
venous return is strongly mediated by negative pressure in the chest caused
by inspiratory movements.

HRV analysis can better reflect vagal modulation of heart rate by includ-
ing respiratory information, as has been reported for some applications,
including stress assessment [4]. Thus, NIVA could make use of its novel
signal to obtain enhanced information on parasympathetic tone guided
by respiration, which could be used in stress and well-being identification
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applications (e.g., yoga, mindfulness, etc.) using a wrist device, the most
accepted on the market nowadays.

The purpose of this research is to further investigate the PVP signal obtained
from NIVA, examining its ability to extract respiration-driven parasym-
pathetic indicators. Respiratory data and pulse rate have been extracted
from the signal and subsequently used to calculate the PRV power in a
respiration-dependent frequency band. Performance has been evaluated in a
breathing-controlled experiment with different respiratory rates. It is known
that, for the same subject, the power in the band defined by respiration tends
to decrease with an increase in the respiratory rate [5]. The hypothesis is
that the PVP signal could be more sensitive than the PPG signal to these
intra-subject variations.

2 Materials and methods

In collaboration with Vanderbilt University Medical Center and under COI
IRB approval, eight healthy volunteers were recorded with the NIVA device,
acquiring PVP and PPG signals while maintaining controlled respiration at
0.1, 0.2, and 0.3 Hz (6, 12, and 18 bpm, respectively). Each stage lasted 5 to
6 minutes, and the subjects were seated throughout the experiment. The
PVP signal is acquired using a piezoelectric sensor that samples at 500 Hz,
while the PPG uses an optoelectric one at 125 Hz, both in the volar aspect of
the wrist. It is important to note that the PVP obtained by NIVA is a signal
proportional to the pressure derivative, rather than to the pressure itself.
For simplicity, this signal is referred to as PVP rather than PVP’ or similar,
as pressure information is contained in it. However, this fact is taken into
account in the processing explained below.

2.1 Signal delineation

All signals were low-pass filteredwith a cutoff frequency of 5 Hz for PVP and
2 Hz for PPG. These frequencies were chosen empirically to eliminate high-
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Figure 23: PPG and PVP delineation. Key points include the maximum
upslope (tU [k]) marked by red circles, the pulse onset (tO[k]) marked by
green triangles, and the derivative zero crossing (tA[k]) marked by blue
triangles. The PPG signal is represented by a solid line, while its derivative
is shown with a dashed line. Bottom: PVP delineation.

frequency noise. The cutoff frequency for PPG is lower than typical values
for wrist PPGs due to the poor signal-to-noise ratio caused by prioritizing the
piezoelectric placement over the vein, which led to suboptimal positioning
of the optical sensor. For a better comparison of the signals, the results
have also been calculated for PVP filtered at 2 Hz. The signals were high-
pass filtered with a cutoff frequency of 0.5 Hz to remove low-frequency
oscillations such as baseline wander.

PPG and PVP are delineated to obtain key points (see Figure 23). In the case
of PPG, delineation is applied to the derivative obtainedwith a differentiation
filter. PVP obtained by NIVA is proportional to the pressure derivative;
thus, the key points are delineated without this differentiation process. First,
the maximum upslope of each pulse, tU [k], is obtained using an adaptive
threshold, with k = 1, 2, . . . ,K, where K represents the total number of
pulses. Two more key points are obtained: the signal onset, denoted as
tO[k]; and the derivative zero crossing, denoted as tA[k]. The calculation of
tO[k] is carried out as described in [6]. In PVP, the derivative zero crossing
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is the zero crossing of the signal itself.

2.2 Respiratory rate estimation

The respiratory frequency was estimated through spectral analysis of both
Slope Transit Time (STT) and PRV. STT is defined as the time interval
between the PPG waveform onset (tO[k]) and its maximum point (tA[k]).
This definition has been extended to the PVP using the same key points.

STT is influenced by respiration through several physiological mechanisms,
such as respiratory-induced variations in stroke volume, RSA, and changes
in peripheral vascular tone. In this way, respiratory-induced variations in
STT can be used to estimate respiratory rate, analogously to the PRV. The
STT signal, dSTT(t), is computed as

dSTT(t) =
K∑
k=1

(tA[k]− tO[k])δ(t− tA[k]). (5.1)

A running standard deviation threshold was used as an outlier detector (see
Equation 4.5). This outlier detector had aminimum andmaximum threshold
to eliminate both false negatives and false positives in the delineation.
Subsequently, the corrected dSTT(t)was interpolated using cubic splines at 4
Hz to ensure uniform sampling, obtaining dSTT[n].

PRV is computed from tU [k] using the IPFM model, thus obtaining a heart
modulation signal m[n] at a sampling rate of 4 Hz, consistent with dSTT[n].
Outliers in m[n] are less common, as m[n] computation depends on the
maximum upslope, which is more robust than the other two key points.
Outliers in the tU [k] series are treated as ectopic beats in the computation of
m[n]with the IPFM model, following the method described in [7].

The respiratory rate was determined by identifying the frequency with the
highest power within the range of 0.05 to 0.4 Hz in the PSD of bothm[n] and
dSTT[n], obtaining separated estimates. PSD was calculated using the Welch
method, employing a 60-second Hamming window with 50% overlap. In
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the absence of a direct respiratory signal for validation, a criterion was
established to assess the precision of the estimated respiratory frequency. An
estimate was deemed accurate if it fell within ±0.03 Hz of the metronome-
guided breathing frequency. This tolerance accounts for potential minor
deviations in the participant’s adherence to the prescribed breathing pattern.
The efficacy of the respiratory rate estimation method was quantified using a
success rate metric, separately for m[n] and dSTT[n] estimations. This metric
is defined as the ratio of the correct estimates (those that meet the ±0.03 Hz
criterion) to the total number of cases examined, expressed as a proportion.

2.3 Respiration-guided parasympathetic assessment

Three different methods have been used to calculate the RSA/HF bounds in
them[n] spectra. The first one consists of 0.1 Hz width windows centered
around the estimated respiratory rate. The second method centers the band
in a similar manner but adjusts the bandwidth to -3 dB instead of using a
fixed width. The third is based on the spectral coherence between the m[n]

and dSTT[n] spectra. The boundaries of the HF window are examined by
identifying frequencies with coherence that exceed a threshold near the
estimated respiratory rate. This threshold was previously calculated to be
the 95th percentile of a hundred instances of white Gaussian noise, ensuring
that the coherence is statistically meaningful. Windows less than 0.015 Hz
wide are rejected.

After determining the window boundaries, the HF power (PHF) is computed
from the m[n] spectrum using trapezoidal integration. The spectra are
normalized by dividing by the power integral in the range of 0.03 to 0.4
Hz. A paired signed rank test is performed, in which the hypothesis of
zero median is tested for PHF distributions at different respiratory rates.
Thus, parasympathetic estimates are compared, obtaining a qualitative
measurement of discrimination between different breathing rates of PPG
and PVP. A significance level of α = 0.05 is used to reject or accept the null
hypothesis.
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3 Results

Respiratory rate estimation results are shown in Table 2. A 100% success
rate is achieved using the PVP’sm[n] spectrum when filtered at both 5 Hz
and 2 Hz. The corresponding root mean square errors (RMSE) compared to
the metronome rate are 0.7 mHz at 5 Hz and 1.1 mHz at 2 Hz. When using
the PPG, the success rate decreases to 87.5%, although the RMSE remains
low at 1.3 mHz in the successful cases.

In contrast, the outcomes with the dSTT[n] spectrum are less favorable. For
the filtered PVP, a success rate of 66.7% is obtained at both 5 Hz and 2 Hz,
with RMSE values of 6 mHz and 6.8 mHz, respectively. In the case of PPG,
the success rate is 75% with an RMSE of 1 mHz.

Regarding respiration-guided parasympathetic assessment, downward
trends in PHF are present in both PVP and PPG when using fixed-width
windows centered at each respiratory rate. There are significant differences
(p < 0.05) in the median between the 6-12 bpm and 12-18 bpm distributions
for both PPG and PVP (see Figure 24). Similar results are obtained using -3
dB wide windows for PVP. However, the differences are no longer significant
for PPG. The utilization of coherence-defined windows proves ineffective
for both PVP and PPG.

Table 2: Respiratory rate estimation from PVP and PPG.

Spectrum Sensor Filter cutoff (Hz) Success rate (%) RMSE (mHz)

m[n]
PVP 5 100.0 0.7

2 100.0 1.1
PPG 2 87.5 1.3

dSTT[n]
PVP 5 66.7 6.0

2 66.7 6.8
PPG 2 75.0 1.0
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Figure 24: Signed rank test results. The test measures differences in median
distributions of PHF at different respiratory rates (6, 12 and 18 breaths per
minute). Statistical significance is marked with an asterisk (*). Top left:
Fixed width HF window, centered on respiratory rate. Top right: -3 dB width
HF window, centered on respiratory rate. Bottom: Coherence-based HF
window.

4 Discussion

4.1 Findings

The PVP signal is strongly influenced by breathing, making it especially
useful for estimating respiratory rate. In fact, using m[n] derived from
the PVP signal achieved 100% accuracy in estimating respiratory rate,
outperforming m[n] derived from wrist PPG.

Meanwhile, dSTT[n] performed better with PPG than with PVP, although
it did not surpass the accuracy achieved by m[n]. This information was
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used to accurately delimit the HF band. In this task, both PVP and PPG
were able to distinguish between groups at different respiratory rates using
fixed-width windows. However, only PVP worked effectively with -3 dB
width windows. Neither PVP nor PPG was able to distinguish between
groups using coherence-based windows. This may be because dSTT[n] was
not as good an estimator of respiration asm[n] in this particular application.

In this research, the two signals offered by the device were compared;
however, the combination of both could give additional information that
could not be achieved with the signals separately. This is a future line to
consider together with comparing performances also in a spontaneous
breathing scenario.

4.2 Limitations

The respiratory rate has been obtained from the m[n] spectrum instead
of from the raw signal spectrum, as in [1], because in the PVP signal the
respiration band was heavily filtered, probably due to the high-pass nature
of the derivative. In the absence of a respiratory signal, the metronome
frequency was used as a reference, since in [8] it was shown that the
deviations are of the order of tenths of millihertz.

Another issue to be addressed is that the tidal volume was not measured
during the experiment. Changes in respiratory rate are expected to cause
changes in tidal volume, and variations in tidal volume are known to affect
PHF in the opposite way as changing respiratory rate. The higher the
tidal volume, the greater PHF and vice versa [5]. This variation should be
considered in future experiments.

Finally, the size of the database is a clear limitation. A larger number of
subjects should be involved in future research.
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5 Conclusion

In this work, the ability to derive respiration-guided parasympathetic
estimates from a wrist-worn device has been investigated. The respiratory
rate was successfully derived in all cases using m[n] obtained from the PVP
signal, outperforming the dSTT[n] from PVP andm[n] and dSTT[n] from PPG.
PHF from PVP in a bandwidth dependent on respiratory rate estimates
showed a significant decrease with increasing respiratory rate, supporting
its use as a parasympathetic estimate.
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6
Effects of missing data in HRV metrics

1 Objectives and motivations

The analyses presented in the preceding chapter are limited by the absence
of an evaluation regarding the degradation of metrics resulting from data
loss and delineation failures. This raises several critical questions: to what
extent can a given metric degrade with data loss, which metrics demonstrate
greater robustness, which types of data loss are more detrimental, and,
most importantly, what methodologies can be employed to conduct a more
robust analysis.

In the present study, it is shown how data loss affects HRV metrics in the
time domain, frequency domain, and Poincaré plots. A gap-filling method
is proposed and compared with other existing approaches to alleviate these
effects, both in simulated and real missing data. Two different data loss
scenarios have been simulated: i) scattered missing beats, related to a low
signal-to-noise ratio; and ii) bursts of missing beats, the most common due
to motion artifacts. In addition, a real database of photoplethysmography-
derived pulse detection series provided by theAppleWatch during a protocol
that includes the relax and stress stages is analyzed. The best correction
method and maximum acceptable missing beats are given. The findings of
this work are useful for the design of robust HRV applications depending
on the missing data tolerance and the desired HRV metrics.
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2 Introduction

The exponential growth of wearable devices capable of recording ECG
and/or PPG signals opened a new horizon for HRV, allowing massive
monitoring at a relatively low cost. The accessibility to a large variety of
designs has made them an everyday-use tool, allowing noninvasive health
monitoring in the general population. In this context, assessing the state of
the ANS during daily life has become a very attractive objective in the field of
health andwell-being. However, obtaining reliable variabilitymeasurements
fromwearable devices is a challenge. Wearable devices are worn throughout
the day in constantly changing conditions, and motion artifacts are very
frequent. In addition, comfortability is relevant when deciding the place of
recording of a wearable device, in contrast to the clinical settings, where the
signal quality is usually more relevant. All of this leads to an overall low
signal quality compared to clinical monitoring scenarios, which downgrades
the performance of traditional HRV methods. Most devices only measure
MHR, which is very robust to data loss in stationary conditions but less
powerful for ANS assessment than HRV. Although changes in MHR are
mainly induced by the ANS, it cannot be considered a measure of autonomic
function [1–3]. Despite studies that criticize the added value of HRV with
respect to MHR [4], there are scenarios in which an alteration of the ANS
function produces changes in HRV but not in MHR, such as in depressed
patients with respect to controls [5] or in exercise contexts [6].

Acquisition technology has made a qualitative leap that has surpassed
traditional HRV preprocessing methods to some extent. In a few years,
the challenge has shifted from dealing with casual artifacts to being forced
to forego a large part of the total recording time. The proliferation of
wearable device health applications makes it necessary to investigate HRV
metrics degradation in the presence of incomplete recordings, as well as
new methods that allow robust analysis under adverse conditions.
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2.1 Related work

Artifacts have been a concern since the beginning of HRV studies, as they
can appear even in the most controlled environments. Most of the works in
the literature focus on artifacts of short duration, which are often treated
in the same way as ectopic beats [7–13]. In general, methods are divided
between those that simply remove outliers in beat detections —both false
positives and false negatives— and those that interpolate them based on
accepted proximal values (gap-filling methods) [9]. Correction methods
are mandatory since errors representing less than 0.1% of the detections
may cause variations up to 50% in some HRV metrics [9].

Some gap-filling methods generate evenly spaced interpolations. The beat
event series is not available with these methods, so time-domain metrics
or Poincaré plots cannot be assessed. Mateo and Laguna proposed an
IPFM-model based corrector for ectopic beats on the heart timing signal [7],
a continuous signal, assuming that autonomic modulation can be modeled
using a band-limited signal. Meanwhile, McNames et al. used an impulse
rejection filter on the instantaneous heart rate signal —evenly sampled—,
on the basis that nonpathological artifacts are of small duration and large
amplitude [8]. Lee and Yu detected and corrected outliers in the tachogram
using cubic splines [10].

On the other hand, some studies obtain a corrected unevenly-sampled
inter-beat interval (IBI) series, allowing the assessment of time-domain
metrics and Poincaré plots. Begum et al. used k-nearest neighbors in the IBI
series [11], while Al Osman et al. used a combination of cubic and nonlinear
predictive interpolation methods [12]. An interesting aspect of the last is
the use of simulation to introduce artifacts in order to compare errors. Giles
and Draper compared different interpolation methods of the IBI series,
including cubic splines [13].

Although the previous methods may work for isolated outliers, they have
not been evaluated for longer artifact segments. Baek and Shin studied the
degradation of temporal and frequency metrics in response to an increase in
missing IBI data, obtained by simulation, although they do not provide any
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correction method [14]. The simulation randomly removes samples from
the tachogram in an increasing manner, over a fairly wide range, from 5 to
285 samples, in 5-minute recordings. Morelli et al. developed one of the
first studies to investigate the effect of a large number of heartbeat losses,
from the perspective of wearable devices [15]. Their simulation method for
missing detections is based on a two-state Markov chain, simulating losses
of 30, 50, and 70% of IBIs. This is one of the most comprehensive studies on
artifact correction applied to wearables, including temporal and frequency
metrics and Poincaré plots. Benchekroun et al. used filtering and gap filling
using a Gaussian distribution in IBI series with 5 to 35% simulated missing
beats [16]. HRV metrics were derived from corrected series and used as
features for a stress/relax classification. Classification results were compared
with other gap-filling approaches (linear, spline, and pchip). Nevertheless,
no separate metric results were reported. Królak et al. proposed a gap-filling
algorithm tested with bursts of up to 7 missing beats [17]. They reported
that cubic interpolation can, in some cases, result in lower errors for long
gaps. Finally, some works address artifact correction in the detection stage,
using methods such as adaptive filtering, wavelet transform, or feature
extraction of the cardiac signal [18, 19]. These approaches are beyond the
scope of this thesis, as they are signal specific and many wearables do not
allow exporting cardiac signals but event series. In addition, they can be
used in conjunction with event series correction.

2.2 Objectives and motivations

There is still much to be known about HRV metrics degradation in scenarios
with large missing data. To the authors’ knowledge, there is no study that
provides insight into how correction methods behave under different types
of loss that can occur in a real case: bursts and scattered missing beats. There
is also no conclusion on the maximum burst size to discard a segment from
further analysis. The same is true for scattered missing beats. In this work,
degradation of different HRVmetrics in the time domain, frequency domain,
and Poincaré plots is evaluated in missing data scenarios. A missing data
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simulation protocol has been developed for this purpose. Also, a method to
attenuate the effect of missing data in HRV metrics has been proposed and
compared to existing methods in the literature. Then, these methods have
been applied to analyze PRV derived from Apple Watch. This work aims to
contribute to HRV/PRV analysis by proposing guidelines to select the best
correction method for each studied metric and missing data scenario, and to
provide conclusions about when to discard a segment for further analysis
depending on the quantity and distribution of missing data.

3 Materials and Methods

3.1 Simulation of missing beats

The simulation study is based on a database previously collected for a
different investigation [20] comprising 16 subjects (age 28.5± 2.8 years, 10
men) who underwent a tilt table test consisting of 4 min in a supine position,
5 min at a 70º angle, and 4 min back to the supine position. The tilt table test
is a common method used in the clinic to assess the cause of unexplained
fainting. During the test, the patient’s heart is monitored by electrodes while
it is held in a supine position. The patient rests on a special table that has an
automatic mechanism to eventually move to an upright position. This table
usually has a footboard and straps to hold the patient. The purpose of the
test is to trigger symptoms that indicate abnormal control of heart rate or
blood pressure, which is necessary in the transition from the supine position
to the upright position. It is assumed that the slight tachycardia that usually
accompanies the upright position is due to a sympathovagal shift towards
a sympathetic predominance in the neural modulation of the SA node.
Enhanced sympathetic drive to the heart is associatedwith amarked increase
in LF and with a decrease in the variability and arterial pressure component
of HF [21]. Moreover, the grade of sympathovagal shift is strongly correlated
with the degree of tilt, as demonstrated in [22]. Due to its properties, the tilt
table test has become a popular method to evaluate sympathovagal balance.
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Figure 25: ECG with missed beat detections due to noise and artifacts.
R-wave detections are marked with red circles. Top: Scattered missing beats
due to a low SNR. Bottom: Burst of missing beats caused by an artifact.

Passive tilt only entails minimal involvement of central drive and muscular
activity and is compatible with accurate stationary conditions, different from
physical exercise, which is characterized by extreme reductions in HRV,
non-linearities, non-stationarities, and enhanced respiratory activity [22].

A V4 lead ECG signal was recorded using the Biopac ECG100C amplifier
and disposable Ag–AgCl electrodes with a sampling frequency of 1000 Hz.
Two 2-minute duration segments, free of artifacts and ectopic beats, are
selected for each subject, one for the first supine stage and the other for the
tilt stage. Stationarity is assumed for this duration [20]. A wavelet-based
algorithm has been used for QRS detection [23]. Detections were visually
inspected and corrected if necessary.

The assessment of HRV metric degradation focuses on its error and its
effectiveness in differentiating between tilt and supine positions, which
reflect varying levels of sympathovagal balance. First, HRV metrics are
computed prior to data removal, resulting in a benchmark for each method
under review. Then, missing beats are simulated by removing detections
from the time series in two ways: 1) by a random selection using a binomial
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Figure 26: Example of simulation with a segment of 40 beats. Deleted
beats are displayed in red. Top: Random distributed missing beats, p = 0.25.
Bottom: Bursts of missing beats. The elements at the ends (green) cannot be
deleted.

distribution; and 2) through deletion bursts, with an increasing number of
missing beats in each one. The former simulates the effect of a low signal-
to-noise ratio (SNR). Sometimes, signals have enough quality to perform
detections, although an automatic detector can still miss some pulses in
borderline situations (see Figure 25, Top). A binomial distribution is used to
simulate this effect, so each beat is deleted with a p probability. Thus, every
beat deletion is an independent Bernoulli trial. Ten different realizations of
this stochastic process have been computed for each segment, obtaining a
total of 160 segments for each supine and tilt position. Figure 26, Top shows
an example of a 40-beat segment, in which 25% of the samples are removed
(p = 0.25). In successive realizations, the positions of the removed samples
change randomly.

However, artifacts can affect signals even with a high long-term SNR.
Movements are mainly the cause of this kind of noise, a common problem
in wearables, characterized by a finite duration and a total masking of the
physiological signal. These events cause a burst of missing detections (see
Figure 25, Bottom). This effect has been simulated by removing central
elements from the series with windows of a certain duration. Although
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bursts are possible at any position by taking random segments of a signal,
bursts have not been simulated at interval ends, since the most advisable
solution in that case is not to use those first or last seconds of the window.
Specifically, 30 seconds at each of the two ends of the segment are not
considered for removal. Beat removal is restricted to the remaining segment.
The samples are removed from the segments with a sliding window of 10
steps, again obtaining 160 segments per supine/tilt position. An example is
shown in Figure 26, Bottom. As the duration of the bursts is determined in
seconds, a different number of beats is removed at each step, depending on
the instantaneous heart rate, even for the same segment. For simplicity, in
Figure 26 all bursts have the same number of elements.

In scenarios with scattered missed beats, an increase in missed beats poses a
challenge in detecting where each missed beat is located, as the baseline can
be lost. However, if a correct detection has been made, correction is still
straightforward as adjacent beats are present. On the other hand, in the
case of bursts of missing beats, detection becomes easier as the greater the
number of missing beats, as they produce a larger outlier. In this case, the
complication lies in finding out how many beats are missing and how to
perform corrections based on gap-filling methods.

In this work, no scenarios with possible extra detections, i.e. false positives,
are analyzed. This decision is made on the basis that only a few false
positiveswould complicate any correction due to loss of reference. Therefore,
it is assumed that detections should be performed after a signal quality
evaluation stage sufficiently restrictive to avoid most false positives.

3.2 Apple Watch dataset

As a real case, the dataset described in Hernando et al. in [24] has been
selected. It is composed of 20 healthy subjects (age 31.3 ± 8.2 years, 12
males) while undergoing a protocol that involves controlled environments
of relaxation and stress. Three segments of two minutes per subject, the
same duration as the simulation, have been used for each relaxation and
stress phase, yielding a total of 120 segments. Two series related to heart rate
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Figure 27: Process flow. The first row describes common event-series
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filling methods. After these common steps, the different HRV metrics,
grouped by families, are presented in each row. OD = Outlier Detection;
OR = Outlier Rejection; L = Linear; NL = Non-Linear; M = Model-based.

were obtained in each segment: PPG-based pulse detection series recorded
by the Apple Watch on the wrist and ECG-based R-wave detection series
recorded by Polar H7 (Polar Electro Ltd, Kempele, Finland), the latter used
as a benchmark. It is worth noting that the Apple Watch outputs the event
timestamps only when the —internal— PPG allows reliable pulse detection
according to an internal signal quality algorithm. Thus, the derived pulse-to-
pulse series present intermittent gaps. A total of 206 gaps were found in the
recordings, equivalent to 1321 missing detections. Missing data represent
around 10% of total events, distributed in 6s-long gaps on average. The
minimum gap length is 3.3s and the maximum is 10.4s. The synchronization
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between the Apple Watch and Polar H7 was performed using the delay
that maximized cross-correlation using the first 20 samples, where no gaps
appeared in the Apple Watch recordings [24].

3.3 Missing data detection

Figure 27 displays a graphical summary of the methods applied, described
in Sections 3.3, 3.4 and 3.5. The interval series are represented using the
interval function dIF(tk) (Equation 4.10). Missing beats produce outliers in
dIF(tk) at each tk corresponding to events after a gap. A moving median
threshold is used as an outlier-detection (OD) rule, as explained in Chapter
4, Section 5. The values of α and L have been empirically set using the
simulation dataset, resulting in α = 1.5 and L = 25. The best value for α
has been searched between 1 and 1.7 with a step of 0.1. Similarly, the best
value for L has been searched between 5 and 50 with a step of 5.

3.4 Correction methods

The simplest correction rule is to remove outliers from dIF(tk). This method
is referred to as Outlier Removal (OR) in this work, and its estimates are
denoted tOR

k . However, some metrics are greatly affected by incomplete
interval series. Thus, methods for estimating missing beat locations remain
very interesting.

A novel gap-filling method is proposed as follows. First, missing beats are
estimated by interpolation, allowing a single beat per gap. The outlier-
detection rule (Equation 4.12) is applied to each new estimate, setting
α = 1.1 for a better fit. If a gap is still detected, the algorithm discards the
added beats and passes to the next gap. In the next iteration, it will try to fill
it with one more beat. Otherwise, it is checked if dIF(tk) > (β × dEIBI(tk))

for all the added tk, being β = 0.9, to avoid introducing more beats than
necessary. If this condition is not fulfilled, the gap is filled with the number
of beats from the previous iteration and marked as corrected. Both α and β

have been empirically set using the simulation dataset. The best value for α
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Figure 29: Demonstration of the L gap-filling method. The method
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corrected gaps are shown in green. An uncorrected gap (in orange) remains
due to an insufficient number of insertions. This gap will be addressed
in subsequent iterations. Bottom: End of the second iteration. The gap at
sample 33 is now correctly filled with the appropriate number of insertions.

has been searched between 1 and 1.5 with a step of 0.1, while the best value
for β has been searched between 0.5 and 1 with a step of 0.1. At the end of
the iteration, i.e., when all the gaps have been covered, the outlier-detection
rule is checked again in the whole segment. If not passed, a new iteration
is started, using one more beat per gap until the segment is completed. A
flowchart of this algorithm is presented in Figure 28.

The interpolation method greatly affects the results. Here, both linear
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interpolation and nonlinear interpolation with Hermite polynomials have
been used. Hermite polynomials preserve data shape and have already been
shown to outperform other methods in HRV gap-filling applications [25]. In
the following, gap-filling methods are referred to as linear (L) and nonlinear
(NL) gap filling, and their estimations tLk and tNL

k , respectively. An example
of the L gap-filling method is provided in Figure 29.

Finally, the correction method described by Mateo and Laguna in [7], has
also been used when analyzing metrics in the frequency domain using
Fourier-based techniques. This method is referred to as Model-based (M)
correction. OR, L, NL and M corrections are tested both in scattered
missing beat and burst simulations.

3.5 HRV metrics

Metrics in the time, frequency, and Poincaré-related domains have been
computed:

• Time domain: Mean Heart Rate (MHR), Standard Deviation of the
Normal-to-Normal interval (SDNN) and Root Mean Square of Suc-
cessive Differences (RMSSD).

• Frequency domain: LF and HF powers (PLF, PHF); LF power measured
in normalized units (PLFn); and PLF/PHF ratio. Only relative errors of
PLF and PHF are presented, as the other two are derived from them.
Although all subjects are included when measuring relative errors,
not all could be included when measuring the ability to distinguish
sympathovagal balance. For this comparison, only subjects with
respiratory rates above the classic LF band (> 0.15 Hz) have been
selected, thus allowing a correct frequency component separation [26].
Therefore, the simulation dataset is reduced from 16 to 9 subjects (age
28.3± 2.6 years, 5 males). This selection only applies when comparing
metrics in the frequency domain. No selection is made in the Apple
Watch dataset. In addition, the respiratory rate does not exceed 0.4 Hz,
the classic HF band upper limit, in any case.
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Spectral estimation is performed via Fourier-based spectral estimation
and averaged Lomb-Scargle periodograms (see Chapter 4, Section
6.2). Welch’s method is applied using Hamming 60-second windows,
with a 50% overlap. For 120-second signals, 3 periodograms are
averaged. Powers are computed using trapezoidal integration and
classic windows (0.04-0.15 Hz for LF and 0.15-0.4 Hz for HF). This
Fourier-based approach has been tested using model-based correction
(M) and gap-filling correction (L and NL).
On the other hand, Lomb-Scargle periodograms can be computed
from unevenly spaced signals, even in the presence of missing beats.
Therefore, this method has been tested both using OR and gap-filling
correction. Lomb-Scargle periodograms are averaged using 60-second
Hamming windows with 50% overlap and powers are computed using
trapezoidal integration within the classic windows as well.

• Poincaré plots: SD1, SD2, SD1/SD2, ellipse area (S = π · SD1 · SD2),
mean distance to the ellipse centroid (Md), and standard deviation to
the ellipse centroid (Sd) have been computed using the ellipse fitting
method. As S and SD1/SD2 are computed from SD1 and SD2, relative
errors are not shown for these metrics.

3.6 Statistical analysis

Relative errors (ϵ) have been calculated as the absolute value of the difference
between the reference and the correction divided by the reference value,
both in the simulation study and in the real database. Values are expressed
as a percentage. In the simulation case, ϵ is obtained for each correction
method and within each method for each type and number of removed
beats. In the Apple Watch case, only one ϵ is shown for each method, since
missing beats are given by the dataset (Section 3.2). ϵ is presented as a
tuple of three elements: median (first quartile - third quartile). A Wilcoxon
signed-rank test was performed to compare the methods’ performance on
the same segments.
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On the other hand, another signed rank test has been applied for the ANS
state discrimination results. The test is done to supine/relax and tilt/stress
records as separate samples, pairing states from the same subject. Metrics
that could not differentiate states in any case have been omitted. Coverage
graphs are also shown for the Apple Watch dataset. These graphs show the
percentage of cases (nth) with a relative error below a certain threshold
(ϵth) as ϵth increases. These results can be very valuable for choosing a
correction method based on the tolerance allowed for each application.
Coverage graphs are not included for the simulation due to the large number
of combinations depending on the type and number of deletions. Segment
rejection decision thresholds, i.e., the maximum deletion probability/burst
duration allowed to obtain reliable results are also proposed in Section 5.
These thresholds are proposed based on the criterion that the third quartile
of the relative error does not exceed 20%.

4 Results

4.1 Time-domain metrics

Table 3 shows relative error values of the different metrics with increasing
deletion probability, in the case of scattered missing beats (Table 3a) and
burst duration (Table 3b). Regarding the relative error of scattered missing
beats, NL gap filling is the best performing correction method for MHR
and SDNN for all deletion probabilities, although no significant differences
can be found between OR and NL up to 35% missing beats in the case of
MHR. L gap filling yields the best results for RMSSD up to 25% deletion
probability. A higher degradation can be observed at high loss rates, being
OR the best option from 25% deletion probability onward. In the case of
bursts, NL gap filling yields the best results for MHR up to 10 s bursts. No
significant differences can be found between OR and NL from 15 s. OR
gives the best results for SDNN and RMSSD.
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Table 3: Relative error (%) of time-domain metrics. (a) Scattered missing
beats. (b) Bursts. †: Significant differences (p < 0.05) between OR and
L. △: Significant differences (p < 0.05) between L and NL. §: Significant
differences (p < 0.05) between NL and OR.

Method Metric
Deletion probability (%)

5 15 25 35

OR
MHR 0 (0–0) 0 (0–1)† 0 (0–1)† 1 (0–1)†
SDNN 2 (1–3)† 4 (2–6)† 5 (2–9)† 7 (3–15)†
RMSSD 2 (1–4)† 5 (2–9)† 9 (4–15) 11 (5–24)

L
MHR 0 (0–0)△ 0 (0–0)△ 0 (0–0)△ 0 (0–1)△
SDNN 0 (0–1)△ 2 (1–3)△ 5 (3–8)△ 8 (4–15)△
RMSSD 1 (0–2)△ 3 (1–6)△ 8 (3–20)△ 14 (5–38)△

NL
MHR 0 (0–0) 0 (0–0) 0 (0–0) 0 (0–1)§
SDNN 0 (0–0)§ 1 (0–2)§ 3 (1–6)§ 5 (2–10)§
RMSSD 1 (0–2)§ 4 (2–7)§ 9 (5–17)§ 15 (8–29)§

(a)

Method Metric
Burst duration (s)

5 10 15 20

OR
MHR 0 (0–0) 0 (0–0)† 0 (0–1)† 0 (0–1)†
SDNN 2 (1–2)† 2 (1–4)† 3 (1–5)† 4 (2–6)†
RMSSD 2 (1–2)† 2 (1–4)† 3 (2–5)† 4 (2–7)†

L
MHR 0 (0–0)△ 0 (0–1)△ 1 (0–1)△ 1 (0–1)△
SDNN 1 (1–3)△ 3 (2–5)△ 5 (3–8)△ 6 (3–10)△
RMSSD 2 (1–3)△ 4 (2–6)△ 5 (3–8)△ 7 (4–11)△

NL
MHR 0 (0–0)§ 0 (0–1)§ 0 (0–1) 1 (0–1)
SDNN 1 (0–3)§ 3 (1–5)§ 5 (2–7)§ 6 (3–9)§
RMSSD 2 (1–4)§ 4 (2–7)§ 6 (3–9)§ 8 (4–12)§

(b)



4. Results 133

Table 4: p-values of ranked signed test for supine/tilt discrimination of
time-domain metrics. N.S.: Not Significative (p > 0.05).

Method Metric Reference
Deletion probability (%)

5 15 25 35

OR
MHR < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

SDNN 0.020 0.011 0.016 N.S. N.S.
RMSSD < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

L
MHR < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

SDNN 0.020 0.014 0.008 N.S. N.S.
RMSSD < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

NL
MHR < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

SDNN 0.020 0.012 0.011 0.021 0.014
RMSSD < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

(a)

Method Metric Reference
Burst duration (s)

5 10 15 20

OR
MHR < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

SDNN 0.020 0.011 0.011 0.011 0.011
RMSSD < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

L
MHR < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

SDNN 0.020 0.011 0.011 0.011 0.004
RMSSD < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

NL
MHR < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

SDNN 0.020 0.014 0.007 0.012 0.026
RMSSD < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

(b)
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Table 4 shows the results of the Wilcoxon test for distinguishing between
supine and tilt states. The first column shows the reference test results.
There are no major differences between methods, although only NL is able
to maintain the benchmark results throughout the entire simulation. This is
consistent with NL results in terms of relative error. Both OR and L fail
with SDNN in the case of scattered missing beats with deletion probabilities
greater than 15%.

Table 5 shows the relative errors in the Apple Watch dataset, exhibiting
equality among all correction methods. Figure 30 shows the coverage from
the Apple Watch dataset. No differences are found between methods. MHR
once again demonstrates great robustness, having nth close to 100% with
less than 2% ϵth. SDNN achieves 80% nth with 10% ϵth, while for the same
ϵth, RMSSD has 60% nth.

Finally, Figure 31 shows the metric distributions with relax (green) and
stress (blue) groups separately from the Apple Watch dataset. Wilcoxon
test results are marked with asterisks above each pair. One asterisk indicates
p < 0.05 and two asterisks indicate p < 0.001. All correction methods
present the same behavior for MHR and SDNN. RMSSD results do show
improved OR performance by maintaining the reference p < 0.001 versus
p < 0.05 of the gap-filling methods.

Table 5: Relative error (%) of time-domain metrics from Apple Watch
dataset. †: Significant differences (p < 0.05) between OR and L. △:
Significant differences (p < 0.05) between L and NL. §: Significant
differences (p < 0.05) between NL and OR.

Metric
Method

OR L NL

MHR 0.1 (0.0–0.5) 0.0 (0.0–0.5)△ 0.0 (0.0–0.7)§
SDNN 3.4 (2.0–7.5)† 2.9 (1.5–9.6)△ 3.0 (1.3–8.6)
RMSSD 7.8 (4.3–15.9)† 8.6 (4.0–20.2)△ 8.6 (3.7–17.7)§
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Figure 30: Coverage of time-domain metrics from Apple Watch dataset.
The graphs show the percentage of cases (nth) with a relative error below a
certain threshold (ϵth). Top left: MHR. Top right: SDNN. Bottom: RMSSD.
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Figure 31: Relax (green)/Stress (blue) discrimination of time-domain
metrics from Apple Watch dataset. Top left: MHR. Top right SDNN. Bottom:
RMSSD. *: Significant differences (p < 0.05) between relax and stress
groups. **: Significant differences (p < 0.001) between relax and stress
groups.
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4.2 Frequency-domain metrics computed via Fourier
transform

In the case of frequency-domain metrics, gap-filling methods show a clear
improvement. NL gap filling is the best performing method in terms of
relative error in the case of scattered missing beats (Table 6).

Table 6: Relative error (%) of frequency-domain metrics computed via
FFT. (a) Scattered missing beats. (b) Bursts. †: Significant differences
(p < 0.05) betweenM and L. △: Significant differences (p < 0.05) between
L and NL. §: Significant differences (p < 0.05) between NL andM.

Method Metric
Deletion probability (%)

5 15 25 35

M
PLF 8 (4–19)† 20 (11–33)† 36 (22–54)† 55 (29–162)†
PHF 15 (7–30)† 33 (20–45)† 50 (37–63)† 59 (43–73)†

L
PLF 1 (0–2)△ 4 (2–9)△ 11 (6–19)△ 16 (9–29)△
PHF 3 (1–6)△ 11 (6–18 )△ 23 (12–41)△ 34 (20–61)

NL
PLF 0 (0–1)§ 1 (1–5)§ 4 (1–13)§ 9 (2–21)§
PHF 2 (1–4)§ 7 (3–15)§ 19 (10–38)§ 29 (17–55)§

(a)

Method Metric
Burst duration (s)

5 10 15 20

M
PLF 10 (4–21)† 15 (7–26)† 22 (10–33)† 27 (14–39)†
PHF 13 (6–28)† 18 (9–33)† 23 (14–36)† 29 (19–43)†

L
PLF 5 (2–12)△ 11 (5–19)△ 16 (7–26)△ 19 (9–31)
PHF 7 (3–11)△ 10 (5–17)△ 14 (7–23)△ 18 (9–28)△

NL
PLF 5 (2–12)§ 10 (4–18)§ 13 (6–25)§ 19 (9–31)§
PHF 7 (3–12)§ 11 (6–18)§ 15 (8–24)§ 19 (11–30)§

(b)
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Table 7: p-values of ranked signed test for supine/tilt discrimination
of frequency-domain metrics computed via FFT.N.S.: Not Significative
(p > 0.05).

Method Metric Reference
Deletion probability (%)

5 15 25 35

M
PHF < 10−3 < 10−3 < 10−3 < 10−3 N.S.
PLFn < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLF /PHF < 10−3 < 10−3 < 10−3 < 10−3 0.005

L
PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLFn < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLF /PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

NL
PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLFn < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLF /PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

(a)

Method Metric Reference
Burst duration (s)

5 10 15 20

M
PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLFn < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLF /PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

L
PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLFn < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLF /PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

NL
PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLFn < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLF /PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

(b)
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Gap-filling correction advantage is maintained in the case of bursts. Al-
though differences are reduced, they are still significant. Also, differences
between L and NL gap filling are reduced. In this case, L gap filling per-
forms better for PHF, while NL is still better for PLF. Another aspect to note
is that correction is not as effective in PHF as in PLF with scattered missing
beats.

Discrimination results follow a similar pattern (Table 7). For scattered
missing beats, gap-filling correction performed better thanM correction
for PHF and PLF/PHF. This difference only appears after a 35% deletion
probability; thus, differences are not very large. On the other hand, results
are identical for the burst case. PLF showed no discrimination capacity for
this dataset.

Regarding the Apple Watch dataset, NL gap filling obtains the best perfor-
mance at low frequencies (Table 8), although there is virtually no difference
at high frequencies. In addition, PHF errors are higher than PLF errors as in
the simulation.

Coverage graphs show the same phenomena (Figure 32). PLF coverages
are similar until 10% ϵth —approximately 60% nth—, separating thereafter.
NL gap filling is the best correction method, followed by L gap filling. In
contrast, there are no differences for the PHF case. Also, the coverage is
clearly lower, approximately 40% nth at 10% ϵth. Both PLF and PHF correctly
discriminate the states (Figure 33), showing no difference between correction
methods.

Table 8: Relative error (%) of frequency-domain metrics computed via
FFT fromAppleWatch dataset. †: Significant differences (p < 0.05) between
M and L. △: Significant differences (p < 0.05) between L and NL. §:
Significant differences (p < 0.05) between NL andM.

Metric
Method

M L NL

PLF 0.1 (0.0–0.3)† 0.1 (0.0–0.2)△ 0.1 (0.0–0.2)§
PHF 0.1 (0.1–0.3)† 0.2 (0.1–0.3)△ 0.2 (0.1–0.3)§
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80

Figure 32: Coverage of frequency-domain metrics computed via Fourier
transform from Apple Watch dataset. The graphs show the percentage of
cases (nth) with a relative error below a certain threshold (ϵth). Left: PLF.
Right: PHF.

Figure 33: Relax (green)/Stress (blue) discrimination of frequency-
domain metrics computed via Fourier transform from Apple Watch
dataset. Left: PLF. Right: PHF. *: Significant differences (p < 0.05) between
relax and stress groups. **: Significant differences (p < 0.001) between relax
and stress groups.
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4.3 Frequency-domain metrics computed via Lomb-
Scargle periodograms

In the case of frequency-domain results calculated via Lomb-Scargle pe-
riodograms, NL gap filling clearly outperforms the others with scattered
missing beats, as well as for PLF with small bursts (Table 9).

Table 9: Relative error (%) of frequency-domain metrics computed via
Lomb-Scargle periodograms. (a) Scattered missing beats. (b) Bursts. †:
Significant differences (p < 0.05) between OR and L. △: Significant
differences (p < 0.05) between L and NL. §: Significant differences
(p < 0.05) between NL and OR.

Method Metric
Deletion probability (%)

5 15 25 35

OR
PLF 11 (5–19)† 24 (10–41)† 35 (18–66)† 58 (25–123)†
PHF 23 (11–46)† 79 (47–155)† 160 (87–297)† 305 (143–665)†

L
PLF 1 (0–2)△ 4 (2–8)△ 10 (5–18)△ 16 (8–29)△
PHF 3 (1–5)△ 9 (5–16)△ 21 (11–37)△ 31 (17–62)△

NL
PLF 0 (0–1)§ 1 (0–4)§ 3 (1–12)§ 8 (2–23)§
PHF 2 (1–3)§ 6 (2–12)§ 16 (8–32)§ 28 (15–53)§

(a)

Method Metric
Burst duration (s)

5 10 15 20

OR
PLF 11 (7–17)† 19 (11–29)† 25 (13–38)† 29 (15–49)†
PHF 14 (8–20)† 23 (13–34)† 31 (18–45)† 39 (24–61)†

L
PLF 5 (2–11)△ 10 (4–19)△ 14 (7–24)△ 17 (7–29)△
PHF 6 (2–11)△ 9 (4–18)△ 13 (5–22)△ 16 (7–26)△

NL
PLF 5 (2–12)§ 8 (4–17)§ 14 (6–24)§ 18 (9–29)§
PHF 6 (3–12)§ 11 (5–19)§ 15 (8–23)§ 19 (10–29)§

(b)
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Table 10: p-values of ranked signed test for supine/tilt discrimination
of frequency-domain metrics computed via Lomb’s method. N.S.: Not
Significative (p > 0.05).

Method Metric Reference
Deletion probability (%)

5 15 25 35

OR
PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLFn < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLF /PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

L
PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLFn < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLF /PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

NL
PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLFn < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLF /PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

(a)

Method Metric Reference
Burst duration (s)

5 10 15 20

OR
PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLFn < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLF /PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

L
PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLFn < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLF /PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

NL
PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLFn < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

PLF /PHF < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

(b)
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Figure 34: Coverage of frequency-domain metrics computed via Lomb-
Scargle periodograms from Apple Watch dataset. The graphs show the
percentage of cases (nth) with a relative error below a certain threshold
(ϵth). Left: PLF. Right: PHF.

L gap filling performs better for PLF from 15 seconds onwards and for
PHF with any burst duration. Statistically significant differences are found
between all methods at any loss rate. All methods are equally reliable in
terms of discrimination for all deletion probabilities and burst durations
(Table 10).

NL gap filling remains superior in the Apple Watch dataset in terms
of relative error (Table 11), followed by L gap filling. Coverage graphs
(Figure 34) show an advantage of NL in PLF, while both NL and L gap
filling perform similarly in PHF, although much better than OR. As in
simulation, all methods are robust in state discrimination (Figure 35).

Table 11: Relative error (%) of frequency-domain metrics computed
via Lomb-Scargle periodograms metrics from Apple Watch dataset. †:
Significant differences (p < 0.05) between OR and L. △: Significant
differences (p < 0.05) between L and NL. §: Significant differences
(p < 0.05) between NL and OR.

Metric
Method

OR L NL

PLF 0.1 (0.1–0.2)† 0.1 (0.0–0.2)△ 0.1 (0.0–0.2)§
PHF 0.2 (0.1–0.6)† 0.2 (0.1–0.3)△ 0.1 (0.1–0.3)§
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Figure 35: Relax (green)/Stress (blue) discrimination of frequency-
domain metrics computed via Lomb-Scargle periodograms from Apple
Watch dataset. Left: PLF. Right: PHF. *: Significant differences (p < 0.05)
between relax and stress groups. **: Significant differences (p < 0.001)
between relax and stress groups.

4.4 Poincaré Plots

As for time-domain metrics, there is no clear difference between correction
methods for Poincaré metrics (Table 12).

In the case of scattered missing beats, L performs better with SD1 when the
deletion probability is below 25%. There are no significant differences with
OR from 25% onwards. NL outperforms the others with SD2, Md, and Sd.
On the other hand, OR is the best for SD1, SD2, and Md when dealing with
bursts. No significant differences can be found with Sd.

Results in terms of group discrimination suggest an advantage of NL gap
filling in the case of scattered missing beats, while NL and OR perform
similarly when dealing with bursts (Table 13). The three methods perform
virtually identically on the Apple Watch dataset, both in terms of relative
error (Table 14); coverage (Figure 36); and discrimination (Figure 37).
In the last, OR performed better with SD1 and S, in coherence with the
simulation.
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Table 12: Relative error (%) of Poincaré metrics. (a) Scattered missing
beats. (b) Bursts. †: Significant differences (p < 0.05) between OR and
L. △: Significant differences (p < 0.05) between L and NL. §: Significant
differences (p < 0.05) between NL and OR.

Method Metric
Deletion probability (%)

5 15 25 35

OR

SD1 2 (1–4)† 5 (2–9)† 9 (4–14) 11 (5–24)
SD2 3 (1–4)† 5 (2–9)† 7 (3–13)† 11 (5–20)†
Md 2 (1–4)† 5 (2–7)† 6 (3–11)† 9 (4–18)†
Sd 3 (1–5)† 6 (3–11) 10 (5–19)† 15 (7–31)†

L

SD1 1 (0–2)△ 3 (1–6)△ 8 (3–20)△ 14 (5–38)△
SD2 0 (0–1)△ 2 (1–3)△ 4 (2–7)△ 7 (4–13)△
Md 1 (0–1)△ 2 (1–4)△ 5 (2–7)△ 7 (4–12)△
Sd 1 (0–1)△ 1 (0–3)△ 4 (1–13)△ 7 (2–34)△

NL

SD1 1 (0–2)§ 4 (2–7)§ 9 (5–17)§ 14 (8–29)§
SD2 0 (0–0)§ 1 (0–2)§ 2 (1–4)§ 3 (1–8)§
Md 0 (0–1)§ 1 (0–3)§ 2 (1–6)§ 5 (2–9)§
Sd 0 (0–1)§ 1 (0–3)§ 2 (1–8)§ 5 (2–17)§

(a)

Method Metric
Burst duration (s)

5 10 15 20

OR

SD1 2 (1–3)† 3 (1–4)† 3 (2–5)† 4 (2–7)†
SD2 2 (1–3)† 2 (1–4)† 3 (2–5)† 4 (2–6)†
Md 2 (1–3)† 3 (1–5)† 4 (1–6)† 4 (2–7)†
Sd 2 (1–3) 2 (1–4) 3 (2–5) 4 (2–6)†

L

SD1 2 (1–3)△ 4 (2–6)△ 5 (3–8)△ 7 (4–11)△
SD2 1 (1–3)△ 3 (1–5)△ 5 (2–8)△ 6 (3–10)△
Md 2 (1–4)△ 6 (3–9)△ 8 (4–12)△ 11 (5–14)△
Sd 2 (1–4)△ 3 (2–7) 4 (2–8) 5 (2–8)△

NL

SD1 2 (1–4)§ 4 (2–7)§ 6 (3–9)§ 8 (4–12)§
SD2 1 (0–3)§ 3 (1–5)§ 4 (2–7)§ 6 (3–9)§
Md 1 (0–3)§ 3 (1–5)§ 4 (2–7)§ 6 (3–9)§
Sd 2 (1–4) 3 (1–6) 4 (2–8) 4 (2–7)

(b)
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Table 13: p-values of ranked signed test for supine/tilt discrimination of
Poincaré metrics. N.S.: Not Significative (p > 0.05).

Method Metric Reference Deletion probability (%)

5 15 25 35

OR

SD1 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

SD2 0.031 N.S. N.S. N.S. N.S.
SD12 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

S < 10−3 < 10−3 < 10−3 0.012 0.002
Md < 10−3 0.001 0.002 0.155 0.016
Sd 0.039 0.009 N.S. N.S. N.S.

L

SD1 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

SD2 0.031 N.S. N.S. N.S. N.S.
SD12 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

S < 10−3 < 10−3 < 10−3 < 10−3 0.007
Md < 10−3 < 10−3 0.001 0.010 0.012
Sd 0.039 0.034 N.S. N.S. N.S.

NL

SD1 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

SD2 0.031 0.043 N.S. N.S. N.S.
SD12 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

S < 10−3 < 10−3 < 10−3 < 10−3 0.004
Md < 10−3 < 10−3 < 10−3 0.002 0.002
Sd 0.039 0.033 N.S. N.S. N.S.

(a)

Method Metric Reference Burst duration (s)

5 10 15 20

OR

SD1 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

SD2 0.031 N.S. N.S. N.S. N.S.
SD12 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

S < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

Md < 10−3 0.001 0.002 0.002 0.002
Sd 0.039 0.024 0.026 0.022 0.015

L

SD1 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

SD2 0.031 N.S. N.S. N.S. N.S.
SD12 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

S < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

Md < 10−3 < 10−3 < 10−3 0.002 0.002
Sd 0.039 N.S. N.S. N.S. N.S.

NL

SD1 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

SD2 0.031 N.S. N.S. N.S. N.S.
SD12 < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

S < 10−3 < 10−3 < 10−3 < 10−3 < 10−3

Md < 10−3 0.002 0.001 0.002 0.013
Sd 0.039 0.041 0.041 0.027 0.049

(b)
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Figure 36: Coverage of Poincaré metrics from Apple Watch dataset. The
graphs show the percentage of cases (nth) with a relative error below a
certain threshold (ϵth). Top left: SD1. Top right: SD2. Bottom left: Md. Bottom
right: Sd.

Table 14: Relative error (%) of Poincarémetrics fromAppleWatch dataset.
†: Significant differences (p < 0.05) between OR and L. △: Significant
differences (p < 0.05) between L and NL. §: Significant differences
(p < 0.05) between NL and OR.

Metric
Method

OR L NL

SD1 7.8 (4.2–15.9)† 8.6 (4.0–20.2)△ 8.6 (3.7–17.7)§
SD2 3.2 (1.6–6.4)† 2.6 (1.1–8.0)△ 2.4 (1.1–6.1)
Md 4.0 (2.2–8.3)† 3.6 (2.0–9.2)△ 3.4 (1.7–8.4)
Sd 4.2 (1.7–9.4) 4.0 (1.9–10.0)△ 3.4 (1.5–10.1)§



148 Chapter 6. Effects of missing data in HRV metrics

Figure 37: Relax (green)/Stress (blue) discrimination of Poincaré metrics
from Apple Watch dataset. Top left: SD1. Top right: SD2. Center left: S. Center
right: Md. Bottom: Sd. *: Significant differences (p < 0.05) between relax
and stress groups. **: Significant differences (p < 0.001) between relax and
stress groups.
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5 Discussion

An analysis of the degradation of some of the most important HRV metrics
due to data loss has been presented. A simulation study has been designed to
test the influence of missing beats depending on whether they are scattered
or in bursts. Correction methods have been tested with both simulation
and experimental data, recorded with a commercial wearable. Note that,
in contrast to the simulation dataset, PRV was compared to the HRV in
the case of the Apple Watch dataset. Thus, the error results obtained for
the simulation dataset should not be compared with those obtained for
the Apple Watch dataset. Nevertheless, correction methods within the
same dataset can still be compared. In the following, a discussion on the
best correction method for each metric is given, as well as the maximum
acceptable missing beats for a relative error of less than 20% in the third
quartile. A summary is shown in Table 15.

Table 15: Summary of findings. Best correction method and maximum
acceptable missing beats for a relative error less than 20% in the third
quartile.

Metric
Best correction method Max. acceptable missing beats

Scattered Bursts Scattered Bursts
MHR NL NL 35% 20 s
SDNN NL OR 35% 20 s
RMSSD L OR 25% 20 s

PLF (FFT) NL NL 25% 10 s
PHF (FFT) NL L 15% 10 s

PLF (Lomb) NL NL 25% 10 s
PHF (Lomb) NL L 15% 10 s

SD1 L OR 25% 20 s
SD2 NL OR 35% 20 s
Md NL OR 35% 20 s
Sd NL OR /NL 35% 20 s
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5.1 Time-domain metrics

Regarding time-domain metrics, only noticeable differences are found in the
relative error results of the simulation. NL is the best option in the case
of applications where MHR is the only interesting metric, as it is the best
correction method both with bursts and scattered missing beats. NL is also
the best performingmethod for SDNNwith scattered losses. OR is a reliable
correction for SDNN and RMSSD in datasets with bursts predominance,
while RMSSD should be computed using Lwith scattered missing beats.
The robustness of MHR using both L and NL gap filling supports that the
number of missing beats is well approximated by these methods. Gap-filling
degradation with bursts of missing beats is easily explained by the lack
of information as the correction moves away from the edges of the burst.
Phenomena such as respiratory sinus arrhythmia cannot be inferred in
large bursts either. MHR proved to be a very robust metric in missing
data scenarios, assuming a worst-case maximum deviation of 0.7 beats
per minute. Although not shown in the results section, MHR was able to
withstand losses in bursts of up to one minute without the median error
exceeding 1 beat per minute. However, it is not easy to establish a threshold
for which it is preferable to reject the segment. This rather depends on
the stationarity of the data. Because of the metric robustness, in periods
where variations are expected, the rate of these changes should be a more
dominant factor than metric degradation in the segment rejection decision.
The case of scattered losses can be more complex, as depending on the
distribution it can be complicated for an outlier detection method to work
correctly. This is magnified in cases with large respiratory sinus arrhythmia
oscillations. Segment rejection is encouraged when computing RMSSD
with > 25% missing beats, as the third quartile error is around 20%. In any
case, attempting to correct segments with more than 35% missing beats or a
20-second burst is not considered adequate.
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5.2 Frequency-domain metrics computed via Fourier
transform

Regarding frequency metrics calculated via Fourier transform, gap-filling
methods show a clear advantage in terms of error and state discrimination.
NL was the best correction method for datasets with scattered missing
beats predominance. In datasets with burst predominance, NL performed
better for PLF, while L obtained better results for PHF. The third quartile
of PLF error is greater than 20% in case of segments with more than 25%
scattered missing beats, suggesting that those segments should be discarded
for PLF analysis. In case of PHF, segments with more than 15% missing beats
should also be discarded. Discarding segments is suggested when analyzing
missing data in bursts longer than 10 seconds.

Figure 38 shows an example of the M correction method and L gap filling
of how spectra undergo controlled degradation with increasing loss rates.
NL it is not shown because of the similarity to L. Interpolation could be the
cause of a low-pass effect that can be observed in the spectra as a lower PHF
with an increasing loss rate. Gap-filling methods seem to be more robust
against this effect. In the case of bursts (Figure 39), the same effect can be
observed. Note that the higher degradation of the LF band in this particular
example case is not consistent with other examples, as can be seen in the
overall degradation results of PLF in Table 6.

5.3 Frequency-domain metrics computed via Lomb-
Scargle periodograms

In regards to Lomb-Scargle periodograms, NL obtained the best results for
scattered missing beats. In datasets with burst predominance, L obtained
the best results for PHF, whileNL obtained the best results for PLF. Segment
rejection for PLF analysis is suggested with more than 25% scattered missing
beats. In the case of PHF analysis, rejection is suggested with more than 15%
missing beats.
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Figure 38: Fourier transform spectral estimates from the same record with
different loss rates of scattered missing beats. Top: M correction. Bottom:
L gap filling.

0

2000

4000

6000

8000

10000

P
S

D
F

F
T

 (
m

s
2
/H

z
) 0 s

10 s

20 s

30 s

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Frequency (Hz)

0

2000

4000

6000

8000

10000

P
S

D
F

F
T

 (
m

s
2
/H

z
)

0 s

10 s

20 s

30 s

Figure 39: Fourier transform spectral estimates from the same record with
different burst durations. Top: M correction. Bottom: L gap filling.
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Figure 40: Lomb-Scargle spectral estimates from the same record with
different loss rates of scattered missing beats. Top: OR correction. Bottom:
L gap filling.
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Figure 41: Lomb-Scargle spectral estimates from the same record with
different burst durations. Top: OR correction. Bottom: L gap filling.
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Segments should be discarded for bursts longer than 10 s as well. Although
Lomb-Scargle periodograms allow their use without gap filling —in fact,
with no interpolation at all—, it deteriorates rapidly in the absence of the
whole series (OR case). This is explained due to the phenomenon of over-
oscillation of the spectrum as samples are discarded (see Figures 40 and
41), whose effect is limited when calculating the power by integrating [27],
but still causes degradation of the metrics.

5.4 Poincaré Plots

In the case of Poincaré metrics, NL obtained better results for scattered
losses for most metrics, in terms of both error and discrimination between
states. L obtained the best results when analyzing specifically SD1 up to
25% of missing beats, while OR obtained better results with more than 25%
missing beats. However, the third quartile error is greater than 20% in this
case, and segment rejection is suggested. As in the case of time-domain
metrics, the criterion for rejecting a segment should prioritize the expected
stationarity, given the robustness of the metrics with correction methods.
OR obtained the best results in the case of bursts for all metrics.

5.5 Iterative gap-filling approach

The proposed gap-filling method, especially in its non-linear version, has
demonstrated to be a very effective correction method. In [15] it was
pointed out the difference between correcting the interval series, as it is
the case of most of the methods in the literature; and correcting the event
series, i.e., the beat-occurrence timestamps. Correcting the interval series
involves shifting the timestamps of subsequent beats to address the interval
correction. This ultimately means forgoing the reference provided by the
subsequent, well-detected beats. Instead, the proposed method corrects
the event series without this shifting, by adding a variable number of beats
taking into account the budget of seconds to be filled in. Larger gaps require
a greater number of filling beats to obtain IBIs in accordance with the
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adjacent intervals to the gap.

In [15] it is shown that event correction yields more accurate results than
interval series correction. Besides, a novel aspect of the proposed gap-
filling method lies in the way in which the correction of each segment is
approached. The proposed method is a segment-based iterative algorithm
instead of a gap-based one. The use of this kind of algorithm aims to cope
with two major problems of event series gap filling: distinguishing outliers
at high loss rates and the lack of knowledge of the number of missing beats
per gap. Thus, it starts by solving simple gaps before those involving more
than one beat. This is an improvement over the majority of gap-filling
methods in the literature, where each gap is corrected before moving on to
the next one, missing the advantage of solving the shorter gaps first.

It should be noted that the best method is not necessarily the one with the
lowest error. Depending on the application, especially working with devices
with limited computational capacity and/or that are battery-operated, a
method with acceptable results is interesting if it means an improvement in
computation time and overall processing load.

5.6 Limitations

Regarding the limitations of this work, it is important to note that this
research only focuses on data losses (false negatives in beat detections) and
not on general errors (a combination of false positives and false negatives).
The presence of false positives has a deleterious impact when trying to
obtain the most accurate metrics. This type of error introduces an additional
variable: the baseline from which to infer false negatives could be lost. In
addition to a previous artifact detection stage, a false beat detection rejection
stage should be implemented before applying the presented methods to
deal with missing data. If the number of false beat detections is not very
high, a moving-average-based algorithm may be enough. This concept is
of paramount importance when dealing with wearable devices, especially
those that monitor 24/7, since a high percentage of the time, beat detections
can be unreliable, and therefore affect any further processing.
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Another limitation is the monotonicity of Hermite polynomials. As this
interpolation eliminates relative maxima and minima within the burst, it
should be taken into account in cases with long bursts and high variability,
such as in cases with strong respiratory sinus arrhythmia. Despite this, it
performs better than other traditional interpolation methods in the literature
such as cubic splines, which present convergence problems by introducing
unwanted oscillations. Further work should be done to address this, for
example, by introducing estimated stationary points before interpolating.
In addition, interpolation methods that do not impose monotonicity while
limiting overshooting should also be investigated.

Also, in contrast to the simulation database, respiratory frequencies have
not been tested for the Apple Watch database. Therefore, the use of classical
frequency bands may result in an incorrect evaluation of the frequency
metrics in some cases, and their behavior may differ from that seen in
simulation [26]. However, data presentation in medians and quartiles
should limit the effect of these outliers on the results.

6 Conclusions

A segment-based gap-filling method for HRV series analysis in the presence
of missing data has been presented. Correction is made on the event series,
allowing this method to be used independently of the signal used for beat
detection (ECG, PPG, etc.). The best-performing correction methodology
depends on the analyzed HRV metrics: correction without gap filling is
the best option for SDNN, RMSSD, and Poincaré plot metrics in situations
when the missing beats are mainly in bursts, whereas they benefit from
gap-filling approaches in the cases of scattered missing beats. Gap-filling
approaches obtained the best performance in terms of frequency-domain
metrics. Furthermore, the performance analysis assists in drawing some
conclusions about when to discard a segment for further analysis depending
on howmuch error is assumable in the specific application: in order to obtain
estimations with an error lower than 20%, those segments with more than
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35% of missing beats or more than 20-second bursts should be discarded for
HRV time-domain metrics and Poincaré plots. Moreover, those segments
with more than 25% of missing beats or more than 10-second bursts should
be discarded for HRV frequency-domain analysis.
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7
Mental health monitoring using wearables

1 Objectives and motivations

This study evaluates the use of smartphone-camera-acquired photoplethys-
mography (SCPPG) to derive PRV metrics for monitoring depression and
anxiety. SCPPG signals may exhibit lower quality compared to those ob-
tained from conventional PPG devices. Movements, along with variations
in finger pressure on the camera, are the primary factors causing artifacts.
Therefore, validation for different applications must be conducted within
each specific scenario. SCPPG has previously been validated for obtain-
ing PRV metrics [1–3] and has been utilized in wellness and healthcare
applications [4–7]. However, to the best of the authors’ knowledge, this
study represents the first instance of SCPPG being validated in a protocol
specifically designed to monitor anxiety and depression.

This study includes a comparison between SCPPG and a validated device
within a stress assessment protocol, administered to individuals diagnosed
with MDD and/or GAD, as well as a control group. The aim is to determine
whether the ANS-related metrics obtained from the SCPPG are consistent
with those obtained from the reference device. An initial study demon-
strated a strong concordance of PRV metrics in a limited group of healthy
individuals [8]. Additionally, this research aims to further evaluate whether
SCPPG can accurately identify stress reactivity and if the variations between
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the patient and control groups align with those observed using the reference
device. Successful validation would add a broadly accessible tool to the
existing methods for monitoring anxiety and depression.

The novelty of this work is the validation of the PRV metrics using SCPPG in
a protocol designed for monitoring anxiety and depression, including tasks
involving movement and speech (see Section 2.1). These metrics include the
sympathovagal balance obtained by orthogonal subspace decomposition of
the heart rate modulating signal from the SCPPG and a respiration signal
(see Section 3.3), which enhances the accuracy of HRV analysis by separating
respiration-related fluctuations [9].

2 Experiment

A total of 82 individuals participated in a depression assessment protocol.
Among them, 24 were diagnosed with GAD and/or MDD (patient group),
whereas 58 were healthy individuals (control group). Exclusion criteria
ensured that participants in both groups did not have any cardiac, neu-
rological, or endocrine conditions, nor any other psychiatric disorders, to
prevent potential confounders. Participants taking tricyclic antidepressants,
beta-blockers, and antipsychotics were also excluded due to their effects
on the autonomic control of the heart [10]. Out of the 82 participants, 3
individuals (2 patients and 1 control) experienced difficulties with finger
stability on the camera due to tremors. This issue is addressed in Section 5.
As a result, these participants were excluded from subsequent analyses,
leaving a final sample size of 79 subjects, consisting of 22 patients and
57 controls. Patients were recruited by the Hospital Clínico Universitario
(Zaragoza, Spain) and by SOS Adolescentes (Huesca, Spain), while controls
were recruited by social networks.

During the procedure, participants were directed to remain seated and
reduce their movements. Utilizing their non-dominant hand, they held a
Xiaomi Pocophone F1 smartphone (Xiaomi Inc., China) and placed their
index finger over the camera. This smartphone’s camera positioning let
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Figure 42: SCPPG (black) and Reference (blue) signals. The image consists
of 10-second segments extracted from different stages of the protocol, which
have been assembled together. The time axis is shown as a reference; it does
not indicate continuity.

users grip the device comfortably without touching the flashlight directly.
The flashlight is positioned about 5 mm to the right of the camera, which
effectively averts any discomfort due to heat during extended periods of
recording. The flashlight remained on during the recordings, and the
autofocus and autoexposure functions of the camera were disabled to
prevent non-physiological oscillations in the SCPPG signal. This step is
essential since such oscillations usually occur at a frequency similar to that
of the blood pulses and potentially cause confusion.

A Medicom system (Medicom MTD, Russia), hereinafter referred to as the
Reference, was simultaneously used to record a conventional PPG signal
from the ring finger of the same hand for comparison, with a sampling
rate of 250 Hz (see Figure 42). Besides this PPG signal, this device also
recorded the respiratory effort from the chest at the same sampling rate.
The smartphone app used was created in-house to record SCPPG data. The
software analyzes the video stream, which has a resolution of 320x240 pixels
and uses RGB encoding, by summing the green component values of each
frame to produce a signal directly related to the image’s green intensity.
Using the green channel yields a more robust cardiac pulse signal compared
to the red or blue bands due to hemoglobin’s significant absorption in the
green spectrum [1, 11, 12].
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The frame rate is approximately 24 frames per second, although it can vary
based on the operating system’s workload. The signal is then upsampled to
250 Hz using cubic splines to match the reference sample rate. Interpolation
and further processing were conducted offline using MATLAB (MathWorks,
USA).

Before starting the stress protocol, the participants were interviewed to
gather their personal information and confirm the inclusion and exclusion
criteria. During this interview, participants completed four tests to evaluate
their self-perceived stress: the Perceived Stress Scale (PSS), the State-Trait
Anxiety Inventory (STAI), which is divided into state (S-STAI) and trait
(T-STAI) components, and two custom tests named ES3 and ES3-V [13].

The population data and test results are shown in Table 16. All 79 participants
were included in the validation of SCPPG’s agreement with the reference.
Following this, SCPPG’s capability to assess stress reactivity was evaluated.
For this evaluation, reactivity was compared to the reference, and the control
and patient groups were separated. Subjects from the control group were
matched with those from the patient group based on age, sex, and body
mass index (BMI). A total of 22 pairs were matched: 5 pairs of men and
17 pairs of women. The inclusion of these data sets was approved by the
ethical committee of the Gobierno de Aragón (CEICA, PI20/430), and all
patients signed an informed consent.

2.1 Stress protocol

The protocol encompassed the following stages: i) a 5-minute Basal state; ii)
the Trail Making Test (TMT); iii) the Stroop Test (ST); and iv) a 5-minute
Recovery phase. During the Basal stage, participants were instructed to relax
with the aid of an audio guide. Subsequently, they engaged in the TMT,
beginning with a page featuring a series of numbers scattered randomly,
which participants were required to connect in ascending order using the
index finger of their dominant hand, ensuring continuous contact with
the tablet. The subsequent page presented a combination of numbers and
letters, alternating between the two elements in a sequence (1-A-2-B-3-C,
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and so forth).

The ST comprised three pages. On the first page, participants encountered
the words "red," "green," and "blue," which were presented in black ink in a
random order for them to read aloud. The second page featured colored
inks —red, green, and blue— that participants were required to identify and
name. On the third page, participants were presented with the same set of
words but written in ink colors that did not match the word itself, requiring
them to state the color of the ink rather than the word. The Recovery phase
involved unguided relaxation immediately after the ST.

Table 16: Demographic characteristics. Significative differences between
paired controls and patients (p < 0.05) in bold. SD = Standard Deviation;
N = Number; BMI = Body Mass Index; PSS = Perceived Stress Scale;
STAI = State-Trait Anxiety Inventory.

Group

All subjects
(n = 79)

Paired controls
(n = 22)

Patient
(n = 22)

Age,Mean (SD) 31 (12) 30 (10) 30 (12)
Age, Range 18-66 19-64 18-64
Male, N (%) 37 (47%) 5 (23%) 5 (23%)
Weight [kg],Mean (SD) 70 (13) 65 (10) 66 (12)
Height [cm],Mean (SD) 172 (9) 168 (8) 169 (10)
BMI,Mean (SD) 24 (3) 23 (3) 23 (4)

PSS,Mean (SD) 15.2 (6.4) 14.3 (5.8) 20.0 (7.5)
PSS, Range 5-32 5-20 5-32
S-STAI,Mean (SD) 17.7 (9.8) 14.9 (6.3) 24.3 (12.2)
S-STAI, Range 2-50 2-21 6-50
T-STAI,Mean (SD) 19.7 (10.7) 16.0 (7.3) 28.7 (12.7)
T-STAI, Range 3-52 3-24 9-52
ES3,Mean (SD) 17.7 (17.0) 8.8 (6.1) 31.5 (21.0)
ES3, Range 0-69 0-23 2-69
ES3-V,Mean (SD) 37.6 (24.7) 37.4 (23.9) 45.6 (28.4)
ES3-V, Range 0-95 3-65 0-95

Note: PSS ranges from 0 to 40, S-STAI and T-STAI range from 0 to 60, ES3 ranges from
0 to 80, and ES3-V ranges from 0 to 100.
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3 Methods

3.1 Filtering and artifact removal

The Reference PPG and the SCPPG are subjected to third-order Butterworth
high-pass filtering at 0.3Hz and low-pass filtering at 10Hz. In order to reduce
motion artifacts, which often affect SCPPG signals and lead to incorrect
or missed pulse detections, an artifact detector is used. This detector sets
upper and lower limits for the Hjorth parameters (see Chapter 4, Section
2.1). Hjorth parameters are calculated from signal data, either the Reference
or the SCPPG, within 4-second sliding windows (P = 1000 samples) with a
25% overlap.

3.2 Pulse detection

Pulses are identified using the adaptive threshold algorithm described in
Chapter 4, Section 4.2. This algorithm provides the event series (tk), which
represents the timestamps of pulse occurrences at their maximum upslope.
Before performing a PRV analysis, it is essential to identify and correct any
misdetection.

To achieve this, the interval function dIF(t) is computed (see Equation
4.10), and a moving median of 30 samples is used to detect outliers. The
moving median produces an expected pulse-to-pulse interval dEPPI at each
tk, calculated analogously to dEIBI(tk) of Equation 4.11. The interval at tk
is considered a false positive if dIF(tk) < (0.7 × dEPPI(tk)). These false
positives are removed from the tk series, and dIF(tk) is computed again.
Next, the intervals at tk are considered false negatives if dIF(tk) > (1.3×
dEPPI(tk)). The treatment of false negatives is not the same for all PRV
metrics, following the recommendations of Chapter 6. This treatment is
detailed in Section 3.3.
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Figure 43: SCPPG (black) and Reference (blue) modulating signalsm(t)
obtained with the TVIPFMmodel for each stage. The agreement is very
high at all stages, especially at rest.

3.3 PRV metrics

Three time-domain and three frequency-domain metrics were calculated.
The metrics in the time domain were the MHR, the SDNN, and the RMSSD.
Gap filling of false negatives is not recommended for these metrics. There-
fore, they were calculated from dIF(tk), excluding outliers in the tk series.

Conversely, prior to calculating metrics in the frequency domain, the
gaps were addressed using the NL gap-filling method. In addition, an
exploratory analysis revealed that respiratory rate often appeared within the
LF range, i.e., 0.04 to 0.14Hz, prompting an improved analysis ofHRVmetrics
based on OSP (see Chapter 4, Section 6.3). The heart rate modulating signal,
m(t), is calculated at 4 Hz using the TVIPFM model (see Figure 43). Then,
m(t) is decomposed by the respiratory signal, r(t), into a respiration-related
linear component, m̂r(t), and a residual component, m̂⊥(t), containing
other modulators. Subsequently, m̂r(t) and m̂⊥(t) are detrended with a 4th
order Butterworth high-pass filter with a cutoff frequency 0.03 Hz. Spectral
densities Ŝmr(f) and Ŝm⊥(f) are estimated using Welch periodograms with
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120-second Hamming windows and 30-second overlap within all available
data in each phase of the protocol. Sympathovagal balanceR′ was computed
as described in Equation 4.33.

The metrics are evaluated for physiological verisimilitude. Permissible
ranges for these metrics are set at [40,180] bpm for MHR; [5,140] ms for
SDNN and RMSSD; [0,0.003] a.u. for P⊥,LF; and [0,0.05] a.u. for Pr,LF+HF.
These ranges were derived from the highest and lowest values observed
with the reference, including an ample allowance. Any metrics that fall
outside the specified ranges are identified and removed from the agreement
and reactivity analysis. Instead, the count of these cases is presented.

3.4 Statistical analysis

PRV metrics derived from the SCPPG are compared to those from the
Reference. The Pearson correlation (r) is evaluated with a significance
threshold of α = 0.05. Bland-Altman’s mean difference (∆), given as a
percentage with its 95% confidence interval, is used to assess bias. To
determine if the reactivity of controls and patients comes from probability
distributions with different medians, a Wilcoxon rank-sum test is conducted
assuming nonnormal distributions. This assumption is supported by the
presence of both normal and non-normal distributions across different
stages, as determined by a Shapiro-Wilk test. Although subjects in the control
and patient groups are matched, as detailed in Section 2, the statistical test is
unpaired. The effect size of the reactivity is measured using Cliff’s Delta [14].

4 Results

4.1 Agreement

Table 17 presents the percentages of artifact-free time as determined by the
Hjorth-based automatic detector. The stability of the SCPPG is demonstrated
with 98.8% of the time being artifact-free, which is only 0.7% lower than
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the Reference value. Across different stages, no significant differences
are observed, with a decrease of only 2.4% between the Basal and ST
stages, representing the maximum and minimum values, respectively.
The minimum value in the Reference is also observed in the ST stage, though
it is only 1.2% lower than the Basal value.

The PRV values, along with the corresponding absolute errors, Pearson
correlation coefficients, and the bias relative to the Reference, are presented
in Table 18. The last column represents the number of missing values.
The errors are at least an order of magnitude smaller than the values of
the metrics. Notably, the MHR error is exceptionally small, with an error
magnitude three orders smaller than the metric value. All metrics exhibit
high correlation, with coefficients exceeding 0.98, except for the RMSSD at
the TMT stage, where the correlation is still substantial at 0.89. The p-values
for all correlation tests were less than 0.001.

The number of missing values results from both the restrictions in the
allowable range (see Section 3.3), indicating a failure in the calculation,
and the requirement of a minimum duration of 60 seconds for spectrum
computation in frequency-domain metrics. For the time-domain metrics,
the instances of unreliable measurements are less than 2.5%. In contrast,
frequency-domain metrics display higher percentages of missing values,
with the TMT stage reaching up to 22.8%. Excluding the TMT stage, the
percentage of missing cases is less than 6.4%.

The bias is nearly negligible across all metrics except for RMSSD. This

Table 17: Percentage of artifact-free time according to Hjorth-based
automatic detection.

Stage SCPPG (%) Reference (%)

Basal 99.5 99.9
TMT 99.4 99.3
ST 97.1 98.7
Recovery 99.0 99.8

Total 98.8 99.5
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particular metric shows a steady positive bias in all phases, ranging from
13.6% to 21.2%. Figure 44 presents the linear regressions and Bland-Altman
plots for all combined stages. Every correlation has a p-value below 0.001,
with the lowest correlation being 0.96. Once more, only the RMSSD exhibits
a significant bias, though the overall effect of the stages diminishes this bias
to 12%.

Table 18: Agreement results of PRV metrics. Median and standard devia-
tion, error median and standard deviation, Pearson correlation coefficient,
number of missing cases, and Bland-Altman mean difference. All subjects.

Values,
Median (SD)

Error,
Median (SD) Pearson’s r Bland-Altman’s∆,

M [C.I.] (%)
Missing,
N (%)

MHR [bpm]
Basal 72 (11) 0.0 (0.1) 1.00 0.0 [-0.2 0.3] 0 (0%)
TMT 77 (13) 0.0 (0.1) 1.00 0.0 [-0.3 0.3] 0 (0%)
ST 80 (15) 0.1 (0.2) 1.00 0.0 [-0.6 0.6] 1 (1.3%)
Recovery 71 (10) 0.0 (0.0) 1.00 0.0 [-0.1 0.2] 0 (0%)

SDNN [ms]
Basal 66 (26) 1.0 (1.0) 1.00 2.1 [-4.5 8.8] 0 (0%)
TMT 50 (17) 1.5 (1.5) 0.99 3.4 [-6.6 13.4] 1 (1.3%)
ST 57 (19) 1.7 (2.6) 0.99 4.3 [-10.5 19.0] 1 (1.3%)
Recovery 61 (26) 1.0 (1.0) 1.00 2.3 [-3.2 7.8] 0 (0%)

RMSSD [ms]
Basal 46 (20) 3.8 (3.2) 0.99 13.6 [-18.3 45.4] 2 (2.5%)
TMT 38 (13) 5.5 (5.3) 0.89 19.9 [-18.7 58.4] 0 (0%)
ST 41 (14) 6.1 (6.1) 0.90 21.2 [-16.4 58.8] 1 (1.3%)
Recovery 43 (21) 4.4 (3.6) 0.99 15.1 [-18.0 48.1] 1 (1.3%)

P⊥,LF [a.u.]
Basal 42 (46) ×10−5 1 (8) ×10−5 0.98 1.4 [-17.7 20.4] 2 (2.5%)
TMT 29 (34) ×10−5 1 (2) ×10−5 1.00 3.8 [-21.9 29.6] 18 (22.8%)
ST 52 (44) ×10−5 2 (13)×10−5 0.95 3.1 [-40.6 46.7] 5 (6.4%)
Recovery 47 (49) ×10−5 2 (10)×10−5 0.98 2.1 [-22.1 26.4] 1 (1.3%)

Pr,LF+HF [a.u.]
Basal 164 (238)×10−5 4 (19)×10−5 1.00 0.7 [-14.8 16.3] 0 (0%)
TMT 31 (48) ×10−5 2 (3) ×10−5 1.00 7.5 [-34.9 49.8] 18 (22.8%)
ST 84 (79) ×10−5 3 (14)×10−5 0.98 0.0 [-27.3 27.3] 5 (6.4%)
Recovery 92 (228) ×10−5 4 (15)×10−5 1.00 -0.3 [-21.8 21.2] 0 (0%)
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Figure 44: Regression and Bland-Altman plots of relative differences for
each metric. All stages together. First: MHR. Second: SDNN. Third: RMSSD.
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Figure 44: Boxplots for each metric. Significant differences are marked
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4.2 Stress reactivity

Figure 44 illustrates the distributions of PRV metrics across different stages
for both control and patient groups. In the control group, increases in
MHR and R′ are observed during stress phases (TMT and ST) compared to
relaxation phases (Basal and Recovery). Conversely, SDNN and RMSSD
exhibit a decreasing trend. Significant differences and effect sizes are
indicated in the graphs. Notably, significant differences were found in
all metrics between the Basal stage and the two stress tests in the control
group. Additionally, significant differences are present in MHR, SDNN, and
RMSSD between the stress tests and the Recovery phase.

In the patient group, reduced stress reactivity is observed. No significant
differences are found between the Basal stage and the stress tests in MHR
or RMSSD. However, differences in SDNN between Basal and TMT are
observed, although with a reduced effect size (from 0.71 to 0.51). Significant
differences are also noted in R′ between Basal and both stress tests, with a
smaller effect size between Basal and ST. The differences in MHR, RMSSD,
and SDNN between the stress tests and the Recovery phase are either not
significant or have reduced effect sizes. An exception is found in R′, where
differences are more pronounced in the patient group due to a significant
increase during the TMT.

There is a high degree of agreement between the distributions obtained
from the SCPPG and the Reference. The statistical tests for both the SCPPG
and the Reference show consistent results in terms of statistical significance
and effect size when there is good agreement.

The control group completed the TMT in 106±30 seconds, while the patient
group took 118 ± 32 seconds. For the ST, the control group finished in
211± 31 seconds, compared to 233± 57 seconds for the patient group. The
differences in median test durations between the groups are not statistically
significant (p = 0.25 and p = 0.33).
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5 Discussion

5.1 SCPPG for PRV monitoring

The concordance between the PRV metrics derived from the SCPPG and
the reference is exceptionally high. Notably, a correlation exceeding 0.96
(p < 0.001) indicates that the smartphone is as reliable as a commercial
pulse oximeter, with correctable bias. The capability of the metrics obtained
from the SCPPG to identify stress reactivity matches that of the reference
device in terms of both statistical significance and effect size. Furthermore,
the observed differences in reactivity between the control and patient groups
support the use of the SCPPG for monitoring stress reactivity in the context
of anxiety and depression assessments. The difference between stress stages
and the Recovery was lower in subjects from the patient group, which is in
agreement with the results found in [15]. The study of impaired recovery is
highly intriguing, as research has connected it to a heightened risk factor
for cardiovascular disease [15, 16]. Differential resting levels are evident
between the patient and control groups. This is in agreement with the
literature and may be a valuable measure, especially in longitudinal studies,
given its relationship to the regulation of emotions and attention in addition
to physiological regulation [17].

The overestimation of RMSSD may be attributed to the low sampling rate
of SCPPG as lower sampling rates are more susceptible to noise, leading
to signal distortion and reduced temporal resolution. Choi et al. [18] note
that RMSSD requires a higher sampling frequency for robustness, unlike
MHR, which averages out variability and remains robust. They recommend
a minimum sampling frequency of 25 Hz. Similarly, Beres et al. [19] suggest
that RMSSD demands higher sampling rates compared to metrics like MHR
and SDNN, reducing the necessary rate to 20 Hz. Thus, the camera’s 24
Hz sampling rate is marginal or potentially insufficient, especially given
Android’s inconsistent handling of the camera, leading to lower sampling
rates. Therefore, future research will explore higher sampling frequencies,
supported by newer devices, and non-Android platforms for more stable
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sampling rates [20].

Frequency domain metrics are derived through the integration of power
spectral density estimates, which are calculated using Welch’s method.
The durations of the TMT and ST stages are notably shorter compared to
those of the Basal and Recovery stages. Specifically, the TMT stage lasted an
average of 109 seconds, with a range from 61 to 186 seconds. The ST stage
had an average duration of 223 seconds, ranging from 153 to 368 seconds.
Consequently, the number of segments available for Welch averaging is
reduced in the shorter stages, resulting in increased variance.

Additionally, the brief duration of the TMT stage often leads to a high number
of missing cases in frequency domain metrics because it frequently does
not meet the minimum requirement of 60 seconds necessary for spectrum
calculation. It is important to highlight that although the test may exceed
the minimum required duration, artifacts and misdetections can reduce the
length of the valid signal used for metric computation, as gaps exceeding 10
seconds are prohibited. When larger gaps are present, the algorithm retains
the longest segment without 10-second gaps [21].

The significant increase inR′ observed during the TMT in the patient group
might be attributed to the reduction in the number of cases. Although the
metrics in the frequency domain are comparable to those in the time domain
in terms of both correlation and error, a frequency domain metric could not
be obtained in nearly a quarter of the TMT stages. It is noteworthy that only
in one instance, the unique missing case in the Recovery stage, the Reference
was able to obtain the metric where the SCPPG could not. In all other cases
where the SCPPG failed, the Reference also failed.

When using frequency domain metrics, it must be considered that they have
more restrictive requirements and that the duration of the test is a crucial
factor. Significant differences in HF and LF/HF ratio, calculated without
OSP, are reported in the literature [10, 22]. To our knowledge, this study
represents the first application ofR′ in the surveillance of stress reactivity,
overcoming limitations in the respiratory rate.

One of the primary challenges in SCPPG is the significant exposure to the
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relative movement of the finger in relation to the camera. This problem is
particularly detrimental to patients with tremors, even if the tremors are
minor. Three subjects had tremors incompatible with the SCPPG recording.
This represents 3.7% of the studied population. The sample is small to
extrapolate this percentage to the general population, but it represents an
important problem to be solved in the automation of monitoring. Using
clamp-type sensors, similar to those used in clinical settings, connected
to the smartphone would lead to the loss of the main advantage of this
system, which is the widespread availability of sensors in people’s pockets.
During the recording sessions, participants had to hold the smartphone in
the same hand that had a pulse oximeter on the ring finger, leading to an
uncomfortable and awkward grip. It is anticipated that the signal quality
would be better if the free hand were used.

The percentage of time and cases in which metrics can be obtained is
noteworthy. Excluding subjects who were removed due to difficulties
in remaining still, the proportion of artifact-free time is 98.78%, which is
comparable to the Reference. This high percentage is particularly remarkable
given that hand movements are visibly transmitted to the signal. It is likely
that this outcome is influenced by the protocol design, which facilitates
maintaining a stable and comfortable position. The relaxation stages are
performed in complete stillness, and the ST is a spoken task. The only
stage that demands movement is the TMT. This test was conducted with
the dominant hand while holding the smartphone with the non-dominant
hand. This independence contributed to the stability of the recording.

When designing other stress-inducing tasks, particularly those that involve
interacting with the recording device —centralizing all interactions on a
single device is an ideal scenario—, it is recommended to consider that
such interaction might introduce artifacts. This matter is currently under
investigation.

The stage with the highest number of artifacts was the ST. This was also
the stage where subjects reported the highest stress. This, combined with
the longer duration of the test and the consequent fatigue, suggests that
the induced stress level is more determinant for the quality of the signals
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than the manner of interacting with the device. An interesting line of
work involves the interplay between human-device interaction design and
stress-inducing tasks that facilitate functionality.

It should be noted that artifact-free time has been measured with an
automatic detector. This does not imply that the non-rejected segments have
a good signal-to-noise ratio nor that the detections are error-free. TheHjorth-
based detector rejects segments with energy peaks and those presenting high
complexity, that is, segments with a wide frequency spectrum. The steps
of correcting errors and discarding values that fall outside of reasonable
ranges are essential for achieving reliable measurements.

5.2 Stress reactivity

The nature of the stressor, although not studied in this work, appears
to significantly influence stress reactivity. In the study by Hu et al. [23],
individuals with depression exhibited hyperreactivity when subjected to a
stressor in the form of an interview, whereas hyporeactivity was observed
during a cognitively challenging task. It was suggested by the authors
that individuals suffering from depression might demonstrate reduced
motivation to achieve positive outcomes in tasks requiring cognitive effort.
Conversely, their response to emotional distress experienced in daily life,
such as that induced by interviews, may be heightened. Studies reviewed
by Kibler and Ma [24] also demonstrated an increase in reactivity during
speech tasks. Based on this hypothesis, the hyporeactivity observed in both
the ST and the TMT was anticipated. Furthermore, as noted by Salomon et
al. [25], diminished cardiovascular response and compromised recovery
in individuals with current major depression could be influenced by their
mood state. This primarily indicates deficiencies in motivation rather than
physiological abnormalities within the cardiovascular system.

Although the distributions of the metrics differ between patient and control
groups, the variability between subjects is substantial. Therefore, estab-
lishing thresholds to determine whether the reactivity corresponds to a
healthy or diseased nervous system does not appear to be the optimal



5. Discussion 181

approach. Instead, the trend of reactivity should be examined in subsequent
measurements. An increase in reactivity during treatment would suggest an
improvement in mental health. To evaluate the feasibility and effectiveness
of this follow-up, a longitudinal study is required. Specifically, it is crucial
to investigate the effects of performing stressor tests recurrently. As patients
become accustomed to these tasks, they may exhibit decreased interest
in optimal performance, resulting in reduced stress levels. Additionally,
an enhanced ability to complete tasks may contribute to reduced stress.
Investigating the variations in habituation between individuals with and
without depression could be a compelling area of research. This is particu-
larly pertinent given the theory that decreased engagement in cognitively
demanding activities underlies the blunted stress response observed in
individuals with depression [23]. Furthermore, Brindle et al. [26] suggested
that stress reactivity is mediated by stress experience rather than stress ex-
posure. Including test scores as an additional metric could provide valuable
insights into the patients’ commitment to the tasks.

The effects of anxiety are difficult to remove, and the comorbidity of
anxiety and depression is frequent. Numerous studies have observed
the inclusion of patients with both depression and anxiety, complicating
the attribution of effects solely to depression. Instead, these effects may
be attributed to the broader spectrum of anxiety and depression [27].
Several reports in the literature have not identified significant differences
when comparing groups with depression and anxiety, either in stress
reactivity [23, 28] or in basal levels [28]. Conversely, other studies have
yielded different findings. For instance, [29] reported that HF power levels
were elevated in patients with comorbid MDD and GAD compared to
those with only GAD. Additionally, an investigation that examined skin
conductance, skin temperature, pupil diameter, and heart rate in participants
exposed to unpleasant, pleasant, and neutral images indicated that anxiety
and depression influence autonomic output reactivity differently. This
distinction may aid in differentiating individuals with anxiety from those
with depression [30]. Furthermore, in [31], individuals with generalized
anxiety disorder exhibited reduced reactivity compared to the control group,
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while those with social anxiety disorder demonstrated increased reactivity.
The incorporation of objective measures, such as HRV, in longitudinal
investigations of these conditions could enhance the understanding of their
interconnections and distinctions [32].

No comprehensive study has been conducted on the influence of antidepres-
sant medication on these findings. Subjects using tricyclic antidepressants,
beta-blockers, and antipsychotics, however, were excluded. Benzodiazepines
were not excluded from the analysis, potentially impacting the results. Fur-
ther investigation is warranted to elucidate the effects of benzodiazepines on
stress reactivity and baseline levels and their impact on the study’s findings.
With respect to non-tricyclic antidepressants, Hu et al. [23] demonstrated
that although antidepressant medication affects baseline levels, it does not
influence stress reactivity.

PPGmorphological metrics have been employed to evaluate stress responses,
demonstrating distinct differences between individuals with depression
and those who are healthy [33]. It is recommended that future research
investigates whether similar assessments can be conducted using SCPPG.

5.3 Limitations

Differences in stress reactivity between men and women have been docu-
mented. Additionally, variations in women depending on the menstrual
cycle phase have been noted [27]. In this study, the groups were matched
by sex, though the menstrual phase was not accounted for.

The analysis conducted assumes stationarity within each phase of the
protocol, which may not hold true for all cases, particularly in the recovery
phase performed immediately after the stressor. Significant differences may
exist between the first and last minutes of this phase. Stress accumulation
during the tests and relaxation during the basal phase could also impact
results. Additional research and supporting evidence are needed to validate
these assumptions and understand their implications.

The respiratory signal captured by a band was used for the decomposition
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of the modulating signal. In cases where only a smartphone is utilized,
this respiratory signal must be extracted from the SCPPG. This process is
complex and requires thorough investigation, as discussed in [34].

Ultimately, depression measurements were not performed, preventing a
correlation analysis with stress reactivity levels.

6 Conclusions

The results of this study support the effectiveness of SCPPG technology
in evaluating the stress response, making it suitable for monitoring de-
pression and anxiety. The PRV metrics show a strong correlation (r ≥ 0.96,
p < 0.001) and minimal bias (∆ ≤ 2%) for all metrics excluding RMSSD.
While RMSSD presents some bias (∆ = 12%), it does not conceal the dif-
ferences between patient and control groups, and the correlation remains
significant (r = 0.96, p < 0.001). Consequently, this technology proves valu-
able for evaluating both baseline states and stress reactivity. One of the
most promising applications of this technology involves investigating it
within expanded, longitudinal cohorts, particularly given the ubiquitous
integration of smartphones in modern-day society.
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8
Early detection of sleep apnea (I)

1 Objectives and motivations

OSA is a disease of high prevalence in the general population, yet it remains
often underdiagnosed. The gold standard in clinical practice for its diagnosis
and severity assessment is supervised polysomnography, although in-home
alternatives have been proposed in recent years to overcome its limitations.
Today’s ubiquitous presence of wearables may become a powerful screening
tool in the general population, and pulse-oximetry-based techniques could
be used for early OSA diagnosis. This study employs peripheral oxygen
saturation and the pulse-to-pulse interval (PPI) series, derived from PPG, as
inputs for diagnosing OSA. Different models are trained to classify between
normal and abnormal breathing segments (binary decision) and between
normal, apneic, and hypopneic segments (multiclass decision). A novel
index, the cyclic variation of the heart rate index (CVHRI), derived from
the PPI’s spectrum, is computed on the segments containing disturbed
breathing, representing the frequency of the events. CVHRI is evaluated
as an instrument to distinguish subjects based on whether their AHI is
above or below the diagnosis thresholds of 5 and 15. In summary, the study
investigates whether patient categorization through the combined analysis
of oxygen saturation, PPI, and CVHRI provides an effective, user-friendly,
and economical method for home-based OSA screening.
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2 Introduction

In [1], a novel CVHR-based OSA screening method was proposed and
preliminarily evaluated with recordings from 15 subjects. CVHR was
detected from the PPI signal using its Hjorth parameters as input of a
bagged-tree model. In addition, a frequency-based metric, CVHRI, was
proposed for severity stratification, obtaining a Pearson’s correlation (r) of
r = 0.68 (p < 0.05) with AHI.

The SpO2 signal is added to the model in this study, hypothesizing that it
may considerably improve segment classification outcomes given that it
provides a different source of information of the apnea-generated hypoxia.
In addition, further inclusion of PRV metrics in the frequency domain as
predictors is studied. Different combinations of PPI and SpO2 inputs are
used in order to understand their individual contribution.

CVHRI is evaluated with recordings from 96 subjects as a potential metric
for stratification of subjects with AHI higher or lower than a threshold,
considered 5 or 15, corresponding to OSA diagnosis thresholds with and
without symptoms or comorbidities, respectively. The novelties of this work
are summarized as follows:

• The use of Hjorth parameters as the only features of SpO2 and PPI
signals for the classification of segments.

• The inclusion of the SpO2 signal to the model preliminary presented
in [1]. A larger dataset of 96 subjects is also used, in comparison with
the previous 15-subject dataset.

• The inclusion of PRV metrics as model inputs is also studied.

• The use of a new PPI-derived index, the CVHRI, for stratifying subjects
between OSA/non-OSA.
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3 Methods

3.1 Dataset

The dataset is composed of 96 subjects (age 44.5 ± 11.4 years, 62 males)
suspected to suffer from OSA, who underwent a PSG (Medatec, Brainnet II,
Brussels, Belgium) at the sleep laboratory of the University Hospital Leuven
(UZ Leuven, Belgium).

All included patients did not suffer from any of the following comorbidities:
atrial fibrillation, hypertension, stroke, myocardial infarction, hyperlipi-
demia, or diabetes. All signals were sampled at 500 Hz, including nasal
pressure and oronasal flow (thermistor). Hypnograms are also available.
PPG and SpO2 signals were recorded using a Nonin 8000J sensor at 500 Hz.

One subject was removed from the dataset due to him/her being awake
most of the test time, whereas another was removed due to an unreliable
nasal pressure signal. Thus, in total, 94 subjects were used. 72% of the
subjects had AHI ≥ 5, while 50% had AHI ≥ 15, according to the AASM
annotation rules [2]. The inclusion of these data sets was approved by
the ethical committee of UZ Leuven (S60319) and all patients signed an
informed consent.

3.2 Signals for segment classification

Pulse-to-pulse intervals

The PPG signal is processed to obtain pulse event series using the adaptive
threshold pulse detector. Then, pulse series are checked using the algorithm
described in Chapter 6, correcting both false positives and false negatives.
Finally, the PPI signal is obtained by evenly sampling the pulse series at
4 Hz using linear interpolation. The PPI signal is also smoothed using a
second-order polynomial fitting with a moving window of 20 seconds (see
Figure 45).
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Annotations
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Pulse event series

PPI signal
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Figure 45: Signal processing flowchart of signals employed in segment
classification (left) and annotation (right). Gray boxes represent signals
and blue boxes represent processes.

SpO2

SpO2 values are quantified in integer units, and the lack of hysteresis
provokes large quantization noise. A 3-second median filter is used to
reduce noise in the SpO2 signal. SpO2 is also decimated to 25 Hz, following
the AASM 2012 recommendations [2].

3.3 References for performance evaluation

Airflow

The AASM [2] recommends different sensors to annotate apneas and hy-
popneas: apneas are proposed to be annotated from the oronasal thermistor,
while hypopneas are annotated from nasal pressure. However, oronasal
thermistor signals were saturated in most cases, making them unreliable.
Thus, following the AASM guidelines for these cases, both apneas and
hypopneas are annotated from nasal pressure signals.
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First, nasal pressure signals are low-pass filtered at 15 Hz for noise removal,
and detrended by a high-pass filter at 0.1 Hz, using 3rd-order Butterworth
filters. Airflow is computed from the nasal pressure signal by the algorithm
described in [3] by detection of maxima (for positive segments) or minima
(for negative segments) between consecutive zero crossings. These minima
and maxima are interpolated using piecewise cubic Hermite interpolating
polynomials, obtaining a positive and a negative envelope. Finally, the
airflow is defined as the difference between the envelopes. The airflow signal
is decimated to 100 Hz, following the AASM 2012 recommendations [2].

Basal respiration

Running basal respiration was used as a reference to annotate reductions in
the airflow signal. This signal is obtained by an algorithm that computes the
median of the airflow signal in 1-minute segments. The result of the sum of
the median of each segment, multiplied by a weight of 0.4, plus the median
of the previous segment, multiplied by 0.6, is stored. These weights were
chosen empirically, looking for the smoothest line that at the same time
allowed following the variations in the baseline in a subset of 10 random
subjects.

The use of averaging with memory helps to obtain a more accurate basal
respiration in signalswith the presence of apneas. Without these disruptions,
averaging is a simple task, and no weighting is required. However, subjects
with apneas present regions with large variations, sometimes composed of a
succession of events. Therefore, a compromise must be reached that allows
these disruptions to not increase or lower basal respiration to arbitrary
values, while allowing the average to follow the changes over time.

The more challenging decision is made in those cases with burst events,
where respiration does not return to a basal respiration between events. In
these cases, the basal values before and after the burst must be taken into
account to make a correct approximation. Thus, once the algorithm obtains
a value for each airflow segment, it is run again backwards. Finally, basal
respiration is the mean of the forward and backward results. This allows
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Figure 46: Top panel: Event-based annotations. Solid lines represent nasal
pressure (top row) and airflow (bottom row). The dashed line represents
basal respiration. The onsets and endsets of the annotation correspond
to the reductions in airflow and the restorations, respectively. Bottom
panel: Grouped annotations. Events are grouped in apneic/hypopneic
bursts. Note that new bursts are initiated every 8 events, allowing a precise
apneic/hypopneic characterization. These annotations are then transformed
into segment-based annotations.

for more accurate transitions between normal and disrupted breathing
segments.

Annotations

Annotations were made following the AASM 2012 guidelines [2]. Events are
labeled as apnea if airflow decreases ≥ 90% from basal respiration, during
≥ 10 seconds, while they are labeled as hypopnea if the decrease is ≥ 30%

during ≥ 10 seconds and there is an associated ≥ 3% desaturation. A third
label, severe hypopnea, is applied to decreases in airflow ≥ 70% during ≥ 10

seconds, regardless of saturation. These are borderline cases in which airflow
does not completely disappear, although the reduction is considerably
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greater than in most hypopneas. This third classification is not included
within the AASM guidelines, but is an additional definition developed
independently by the authors. Hypopneas related to arousals were not
annotated. No distinction was made between central and obstructive
apnea/hypopnea annotations, although respiratory effort was assessed.
89.7% of apneas/hypopneas were obstructive [4].

Event-based annotations were transformed into segment-based annota-
tions. This step is performed taking into account that the objective is to
annotate each segment into abnormal/normal breathing (binary decision) or
apneic/hypopneic/normal breathing (multiclass decision) as a reference for
segment classification. Events are grouped in bursts. Bursts are composed
of at least two events, separated by a maximum of 180 seconds, and are
labeled as apneic or hypopneic depending on the events forming each burst.
A burst is labeled as apneic if it contains at least one apnea or at least half of
the events are severe hypopneas. Bursts are labeled as hypopneic otherwise.
The maximum number of grouped events is empirically set to eight, allow-
ing precise apneic/hypopneic characterization. An example of event-based
annotation grouping in bursts is shown in Figure 46.

Finally, time is divided into 180-second segments with a 150-second overlap.
A segment is labeled as apneic if it contains at least one apneic burst; as
hypopneic if it contains at least one hypopneic burst and no apneic bursts; or
as normal breathing if it does not contain any burst. Apneic and hypopneic
classes are grouped into abnormal breathing in the binary case. To address
class imbalance, the majority class was randomly downsampled before
segment classification. As a result, the binary classification dataset included
a total of 53,242 segments, evenly distributed between 26,621 normal and
26,621 abnormal breathing segments. For the multiclass case, the dataset
comprised 25,278 segments, balanced across three categories: 8,426 apneic,
8,426 hypopneic and 8,426 normal breathing segments.
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Figure 47: Segment classification models. Gray boxes represent signals,
blue boxes represent processes and red boxes represent models.

3.4 Segment classification models

For each segment, the Hjorth parameters H0, H1 and H2 of the PPI and
SpO2 signals, surrogates of power, dominant frequency, and bandwidth,
respectively, were calculated in a sliding window for the PPI and SpO2

signals (see Chapter 4, Section 2.1). TheHjorth parameters are used as inputs
for segment classification. The motivation for using these parameters is two-
fold. On the one hand, they are simple and low-cost to compute since they
can be estimated from the time domain signal. On the other hand, they are
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easily interpretable, being related to the signal energy, dominant frequency,
and bandwidth. The original hypothesis was that segments with CVHR
patterns would have different Hjorth parameters than segments without
CVHR [1]. In particular, it was hypothesized that the PPI in CVHR segments
would have a lower Complexity (H2) as the bradycardia-tachycardia pattern
would mask the normal variability of the heart, causing it to more closely
resemble a sinusoid, as shown in [1]. Analogously, desaturations in SpO2

should affect all parameters, especially Activity (H0).

The best model is selected by maximizing the area under the curve (AUC)
of the receiver operating characteristics (ROC) curve. A variety of models,
including decision trees, discriminant analysis, logistic regression, naive
Bayes, support vector machine, nearest neighbor, kernel approximation,
ensembles, and neural networks, were evaluated. Ultimately, the bagged
trees model demonstrated superior performance compared to the others
and was consequently chosen. Different models were created for binary
and multiclass decision. Furthermore, for each classification strategy,
three models were created, depending on whether they use PPI and SpO2

(PPI+SpO2 model), only PPI (PPI model) and only SpO2 (SpO2 model) as
inputs (see Figure 47).

3.5 OSA stratification by CVHRI

CVHRI is a metric proposed in [1] to quantify the severity of apnea. The
spectrum of PPI is computed using the FFT for each i-th 180-second segment
classified as abnormal breathing in the binary case, or as apneic/hypopneic in
the multiclass case.

The frequency of the FFT modulus maxima, Fmax
i , between 0 and 0.1 Hz

is obtained. Then, CVHRI is defined as the sum of the frequencies of
the spectrum peaks of each abnormal breathing/apneic/hypopneic segment
divided by the total number of segments, obtaining a single parameter that
characterizes each patient, similarly to AHI.
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CVHRI =
∑Iab

i=1 F
max
i

Itot
, (8.1)

where Iab is the total number of abnormal breathing segments in the binary
case or the sum of apneic and hypopneic segments in the multiclass case, and
Itot is the total number of segments.

Pearson correlation coefficient (r) between CVHRI and AHI is computed
for each model. This index was proposed in [1] as an alternative to detect
each bradycardia-tachycardia pattern individually, i.e., the CVHR pattern, to
be less expensive and more robust. The former is achieved because only one
peak per segment must be detected, which is easier in most cases, while the
latter benefits from the highly optimized FFT algorithms.

Finally, CVHRI is used for subject stratification. The groups of interest are
those clustered by AHI < 5 v. AHI ≥ 5 and AHI < 15 v. AHI ≥ 15, as are
the ones used for the diagnosis of OSA [5]. A CVHRI threshold for each
subgroup is searched by linear discriminant analysis. Class weights w(j)
are computed to deal with the imbalanced data as follows:

w(j) =
N

2N(j)
, (8.2)

where N is the total number of patients and N(j) the number of patients
corresponding to class j. Train and test groups are selected randomly,
splitting the dataset into two halves. 5-fold cross-validation is used to
prevent overfitting during training.

3.6 Performance analysis

Segment classification performance is evaluated in terms of accuracy (Acc)
precision (P) and recall (R). These metrics have been evaluated for all
subjects and also for AHI < 15 and AHI ≥ 15 subsets. A leave-one-subject-
out strategy is implemented by summing up the number of false and true
events for each left subject.
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After segment classification, CVHRI is calculated for every subject and
compared to AHI. Pearson’s r correlation was calculated between CVHRI
and AHI with a significance level of 0.05. The correlation results are also
divided into binary and multiclass depending on the segment classification
prior to CVHRI computation. In addition, results are computed for all
subjects and for AHI < 15 and AHI ≥ 15 subsets separately.

Finally, the stratification results were calculated using the AHI clustering
(AHI < 5 v. AHI ≥ 5 and AHI < 15 v. AHI ≥ 15) as reference. Accuracy,
positive predictive value (PPV), sensitivity (Se), negative predictive value
(NPV), specificity (Sp), AUC of the ROC, and Cohen’s Kappa (κ) are
reported alongside the best CVHRI threshold for each model that better
clusters the subjects.

Binary segment classification

The target here is normal and abnormal breathing segment classification.
A number of true normal breathing segments, Tn, false normal breathing
segments, Fn, true abnormal breathing segments, Tab, and false abnormal
breathing segments, Fab, are obtained, which are quantified by the metrics in
Table 19.

Table 19: Binary segment classification metrics.

Class Measure Definition

All Accuracy Acc = (Tn + Tab)/(Tn + Fn + Tab + Fab)

Normal breathing
Recall Rn = Tn/(Tn + Fab)

Precision Pn = Tn/(Tn + Fn)

Abnormal breathing
Recall Rab = Tab/(Tab + Fn)

Precision Pab = Tab/(Tab + Fab)
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Multiclass segment classification

Here the classes are normal breathing, apneic or hypopneic segments. The seg-
mentation process yields several categories: true normal breathing segments,
Tn, and false normal breathing segments, Fn, which are further split into those
originating from apneic and hypopneic segments (Fn = Fn,ap + Fn,h); true
apneic segments, Tap, and false apneic segments, Fap, manifested from normal
breathing and hypopneic segments (Fap = Fap,n + Fap,h); true hypopneic seg-
ments, Th, and their false counterpart, Fh, which include contributions from
normal breathing and apneic segments (Fh = Fh,n + Fh,ap). Classification is
assessed using the metrics outlined in Table 20.

4 Results

4.1 Segment classification results

The results for binary and multiclass classification are shown in Tables 21
and 22, respectively. Results are given for all subjects together as well as
separately in the AHI < 15 and AHI ≥ 15 subgroups.

Table 20: Multiclass segment classification metrics.

Class Measure Definition

All Accuracy Acc = (Tn+Tap+Th)/(Tn+Fn+Tap+Fap+Th+Fh)

Normal breathing
Recall Rn = Tn/(Tn + Fap,n + Fh,n)

Precision Pn = Tn/(Tn + Fn)

Apneic
Recall Rap = Tap/(Tap + Fn,ap + Fh,ap)

Precision Pap = Tap/(Tap + Fap)

Hypopneic
Recall Rh = Th/(Th + Fn,h + Fap,h)

Precision Ph = Th/(Th + Fh)
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4.2 CVHRI correlation with AHI

Binary

Figure 48 shows CVHRI v. AHI scatter plots for each binary segment
classification model. A very strong correlation (r = 0.94) is found when
CVHRI segments are detected with both the PPI+SpO2 model and the SpO2

model. No correlation is found when CVHRI segments are detected by the
PPI model, except for the group with AHI ≥ 15, where a low correlation
(r = 0.37) is obtained. The correlation is slightly lower when including only
the AHI ≥ 15 group compared to the correlation of all subjects: 0.91 using
the PPI+SpO2 model and 0.89 using SpO2. No correlation is found in any
case for AHI < 15.

Multiclass

Figure 49 shows CVHRI v. AHI scatter plots for each multiclass segment
classification model. The results when using a multiclass classifier prior to
CVHRI computation are analogous to the binary case, obtaining slightly
lower values. A very strong correlation is found using the PPI+SpO2 model
(r = 0.91) and the SpO2 model (r = 0.89), while a low correlation is found
when using the PPI model (r = 0.32). Correlation is again slightly lower
when including only the AHI ≥ 15 group in comparison with all subject
correlation, being r = 0.88 using the PPI+SpO2 model and r = 0.86 using
the SpO2 model, with the exception of the PPI model, which increased its
correlation to r = 0.45. No correlation is found in any case for AHI < 15.

4.3 OSA stratification by CVHRI

Stratification results after binary and multiclass segment classification are
shown in Tables 23 and 24, respectively.
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Table 21: Binary segment classification results (%).

Model Subgroup Acc Pn Rn Pab Rab

PPI+SpO2

All subjects 85.0 90.9 87.0 73.5 80.5
AHI<15 87.3 95.2 90.6 38.1 56.0
AHI≥15 83.0 84.3 81.5 81.8 84.5

SpO2

All subjects 86.3 91.3 88.6 76.1 81.2
AHI<15 89.4 95.0 93.2 44.4 52.6
AHI≥15 83.6 85.4 81.4 81.9 85.8

PPI
All subjects 60.3 81.1 57.3 39.4 67.5
AHI<15 57.9 94.7 57.2 12.7 66.0
AHI≥15 62.5 66.1 57.6 59.5 67.8

Table 22: Multiclass segment classification results (%).

Model Subgroup Acc Pn Rn Pap Rap Ph Rh

PPI+SpO2

All subjects 73.1 92.9 80.2 65.9 60.7 23.7 49.9
AHI<15 80.4 96.0 84.5 16.3 26.0 19.6 48.2
AHI≥15 66.8 87.8 73.5 73.1 63.4 25.7 50.5

SpO2

All subjects 71.7 93.9 77.2 78.2 57.5 22.9 63.5
AHI<15 79.4 96.4 82.6 32.1 16.8 19.3 65.4
AHI≥15 65.1 89.5 68.8 80.7 60.7 24.8 62.8

PPI
All subjects 44.4 78.4 48.5 24.8 37.1 10.2 28.9
AHI<15 45.8 93.6 47.3 4.3 40.0 5.3 24.6
AHI≥15 43.1 62.9 50.5 42.1 36.8 14.4 30.6



4. Results 205

PPI + SpO   model2

PPI model

SpO   model2PPI + SpO   model2

All subjects:

AHI<15:

AHI≥15:

r=0.35 (p>0.05)

r=0.21 (p>0.05)

r=0.37 (p<0.001)

All subjects:

AHI<15:

AHI≥15:

r=0.94 (p<0.001)

r=0.63 (p>0.05)

r=0.89 (p<0.001)

All subjects:

AHI<15:

AHI≥15:

r=0.94 (p<0.001)

r=0.62 (p>0.05)

r=0.91 (p<0.001)

0 10   20     30       40        50           60         70 0 10   20     30       40        50           60         70

0 10   20     30       40        50           60         70

AHI AHI

AHI

C
V

H
R

I

C
V

H
R

I

C
V

H
R

I

0

0.005

0.01

0.015

0.02

0.025

0

0.005

0.01

0.015

0.02

0.025

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 48: AHI v. CVHRI after binary segment classification. Vertical lines
separate AHI < 5, 5≤AHI < 15 and AHI ≥ 15 groups. Top left: Segment
classification using PPI + SpO2. Top right: Segment classification using
SpO2. Bottom: Segment classification using PPI.

Table 23: Stratification after binary segment classification (%, except AUC
and κ).

AHI ⩾⩾⩾ Model CVHRI
Thresh.

Acc Se Sp PPV NPV κ AUC
(Train)

AUC
(Test)

5
PPI+SpO2 4.0×10−3 77.3 87.5 75.0 43.8 96.4 0.45 0.88 0.89
SpO2 4.0×10−3 72.7 87.5 69.4 38.9 96.2 0.38 0.87 0.89
PPI 1.1×10−3 51.1 66.7 47.4 23.1 85.7 0.08 0.72 0.56

15
PPI+SpO2 5.4×10−3 79.6 82.4 77.8 70.0 87.6 0.58 0.93 0.90
SpO2 6.3×10−3 79.6 88.2 74.1 68.2 90.9 0.59 0.96 0.91
PPI 1.2×10−3 59.6 57.1 61.5 54.6 64.0 0.19 0.67 0.57
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Figure 49: AHI v. CVHRI after multiclass segment classification. Vertical
lines separate AHI< 5, 5≤AHI< 15 and AHI≥ 15 groups. Top left: Segment
classification using PPI + SpO2. Top right: Segment classification using
SpO2. Bottom: Segment classification using PPI.

Table 24: Stratification after multiclass segment classification (%, except
AUC and κ).

AHI ⩾⩾⩾ Model CVHRI
Thresh.

Acc Se Sp PPV NPV κ AUC
(Train)

AUC
(Test)

5
PPI+SpO2 5.6×10−3 75.0 75.0 75.0 40.0 93.1 0.37 0.88 0.86
SpO2 4.0×10−3 72.7 75.0 72.2 37.5 92.9 0.34 0.86 0.86
PPI 1.2×10−3 53.2 55.6 52.6 21.7 83.3 0.05 0.71 0.52

15
PPI+SpO2 7.8×10−3 79.6 88.2 74.1 68.2 90.9 0.59 0.92 0.88
SpO2 7.8×10−3 77.3 82.4 74.1 66.7 87.0 0.54 0.93 0.90
PPI 1.4×10−3 46.8 57.1 38.5 42.9 52.6 0.04 0.64 0.51



5. Discussion 207

5 Discussion

The present work has found sufficient evidence to support the use of spectral
features, extracted by Hjorth parameters, as models for OSA screening based
on oximetry systems. These models stand out for their low computational
cost,—linearly proportional to the lengthP of the segment, in contrast to FFT,
with a computational cost proportional to P log2(P ), or wavelet transform,
also proportional to P but with a greater number of operations [6]—, being
suitable for built-in wearable applications. Moreover, CVHRI computed on
not normal breathing classified segments has demonstrated to be strongly
correlated to AHI, implying that it could be a proper AHI surrogate when the
airflow is not available, especially in moderate-to-severe cases (AHI ≥ 15).

However, the limitations that apply to AHI as a diagnosis and severity
stand-alone index should also be attributed to CVHRI, making it just as
valuable as a surrogate for AHI. As future research, it might be interesting
to include patients with comorbidities. As CVHR amplitude is a mortality
risk predictor [7], a new index could be included as the amplitude of the
peak between 0 and 0.1 Hz of the PPI spectra used in CVHRI computation.

5.1 Segment classification

Both PPI+SpO2 and SpO2 models perform similarly, obtaining 85.0% and
86.3% accuracy when including all subjects, respectively. The differences
are high compared to the PPI model, which obtained a 60.3% accuracy. Both
PPI+SpO2 and SpO2 models performed slightly better in the AHI < 15
group, obtaining 87.3% and 89.4% accuracy, in comparisonwith theAHI≥ 15
group (83.0% and 83.6% accuracy). Despite the better accuracy, precision
and recall are uneven between classes in the AHI < 15 group, e.g., 95.2%
(normal class) against 38.1% (abnormal breathing class) precision and 90.6%
(normal class) against 56.0% (abnormal breathing class) recall in the PPI+SpO2

model; being even in the AHI ≥ 15 group, with ≥ 81.5% in all cases.

The multiclass results follow trends similar to those in the binary case.



208 Chapter 8. Early detection of sleep apnea (I)

PPI+SpO2 and SpO2 models showed the best performance, with 73.1%
and 71.7% accuracy, respectively, whereas the PPI model obtained 44.4%
accuracy. Both PPI+SpO2 and SpO2 models performed better in the
AHI< 15 group as well, obtaining 80.4% and 79.4% against 66.8% and 65.1%
accuracy in the AHI ≥ 15 group. Precision and recall are also uneven in the
AHI < 15 group in comparison with the AHI ≥ 15 group. Most errors are
confusions between apneic and hypopneic breathing: e.g., in the PPI+SpO2

model, normal breathing precision and recall were 92.9% and 80.2%, while for
apneic/hypopneic breathing they were 65.9/23.7% precision and 60.7/49.9%
recall. These differences are accentuated in the AHI < 15 group: e.g., in
the PPI+SpO2 model, normal breathing precision and recall were 96.0% and
84.5%, while for apneic/hypopneic breathing they were 16.3/19.6% precision
and 26.0/48.2% recall.

According to the results, most of the predictive capacity of the models relies
on the SpO2 signal, taking into account that PPI+SpO2 models and SpO2

models perform identically, in contrast with the poor performance of the PPI
models. However, correlation between CVHRI and AHI was slightly higher
using PPI+SpO2 models. The inclusion of SpO2, evaluated in a higher
number of subjects, has largely improved the results of the preliminary
work [1]. It is possible that PPI could be useful to detect arousal-related
hypopneas as [8, 9] suggests.

The overall segment classification performance worsens in the multiclass
case relative to the binary case, although accuracies remain high (73.1%).
Multiclass classifiers may be useful in future research, especially when
including comorbidities, although nowadays there is no distinction in OSA
treatment whether there is an apneic or hypopneic predominance. Severe

Table 25: Multiclass segment classification results (%). Comparison
between using/omitting severe hypopnea label using the PPI+SpO2 model.

Severe hypopnea Acc Pn Rn Pap Rap Ph Rh

Omitting 73.0 92.9 80.2 65.9 60.7 23.7 49.9
Using 73.1 92.9 80.2 65.9 60.7 23.7 49.9
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hypopneas annotations (airflow reduction higher than 70% but lower than
90% related to desaturation) were introduced to improve apneic segment
detections. 90% reduction of the airflow is an arbitrary threshold that
attempts to operationalize the requirement of “absent or nearly absent
airflow” [10]. This way, it was observed that borderline events labeled
as hypopneas have comparable PPI and SpO2 response to that of apneas
rather than < 70% airflow reduction hypopneas. Nevertheless, analyzing
the segment classification results, virtually no differences were found when
the label severe hypopnea was omitted, i.e., strictly following the AASM rules,
as it is shown in Table 25. This comparison has been computed using the best
classification model (PPI+SpO2). The utility of this label for stratification is
discussed in Section 5.3.

Previous studies have classified apneic events based on SpO2 and PPI. The
approach of this work is different. In this case, there is no detection of
apneic/hypopneic events, but rather a classification of segments, which
subsequently allows CVHRI to be calculated. To the authors’ knowledge,
there are no studies in which segments are classified, which is one of the
main novelties of this study. The different approaches make the results not
directly comparable with other works. As a reference, it is worth mentioning
the event classification results of Lazazzera et al. [4], which obtained a 75.1%
accuracy on the same database and using the same input signals. This result
was obtained for multiclass classification, so it should be compared with the
73.1% (see Table 22) of this work. Deviaene et al. [11] obtained an accuracy
of 83.4% using SpO2 and PPG features, in a database with 102 subjects, also
recorded at UZ Leuven. In this study, they reached the same conclusion
that SpO2 models outperform PPG models, obtaining an accuracy of 82.2%
with the SpO2 model. The authors concluded that it is better to use both
inputs if available [11]. In a recent study by Huttunen et al. [12], the authors
compare different combinations of signals used as inputs of a deep learning
model that is able to simultaneously detect respiratory events and classify
sleep stages. The authors compare three models: the first using PPG and
SpO2, the second adding the nasal pressure, and the third using SpO2, nasal
pressure, and the electroencephalogram. Interestingly, the three obtain
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virtually the same results in estimating AHI, supporting the use of pulse
oximeters in OSA screening without additional sensors.

5.2 CVHRI correlation with AHI

Best correlation between CVHRI and AHI was found in the AHI ≥ 15 sub-
group. This may appear counter-intuitive observing segment classification
accuracies, which are higher in the AHI < 15 subgroup. However, the
abnormal class (or apneic + hypopneic classes in the multiclass model) is
better detected in the AHI ≥ 15 subgroup, according to precision and recall
results, probably due to the fact that those are the cases with the most clear
respiratory event bursts. As CVHRI is measured only in abnormal (or apneic
+ hypopneic) segments, it is not as reliable in the AHI < 15 subgroup as in
the AHI ≥ 15 subgroup.

5.3 OSA stratification by CVHRI

Analogously to the previous result sections, stratification accuracy decreases
substantially when using the PPI segment classification model. Similar
trends follow after multiclass decision. Established thresholds are a reliable
tool for OSA diagnosis after PPI+SpO2 and SpO2 models, the first being
slightly more accurate. Moreover, its use for screening purposes is supported
by high negative predictive values. Bad results after PPI models were
expected taking into account segment classification results. Binary models

Table 26: Comparison with other studies (%, except AUC and κ).

AHI ⩾⩾⩾ Model Acc Se Sp PPV NPV κ AUC
(Train)

AUC
(Test)

5
PPI+SpO2 binary 77 88 75 44 96 0.45 0.88 0.89
Romem et al. [13] - 80 86 93 68 0.67 0.91 -
Fassbender et al. [14] - 100 44 62 100 0.43 0.93 -

15
PPI+SpO2 binary 80 82 78 70 88 0.59 0.93 0.90
Romem et al. [13] - 70 91 80 85 0.71 0.90 -
Fassbender et al. [14] - 92 77 60 96 0.59 0.95 -
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obtained slightly better results in comparison to multiclass models. This, in
addition to the higher complexity of multiclass models, suggests that binary
models should be used for stratification purposes.

The results are comparable with other research that uses PPG-derived
metrics for OSA diagnosis (see Table 26), such as [13, 14], although none of
these works used train-test splits nor cross-validation. Also, higher scores
in [14] could be explained since airflow information was added to the model
by using a nasal cannula. A comparison with [15] cannot be directly done as
different groups were used (5 ≤ AHI < 15, 15 ≤ AHI < 30 and AHI ≥ 30),
obtaining κ values ranging from 0.49 to 0.79. It is reasonable to assume
that these results are in the same order as in [13], since they used the same
proprietary algorithm (Morpheus Ox. WideMed Ltd, Herziliya, Israel). The
same AHI groups were used in [16]. In this work, AHI was estimated from
SpO2 using an artificial neural network. Estimated AHI classified patients
in the mentioned groups with 90.9% accuracy.

The inclusion of the label severe hypopnea also deserves discussion at this
point. This label applies to events with an airflow reduction ≥ 70% for ≥ 10
seconds, regardless of desaturation. Therefore, by omitting this label, events
with an airflow reduction between 70% and 90% —at which point they
are classified as apneas regardless of desaturations— need to be linked to
desaturation to be scored. Thus, there are events previously annotated as
severe hypopnea that may change to hypopnea and events where annotations
may be removed. Stratification results did not change substantially by
omitting the severe hypopnea label. Only two errors arose after binary
classification (one subject with AHI < 5 was stratified as with an AHI ≥ 5
and the other with AHI < 15 was stratified as with an AHI ≥ 15) and
one error after multiclass classification (one subject with AHI < 15 was
stratified as with an AHI ≥ 15) with respect to the results including the
severe hypopnea label. Considering that the dataset consisted of 94 subjects,
the increase in error was 2.1% after binary classification and 1.1% after
multiclass classification. Therefore, no large differences were obtained to
support the need for the label, although the type of error, i.e., false positive
in all cases, may be relevant in a screening tool.
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5.4 Limitations

Events related to arousals were not considered in this study. The only
annotated events were apneas and desaturation-related hypopneas. This
decisionwasmade taking into account that themodels rely on CVHRpattern
detection and that PPI and SpO2 were the only signals used. First, CVHR
pattern is not present in events not associated with desaturations [17].
Secondly, although decreases in the amplitude fluctuations of PPG (DAP)
can be used to assess arousals to some extent [18], its feasibility has not
been demonstrated from PPI’s Hjorth parameters. Also, arousal assessment
using DAPs has the limitation that some of the DAPs are not related to
apneic arousals [18]. In any case, thresholds for OSA stratification should
be set observing oxygen desaturation index thresholds, rather than AHI’s,
if arousals are not included [19]. In addition, no distinction was made
between central, obstructive, and mixed apneas. The justification is rather
similar to that for arousal-related hypopneas, as respiratory effort is not
available with limited channel motorization.

Another limitation was introduced by the saturation of the oronasal ther-
mistor signals that led to the use of the alternative oronasal pressure for
the assessment of airflow. However, the use of an orosonasal pressure
sensor instead of a nasal pressure sensor may be considered a halfway
solution between recommended and alternative, since nasal pressure is
criticized because the signal may show a decrease in amplitude during
mouth breathing [10].

The device used for the input signals is a commercial pulse oximeter. Since
this work has focused on a screening tool, with the possibility of being used
in at-home solutions with wearables, it is possible that the signals available
may be of lower quality. Tests should be performed to calculate performance
metrics for each case.

Finally, the segment classification models used in this work were designed
to detect respiratory event bursts that lead to a CVHR pattern, rather than
isolated events. As CVHR ismediated by the parasympathetic system [20], it
cannot be detected in patients with autonomic nervous system impairments,
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such as autonomic neuropathy, multiple system atrophy, or Guillain-Barré
syndrome.

6 Frequency-domain PRV metrics as predic-
tors

The inclusion of PRVmetrics from the frequency domain in the study for the
detection of apneic segments is justified by the known relationship of OSA
with sympathetic overactivity. For this reason, HRV has previously been
used as a method to assess cardiac autonomic changes during sleep [21]. To
find out whether the inclusion of these metrics can provide even improved
results, the best resulting model (PPI+SpO2 model) was taken as a starting
point and power in the low frequency band (PLF), in the high frequency
band (PHF) and PLF/PHF ratio were added to the inputs. These features
were calculated in the same segments as the other models to make the results
comparable. Both PLF and PHF were computed by trapezoidal integration
of the power spectral density estimate obtained by periodogram within the
classic windows, i.e., 0.04-0.15 Hz for the low frequency and 0.15-0.4 Hz for
the high frequency.

To facilitate comparison with the PPI+SpO2 model, both model results
are shown including and excluding the PRV metrics (see Tables 27 and
28). Variations in predictor output are minimal, demonstrating that the
inclusion of these metrics does not significantly improve the model. For
simplicity, results related to the subsequent computation of CVHRI and its
ability to predict OSA are not shown since the variation in the outcome is as
imperceptible as for segment classification.

It should be noted that the use of the classic high-frequency band has been
criticized [22]. It is known that respiration affects the boundaries of this
autonomic component; therefore, it should be studied whether the inclusion
of respiratory frequency information in the PRV analysis would allow a
more accurate classification.
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Table 27: Binary segment classification results including
frequency-domain PRV metrics as predictors (%).

Model Subgroup Acc Pn Rn Pab Rab

PPI+SpO2

All subjects 85.0 90.9 87.0 73.5 80.5
AHI<15 87.3 95.2 90.6 38.1 56.0
AHI≥15 83.0 84.3 81.5 81.8 84.5

PPI+SpO2+PRV
All subjects 85.0 90.7 87.2 73.7 80.0
AHI<15 87.3 95.1 90.6 37.8 55.2
AHI≥15 83.0 84.0 82.1 82.1 84.0

Table 28: Multiclass segment classification results including
frequency-domain PRV metrics as predictors (%).

Model Subgroup Acc Pn Rn Pap Rap Ph Rh

PPI+SpO2

All subjects 73.1 92.9 80.2 65.9 60.7 23.7 49.9
AHI<15 80.4 96.0 84.5 16.3 25.9 19.6 48.2
AHI≥15 66.8 87.8 73.5 73.1 63.4 25.7 50.5

PPI+SpO2+PRV
All subjects 73.1 92.7 80.5 66.1 60.9 23.1 47.8
AHI<15 80.4 95.9 84.6 17.0 27.6 19.2 46.3
AHI≥15 66.9 87.5 74.2 73.4 63.5 25.0 48.4
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7 Conclusion

A classifier for during-sleep breathing segments has been presented. This
classifier exploits the differences in oscillatory pattern characteristics of
the SpO2 and PPI signals by using the Hjorth parameters as features. This
approach obtained 86.3% accuracy in the binary (normal-abnormal breathing)
decision, and 73.1% accuracy in the multiclass (normal breathing-apneic-
hypopneic) decision. A novel index, CVHRI, has been computed in not
normal breathing segments after segment classification. This index has been
shown to be strongly correlated with AHI both after binary (r = 0.94,
p < 0.001) and multiclass (r = 0.91, p < 0.001) segment classification. A
better performance has been found in subjects with AHI ≥ 15 rather than in
the AHI < 15 subgroup. In addition, CVHRI has been used to stratify the
AHI ≥ 5 and AHI ≥ 15 subgroups, resulting in 77.3% and 79.6% accuracy,
respectively. These results suggest that the presentedmethods provide value
for OSA limited-channel screening, allowing monitoring with wearables at
home.
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9
Early detection of sleep apnea (II)

In the previous chapter, a method was presented to detect sleep apnea
using signals commonly found in wearable devices, such as PPG and SpO2.
However, these signals were obtained from a non-wearable device. This
chapter introduces a pilot study employing the same methods, but this
time using signals acquired from a wrist-worn wearable device that is used
by patients at home with no supervision. The methods for event labeling
and their transformation into segment labeling remain identical to those
described in the previous chapter. In general, the methodology has been
preserved. Since the best results were achieved using the PPI+SpO2 binary
classifier, this was the only model tested. Furthermore, the model has not
been retrained with the new signals but used as it was originally trained on
the previous database. In this case, the PPI and SpO2 signals are obtained
from the wearable device. CVHRI is also calculated in the same way, using
the PPI of the wearable device.

1 Methods

1.1 Dataset

Agroup of 12 participants (age 49±16 years, including 7males)was gathered
in partnership with the Hospital Universitario Miguel Servet (Zaragoza,
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Figure 50: Maxim MAXREFDES103 [1]. A wrist-worn device capable of
recording PPG with red, green, and infrared channels.

Spain) as part of the PID2021-126734OB-C21 project, following approval
from Aragon’s ethics committee (CEICA, PI23/336). During the period
of this study, patient enrollment is ongoing. However, a small number of
recordings is already available. This dataset includes 8 subjects suspected of
suffering from OSA and 4 additional subjects as control cases.

The recordings were performed using a commercially available polygraph,
the ApneaLink Air device (ResMed Inc., USA), which provided SpO2 with
a sampling rate of 1 Hz and nasal pressure at 100 Hz signals as a reference;
and a Maxim MAXREFDES103 device (Analog Devices Inc., USA) as a
wearable, which captured PPG signals at 256 Hz with red, green, and
infrared channels. Maxim is a wrist-worn device, as shown in Figure 50.

Reference signals from the Apnealink device were used exclusively to label
apneic and hypopneic events. Annotations were automatically computed
using the same algorithms outlined in the preceding Chapter. These
annotations were then compared to the classifier output using the wearable’s
signals as input. In addition, the reference was used to calculate the AHI,
which was compared to the CVHRI obtained from the wearable.
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Figure 51: Upper (blue) and lower (green) envelopes of the PPG. Blue
triangles indicate tO[k] points, while green triangles indicate tA[k] points.

1.2 Peripheral oxygen saturation estimation

The PPI and SpO2 are estimated from the wearable PPG signal. The PPI is
derived from the green channel, following the same methodology described
in the previous chapter. To calculate SpO2, the R ratio —not to be confused
with HRV metrics R and R′— has been estimated. This ratio is derived
from the red and infrared channels of the PPG signal through a modified
version of the formula

R =

ACred
DCred

ACinfrared
DCinfrared

, (9.1)

where a small value ϵ = 0.01 has been added to the denominator to avoid
division by zero:

R =

ACred
DCred

ACinfrared
DCinfrared

+ ϵ
(9.2)

The AC component of each channel is calculated as the difference between
the upper and lower envelopes of the PPG signal (see Figure 51). These en-
velopes are computed by interpolation of tA[k] and tO[k] points, respectively
(see Chapter 5) at 256 Hz. The DC component is the lower envelope.
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Figure 52: Outlier removal in R Top: R signal in black, outlier shaded in
red. Bottom: Squared derivative of R in solid black. Dashed line corresponds
to the fixed threshold at 10−8.

The errors are then removed using a fixed threshold applied to the squared
derivative of the signal. This threshold is set at 10−8, effectively eliminating
outliers caused primarily by envelope estimation errors (see Figure 52). A
second threshold is applied to the R signal to remove values that exceed 4.
Subsequently, the signal is low-pass filtered at 0.1 Hz to eliminate rapid
variations caused by noise.

According to the wearable documentation, oxygen saturation should be
calculated using the formula provided in [2]:

SpO2 = −16.6(R)2 + 8.3R+ 100. (9.3)

However, this formula did not yield satisfactory results with our data.
Instead, a subject-specific calibration was performed using the SpO2 signal
of the reference device. From this reference signal, the mean and standard
deviation were calculated. Subsequently, the R signal was normalized to
obtain a signal with zero mean and unit standard deviation. The normalized
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Figure 53: SpO2 estimation from Maxim. Top: Normalized R from Maxim.
Bottom: SpO2 from reference in green, estimate from Maxim in black.

signal was then scaled by multiplying it by the standard deviation of the
reference and adding its mean. Finally, the signal was resampled at 25 Hz to
comply with the recommendations of the AASM [3] and rounded to the
nearest integer (see Figure 53).

2 Results

The annotation of events using reference signals resulted in a total of 6,143
normal breathing segments and 1,109 abnormal breathing segments. The mean
AHI was 5.95, with a standard deviation of 6.67. 7 subjects had AHI < 5; 3
subjects had 5 ≤ AHI < 15; and 2 subjects had AHI ≥ 15. Due to the small
sample size, the results of the segment classification split into subgroups
are not shown as in the previous chapter. Neither stratification analysis is
reported. The correlation between CVHRI and AHI is calculated, but the
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All subjects: r=0.85 (p<0.001)

Figure 54: AHI v. CVHRI from a wearable device after binary segment
classification. Vertical lines separate AHI < 5, 5≤AHI < 15 and AHI ≥ 15
groups.

results split by subgroups are also not shown.

Following random class balancing, which employs the same method dis-
cussed in the preceding chapter, the binary classification results for the
segments are consolidated in Table 29. CVHRI correlates with the reference
AHI, with a Pearson correlation of r = 0.85 (p < 0.001). Figure 54 presents
a scatter plot of AHI v. CVHRI.

Table 29: Binary segment classification results from a wearable device
(%).

Model Subgroup Acc Pn Rn Pab Rab

PPI+SpO2 All subjects 65.7 87.8 60.9 43.6 78.2

Table 30: Binary segment classification results using PPI from wearable
device and SpO2 from reference(%).

Model Subgroup Acc Pn Rn Pab Rab

PPI+SpO2 All subjects 77.0 88.1 72.1 65.9 84.7
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All subjects: r=0.95 (p<0.001)

Figure 55: AHI v. CVHRI from a wearable device after binary segment
classification. Vertical lines separate AHI < 5, 5 ≤ AHI < 15 and AHI ≥ 15
groups.

To estimate the influence of the estimation SpO2 based on R, the results of
the segment classification are presented using the wearable PPI and the
reference SpO2 as input to the classifier. These results are summarized in
Table 30. A new CVHRI is calculated from this classification. Its correlation
with AHI becomes r = 0.95, p < 0.001 (see Figure 55).

3 Discussion

The results obtained using the wearable signals show a degradation com-
pared to those calculated with the polysomnography system in the previous
chapter. This was expected for several reasons: a noisier PPG signal prone
to artifacts; an SpO2 estimation derived from this signal; and the use of a
pre-trained model designed for other types of signals. Among these factors,
the second and third are amenable to improvement.

Estimation of SpO2 from R could not be performed using the formula
provided by the manufacturer. Instead, a subject-specific calibration was
used, which has yielded good qualitative results, but requires a quantitative
evaluation. Although the need to calibrate a wearable device for each
user poses a challenge, it does not render the device unusable. In fact,
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it is common practice to request prior calibration from users for other
types of measurement, such as blood pressure [4]. However, the approach
taken in this experiment could be improved, enabling undoubtedly better
classification results, as evidenced by the results obtained using the reference
signal SpO2. An alternative to this approach would be to retrain the
classificationmodel using theHjorth parameters of R instead of the estimated
SpO2. Since the parameters reflect the variance, center frequency, and
bandwidth of the signal, the operations performed for estimation (i.e.,
normalization, multiplication by a constant, and addition of a constant)
should yield proportional values.

Regarding the classification model, it should be re-trained using the new
signals as input. An improvement in results is expected, given the significant
differences in the SpO2 estimate.

The number of subjects should also be increased, as the current sample
is limited, with only 2 subjects having an AHI ≥ 15. This constrains the
analysis that could be performed, excluding the stratification applied in
the previous chapter. Moreover, the reduced number of abnormal breathing
segments means that the classifier’s statistics are calculated using 1,109
segments per class, since class balance ensures that each class has the same
number of samples as the minority class, in this case, the abnormal breathing
class. Consequently, the majority of classified segments are excluded from
evaluating the classifier’s performance. Therefore, more subjects should be
recorded, with a particular focus on expanding the subgroupwith AHI≥ 15.

Despite this degradation, the results remain promising. The correlation
between CVHRI and AHI remains high, decreasing only slightly from
0.94 with the signals from the previous chapter to 0.85 with those from
the wearable. This likely enables effective stratification for sleep apnea
screening. The drop in correlation is primarily attributed to the decline in
classifier accuracy, which decreased from 86.3% to 65.7%. However, this
pronounced degradation in accuracy does not correspond to an equivalent
percentage drop in the AHI-CVHRI correlation, suggesting that CVHRI
may be a robust metric against classifier errors.
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Nonetheless, the potential for improving SpO2 estimation is evident in the
results. When the reference SpO2 is used instead of the wearable-derived
SpO2, the correlation returns to 0.95, equivalent to that of the previous
chapter, and the classifier accuracy improves to 77.0%. While this is not as
high as in the previous chapter, it surpasses the accuracy achieved when
only wearable-derived inputs are used. This outcome is consistent with the
findings of the previous chapter, where Hjorth parameters of SpO2 were
shown to be the main predictors.

4 Conclusions

The results suggest that the method studied in the previous chapter can be
applied to wearable devices used at the patient’s home with no supervision,
delivering good performance. The classifier achieved an accuracy of
65.7%, while the correlation between CVHRI and AHI was r = 0.85

(p < 0.001). The high correlation indicates that stratification remains
feasible. However, the sample size should be increased, particularly for the
group with AHI ≥ 15, to enable a more comprehensive study. Additionally,
efforts should focus on improving the estimation of SpO2 from the R ratio
or directly using the latter as an input. Combined with retraining the model
to account for the new characteristics of the signals, these steps are expected
to enhance the results further.
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10
Integrating findings: from theory to practice

1 Primary findings

This thesis elaborates on the objectives set out in Chapter 1, demonstrating a
range of techniques that encompass the entire signal processing workflow,
from signal capture to the derivation of HRV metrics, specifically tailored
to address challenges in wearable environments. These objectives are
interconnected, with a shared focus on obtaining reliable metrics to assess
the autonomic nervous system. Furthermore, the application of thesemetrics
in the monitoring, screening, and customization of treatments for chronic
conditions such as sleep apnea, anxiety, and depression has been thoroughly
explored.

One of the key discoveries in the thesis is the development of robust, stan-
dardized techniques for examining HRV metrics in the typically fluctuating
and noisy environments of wearable devices. This standardization includes
the most appropriate methods from the existing literature for filtering,
quality assessment, detecting artifacts, identifying events, correcting these
events, and calculating variability metrics. In addition to traditional ap-
proaches, novel techniques have been developed, including a method to fill
artifact-created gaps. Furthermore, a study has been performed to identify
the ideal technique for each variability metric, alongside the expected error
based on the size of the gap or the percentage of data lost. Guidance on
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a general methodology is also provided that emphasizes reducing false
positives, which can obstruct further error detection and correction. This
is a novel contribution, as the existing literature lacks a comprehensive
context of the processing sequence. The thesis approach takes into account
both preceding and subsequent processing steps, ensuring that each block
strategy is framed with consistency and coherence.

Another fundamental finding is the application of wearable signals in OSA
screening. The proposed method is based on the well-known bradycardia-
tachycardia pattern produced by apneic events. In this approach, segmenta-
tion techniques are employed to differentiate apneic episodes from normal
respiration. Additionally, a novel parameter, CVHRI, derived via frequency
domain analysis, is utilized due to its correlation with AHI. One of the
innovations is the segmentation technique. Here, instead of annotating
apneic and hypopneic events separately, entire windows are evaluated
during the sleep period, which could include multiple events, including
scenarios in which both apneic and hypopneic events exist within the same
window. This method provides an alternative method for segmenting sleep
time, facilitating analyses such as the frequency analysis mentioned above.

The third primary aspect of the thesis involves developing an application for
capturing pulse photoplethysmographic signals using a smartphone camera.
Although this is not groundbreaking due to the existence of similar apps,
creating a proprietary version has facilitated the use of its own processing
methods and enabled control over key recording parameters, including
color channel, sampling frequency, filtering, and data format. This app
has been used to gather an extensive dataset from patients with anxiety
and depression, as well as a control group. Consequently, smartphone
PPG has been used for the first time in a study analyzing stress reactivity
related to the assessment of mental health disease. This study was carried
out in collaboration with professionals and organizations that require such
objective metrics to enhance tools for more effective and personalized
treatment.

These findings are valuable individually, but they also interrelate in the
context of chronic disease monitoring using wearable devices. The devel-
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opment of the mobile application serves as a starting point for integrating
all the methods discussed into a platform capable of collecting signals
from smartphones and connected devices, processing them, and extracting
indicators to support the prevention, diagnosis, and treatment of various
diseases.

In addition, the pathologies studied are often comorbid and share over-
lapping symptoms. Advancing research into each of these conditions,
whether through the development of new methods or leveraging the power
of large-scale data analysis enabled by such devices, can contribute to a
better understanding of the others. This may occur through the discovery of
common pathways, such as the role of the ANS.

2 Limitations

The study on the degradation of HRV metrics due to data loss does not
include an analysis of the effect of false positives. Given the approach
taken for the complete processing pipeline, efforts have been made to
minimize false positives by applying restrictive criteria during artifact
removal stages prior to detection, as well as during the identification of
outliers in the detection series. This was done to ensure the availability of
a reliable reference for filling in missing data, if necessary. However, the
occurrence of some false positives is inevitable, and it would be essential
to determine the number or percentage of false positives the proposed
methodology can withstand before degradation occurs, as well as to evaluate
the extent of the resulting degradation. Another limitation of this study is
the inability to accurately fill gaps where the variability is nonmonotonic
using Hermite polynomials. The use of these polynomials, instead of
other interpolation methods such as cubic splines, which do allow for non-
monotonic interpolation, has been shown to improve results by avoiding the
typical overshoot associated with splines. However, alternatives should be
explored to achieve a balance between nonmonotonic interpolation and
overshoot reduction. This could potentially be addressed by estimating
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inflection points for the Hermite polynomials.

The respiratory signal used in the SCPPG validation study was recorded
with a non-wearable device. This signal, used for OSP decomposition,
should ideally be estimated directly from the SCPPG itself. Furthermore,
no data are available to establish a relationship between stress reactivity
and levels of anxiety or depression. Differences between males and females
have not been analyzed, nor have potential nonstationarities during stressor
events been examined.

The primary limitation of the OSA study is the lack of medical professional
supervision in event labeling. In addition, electroencephalography was not
used, meaning arousals were not considered. Furthermore, no distinction
was made between obstructive and central apnea. However, all other AASM
guidelines were rigorously followed. This approach aims to minimize
annotator subjectivity as much as possible. The second part of the study
presents several limitations inherent in a pilot study. The most significant is
the size of the dataset, as well as the lack of subjects with severe OSA, with
healthy subjects being overrepresented. Another important aspect is the
inaccuracy of peripheral saturation estimation derived from the wearable’s
PPG signal. These two aspects should be addressed in more depth in the
full-scale study.

3 Future lines

The described applications have already been implemented and validated in
wearable devices, making them ready for immediate practical application.
Future studies should focus on aspects such as adherence to monitoring,
ease of use, patient comfort, and the use of screening tools by nonpatient
populations. Collaboration with medical experts will be essential during
this phase to ensure the successful integration of these technologies into
clinical and public health contexts. In this regard, the inclusion of numerical
metrics, such as those introduced in the study of mental health, poses
the additional challenge of being novel in a field predominantly driven by
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subjective evaluations. The integration of thesemetrics is not straightforward
and must be designed in a way that is useful to specialists for monitoring
and personalizing treatment. This requires careful consideration of how to
present the data to ensure that it complements traditional assessments and
improves clinical decision making.

The investigation of the best methods for the evaluation of signal quality
is still pending. Some of the best methods available in the literature are
described in Chapter 4, but, following the approach of this thesis, this
processing block must be included in a joint strategy with the rest of the
blocks. This is the only way to choose the most appropriate method, which
also depends on the final application.

The extension of the study on OSA screening using wearable devices is also
a future line. Although preliminary results are promising, they need to be
validated in a larger dataset, with particular emphasis on increasing the
number of patient-case subjects. This will help ensure the robustness and
generalizability of the findings, paving the way for broader clinical adoption.
The relationship between CVHRI and OSA-associated symptomatology
should also be investigated. As commented above, AHI has often been
criticized for not adequately reflecting this relationship. CVHRI is an index
that could better capture the effects of OSA on the ANS, as it measures a
physiological response rather than airflow reduction.

4 Smarthone app

This section is treated separately due to its significance and relatively
advanced stage. As it primarily involves development and implementation
rather than novel research, it was not elaborated on in the preceding chapters.
Nevertheless, it remains intrinsically linked to the entirety of the work
conducted during the Ph.D. The methods and studies discussed previously
are meant to be applied to society, moving beyond theoretical concepts to
become practical applications. An agreement was reached to consolidate
everything examined into one service within the framework of a Proof of
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Figure 56: Service architecture. The cloud server authenticates users
and specialists. Specialists are authorized to view solely the data of their
respective patients.

Concept project (PDC2022-133197-I00). This service encompasses signal
acquisition, processing, and user or specialist feedback. The architectural
layout is illustrated in Figure 56.

The service encompasses a mobile application functioning as the user
interface, enabling users to capture signals with SCPPG or Bluetooth-
connectedwearables, in addition to viewing their results or conducting stress
tests to assess reactivity. Signals are partially processed on the smartphone,
while most computation is performed in the cloud. The back-end handles
user authentication, data storage, signal processing, and the storage and
delivery of results.

Users can be either patients or nonpatients. For nonpatients, usage is
limited to screening for sleep apnea with compatible wearable devices. For
patients with depression or anxiety, they will be linked to their specialist.
The specialist will be able to design protocols, stress tests, determine the
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Figure 57: In-app stress tests. Left: Stroop test. The user’s voice is also
recorded. Right: Trail making test. User’s lines are also recorded.

duration and frequency of the monitoring, and access the results. On the
patient’s side, data acquisition includes signals during relaxation and stress
tests (see Figure 57), surveys, diary entries, as well as the feedback selected
by the specialist.

At this time, all devices of the Polar Electro brand (Kempele, Finland) are
compatible. The Polar SDK has been used to establish a point-to-point
connection between the app and the brand’s devices [1]. Figure 59 presents
examples of three devices of this type. This approach enables the use
of commercial wearable devices to acquire signals while processing is
performed using the methods described in this thesis. Similarly to SCPPG,
the signals can also be uploaded to the cloud for processing, thereby reducing
the computational load on the smartphone. For example, the PPG signal
obtained from any of the smartwatches, the OH1, or the Verity Sense can be
utilized for OSA screening.

Over time, additional devices from other brands are expected to be inte-
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Figure 58: Smartphone PPG Recorder. Left: Smartphone PPG recorder.
Camera feed, controllers and real-time signal. The signal is recorded and
uploaded to cloud at the end of the session. Right: Visualization of PRV
metrics after cloud computing. MHR, SDNN, RMSSD, SDSD and pNN50
are shown.

grated. This is a labor-intensive process, as each SDK must be incorporated
individually and not all brands provide such services. An alternative ap-
proach is to listen to the Bluetooth Low Energy broadcast beacons that these
devices typically emit. However, due to the limited bandwidth of this type
of connection, only minimal information is transmitted. Typically, only the
MHR calculated by the device is available, which means that the raw signals
are not accessible for further processing to extract variability metrics.

Currently, two studies related to the app are being proposed in the context
of depression and anxiety monitoring applications. The first study will
be conducted in collaboration with the Human Openware Research Lab
(HOWlab) at the Aragón Institute of Engineering Research (I3A) and
the SOS Adolescentes Association of Huesca. This study will involve
designing and developing new dedicated services for patients and specialists
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Figure 59: Polar Connect. Visualization of various signals from Polar
devices. Left: ECG from Polar H10, Center: PPG from Polar OH1. Right:
PPG from Polar Verity Sense.

to facilitate usability, adherence, and follow-up. Specialists from SOS
Adolescentes will use the platform, integrating it into their regular workflow.
The study will assess whether the tool is effective in monitoring and
personalizing treatment, as well as evaluating any improvements suggested
for future iterations.

The second study will be carried out in collaboration with the Mental
Disorders Impact and Prevention Research Group at the Sant Joan de Déu
Research Institute, affiliated with CIBERSAM. This study will investigate
the most effective approach to assess stress reactivity in patient populations.
Among other objectives, it will focus on determining the optimal frequency
of stress-inducing tests to prevent patients from adapting to the stimulus
while maintaining adequate sampling.
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5 Conclusions

This thesis investigates a robust methodology for evaluating the autonomic
nervous system using wearable devices. This evaluation was performed
primarily using heart rate variability and pulse rate variability techniques,
applied to research on chronic conditions such as obstructive sleep apnea,
anxiety, and depression. In addition, a preliminary study of the peripheral
venous pressure signal was performed to assess its potential for derived
indices related to the parasympathetic system.

The research was implemented through the development of a smartphone
app-based service capable of recording photoplethysmographic pulse signals
using the camera, connecting to third-party wearable devices, conducting
stress reactivity assessment protocols, and displaying results. The service
also includes integration with a cloud server capable of user authentication,
data storage, signal processing using the methods described in this thesis,
and sending results back to the user.

The objectives outlined in the Introduction have been achieved as follows:

1. General methods for reliable ANS assessment using wearable devices

Amethodology has been proposed for the robust evaluation of the
autonomic nervous system using wearables, where each block in
the processing chain is described as part of a coherent system. This
processing chain requires a holistic perspective of all subprocesses to
ensure a coordinated strategy. In this case, a restrictive approach to
artifact removal was adopted to minimize false positives in detection.
This ensures a reliable set of detections fromwhich heart rate variability
metrics can be derived.
A comparison of different techniques for calculating these metrics was
conducted, analyzing their degradation in the presence of data loss
caused by artifacts or poor signal-to-noise ratios. Based on the results,
the most suitable methods have been proposed for each metric and
level of data loss.
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2. Smartphone app development for PPG recording

A smartphone application has been developed to obtain pulse pho-
toplethysmography using the camera. This approach offers great
versatility for conducting studies, as smartphones are universal de-
vices. It also ensures good user acceptance, since it eliminates the
need for additional device expenditures. Although the initial aim was
not for this application to perform additional tasks, its potential led
to an expansion of its functionalities, making it a central hub for the
other research efforts included in this thesis.
The current system integrates signal processing with a cloud server
and connects to third-party devices, enabling continuous monitoring.

3. Application of wearables to mental illness

The smartphone application has been used to monitor patients with
depression and anxiety by assessing their stress reactivity. This
evaluation is performed using the signal obtained from the smartphone
camera, which is processed to derive heart rate variability metrics. The
results reveal significant differences in stress reactivity compared to
the control group. Specifically, patients with depression and anxiety
exhibit reduced reactivity. Although this phenomenon has previously
been studied, this is the first time it has been conducted using only a
smartphone.

4. Application of wearables to obstructive sleep apnea screening

A novel index has been proposed that correlates with the apnea-
hypopnea index, the standard for diagnosing and stratifying the
severity of obstructive sleep apnea. This index offers a significant
advantage because it is derived exclusively from wearable device
signals, in contrast to the bulky sensors used in polysomnography.
Moreover, due to its calculation method, it demonstrates a high degree
of robustness compared to similar metrics.
Following a study using a large dataset obtained with non-wearable
devices, a preliminary investigation was conducted with a wrist-
worn device, yielding promising results despite additional challenges.
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These challenges included the use of lower-quality signals (reflective
photoplethysmography instead of transmissive, measurement at the
wrist instead of the finger, increased motion artifacts, etc.) and the
estimation of oxygen saturation from the same signal without prior
calibration.

In conclusion, all the objectives proposed have been achieved. The findings
of this thesis advance themethodology for evaluating the autonomic nervous
system as a coherent and robust framework. Its applications are directly
relevant to the healthcare field, as demonstrated by its use in obstructive
sleep apnea and mental health conditions. Finally, the development of the
smartphone app-based service bridges the gap between theory and practice.
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