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Abstract

In this dissertation, linear and non-linear methodologies applied to physiological

signals are presented, with the purpose of characterizing the autonomic nervous

system response under emotional stimuli. This study is motivated by the nece-

ssity of developing a tool which identifies emotions based on their effect on cardiac

activity, since it may have a potential impact on clinical practice for diagnosing

psycho-neural illnesses.

The hypotheses of this PhD thesis are that emotions induce noticeable changes in

autonomic nervous system and that these changes can be capture from the analysis

of physiological signals, in particular, from the joint analysis of heart rate variability

(HRV) and respiration.

The analyzed database contains the simultaneous recording of electrocardiogram

and respiration of 25 subjects during video-induced emotion elicitation, including

the following emotions: joy, fear, sadness and anger.

In this dissertation, two methodological studies are described.

A method based on the linear analysis of HRV guided by respiration is proposed.

The method was based on redefining the high frequency (HF) band, not only to be

centered at the respiratory frequency, but also to have a bandwidth dependent on the

respiratory spectrum. Firstly, the method was tested using simulated HRV signals,

yielding the minimum estimation errors as compared to classic HF band and even

the HF band centered at respiratory frequency but with constant bandwidth, inde-

pendently of the values of the sympathovagal ratio. Then, the proposed method was

applied to discriminate emotions in a database of video-induced elicitation. Not
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only the proposed redefined HF band outperformed the other HF band definitions

in emotion discrimination but also the maximum correlation between HRV and res-

piration spectra discriminated joy vs. relax, joy vs. each negative valence emotion,

and fear vs. sadness with p-value ≤ 0.05 and AUC ≥ 0.70.

Non-linear techniques as the Auto-Mutual and the Cross-Mutual Information Func-

tion, the AMIF and the CMIF respectively, are also used in this PhD thesis for hu-

man emotion recognition. The AMIF technique was applied to HRV signals to study

complex interdependencies, and the CMIF technique was considered to quantify

the complex coupling between HRV and respiratory signals. Both algorithms were

adapted to short-term RR time series. Traditional band pass filtering was applied to

the RR series at low frequency and high frequency bands, and a respiration-based

filter bandwidth was also investigated.

The results revealed that the AMIF applied to the RR time series filtered in the

redefined HF band was able to discriminate between: relax and joy and fear, joy

and each negative valence conditions and finally fear and sadness and anger, all

with a statistical significance level (p-value≤ 0.05, AUC≥ 0.70). Furthermore, the

parameters derived from the AMIF and the CMIF allowed the low signal complexity

presented during fear to be characterized in front of any of the studied elicited states.

Finally, the ability of a combination of linear and non-linear characteristics to discri-

minate between pairs of emotions and between emotional valences is investigated.

The results extracted from this chapter suggested that relax vs. joy, positive vs. all

negative valences, joy vs. fear, joy vs. sadness, joy vs. anger and fear vs. sadness

can be discriminated by means of HRV analysis.

The joint analysis of HRV and respiration increases the discriminatory capacity of

HRV, being the maximum correlation between HRV and respiration spectra one of

the best indices for the discrimination of emotions. The analysis of mutual informa-

tion, even in short-term signals, adds relevant information to the linear indices for

the discrimination of emotions.



Resumen

En esta disertación se presentan metodologı́as lineales y no lineales aplicadas a

señales fisiológicas, con el propósito de caracterizar la respuesta del sistema ner-

vioso autónomo bajo estı́mulos emocionales. Este estudio está motivado por la

necesidad de desarrollar una herramienta que identifique emociones en función de

su efecto sobre la actividad cardı́aca, ya que puede tener un impacto potencial en la

práctica clı́nica para diagnosticar enfermedades psico-neuronales.

Las hipótesis de esta tesis doctoral son que las emociones inducen cambios notables

en el sistema nervioso autónomo y que estos cambios pueden capturarse a partir del

análisis de señales fisiológicas, en particular, del análisis conjunto de la variabilidad

del ritmo cardı́aco (HRV) y la respiración.

La base de datos analizada contiene el registro simultáneo del electrocardiograma

y la respiración de 25 sujetos elicitados con emociones inducidas por vı́deos, inclu-

yendo las siguientes emociones: alegrı́a, miedo, tristeza e ira.

En esta disertación se describen dos estudios metodológicos.

En el primer estudio se propone un método basado en el análisis lineal de la HRV

guiado por la respiración. El método se basó en la redefinición de la banda de alta

frecuencia (HF), no solo centrándose en la frecuencia respiratoria, sino también

considerando un ancho de banda que dependiera del espectro respiratorio. Primero,

el método se validó con señales de HRV simuladas, obteniéndose errores mı́nimos

de estimación en comparación con la definición de la banda de HF clásica e incluso

con la banda de HF centrada en la frecuencia respiratoria pero con un ancho de

banda constante, independientemente de los valores del ratio simpático-vagal.
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Después, el método propuesto se aplicó en una base de datos de elicitación emo-

cional inducida mediante vı́deos para discriminar entre emociones. No solo la banda

de HF redefinida propuesta superó a las otras definiciones de banda de HF en dis-

criminación emocional, sino también la correlación máxima entre los espectros de

la HRV y de la respiración discriminó alegrı́a y relajación, alegrı́a y cada emoción

de valencia negativa y entre miedo y tristeza con un p-valor ≤ 0.05 y AUC ≥ 0.70.

En el segundo estudio, técnicas no lineales como la Función de Auto Información

Mutua y la Función de Información Mutua Cruzada, AMIF y CMIF respectiva-

mente, son también propuestas en esta tesis doctoral para el reconocimiento de

emociones humanas. La técnica AMIF se aplicó a las señales de HRV para estu-

diar interdependencias complejas, y se consideró la técnica CMIF para cuantificar

el acoplamiento complejo entre las señales de HRV y de respiración. Ambos al-

goritmos se adaptaron a las series temporales RR de corta duración. Las series RR

fueron filtradas en las bandas de baja y alta frecuencia, y también se investigaron

las series RR filtradas en un ancho de banda basado en la respiración.

Los resultados revelaron que la técnica AMIF aplicada a la serie temporal RR fil-

trada en la banda de HF redefinida fue capaz de discriminar entre: relajación y

alegrı́a y miedo, alegrı́a y cada valencia negativa y finalmente miedo y tristeza e

ira, todos con un nivel de significación estadı́stica (p-value ≤ 0.05, AUC ≥ 0.70).

Además, los parámetros derivados de AMIF y CMIF permitieron caracterizar la

baja complejidad que la señal presentaba durante el miedo frente a cualquier otro

estado emocional estudiado.

Finalmente se investiga, mediante un clasificador lineal, las caracterı́sticas lineales y

no lineales que discriminan entre pares de emociones y entre valencias emocionales

para determinar qué parámetros permiten diferenciar los grupos y cuántos de éstos

son necesarios para lograr la mejor clasificación posible. Los resultados extraı́dos

de este capı́tulo sugieren que pueden ser clasificadas mediante el análisis de la HRV:

relajación y alegrı́a, la valencia positiva frente a todas las negativas, alegrı́a y miedo,

alegrı́a y tristeza, alegrı́a e ira, y miedo y tristeza.

El análisis conjunto de la HRV y la respiración aumenta la capacidad discrimina-



toria de la HRV, siendo la máxima correlación entre los espectros de la HRV y la

respiración uno de los mejores ı́ndices para la discriminación de emociones. El

análisis de la información mutua, aun en señales de corta duración, añade inform-

ación relevante a los ı́ndices lineales para la discriminación de emociones.





Resum

En aquesta dissertació es presenten metodologies lineals i no lineals aplicades a

senyals fisiològics, amb el propòsit de caracteritzar la resposta del sistema nerviós

autònom sota estı́muls emocionals. Aquest estudi està motivat per la necessitat

de desenvolupar una eina que identifiqui emocions en funció del seu efecte sobre

l’activitat cardı́aca, ja que pot tenir un impacte potencial en la pràctica clı́nica per

diagnosticar malalties psico-neuronals.

Les hipòtesis d’aquesta tesi doctoral són que les emocions indueixen canvis notables

en el sistema nerviós autònom i que aquests canvis es poden capturar a partir de

l’anàlisi de senyals fisiològics, en particular, de l’anàlisi conjunta de la variabilitat

del ritme cardı́ac (HRV) i la respiració.

La base de dades analitzada conté l’enregistrament simultani de l’electrocardiograma

i la respiració de 25 subjectes durant l’elicitació d’emocions induı̈da per vı́deo, in-

cloent les emocions següents: alegria, por, tristesa i ira.

En aquesta dissertació es descriuen dos estudis metodològics.

En el primer estudi es proposa un mètode basat en l’anàlisi lineal de la HRV guiat

per la respiració. El mètode es va basar en la redefinició de la banda d’alta freqüència

(HF), no només per centrar-se en la freqüència respiratòria, sinó també per tenir

un ample de banda que depengués de l’espectre respiratori. Primer, el mètode es

va validar amb senyals de HRV simulades, obtenint errors mı́nims d’estimació en

comparació amb la definició de la banda HF clàssica i fins i tot amb la banda HF

centrada en la freqüència respiratòria però amb un ample de banda constant, inde-

pendentment dels valors de la ràtio simpàtico-vagal. Després, el mètode proposat
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es va aplicar en una base de dades d’elicitació emocional induı̈da mitjançant vı́deos

per discriminar entre emocions. No només la banda HF redefinida proposta va su-

perar les altres definicions de banda HF en discriminació emocional, sinó també la

correlació màxima entre els espectres de la HRV i de la respiració va discriminar

entre l’alegria i la relaxació, entre l’alegria i cada emoció de valència negativa i

entre la por i la tristesa amb un p-valor ≤ 0.05 i AUC ≥ 0.70.

En el segon estudi, tècniques no lineals com la Funció d’Auto Informació Mútua

i la Funció d’Informació Mútua Creuada, AMIF i CMIF respectivament, també

es proposen en aquesta tesis doctoral per al reconeixement d’emocions humanes.

La tècnica AMIF es va aplicar als senyals de HRV per estudiar interdependències

complexes, i es va considerar la tècnica CMIF per quantificar l’acoblament complex

entre els senyals de HRV i de respiració. Tots dos algoritmes es van adaptar a les

sèries temporals RR de curta durada. Les sèries RR van ser filtrades a les bandes

de baixa i d’alta freqüència, i també es van investigar les sèries RR filtrades en un

ample de banda basat en la respiració.

Els resultats van revelar que l’AMIF aplicada a la sèrie de temps RR filtrada a la

banda HF redefinida va ser capaç de discriminar entre: la relaxació i l’alegria i la

por, l’alegria i cada emoció de valència negativa i finalment entre la por i la tristesa

i la ira, tots amb un nivell de significació estadı́stica (p-value ≤ 0.05, AUC ≥ 0.70).

A més, els paràmetres derivats de l’AMIF i la CMIF van permetre caracteritzar la

baixa complexitat del senyal presentada durant la por davant de qualsevol dels estats

emocionals estudiats.

Finalment s’investiga, mitjançant un classificador lineal, les caracterı́stiques lineals

i no lineals que discriminen entre parells d’emocions i entre valències emocionals

per determinar quins paràmetres permeten diferenciar els grups i quants d’aquests

són necessaris per aconseguir la millor classificació possible. Els resultats extrets

d’aquest capı́tol suggereixen que es poden classificar mitjançant l’anàlisi de la HRV:

la relaxació i l’alegria, la valència positiva i totes les valències negatives, l’alegria i

la por, l’alegria i la tristesa, l’alegria i la ira, i la por i la tristesa.

L’anàlisi conjunta de la HRV i la respiració augmenta la capacitat discriminatòria



de la HRV, sent la màxima correlació entre els espectres de la HRV i la respiració

un dels millors ı́ndexs per a la discriminació d’emocions. L’anàlisi de la informació

mútua, fins i tot en senyals de curta durada, afegeix informació rellevant als ı́ndexs

lineals per a la discriminació d’emocions.
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Chapter 1. Introduction

1.1 Motivation

Emotions are an essential part of human existence because they determine the qua-

lity of our lives. These represent the evaluation of what happens in our life, but

in some people, the affections are disconnected from reality. They have feelings

of extreme euphoria (mania) or of desperation (depression) [19, 34]. Depression,

according to the World Health Organization1, is the world’s leading cause of disabi-

lity and contributes very significantly to the global burden of disease affecting 350

million people worldwide.

The emotional responses are formed by behaviors to face specific situations and

by physiological responses, both neurovegetative and hormonal, that support these

behaviors. The emotional reactions of people to aversive stimuli can harm their

health. For example, the stress response, which Cannon called a fight or flight res-

ponse [18], is useful as a short-term reaction to threatening stimuli, but in the long

terms it is detrimental. The autonomic nervous system (ANS) exerts an antagonistic

regulation in the organs and target tissues, thanks to the action of its two branches,

one sympathetic and the other parasympathetic. Therefore, the stress response in-

cludes an increase in the activity of the sympathetic branch of the neurovegetative

system and an increase in the secretion of hormones from the adrenal gland: adre-

naline, noradrenaline and glucocorticoids. Prolonged exposure to high levels of

these hormones can raise blood pressure (BP), damage muscle tissue, lead to infer-

tility, slow growth, inhibit the inflammatory response and depress the activity of the

immune system [19, 29].

The organs of the immune system are also terminal organs of direct autonomic

innervation [36, 90], especially of the sympathetic nervous system [35]. The sym-

pathetic denervation of the immune organs results in an increase in susceptibility

to infectious and inflammatory diseases [90]. And on the other hand, there is a

circuit of the nervous system composed of the limbic cortex, the limbic regions of

the forebrain, the hypothalamus and the autonomous nuclei of the brainstem, which

1http://www.who.int/
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1.1. MOTIVATION

regulates autonomic and neuroendocrine flow and, thereby, contributes to modu-

late the immune system [36]. In addition, specifically the cortical areas and the

limbic system of the forebrain mediate the affective and cognitive processes and,

consequently, may be involved in the response to stressors, in states and affective

disorders [51], and in aversive conditioning [36].

In addition, both the sympathetic and parasympathetic branches innervate the heart,

specifically in the sinoatrial node (SA node), which allows the corresponding neu-

rotransmitters to modulate their activity. The different emotional states cause a

reaction in the ANS, which is reflected in the heart rhythm, due to this neuromo-

dulation. Sympathetic hyperactivity, observed in response to sexual or combative

nature can cause extra systole or tachycardia. Parasympathetic hyperactivity, ob-

served in responses to aversive emotions, usually olfactory or visual origin, can

cause bradycardia or cardiac arrest [29, 95].

Therefore, emotional disorders are the result of the interaction between multiple

factors, which depend both on the individual′s environment and the individual′s cha-

racteristics such as genetic, endocrine, nervous, immunological, emotional, cogni-

tive and behavioral characteristics, gender, life experiences and psychosocial factors

such as personal support and the perception of control. In addition, stressful situ-

ations processed by the interpretative belief system, typical of each individual, can

generate negative feelings of fear, anger, depression, helplessness and hopelessness.

These attitudes and emotions activate biochemical mechanisms, at the level of the

hypothalamus, pituitary gland and adrenal glands, which tend to depress and/or

suppress the immune response, which makes possible the development of diverse

pathological processes [35, 51, 95].

Developing a tool which identifies human emotions may have a potential value in

several fields. First, in the clinical practice, it may have value to reduce the diag-

nostic time of a psycho-neural illness, and, subsequently, it could directly represent

a beneficial economic impact for the health system. Secondly, it can improve on the

human-machine interaction since it could provide knowledge regarding the affec-

tive state of a user, bringing the machine closer to the human by including emotional
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Chapter 1. Introduction

content in the communication [22].

Several strategies have been proposed for emotion recognition by means of non-

invasive techniques that allow registering biosignals as electroencephalography (EEG)

[22,54,57,65,80,89], galvanic skin response (GSR) [82,91], skin temperature varia-

tion (ST), electrodermal activity [53] and electrocardiography (ECG) [9,47,83,106],

among others.

Among all the techniques mentioned, this work has been focused on emotion recog-

nition by means of heart rate variability (HRV) analysis extracted from the ECG, be-

cause, as explained above, emotional stimuli cause an action on the hypothalamus-

pituitary-adrenal axis, which has an effect on the ANS, in both branches, sympathe-

tic and parasympathetic, and subsequently ANS has a field of action on the heart.

The spectral analysis of HRV is considered a non-invasive technique for evaluating

the relationship between these two main branches of ANS and has been proposed

for the recognition of human emotions in previous studies [22, 83].

The influence of ANS in the high frequency (HF) band is mainly due to respiratory

sinus arrhythmia (RSA). Therefore, HRV is influenced by respiration and not taking

it into account can lead to a misunderstanding of the results, as some works have

already pointed out [5, 7, 8, 42].

One of the methodologies developed in this thesis will attempt to overcome such

limitations. Therefore, an estimation of the spectral bands particularized for each

subject will be taken into account, which will avoid the subjectivity of selection

of the width of the HF band that depends to a great extent on considerations such

as the age and physiological conditions of each person. This methodology will be

developed based on algorithms of linear analysis of the signal.

In addition, within the framework of this thesis it is intended to expand the study

of linear analysis with techniques based on the analysis of non-linear dynamics, in

order to study the complexity of the related cardiac signals. The study of the non-

linear dynamics of these signals can provide very meaningful information on the

characterization of the ANS [53, 88, 105]. The most important limitation presented
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1.2. WORK HYPOTHESIS

by these techniques is that they need a sufficient signal length to be applied [53].

Therefore, it will be necessary to adapt the algorithms developed to be robust me-

thods of analyzing short-term signals.

1.2 Work hypothesis

The starting hypotheses of this research work are listed below:

First work hypothesis: emotions cause alterations on the autonomic nervous

system.

The effects of ANS on the heart are mediated through hypothalamic communica-

tions with spinal cardiovascular centers. This explains why cardiovascular respon-

ses are usually connected with some emotional responses, because an emotional

stimulus regulates the activation and inhibition of communication between the hy-

pothalamus, the pituitary and other peripheral glands. Therefore, the hormonal

release of these glands has a direct effect on the heart. For example, the cardi-

ovascular reaction to a stressful event is to increase BP, caused by an increase in

the activity of the sympathetic system, a decrease in parasympathetic activity and

the secretion of hormones from the adrenal gland: adrenaline, noradrenaline and

glucocorticoids [10, 19, 70].

Second work hypothesis: the alterations that cause the emotions on the ANS can

be measured by means of analysis of physiological signals.

An objective and non-invasive measurement of the ANS is done by studying the

variability of the heart rhythm by processing the HRV signal which allows the ba-

lance between the sympathetic and the parasympathetic system of the measured

subject to be obtained [93] and therefore the emotional response. Many studies

have been published showing the existing changes in HRV during different emo-

tional states [102,105], however, there are some limitations in the methods currently

used. Within this thesis, several robust methods are proposed, both in the linear and

non-linear analysis for the characterization of the response of the ANS to emo-
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tional stimuli, which take into account the limitations of the HRV analysis, such as

changes in heart rate, and a respiratory rate outside the classic range, among others.

Third work hypothesis: the inclusion of respiratory information improves HRV

ability to discriminate emotions.

The combination of information from different physiological signals, such as HRV

and respiration (RSP), improves the characterization of the ANS for the discrimina-

tion of emotions as suggested in [47].

1.3 Physiological aspects

1.3.1 The autonomic nervous system

The autonomic nervous system is the component of the peripheral nervous system

that controls cardiac muscle contraction, visceral activities, and glandular functions

of the body. Specifically the ANS can regulate heart rate, BP, rate of respiration,

body temperature, sweating, gastrointestinal motility and secretion, as well as other

visceral activities that maintain homeostasis [15, 45, 61, 85]. The ANS functions

continuously without conscious effort. The ANS, however, is controlled by centers

located in the spinal cord, brain stem, and hypothalamus [41].

The ANS is composed of a sympathetic division and a parasympathetic division

(Fig. 1.1). The sympathetic nervous system is named for acting in sympathy with

emotions. In combination with anger or fear, the sympathetic nervous system pre-

pares the body for fight or flight. It produces the heart rate increases, the pupils

dilate, the skin sweats, the blood is directed from the skin and the intestinal tube to

the skeletal muscles and the sphincters of the digestive tract and the urinary system

are closed. The parasympathetic nervous system usually counteracts the effect of

the sympathetic nervous system. It adapts the eyes to the near vision, slows down

the heart, favors the secretion of saliva and intestinal secretions and accelerates in-

testinal peristalsis [95].
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1.3. PHYSIOLOGICAL ASPECTS

Figure 1.1: Schematic view of the autonomic nervous system composed of a sym-
pathetic division and a parasympathetic division (From [29]).

Messages from sympathetic and parasympathetic nervous systems are conveyed as

electrical impulses that travel along axons and cross synaptic clefts using chemical

neurotransmitters. Both sympathetic and parasympathetic pathways are composed

of a preganglionic neuron and a postganglionic neuron. The neurotransmitter be-

tween the preganglionic and postganglionic neurons is norepinephrine for the sym-

pathetic nervous system, while the parasympathetic nervous system releases acetyl-

choline [41].

In the sympathetic system (thoracolumbar division), these nerves originate from the

thoracolumbar region of the spinal cord (T1-L2) and radiate out towards the target

organs. In contrast, the nerves of the parasympathetic system originate within the

midbrain, pons and medulla oblongata of the brain stem and part of these fibers

originate in the sacral region (S2-S4 sacral spinal nerves) of the spinal cord. While

sympathetic nerves utilize a short preganglionic neuron followed by a relatively

long postganglionic neuron, parasympathetic nerves (e.g., the vagus nerve, which

carries about 75 percent of all parasympathetic fibers) have a much longer pregan-
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Figure 1.2: Schematic view of a normal electrocardiogram: P = P wave, QRS =
QRS complex and T = T wave.

glionic neuron, followed by a short postganglionic neuron [41].

1.3.2 The autonomic nervous system control of the heart

The heart is divided into four chambers: upper left and right atria; and lower left

and right ventricles. It serves as the pump that moves blood through blood vessels

thereby providing the needed oxygen and nutrients to the body. To achieve this goal,

the heart must beat with a rhythm determined by a group of pacemaking cells in the

SA node located in the right atrium. These cardiac cells generate action potentials

that causes contraction of the heart, traveling through the atrioventricular node and

along the conduction system of the heart [41].

The electrical activity in the heart is coordinated by the intrinsic conduction system

which can be seen on an ECG [41].

Under normal conditions, the P wave of a ECG recording reflects atrial depola-

rization followed by atrial contraction. The QRS wave reflects ventricular depo-

larization followed by ventricular contraction and the T wave reflects ventricular

repolarization and ventricular relaxation (Fig. 1.2) [41].

In the absence of extrinsic neural or hormonal influences, the SA node pacing rate

would be about 100 beats per minute. The heart rate and cardiac output, however,
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1.3. PHYSIOLOGICAL ASPECTS

must vary in response to the needs of the bodys cells for oxygen and nutrients under

varying conditions. In order to respond rapidly to changing requirements of the

bodys tissues, the heart rate and contractility are regulated by the autonomic nervous

system, hormones, and other factors [41].

The regulation of the heart by the ANS is accomplished by control centers in the

medulla that receive descending input from higher neural areas in the brain and affe-

rent input from mechanically and chemically sensitive receptors located throughout

the body [68]. The principal mechanisms in the brain that regulate the cardiovascu-

lar system are: 1) feedforward regulation, often referred to as central command, and

2) feedback or reflex regulation. These cardiovascular regulatory mechanisms are

closely coordinated with respiratory and other regulatory mechanisms to maintain

homeostasis [26].

The SA node responds clearly to emotional states. Sympathetic hyperactivity, in

response to emotions of rapprochement of a sexual or combative nature, can cause

the heart to lose a beat (extrasystole) or the pulse run (tachycardia). Parasympathe-

tic hyperactivity in response to aversive emotions is usually of olfactory or visual

origin, can cause bradycardia, or even cardiac arrest [95].

During rest, sleep, or emotional tranquility, the parasympathetic nervous system

predominates and controls the heart rate at a resting rate of 60-75 beats per minute

(bpm). At any given time, the effect of the ANS on the heart is the net balance

between the opposing actions of the sympathetic and parasympathetic systems [41].

1.3.3 Heart rate variability

Heart rate variability describes variations in consecutive cardiac cycles. Other terms

have been used in the literature, for example cycle length variability, heart period

variability, RR variability where R is the main positive deflection of the QRS com-

plex of the ECG wave, and RR interval tachogram [93]. In Fig. 1.3, 10 seconds of

an ECG are shown with its corresponding RR time series. HRV exhibit temporal

fluctuations, as shown in Fig. 1.3, which are synchronized with respiration, increa-
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Figure 1.3: Ten seconds of an (a) electrocardiogram (ECG) - Lead I with the time
duration of all RR intervals, and (b) its corresponding RR time series interpolated
to 4 Hz.

sing during inspiration and decreasing during expiration. This phenomenon called

RSA reflects the changes in cardiac autonomic regulation [11].

The HRV analysis provides a tool for the evaluation of cardiac autonomic changes

in patients. In fact, reduced HRV is associated with a variety of cardiovascular

risk factors and disease states including diabetes, smoking, obesity, work stress,

hypertension and heart failure [11].

Many techniques have been proposed to quantify the HRV in order to provide in-

dices of cardiac autonomic regulation in both health and disease. Most of them were

included in the Task Force of 1996 [87, 93]. There are two primary approaches for

the analysis of HRV: linear and non-linear methods [11]. The linear methods are

divided in the time domain and frequency domain methods, and they are reported

in Table 1.1, and Table 1.2, respectively. And the most used non-linear methods

applied to HRV series are reported in Table 1.3.

The time domain measures, reported in Table 1.1, are easier to calculate but less use-

ful than the frequency domain approaches in identifying specific components of this

variability [11]. Regarding the frequency domain measures, three main peaks are of-

ten identified for shorter duration recordings (2-5 min): a very low frequency com-

ponent (VLF) in the range between 0 Hz and 0.04 Hz, a low frequency component
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(LF) between 0.04 Hz and 0.15 Hz, and a high frequency component (HF) between

0.15 Hz and 0.4 Hz [93]. A fourth peak, ultra low frequency (ULF) ( f ∈[0.03-0.04]

Hz) appears during longer recording periods (24 h).

The sympathetic modulation of cardiac activity is encompassed in LF band and the

parasympathetic activity affects both LF and HF band power [93]. The ratio of LF to

HF (LF/HF) has been used as an index of the sympathetic/parasympathetic balance.

However, this concept has been challenged as there is considerable controversy

concerning the relationship between these frequency components and a particular

division of the autonomic nervous system [11].

As was previously mentioned, non-linear dynamic analysis approaches have also

been used to evaluate HRV: dominant Lyapunov exponent, detrended fluctuation

analysis, approximate entropy, quadratic coupling, auto-mutual information func-

tion or cross mutual information function [1, 48, 49, 101–105].

1.3.4 Physiology of emotions

Paul Ekman described in 1992 a theory about the six basic emotions as anger, dis-

gust, fear, happiness, sadness and surprise [33]. These 6 basic emotions were dis-

cretely categorized because several theories believes they are distinguishable by

biological processes and an individuals facial expression [25].

Emotions activate biochemical mechanisms at the level of the hypothalamus, pitu-

itary, and other peripheral glands. These tend to restore or suppress the immune

and endocrine responses, making the development of diverse pathological processes

possible [40].

Transient behavior of the cardiovascular function is often linked with some emo-

tional responses. In particular, heart rate is profoundly influenced by neural in-

puts from sympathetic and parasympathetic divisions of the ANS, which allows

the modification of cardiac function to meet the changing homeostatic needs of the

body [70]. For example, cardiovascular reaction to a perceived stress situation cre-

ates an increase in BP as a consequence of a general increase in cardiovascular sym-
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Table 1.1: Time-domain measures of HRV, from [93].
Variable (Units) Description
SDNN (ms) SD of all NN.
SDANN (ms) SD of the averages of NN in all 5 min segments of the

entire recording.
RMSSD (ms) The square root of the mean of the sum of the squares

of differences between adjacent NN.
SDNN index (ms) Mean of the SD of all NN for all 5 min segments of

the entire recording.
SDSD (ms) SD of differences between adjacent NN.
NN50 count Number of pairs of adjacent NN differing by more

than 50 ms in the entire recording.
pNN50 (%) NN50 count divided by the total number of all NN.
HRV triangular index Total number of all NN divided by the height of the

histogram of all NN measured on a discrete scale with
bins of 7.8125 ms (1/128 s).

TINN (ms) Baseline width of the minimum square difference tri-
angular interpolation of the highest peak of the histo-
gram of all NN.

Differential index (ms) Difference between the widths of the histogram of di-
fferences between adjacent NN measured at selected
heights.

Logarithmic index Coefficient ø of the negative exponential curve ke−øt

which is the best approximation of the histogram of
absolute differences between adjacent NN.

NN = NN intervals corresponding to heart period during sinus rhythm.

SD = Standard deviation.

Table 1.2: Frequency-domain measures of HRV, from [93].
Variable (Units) Description
power (ms2) The variance of NN over 5 minutes.
VLF (ms2) Power in very low frequency range ( f 6 0.04 Hz).
LF (ms2) Power in low frequency range ( f ∈[0.04-0.15] Hz).
LF norm (n.u.) Low frequency power in normalized units

(LF/(LF+HF)x100).
HF (ms2) Power in high frequency range ( f ∈[0.15-0.40] Hz).
HF norm (n.u.) High frequency power in normalized units

(HF/(LF+HF)x100).
LF/HF Ratio LF(ms2)/HF(ms2).
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1.3. PHYSIOLOGICAL ASPECTS

Table 1.3: Bibliographic summary of non-linear techniques applied to HRV series.
Technique Description
DLEs Dominant Lyapunov Exponents
ApEn Approximate Entropy
SEn Sample Entropy
FMEn Fuzzy Measure Entropy
CSEn Cross Sample Entropy
CFMEn Cross Fuzzy Measure Entropy
PE Permutation Entropy
PME Permutation Min-Entropy
PD2 Pointwise Correlation Dimension
DFA Detrended Fluctuation Analysis
LLP Lagged Poincaré Plot
AMIF Auto-Mutual Information Function
CMIF Cross-Mutual Information Function

pathetic nerve activity and a decrease in parasympathetic activity [3, 10, 70]. When

adrenergic sympathetic fibers activate, they release noradrenaline on cardiac cells,

increasing the heart rate. When cholinergic parasympathic nerve fibers activate,

they release acetylcholine on cardiac muscle cells and the heart rate decelerates [95].

Sympathetic and parasympathetic activation work to increase and decrease cardiac

pumping, respectively [29]. Usually, an increment in parasympathetic nerve activity

is accompanied by a reduction in sympathetic nerve activity, and vice versa.

1.3.5 Heart rate variability and emotions

Several strategies have been proposed for recognition of emotional states assessed

by means of HRV spectral analysis [14, 23, 28, 39, 67, 83, 84]. As well, non-linear

techniques such as the Dominant Lyapunov Exponents, the Detrended Fluctuation

Analysis, the Approximate Entropy, the Sample Entropy, the Fuzzy Measure En-

tropy, the Cross Sample Entropy, the Cross Fuzzy Measure Entropy, the Permuta-

tion Entropy, Permutation Min-Entropy, the Pointwise Correlation Dimension, the

Lagged Poincaré Plot or the Quadratic Coupling have been applied to HRV signals

to detect emotional stimuli [12, 30, 43, 101–105, 109, 111]. Some of these tech-

13



Chapter 1. Introduction

niques have also been used to study non-linear relationships between HRV and RSP

signals [55, 103–105, 111].

Hernando, A., published that the HRV analysis methods are a suitable technique

for the evaluation of stress [47], as long as respiratory information is taken into

account. Rantanen, A., et al. [84] shows the evidence that the elicitation of the

negative valence increases sympathovagal activity in women and Quintana, D. S., et

al. [83] suggests that the increase in HRV may provide a new marker for recognizing

emotions in humans.

On the other hand, Nyguyen, V.T., et al. [72], found that cardiac activity is represen-

ted in the center of the posterior insula and demonstrated the perception of internal

physiological processing states during the natural emotional experience providing

an ecologically valid framework to elucidate the neuronal bases of emotional defi-

cits in the neuropsychiatric disorders.

Several studies have revealed that patients with anxiety and phobias exhibit a low

HRV. Therefore, a low HRV has been linked to psychological problems [14, 16, 31,

37, 38, 66, 69]. In addition, subjects with post-traumatic stress disorder consistently

show a lower HRV [23, 24, 92]. Similarly to these studies, others researchers also

suggest a connection between a low HRV and depression [20,21,52]. It is important

to note that the relationship of a low HRV between anxiety, phobias, stress and

depression exists independently of age, gender, cardiorespiratory capacity, heart

rate, BP and respiratory rate [31].

Most of these studies do not take into account the joint analysis of heart rate varia-

bility and respiration particularized for each subject, which might be important to

discriminate emotions since emotional characterization strongly depends on indi-

vidual considerations such as age and physiological conditions. In this PhD thesis,

human emotion recognition is proposed based on linear and non-linear methodo-

logies which address current limitations by characterizing the relationship between

HRV and respiration for each specific subject to avoid subjectivity in emotion iden-

tification.
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1.4. OBJECTIVES AND OUTLINE OF THE THESIS

1.4 Objectives and outline of the thesis

The objective of this thesis is to develop a methodology that allows the characteri-

zation of emotional responses based on the study of HRV. This methodology will

take into account some of the current limitations of HRV analysis to characterize

emotional responses, considering both linear and non-linear HRV analysis parame-

ters and including information of respiration. For spectral indices, an estimation of

the spectral bands particularized for each subject will be proposed. Regarding non-

linear parameters, this work is focused on the definition of robust and complexity

measurements in short time series also taking into account respiratory information.

This general objective can be subdivided into:

In chapter 3: it is proposed the joint analysis of HRV and RSP based on the spectral

correlation of the high frequency band to improve human emotion characterization.

This methodology is based on the automatic detection of spectral limits, particu-

larized for each subject, to take into account that the bandwidth of the HF band is

different for each subject and condition depending on the breathing pattern. There-

fore, HF band will be defined based on the maximum spectral correlation between

HRV and RSP. The maximum spectral correlation itself is proposed as an index to

identify emotions. The hypothesis is that this index, characterizing the relationship

between RSP and HRV, can add relevant information to HRV analysis to describe

human emotions.

First, a simulation study is designed to evaluate the ability of the proposed HF band

to quantify RSA. The performance of the proposed HF band will be compared to

other commonly used HF band definitions. Then, the ability of the proposed in-

dices to characterize human emotions will be tested on a database of video-induced

emotions.

The work presented in this chapter has been published in:

• Valderas, M.T., Bolea, J., Laguna, P., Vallverdú, M. and Bailón, R., Human

emotion recognition using heart rate variability analysis with spectral bands
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based on respiration, 37th International Conference on IEEE EMBS Inter-

national Conference on Engineering in Medicine and Biology Society, 2015,

6674-6677, DOI: 10.1109/EMBC.2015.7319792.

• Valderas, M.T., Bolea, J., Orini, M., Laguna, P., Orrite, C., Vallverdú, M. and

Bailón, R., Human emotion characterization by heart rate variability analysis

guided by respiration, IEEE Journal of Biomedical and Health Informatics,

2019, DOI: 10.1109/JBHI.2019.2895589.

In chapter 4: it is proposed to use non-linear techniques for HRV analysis because

it has been demonstrated that it is a complementary tool of HRV analysis based on

linear statistics for ANS analysis [49].

In the present work, both non-linear Auto-Mutual Information Function (AMIF)

and Cross-Mutual Information Function (CMIF) techniques are proposed for human

emotion recognition. On the one hand, the AMIF technique is applied to HRV

signals to study complex communication within the ANS, and on the other hand the

CMIF technique is considered to quantify the complex coupling between HRV and

respiratory signals.

Both algorithms will be adapted to short term time series and applied to the re-

defined HF band described in chapter 3, as well as to classic LF and HF bands.

Both AMIF and CMIF algorithms will be calculated on these spectral bands with

regard to different time scales as specific complexity measures. The ability of the

parameters derived from the AMIF and the CMIF to discriminate emotions will be

evaluated on a database of video-induced emotion elicitation.

The work presented in this chapter has been published in:

• Valderas, M.T., Bolea, J., Laguna, P., Bailón, R. and Vallverdú, M., Mutual

information between heart rate variability and respiration for emotion charac-

terization, Physiological Measurement, Volume 40, Number 8, 2019, DOI:

10.1088/1361-6579/ab310a.

In chapter 5: it is proposed to use a linear classifier to identify the linear and

non-linear characteristics that discriminate between pairs of emotions and between

16
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emotional valences to determine which parameters allow differentiating between

the groups and how many of them are necessary to achieve the best classification.
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2.1 Registered signals

A database of 25 volunteers was recorded at the University of Zaragoza during an

induced emotion experiment. It contains the simultaneous recording of ECG and

RSP, BP, ST and GSR signals acquired with a MP100 BIOPAC device. The signals

used were: the limb ECG leads (I, II and III) which were sampled at 1 kHz and the

respiratory signal, r(t), at 125 Hz (Fig. 2.1).
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Figure 2.1: Ten seconds of the simultaneous recorded signals: (a) ECG Lead I, (b)
ECG Lead II, (c) ECG Lead III, and (d) RSP.

The distribution of the subjects was: four men and five women for the age range 18

to 35 years, four men and four women for the age range 36 to 50 years and four men

and four women over 50 years. All subjects were University students or employees

with an estimated BMI of 22.9 kg/m2. Previous to the inclusion in the study, the

adequacy of each subject was evaluated with a General Health Questionnaire.

2.2 Registered emotions

The experiment consisted on eliciting each subject by four emotions (joy, fear, an-

ger and sadness) using videos (two videos per emotion). Despite the classification
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2.2. REGISTERED EMOTIONS

described by Paul Ekman consisted in six basic emotions, disgust and surprise were

discarded because the psychologists involved in the study decided these two emo-

tions were specific reactions rather than prolonged moods.

All the experiment extended over 2 consecutive days and two sessions were recor-

ded each day. The experiment was split into two days, with the aim to have more

than one sample per day for each emotion; therefore the recording is more repre-

sentative of the emotion and not particularly biased for the specific mood of the day

that was recorded. During sessions 1 and 4, the subject was stimulated with videos

of joy (J) and fear (F), and during sessions 2 and 3 with videos of anger (A) and

sadness (S). Therefore, each of the 25 subjects was elicited with 2 videos of the

same emotion, resulting in a total of 50 recordings per emotion. All videos were

presented in randomized order.

To ensure that the physiological parameters returned to the baseline condition, each

video was preceded and followed by a relaxing video considered as baseline, which

were excerpts from nature images with classical music. All sessions were recorded

at the same time of the day and the order of the participant was maintained during

all sessions to mitigate the circadian variations of HRV parameters. A schema of

the organization of the video-induced emotion sessions is represented in Fig. 2.2.

Day 2

relax joy relax fear relax
Session 4

sadness relax relax anger
Session 3

relax

relax joy sadness relax fear relax relaxrelax anger
Session 1 Session 2

relax

Day 1

Figure 2.2: Scheme of the organization of the video-induced emotion sessions. Se-
ssion 1 and 2 were recorded the first day, and session 3 and 4 were recorded the
second day. In session 1 and 4, the subject was stimulated with videos of joy and
fear, and with videos of sadness and anger in session 2 and 3. All videos were
presented in randomized order.

The contents of the videos were: the joy videos were excerpts from laughing mono-

logues; the fear videos were excerpts from scary movies, like Alien and Misery;
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Table 2.1: Specific time segments studied for each video: total video length, time
range and video length studied. The unit time are expressed in hh:mm:ss.

Video Total video length Time range studied Video length studied

Session 1
Relax 00:06:46 [00:01:00-00:06:00] 00:05:00
Joy 00:10:36 [00:02:00-00:07:00] 00:05:00
Fear 00:02:47 [00:00:00-00:02:45] 00:02:45

Session 2
Relax 00:06:51 [00:01:00-00:06:00] 00:05:00

Sadness 00:07:25 [00:01:00-00:06:00] 00:05:00
Anger 00:09:18 [00:01:00-00:06:00] 00:05:00

Session 3
Relax 00:06:35 [00:01:00-00:06:00] 00:05:00

Sadness 00:07:07 [00:01:00-00:06:00] 00:05:00
Anger 00:06:29 [00:01:00-00:06:00] 00:05:00

Session 4
Relax 00:07:36 [00:01:00-00:06:00] 00:05:00
Joy 00:06:13 [00:01:00-00:06:00] 00:05:00
Fear 00:09:42 [00:04:00-00:09:00] 00:05:00

the sadness videos were an excerpt from the film The Passion of the Christ and a

documentary film about history wars; the anger videos were an excerpt of the docu-

mentary film of the Columbine High School massacre in 1999 and a documentary

about domestic violence; and the relax videos were excerpts from nature images

with classical music.

Although each video had a different length, five minutes long were studied for all

videos, except one of the videos corresponding to emotion fear, which lasted three

minutes. In Table 2.1 the total video length for each emotion, the time range eva-

luated and the resulting video length studied are specified. The selected time range

was defined by means of analyzing all recordings one by one and avoiding those

segments which contain noise or part of the signal was distorted. Regarding to the

analysis of the relax, only the first relax of each session was analyzed as a basal

condition during all the session.

Institutional Ethical Review Boards approved all experimental procedures involving

human beings, and subjects gave their written consent. The experiments were con-

ducted following the protocol approved by the Aragón Research Agency under con-

tract: #PM055, 2005.
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2.3. EMOTION DATABASE VALIDATION

Table 2.2: PANAS-X scale with the 60-item scale of different feelings and emotions.
PANAS-X SCALE

I1: Cheerful I21: Shaky I41: Lively
I2: Disgusted I22: Happy I42: Ashamed
I3: Attentive I23: Timid I43: At ease
I4: Bashful I24: Alone I44: Scared
I5: Sluggish I25: Alert I45: Drowsy
I6: Daring I26: Upset I46: Angry at self
I7: Surprised I27: Angry I47: Enthusiastic
I8: Strong I28: Bold I48: Downhearted
I9: Scornful I29: Blue I49: Sheepish
I10: Relaxed I30: Shy I50: Distressed
I11: Irritable I31: Active I51: Blameworthy
I12: Delighted I32: Guilty I52: Determined
I13: Inspired I33: Joyful I53: Frightened
I14: Fearless I34: Nervous I54: Astonished
I15: Disgusted with self I35: Lonely I55: Interested
I16: Sad I36: Sleepy I56: Loathing
I17: Calm I37: Excited I57: Confident
I18: Afraid I38: Hostile I58: Energetic
I19: Tired I39: Proud I59: Concentrating
I20: Amazed I40: Jittery I60: Dissatisfied with self

2.3 Emotion database validation

The emotion database has been validated by 16 subjects, different from the ones

participating in the database, using the Positive and Negative Affect Schedule -

Expanded Form (PANAS-X) [108]. To assess specific emotional states, a 60-item

scale of different feelings and emotions was used as shown in Table 2.2. Each

subject watched each video, and right after each display the person marked from

1 to 5 each item (I) with the appropriate answer indicating to what extent he or

she felt, being 1 = very slightly, 2 = a little, 3 = moderately, 4 = quite a bit and 5

extremely.

Based on the sum of subject responses of specific items of the PANAS-X scale,

the following affect scales can be computed: fear scale (S f ear) (Eq. 2.1), sadness

scale (Ssadness) (Eq. 2.2), guilt scale (Sguilt) (Eq. 2.3), hostility scale (Shostility) (Eq.

2.4), shyness scale (Sshyness) (Eq. 2.5), fatigue scale (S f atigue) (Eq. 2.6), surprise
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scale (Ssurprise) (Eq. 2.7), joviality scale (S joviality) (Eq. 2.8), self-assurance scale

(Ssel f−assurance) (Eq. 2.9), attentiveness scale (Sattentiveness) (Eq. 2.10) and serenity

scale (Sserenity) (Eq. 2.11).

S f ear = I18+ I44+ I53+ I34+ I40+ I21 (2.1)

Ssadness = I16+ I29+ I48+ I24+ I35 (2.2)

Sguilt = I32+ I42+ I51+ I46+ I15+ I60 (2.3)

Shostility = I37+ I38+ I11+ I9+ I2+ I56 (2.4)

Sshyness = I30+ I4+ I49+ I23 (2.5)

S f atigue = I36+ I19+ I5+ I45 (2.6)

Ssurprise = I20+ I7+ I54 (2.7)

S joviality = I22+ I33+ I12+ I1+ I37+ I47+ I41+ I58 (2.8)

Ssel f−assurance = I39+ I3+ I57+ I28+ I6+ I14 (2.9)

Sattentiveness = I25+ I3+ I59+ I52 (2.10)
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Sserenity = I17+ I10+ I43 (2.11)

Then, a Basic Negative Emotion (BNE) scale is defined as the average of Ssadness,

Sguilt , Shostility and S f ear (Eq. 2.12), and a Basic Positive Emotion (BPE) scale as

the average of S joviality, Ssel f−assurance and Sattentiveness (Eq. 2.13). In this work it is

studied the BPE, BNE, S joviality, S f ear, Ssadness and Shostility.

BNE = (Ssadness +Sguilt +Shostility +S f ear)/4 (2.12)

BPE = (S joviality +Ssel f−assurance +Sattentiveness)/3 (2.13)

Statistical analysis was done by T-test or Wilcoxon-test when necessary, depending

on normality test results to evaluate differences for all followed paired conditions:

relax vs. joy (R-J), relax vs. fear (R-F), relax vs. sadness (R-S), relax vs. anger

(R-A), joy vs. fear (J-F), joy vs. sadness (J-S), joy vs. anger (J-A), fear vs. sadness

(F-S), fear vs. anger (F-A) and sadness vs. anger (S-A).

The significant statistical level was p-value ≤ 0.05, that provides a reliable value

for statistical discrimination [86].

In Table 2.3, the mean and standard deviation (µ ±σ ) of the scales evaluated for

each emotion are shown. It could be observed that the highest mean value of BPE

scale corresponds to the emotion with positive valence (joy), while mean value of

BNE was higher for emotions with negative valence (fear, sadness and anger). In

addition, the affect scale with highest value in joy is S joviality and the highest value

in fear emotion is S f ear. However, there is not a single affect scale for sadness and

anger that defines each emotion, resulting in high values for the S f ear, Ssadness and

Shostility.

Table 2.4 displays the p-values obtained in the comparison of PANAS-X scales be-

tween different emotions. All affect scales showed statistically significant differen-
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Table 2.3: Mean and standard deviation (µ ±σ ) of the PANAS-X scales: Basic
Positive Emotion (BPE), Basic Negative Emotion (BNE), S joviality, S f ear, Ssadness
and Shostility.

Emotions
Scales Joy Fear Sadness Anger
BPE 13.1±4.8 8.1±1.7 7.4±1.5 7.8±2.2
BNE 6.5±0.8 12.2±3.9 14.3±4.4 12.8±3.8
S joviality 22.3±8.6 9.0±2.4 8.4±0.8 8.8±1.6
S f ear 6.4±1.1 19.0±6.6 14.8±5.3 13.8±5.9
Ssadness 5.2±0.6 8.7±4.6 14.8±5.5 11.7±4.5
Shostility 8.1±1.7 14.3±5.3 15.7±5.4 15.8±4.8

Table 2.4: p-values of the PANAS-X scales: Basic Positive Emotion (BPE), Basic
Negative Emotion (BNE), S joviality, S f ear, Ssadness and Shostility for the pair of emo-
tional conditions induced by videos: joy vs. fear (J-F), joy vs. sadness (J-S), joy
vs. anger (J-A), fear vs. sadness (F-S), fear vs. anger (F-A) and sadness vs. anger
(S-A).

Emotions analyzed
Scales J−F J−S J−A F−S F−A S−A
BPE p≤ 0.001 p≤ 0.001 p≤ 0.001 0.011 0.043 n.s.
BNE p≤ 0.001 p≤ 0.001 p≤ 0.001 0.005 n.s. 0.007
S joviality p≤ 0.001 p≤ 0.001 p≤ 0.001 n.s. n.s. n.s.
S f ear p≤ 0.001 p≤ 0.001 p≤ 0.001 p≤ 0.001 p≤ 0.001 n.s.
Ssadness p≤ 0.001 p≤ 0.001 p≤ 0.001 p≤ 0.001 0.002 p≤ 0.001
Shostility p≤ 0.001 p≤ 0.001 p≤ 0.001 n.s. n.s. n.s.

ces between positive valence and negative valence emotions (J-F, J-S, J-A). Affect

scales showing largest statistically significant differences between negative valence

emotions were: S f ear (F-S, F-A) and Ssadness (F-S, S-A).

According to the analysis of the affect scales derived from the PANAS-X scale,

shown in Table 2.3, it could be stated that: joy emotion presents the highest va-

lues for the BPE and S joviality; all negative emotions presented lower BPE and

higher BNE, as expected; fear emotion obtains the highest mean value for the affect

scale S f ear; however, sadness and anger emotions have a high mean value for S f ear,

Ssadness and Shostility.

As shown in Table 2.4, all PANAS-X affect scales were significantly different be-

tween joy and all negative valence emotions (fear, sadness, anger). Statistical diffe-

rences between negative valence emotions were only found in a subset of PANAS-X
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affect scales, which might challenge their discrimination using physiological signals

(Table 2.4).

Additionally, all subjects in this experiment reported an agreement between the

theoretical positive valence of joy elicitation and the emotion felt, and fear, sadness

and anger were identified as negative emotions. The duration of all videos is con-

sidered enough to induce an autonomic response, since those times are longer than

the reported delay response to individuals who were exposed to emotions, at least

when induced by musical stimulus [73].
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3.1 Introduction

Developing a tool which identifies human emotions may have a potential value in

several fields. First, in the clinical practice, it may have value to reduce the diag-

nostic time of a psycho-neural illness, and, subsequently, it could directly represent

a beneficial economic impact for the health system. Secondly, it can improve on the

human-machine interaction since it could provide knowledge regarding the affec-

tive state of a user, bringing the machine closer to the human by including emotional

content in the communication [22].

This work has been focused on emotion recognition by means of HRV analysis. In

previous studies, recognition of emotional states assessed by means of HRV spectral

analysis has been reported [14, 23, 28, 39, 67, 83, 84].

As mention before in chapter 1, HRV is influenced by respiration. Heart rate is in-

creased during inspiration and reduced during expiration, phenomenon described as

RSA. RSA has been used as an index of cardiac vagal or parasympathetic function,

usually measured by the HF component of the HRV [110], while the LF compo-

nent is affected by both sympathetic and parasympathetic activity. The necessity of

redefining the HF band to be centered on the respiratory frequency (FR) when FR

is above 0.40 Hz, has already been highlighted, as well as the misinterpretation of

spectral HRV indices when respiratory frequency lies within the LF band [5].

Several studies have already used respiratory information to define the HF band.

Most of them define the HF band centered at respiratory frequency and use a fixed

bandwidth. Only a few of them use variable HF bandwidth dependent on respi-

ration. In [8], respiratory frequency as well as its rate of variation were used to

estimate HF power based on a parametric decomposition of the instantaneous auto-

correlation function. In [96], an HF bandwidth dependent on respiration stability

was used to analyze HRV in critically ill patients. Recently, spectral coherence

between respiration and HRV has been used to define the HF band [27, 56].

Moreover, the relationship between respiration and HRV might be further exploited

to add relevant information regarding ANS regulation. Interactions between respi-
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ration and HRV have been continuously assessed using time-varying spectral co-

herence, partial coherence and phase differences during orthostatic test and under

selective autonomic blockade [74, 76]. Characterization of these interactions might

be crucial in applications where both respiration and HRV are altered, such as du-

ring stress [47].

In this work, it is proposed the joint analysis of HRV and respiration to improve

human emotion characterization. HF band is defined based on the maximum spec-

tral correlation between HRV and respiration. Both the center and bandwidth of HF

band depend on respiration. The maximum spectral correlation itself is proposed

as an index to identify emotions. The hypothesis is that this index, characterizing

the relationship between respiration and HRV, can add relevant information to HRV

analysis to describe human emotions.

First, a simulation study is designed to evaluate the ability of the proposed HF band

to quantify RSA. The performance of the proposed HF band is compared to other

commonly used HF band definitions. Then, the ability of the proposed indices to

characterize human emotions will be tested on a database of video-induced emo-

tions.

3.2 Methods and materials

3.2.1 Signal preprocessing

Beat occurrence times were detected from the recorded ECG using a wavelet-based

detector [63]. Instantaneous heart rate (dHR(t)) was estimated from the beat oc-

currence times based on the integral pulse frequency modulation (IPFM) model,

which takes into account the presence of ectopic beats [64]. A time-varying mean

heart rate (dHRM(t)) was computed by low pass filtering (cut-off frequency 0.03 Hz)

dHR(t), and then the HRV was obtained as dHRV (t) = dHR(t)− dHRM(t). The mo-

dulating signal, m(t), which is assumed to carry the ANS information according to

the IPFM model [6], was estimated as m(t) = (dHR(t)−dHRM(t))/dHRM [6], being
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Chapter 3. Linear Analysis Methodology

dHRM the mean of dHRM(t). The m(t) was resampled at 4 Hz.

The respiratory signal, r(t), was filtered by a band pass filter from 0.04 Hz to 0.80

Hz, which is assumed to cover the physiological frequency range for m(t) and r(t),

and undersampled at 4 Hz.

Spectral HRV indices were estimated from the power spectrum density (PSD) of

m(t) (Sm( f )), computed by means of the Welch Periodogram. Then, the power

content in the HF band (PHF ) and in the LF band (PLF ), the normalized power in the

LF band (i.e. PLFn = PLF /(PLF+PHF )) and the ratio R = PLF /PHF were computed.

The limits of the bands are defined in Section 3.2.2 Frequency band definition. The

respiratory frequency FR was estimated from the location of the largest peak in the

PSD obtained from r(t) (Sr( f )).

ρab
(Sm,Sr) =

∫ b
a
(
Sm( f )−Sm( f )

)(
Sr( f )−Sr( f )

)
d f√∫ b

a
(
Sm( f )−Sm( f )

)2 d f
∫ b

a
(
Sr( f )−Sr( f )

)2d f
(3.1)

3.2.2 Frequency band definition

Shifted and resized HF band based on Spectrum Correlation (SCHF)

The HF band is redefined based on the correlation between Sm( f ) and Sr( f ) as

given in Eq. (3.1), where a and b are the lower and upper limits of the analyzed

frequency range. The maximum value of ρab
(Sm,Sr) is searched, following the steps

detailed below:

• Step 1: the spectral correlation of Sm( f ) and Sr( f ), ρab
(Sm,Sr), is computed

within a bandwidth of 0.02 Hz centered at FR.

• Step 2: the integration frequency range [a, b] is symmetrically expanded 0.02

Hz and ρab
(Sm,Sr) is recomputed. This step is repeated until the physiological

range from 0.1 Hz to dHRM/2 is covered, with the following restrictions: (1)

the lower limit a must be above 0.10 Hz, (2) the upper limit b must be below

half the mean heart rate (dHRM/2) and (3) Sr(b) must be above 5% of the
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maximum value of Sr( f ) to avoid including in the correlation estimation fre-

quencies with no respiratory power. In these cases, the restricted limit (lower

or upper) is kept fixed and the other limit is increased in 0.01 Hz. The re-

sulting integration frequency ranges are no longer symmetric with respect to

FR.

• Step 3: the maximum value of ρab
(Sm,Sr), denoted by ρmax = ρ

amaxbmax
(Sm,Sr) , determi-

nes the lower and upper limits [amax, bmax] of the redefined HF band (HFSC).

Only those recordings showing ρmax ≥ 0.5 were considered for further analysis,

being this value selected empirically as a trade-off between subject number inclu-

sion and correlation strength. Fig. 3.1 shows a diagram of the SCHF method.

Standard LF band was considered in the range of [0.04, 0.15] Hz, except when the

HF band encroached the LF band. In these cases, the upper limit of the LF band

was reduced to the lower limit of the HF band, i.e., LF band was ∈ [0.04, amax] Hz.

Classic HF band

The classic HF band described in Task Force [93] was analyzed, i.e. [0.15, 0.40]

Hz.

Shifted HF band centered at FR with fixed bandwidth

As defined in previous studies [5, 99], the HF band was centered at FR and had a

fixed bandwidth of 0.11 Hz (HFFR).

In approaches to HFSC and HFFR , which take into account respiratory information,

those recordings with FR < 0.1 Hz are excluded from the analysis due to the over-

lapping between the LF and HF bands.

3.2.3 Simulation study

A simulation study was carried out to validate the proposed HFSC definition.
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Figure 3.1: Diagram of the SCHF methodology: PSD of m(t) (Sm( f )) and PSD of
r(t) (Sr( f )). The correlation between Sm( f ) and Sr( f ) was calculated by expanding
symmetrically the [a, b] range in steps of 0.02 Hz per iteration. The maximum value
of the correlation between Sm( f ) and Sr( f ) (ρmax) determines the lower and upper
limits [amax, bmax] of the redefined HF band (HFSC).

Synthetic modulating signals (ms(t)) were generated as the sum of a HF and a LF

component, following the steps detailed below:

• Step 1: the HF component was obtained by filtering a respiration signal r(t)

from the emotion database from 0.25 Hz to dHRM/2. This HF component is

denoted by mHFi(t), i = 1, ..., I, where I is the number of cases with FR > 0.35

Hz since those are the most challenging for the classic HF band. A total of I

= 59 cases were identified.

• Step 2: the LF component was simulated based on a time-varying autore-

gressive moving average (ARMA) model [75]. The frequency for the ARMA

model was obtained as the maximum of the original modulating signal spec-

trum Sm( f ), associated with the i-th subject, in the band from 0.04 Hz to

0.15 Hz and the amplitude was fixed to 0.1. A total of 50 realizations of the

LF component were generated for each considered subject, yielding mLFi
k(t)

with k = 1, ..., 50.
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• Step 3: the simulated modulating signals were constructed as msi
k(t)=mLFi

k(t)+

αmHFi(t), where the α parameter allows to simulate a set of sympathovagal

ratios, R. The following R were considered: 0.5, 1, 2, 5, 10, 15, 20 and 30, as

shown in Fig. 3.2. This range allows to cover the physiological R values com-

puted during pure parasympathetic stimulation, median (interquartile range)

of 1.53(0.83|2.11) and pure sympathetic stimulation 19.52(11.80|27.75) in a

database of healthy subjects during pharmacological blockade and body po-

sition changes [13].

• Step 4: finally, each modulating signal msi
k(t) fed an IPFM model with time-

varying threshold which generates the beat occurrence time series [6]. The

time-varying threshold is defined as 1/dHRMi(t). From the simulated beat

occurrence time series, a simulated instantaneous heart rate was obtained

dHRsi
k(t). The same processing described in Section 3.2.1 Signal prepro-

cessing for real signals was applied to simulated dHRsi
k(t). A diagram of the

whole process is shown in Fig. 3.3.
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Figure 3.2: PSD of the modulating signal simulated dHRsi
k(t) for the physiological

sympathovagal ratios: 0.5, 1, 2, 5, 10, 15, 20 and 30.

3.2.4 Performance measurement

The mean relative error (MRE) of HF power was calculated for each ratio Eq. (3.2).

MRE(%) = mean
(

PHFi
k−PHFri

PHFri

)
100 (3.2)
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Figure 3.3: Schema of the simulation process for a single recording detailed in the
following steps: (1) the HF component of the synthetic m(t) signals was obtained
by filtering the r(t) of the emotion database from 0.25 Hz to the dHRM/2, resul-
ting in mHFi(t), (2) the LF component was simulated by an ARMA model with a
fixed amplitude of 0.1 and a frequency calculated by the maximum of the original
Sm( f ), associated with the i-th subject, resulting in mLFi

k(t), (3) the simulated mo-
dulating signals msi

k(t) were constructed as the sum of the LF and HF components,
where i is the number of the subject analyzed and k the number of the realiza-
tion performed and (4) each modulating signal msi

k(t) fed an IPFM model with
time-varying threshold (1/dHRMi(t)) which generates the beat occurrence times,
and from them the HRV signal dHRsi

k(t) is derived.

Where PHFi
k was the spectral content in the HF band, calculated as explained in Sec-

tion 3.2.2 Frequency band definition, from the simulated dHRsi
k(t) signal (Fig. 3.3)
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for each simulation and the PHFri was the reference spectral content∈ [0.25,dHRM/2]

Hz derived from dHRsi
k(t) signal.

The proposed SCHF methodology was compared with the other HF band defini-

tions. Therefore, PHFi
k and PHFri for the MRE calculation were computed according

to the bandwidth definitions detailed in Section 3.2.2 Frequency band definition: (1)

HFSC, (2) HF and (3) HFFR .

3.2.5 Statistical analysis

Prior to the statistical analysis, normality distribution of all indices was evaluated

by Lillie test.

Statistical analysis was done by T-test or Wilcoxon-test when necessary, depending

on normality test results to evaluate differences for all followed paired conditions:

relax vs. joy (R-J), relax vs. fear (R-F), relax vs. sadness (R-S), relax vs. anger

(R-A), joy vs. fear (J-F), joy vs. sadness (J-S), joy vs. anger (J-A), fear vs. sadness

(F-S), fear vs. anger (F-A) and sadness vs. anger (S-A).

The following HRV indices have been analyzed:

• Indices derived from the HFSC band: PHFSC , PLFnSC , RSC, ∆HF=bmax-amax,

amax and bmax and the novel index proposed in this work ρmax. The respirat-

ory frequency of the recordings which accomplishes all the restrictions im-

posed in Section 3.2.2 Frequency band definition, denoted by FRSC was also

considered.

• Indices derived from the classic HF band: PHF , PLFn and R. The respiratory

frequency, FR, of all recordings was also studied.

• Indices derived from the HFFR band: PHFFR
, PLFnFR

and RFR . The respiratory

frequency of the recordings which accomplishes the unique restriction of FR

≥ 0.10 Hz, denoted by FRFR
was also considered.

The significant statistical level was p-value ≤ 0.05, that provides a reliable value

for statistical discrimination [86]. To analyze the capability of the indices to discri-
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minate emotions, the area under the receiver operating characteristic curve (AUC)

was calculated and only those indices with AUC ≥ 0.70 were further considered.

Finally, sensitivity, specificity and accuracy for each index in 2-class emotion cla-

ssification were calculated using the leaving-one-out cross validation method [71].

3.3 Results

3.3.1 Evaluation of the methods for synthetic data

Fig. 3.4 presents the mean and standard deviation (µ ±σ ) of the relative errors in

PHF estimation obtained from HFSC, HF and HFFR for several physiological sym-

pathovagal ratios, R i.e. 0.5, 1, 2, 5, 10, 15, 20 and 30. The standard HF bandwidth

presents relative error values strongly dependent on the ratio, while the HFFR and

the HFSC bandwidth presents lower relative error values regardless of the ratio va-

lues. Furthermore, the HFSC bandwidth presents lower relative errors than the HFFR

one.
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Figure 3.4: Mean and standard deviation (µ±σ ) of the mean relative errors (MRE)
obtained by Eq. (3.2) for HFSC, HF and HFFR bands for eight physiological sym-
pathovagal ratios studied: 0.5, 1, 2, 5, 10, 15, 20 and 30.
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3.3.2 Evaluation of the methods for real data

All indices derived from the HFSC, HF and HFFR bands have been evaluated and

compared between each pair of emotions. In Table 3.1, the results obtained by the

studied indices in terms of median and interquartile ranges as first (Q1) and third

(Q3) quartile, median (Q1|Q3), for all emotional conditions (i.e. relax, joy, fear,

sadness and anger) are shown. And Table 3.2 displays the p-values obtained from

the statistical analysis and AUC values for the comparison of all pair of emotions.

Table 3.1: Median (Q1|Q3) values of the parameters studied for relax, joy, fear,
sadness and anger.

Relax Joy Fear Sadness Anger
PHF (10−4) (adim.) 3.60(1.52|8.01) 3.30(1.54|6.62) 3.62(1.67|5.91) 2.56(1.61|5.49) 2.76(1.34|4.60)
PLFn (%) 73.93(56.44|83.34) 81.74(75.52|88.30) 70.21(56.89|80.85) 75.86(62.19|80.81) 78.61(69.13|83.75)
R (adim.) 2.84(1.30|5.00) 4.48(3.09|7.55) 2.37(1.32|4.22) 3.14(1.64|4.21) 3.67(2.24|5.16)
dHRM (bpm) 0.61(0.57|0.69) 0.63(0.57|0.69) 0.64(0.58|0.69) 0.64(0.58|0.72) 0.64(0.60|0.69)
FR (Hz) 0.29(0.24|0.35) 0.18(0.08|0.33) 0.31(0.27|0.35) 0.31(0.28|0.36) 0.30(0.25|0.35)
PHFFR

(10−4) (adim.) 1.93(0.73|4.95) 2.50(0.44|9.68) 1.91(0.86|4.08) 1.44(0.88|2.54) 1.58(0.78|2.71)
PLFnFR

(%) 78.94(61.49|90.24) 83.42(68.42|93.55) 73.64(61.92|89.24) 82.57(63.97|90.51) 85.96(76.35|91.01)
RFR (adim.) 3.75(1.60|9.27) 5.03(2.19|14.50) 2.79(1.63|8.29) 4.75(1.80|9.61) 6.12(3.23|10.12)
FRFR

(Hz) 0.30(0.27|0.35) 0.32(0.15|0.35) 0.32(0.28|0.35) 0.32(0.28|0.36) 0.31(0.27|0.35)

PHFSC (10−4) (adim.) 2.42(0.95|6.21) 2.25(0.46|4.21) 2.61(0.97|4.36) 1.65(0.11|2.95) 1.86(0.94|2.64)
PLFnSC (%) 76.32(58.39|86.03) 82.45(77.40|90.69) 71.70(59.39|88.58) 80.60(61.57|88.10) 84.29(73.72|90.41)
RSC (adim.) 3.22(1.40|6.16) 4.70(3.60|13.46) 2.53(1.46|7.76) 4.17(1.62|7.41) 5.37(2.81|9.43)
∆HF (Hz) 0.16(0.12|0.20) 0.18(0.14|0.23) 0.14(0.12|0.18) 0.16(0.12|0.18) 0.14(0.12|0.18)
amax (Hz) 0.21(0.18|0.27) 0.25(0.22|0.27) 0.24(0.20|0.26) 0.24(0.20|0.27) 0.24(0.21|0.27)
bmax (Hz) 0.40(0.35|0.42) 0.41(0.39|0.51) 0.40(0.36|0.44) 0.40(0.36|0.45) 0.40(0.36|0.43)
ρmax (adim.) 0.95(0.88|0.98) 0.89(0.76|0.92) 0.93(0.89|0.97) 0.96(0.90|0.98) 0.93(0.89|0.98)
FRSC (Hz) 0.30(0.27|0.35) 0.33(0.31|0.38) 0.32(0.29|0.35) 0.32(0.28|0.36) 0.32(0.29|0.36)

Only those parameters that revealed statistical differences to discriminate between

pairs of emotions are shown in Fig. 3.5 by means of boxplots in terms of median

and interquartile ranges as first (Q1) and third (Q3) quartile, median (Q1|Q3) of:

(a) PLFnSC , (b) PLFn, (c) PLFnFR
, (d) RSC, (e) R, (f) RFR and (g) ρmax for the emotions

studied.

The spectral indices PLFn and R revealed statistically significant differences between

R-J, J-F and J-S. However, PLFnFR
, PLFnSC , RFR and RSC only show statistically sig-

nificant differences between R-J and J-F. Additionally, the novel ρmax provided sta-

tistically significant differences between R-J, J-F, J-S, J-A and F-S. Since ρmax ob-

tained AUC ≥ 0.8, its discrimination capability was further analyzed, calculating

sensitivity, specificity and accuracy using cross validation (Table 3.3).

Therefore, among all the emotions compared, neutral state vs. positive valence,
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Table 3.2: p-values and AUC indices of the parameters studied for the emotional
conditions: relax vs. joy (R-J), relax vs. fear (R-F), relax vs. sadness (R-S), relax
vs. anger (R-A), joy vs. fear (J-F), joy vs. sadness (J-S), joy vs. anger (J-A), fear
vs. sadness (F-S), fear vs. anger (F-A) and sadness vs. anger (S-A).

R-J R-F R-S R-A J-F J-S J-A F-S F-A S-A
Number of comparisons 35 43 30 34 34 21 26 25 31 22

PHF
p-value n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
AUC index 0.52 0.48 0.52 0.52 0.49 0.56 0.51 0.50 0.56 0.55

PLFn
p-value ≤0.001 n.s. n.s. n.s. ≤0.001 ≤0.01 ≤0.05 n.s. ≤0.05 n.s.
AUC index 0.70 0.50 0.48 0.53 0.72 0.76 0.59 0.57 0.62 0.54

R
p-value ≤0.01 n.s. n.s. n.s. ≤0.001 ≤0.01 ≤0.05 n.s. ≤0.05 n.s.
AUC index 0.70 0.50 0.52 0.53 0.72 0.76 0.59 0.57 0.62 0.54

dHRM
p-value ≤0.05 ≤0.01 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
AUC index 0.55 0.56 0.54 0.51 0.50 0.46 0.51 0.53 0.52 0.51

FR
p-value ≤0.05 ≤0.05 n.s. ≤0.05 ≤0.01 ≤0.05 n.s. n.s. n.s. n.s.
AUC index 0.65 0.58 0.56 0.54 0.68 0.67 0.60 0.51 0.58 0.55

Number of comparisons 17 38 26 28 17 12 16 21 25 19

PHFFR

p-value ≤0.05 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
AUC index 0.61 0.48 0.52 0.52 0.58 0.38 0.43 0.45 0.47 0.52

PLFnFR

p-value ≤0.01 n.s. n.s. n.s. ≤0.01 ≤0.05 ≤0.05 n.s. n.s. n.s.
AUC index 0.72 0.50 0.53 0.58 0.75 0.67 0.60 0.54 0.57 0.56

RFR

p-value ≤0.01 n.s. n.s. n.s. ≤0.01 ≤0.05 ≤0.05 n.s. n.s. n.s.
AUC index 0.72 0.50 0.47 0.58 0.75 0.67 0.60 0.54 0.57 0.56

FRFR

p-value ≤0.05 ≤0.05 n.s. ≤0.05 n.s n.s n.s n.s n.s n.s
AUC index 0.63 0.58 0.54 0.55 0.51 0.62 0.60 0.52 0.54 0.49

Number of comparisons 12 33 22 26 12 9 11 17 21 17

PHFSC

p-value ≤0.05 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
AUC index 0.59 0.49 0.53 0.54 0.62 0.48 0.60 0.5 0.54 0.50

PLFnSC

p-value ≤0.05 n.s. n.s. n.s. ≤0.01 n.s. n.s. n.s. n.s. n.s.
AUC index 0.72 0.49 0.53 0.59 0.76 0.63 0.49 0.56 0.61 0.56

RSC
p-value ≤0.05 n.s. n.s. n.s. ≤0.01 n.s. n.s. n.s. n.s. n.s.
AUC index 0.72 0.51 0.47 0.59 0.76 0.63 0.49 0.44 0.61 0.56

∆HF
p-value n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
AUC index 0.62 0.62 0.57 0.54 0.62 0.67 0.69 0.5 0.52 0.53

amax
p-value n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.
AUC index 0.57 0.55 0.56 0.58 0.55 0.49 0.53 0.55 0.50 0.51

bmax
p-value n.s. n.s. n.s. n.s. ≤0.05 n.s. n.s n.s. n.s. n.s.
AUC index 0.65 0.52 0.51 0.52 0.63 0.62 0.64 0.49 0.50 0.50

ρmax
p-value ≤0.01 n.s. n.s. n.s. ≤0.05 ≤0.05 ≤0.01 ≤0.05 n.s. n.s.
AUC index 0.90 0.54 0.63 0.55 0.77 0.84 0.82 0.70 0.47 0.55

FRSC

p-value n.s. n.s. n.s. ≤0.05 n.s. n.s. n.s. n.s. n.s. n.s.
AUC index 0.65 0.54 0.53 0.56 0.55 0.59 0.62 0.51 0.54 0.49

n.s. Stands for non-significant.
Note that parameters with p ≤ 0.05, AUC index ≥ 0.70, sensitivity, specificity, accuracy values ≥ 70% are remarked are remarked in bold type.

Table 3.3: Sensitivity, specificity and accuracy calculated using cross validation for
the parameter ρmax with AUC ≥ 0.8: relax vs. joy (R-J), joy vs. sadness (J-S) and
joy vs. anger (J-A).

R-J J-S J-A
Sensitivity (%) 66.7 88.9 99.9
Specificity (%) 91.7 66.7 63.6
Accuracy (%) 79.2 77.8 77.3
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Figure 3.5: Boxplots of the median (Q1|Q3) values of only those parameters which
present statistical differences between the emotional conditions induced by videos:
(a) PLFnSC , (b) PLFn, (c) PLFnFR

, (d) RSC, (e) R, (f) RFR and (g) ρmax. The nomen-
clature used for each pair of emotions is: relax vs. joy (R-J), joy vs. fear (J-F),
joy vs. sadness (J-S), joy vs. anger (J-A) and fear vs. sadness (F-S). The statistical
differences between the pair of emotions are indicated by ∗ for p-value ≤ 0.05, ∗∗
for p-value≤ 0.01, ∗∗∗ for p-value≤ 0.001 and † for AUC≥ 0.80. It can be noted
that those indices which are not marked by a † have an AUC≥ 0.70. Together to the
label of the pair of studied emotions in parentheses, it is the number of comparisons.

positive valence vs. all negative valences and F-S were significantly different. No

statistically significant differences were found in the comparison between neutral

state vs. negative valences and anger vs. negative valences.

Fig. 3.6 displays two examples where the SCHF method is especially useful:

(a) The FR is below 0.15 Hz and therefore the HFSC band encroaches the classic LF

41



Chapter 3. Linear Analysis Methodology

band. In this particular case the HFSC band limits are: amax = 0.10 Hz and bmax

= 0.29 Hz. The LFSC band is redefined from 0.04 Hz to 0.10 Hz.

(b) FR is 0.40 Hz and the HFSC upper band limit should be shifted to the right to

consider all the RSA information. In this particular case, the HFSC band limits

are: amax = 0.34 Hz and bmax = 0.46 Hz.
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Figure 3.6: Correlation between Sm( f ) and Sr( f ) in two particular cases: (a) FR is
below 0.15 Hz and (b) FR is 0.40 Hz.

3.4 Discussion

According to the simulation results, the SCHF method presented the lowest rela-

tive error values for HF content estimation independently of the considered low-to-

high frequency ratio, R, values (Fig. 3.4). In this way, the choice of adaptive HF

frequency limits may avoid physiological misinterpretations of HF power content,

because frequency limits depend strongly on age and physiological conditions [42].

The statistical analysis presented in Table 3.2 and in Fig. 3.5 revealed statistically

significant differences between: (1) neutral state vs. positive valence by means of

PLFn, R, PLFnFR
, RFR , PLFnSC , RSC and ρmax, (2) joy vs. fear by means of PLFn, R,

PLFnFR
, RFR , PLFnSC , RSC and ρmax, (3) joy vs. sadness by means of PLFn, R and ρmax,

(4) joy vs. anger by means of ρmax and (5) fear vs. sadness by means of ρmax.

The SCHF methodology proposed in this study differentiated R-J, J-F, J-S, J-A and

F-S by means of ρmax. No statistically significant differences were found for neutral

state vs. negative valences and anger vs. negative valences.
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Classic frequency indices PLFn and R were able to discriminate between R-J, J-F and

J-S. It can be noted that emotions J-A and F-S were only distinguished by parameter

ρmax derived from the new method SCHF, which offered additional statistically sig-

nificant information based on the relationship between HRV and respiration.

Regarding respiratory information, neither FR, nor FRFR
, nor FRSC showed statisti-

cally significant differences between all pairs of emotions studied. Hernando et

al. [47] did not found significant differences in respiratory frequency between relax

and stress. The FR index, computed from all recordings, showed a median value

around 0.30 Hz and with a first quartile above 0.15 Hz for relax, fear, sadness and

anger. Therefore, in all these cases, the redefined HF band HFSC does not encroach

the classic LF band. However, in the case of joy, FR presented the lowest median

value of 0.18 Hz with a first quartile of 0.08 Hz. For this reason and during joy

elicitation, the HFSC could encroach the classic LF band. Therefore, this highlights

the need to redefine the HF band, especially in joy condition.

For this reason, all cases presenting a FR inside the classic LF band, a redefinition

of the HF classic band could improve the measurement of the HF band, as shown in

Fig. 3.6 (a). A similar situation occurs in Fig. 3.6 (b) when FR is near to or above the

classic upper limit of the HF band (0.40 Hz), where the classic range [0.15, 0.40] Hz

could miss the RSA information. With a redefinition of the HF band in these cases,

a more refined description of the physiological information could be extracted from

the signals. However, only recordings which accomplished the restrictions of the

SCHF method could be analyzed. This implies to discard an amount of signals

from the analysis, and subsequently the number of analyzed subjects in each case

is reduced. It can be noted that the percentage of subjects excluded is different for

each of the comparisons, with a minimum of 22.7% for the comparison S-A and a

maximum of 65.7% for the comparison R-J.

Classic ∆HF [0.15, 0.40] Hz has a bandwidth of 0.25 Hz. Analyzing the results ob-

tained by the SCHF method, the ∆HF presented a median bandwidth value of 0.16

Hz for relax, 0.18 Hz for joy, 0.14 Hz for fear and anger and 0.16 Hz for sadness.

The lower and upper limit of the HFSC, i.e., amax and bmax, showed similar values
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within the different emotions, although both are subject dependent. The SCHF re-

veals a slight improvement in the reliability of sympathovagal balance estimation

capable of discriminating neutral (relax) vs. positive (joy) valence, positive vs.

negative (fear, sadness and anger) valences and negative (fear) vs. negative (sad-

ness) valence. In accordance with our results, Goren Y. et al. [42] concluded the

importance of redefining the boundary of the HF band for a correct evaluation of

physiological changes of the ANS.

PHFSC was found higher for fear and relax than for joy, sadness and anger. These

results are different from the ones in previous studies [73] where PHF values were

higher during listening to unpleasant than pleasant music. This difference may

be due to the different stimuli utilized in [67] and [73] where music was used as

opposed to videos as in the present study.

Mikuckas A. et al. [67] found that PLF and LF/HF ratio increased during exciting

and sedative music, but decreased during silence. Moreover, Rantanen A. et al. [84]

evidenced that negative valence elicitation, induced by unpleasant pictures, pro-

duced a higher LF/HF ratio than neutral and pleasant pictures in a female cohort.

Valenza G. et al. [104] investigated the synchronization between breathing patterns

and heart rate during emotional visual elicitation by means of a set of neutral vs.

increasing level of arousal images. In that study, it was found that the LF/HF ratio

presented statistically significant differences between neutral and arousal sessions

with higher LF/HF ratio values while arousal sessions, in which sympathetic activity

should be dominant. In this study, an increase in the PLFnSC and RSC indices during

joy (Fig. 3.5 (a-f)) was observed. Thus, joy could be associated with a sympathe-

tic predominance. Additionally, PLFnSC and RSC presented statistically significant

differences discriminating neutral sessions vs. positive valence and J-F.

Besides the aforementioned elicitation types and emotions, population characteris-

tics such as age could influence the results [42]. Thus, interpretation of the results

should be addressed within this framework.
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4.1 Introduction

Interest in emotion recognition has burgeoned in recent years aiming to provide a

useful tool in the field of emotion regulation. In that sense, a subject’s emotional

response is mediated by individual influences depending on which emotions the

subject has and how he/she experiences and expresses them [44]. Many clinical

features of depression, stress, anxiety and mood disorders may be construed as

maladaptive attempts to regulate unwanted emotions [17]. A system for emotion

recognition could help people to manage their own emotions, providing a tool to

record their feelings and consequently, focusing their attention on modulating their

emotional responses.

A complex mixture of cognitive, affective, behavioral, and physiological factors

contributes to individual differences in health and disease. All these factors produce

wide variation in outcomes of HRV, blood pressure and autonomic balance which

have important implications for both physical and mental health [94].

As before mentioned, HRV analysis based on linear methods (such spectral ana-

lysis) is a usual strategy for ANS analysis, although non-linear HRV analysis has

also been demonstrated as a useful complementary tool [49]. Traditional time and

frequency domain measures of HRV assess the amplitude of variations between

subsequent intervals and the amplitude distributions in the power spectra, respec-

tively. However, none of them provide information about the complex commu-

nication involved in the control of the cardiovascular system that generates the

HRV [77]. Non-linear techniques such as the Dominant Lyapunov Exponents, the

Detrended Fluctuation Analysis, the Approximate Entropy, the Sample Entropy,

the Fuzzy Measure Entropy, the Cross Sample Entropy, the Cross Fuzzy Measure

Entropy, the Permutation Entropy, Permutation Min-Entropy, the Pointwise Correl-

ation Dimension, the Lagged Poincaré Plot or the Quadratic Coupling have been

used to detect emotional stimuli and all of them have shown better results than

linear techniques [12, 30, 43, 101–105, 109, 111]. Some of these techniques have

also been used to study non-linear relationships between HRV and respiration sig-
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nals [55, 103–105, 111]. Table 4.1 reports a summary of different non-linear tech-

niques applied to RR series during diverse emotional states.

Table 4.1: Bibliographic summary of non-linear techniques applied to HRV series
in different emotional states.

Ref. Technique Emotional state Results
[101] DLEs Neutral and arousal Mean ApEn decrease and DLEs

ApEn elicitation became negative during
arousal elicitation.

[12] AMIF Depression Increased total area under the
AMIF curve are associated
with major depression.

[111] SEn Depression Increased CSEn and CFMEn are
FMEn associated with depression severity.
CSEn
CFMEn

[109] PE Neutral, happiness, Increased PE and PME during
PME fear, sadness, happiness, sadness, anger, and disgust.

anger, and disgust PME is more sensitive than PE for
discriminating non-neutral from neutral
emotional states.

[30] DLEs Anxiety Decreased DLEs, ApEn, SEn, PD2 and
ApEn increased α1 during anxiety state.
SEn
PD2
DFA

[43] LPP Peacefulness, Maximum changes in LLP measures
happiness, fear, during happiness, and minimum
sadness changes during fear.

The nomenclature used is:
Dominant Lyapunov Exponents (DLEs), Approximate Entropy (ApEn), Sample Entropy (SEn),
Fuzzy Measure Entropy (FMEn), Cross Sample Entropy (CSEn), Cross Fuzzy Measure Entropy (CFMEn),
Permutation Entropy (PE), Permutation Min-Entropy (PME), Pointwise Correlation Dimension (PD2),
Detrended Fluctuation Analysis (DFA), Lagged Poincaré Plot (LLP).

This complementary information can be assessed by non-linear methods such as

the AMIF and the CMIF, which have been demonstrated to be independent of sig-

nal amplitudes and able to describe the predictability and regularity of the sig-

nals [48, 49]. Both functions, the AMIF and the CMIF, have been proposed as

predictors of cardiac mortality [49]. The AMIF has been studied as an indicator

of the increased cardiac mortality in depressed patients [12] and in multiple organ

dysfunction syndrome patients [48], and the CMIF has been applied to electroen-

cephalographic signals for stress assessment [1].

In the present work, both the non-linear techniques, the AMIF and the CMIF are
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proposed for human emotion recognition. The AMIF technique is applied to HRV

signals to study complex communication within the ANS, while the CMIF tech-

nique is considered to quantify the complex coupling between HRV and respiratory

signals. Both algorithms are, in this work, adapted to short-term time series modify-

ing the number of histogram bins involved in the methodology. Traditional RR band

filtering is considered (i.e. LF and HF band), and also a redefined HF band, HFSC,

centered at the FR and whose width is determined based on the SCHF method, are

investigated [100]. The aim of including the HFSC band is the analysis of RSA

influences on HRV, mainly when FR is above 0.40 Hz or FR lies within the LF

band [5, 100]. The ability of the parameters derived from the AMIF and the CMIF

to discriminate elicited states is evaluated on a database of video-induced emotion

elicitation, described in [100].

In [100], the discrimination between different emotional states was addressed using

frequency domain HRV indices (linear features). However, it was not possible to

discriminate between relax and all negative valences, as well as between fear and

anger, and sadness and anger. Here, we aim to study the discrimination capabi-

lity of the non-linear AMIF and CMIF techniques of emotions complementing the

linear-feature information. We propose the use of these non-linear techniques for

human emotion recognition hypothesizing that ANS response to different emotions

will impinge differential regularity patterns in HRV and will change the complex

interaction between respiration and heart rate variability.

4.2 Methods and materials

4.2.1 Signal preprocessing

The RR interval was defined as the time between two consecutive R wave peaks,

detected from the ECG lead with the best signal-to-noise ratio using a wavelet-

based detector [63]. The presence of ectopic beats and misdetections was detected

and corrected [64]. Evenly sampled RR time series, RR(t), were obtained by linear
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interpolation at 4 Hz.

Then, the RR(t) was filtered in: (1) the LF band of [0.04, 0.15] Hz (RRLF (t)), (2)

the HF band of [0.15, 0.40] Hz (RRHF (t)) and (3) the HFSC band [100] based on

the SCHF method, (RRSC(t)). In the SCHF method, the HF band was redefined

to be centered at the FR and its limits were calculated by means of the cross-

correlation function between the power spectrum of HRV and respiration, being

subject-dependent. The maximum value of correlation determined the lower (amax)

and upper limit (bmax) of the HFSC band.

The respiratory signal (r(t)) was filtered by a band pass filter from 0.04 Hz to 0.8

Hz, and downsampled at 4 Hz.

Then, a transformation of all time series was carried out by ranking data in order to

have the best statistics in the entropy estimation and robustness against noise [81].

4.2.2 Auto-Mutual Information Function

The AMIF is a non-linear equivalent of the auto-correlation function, based on the

Shannon entropy. The Shannon entropy of a time series x(t) is calculated by the

discrete probability distribution p(xi(t)) of x(t) leading Hx(t) as shown in Eq. 4.1

[49].

Hx(t) =−
I

∑
i=1

p(xi(t))log2 p(xi(t)) (4.1)

where I is the number of bins needed for estimating the amplitude histogram of x(t),

an approximation to the probability distribution function of the signal.

Then, the AMIF of x(t) is given by Hx(t), by Hx(t+τ), obtained by shifting x(t) a time

lag τ as x(t+τ), and their bivariate probability distribution leading to Hx(t)x(t+τ) as

shown in Eq. 4.2 [49].
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AMIFxx(τ) = Hx(t)+Hx(t+τ)−Hx(t)x(t+τ) (4.2)

Therefore, this function describes the amount of common information between the

original time series x(t) and the time shifted time series x(t+τ). In the case of statis-

tically independent time series, the AMIFxx is zero, otherwise positive. The AMIF

is normalized to its maximum amplitude (in τ = 0) representing the entire informa-

tion of a time series. The decay of this function over a time lag τ represents the loss

of information with respect to this prediction time, and in the case of non-linear

HRV analysis, it is assumed to quantify the complexity of autonomic communica-

tion [48]. In the case of a random and unpredictable time series, the AMIF decays

to 0 for all prediction times τ apart from τ = 0. On the contrary, in the case of a

predictable time series the AMIF remains at 1 for all τ [77].

4.2.3 AMIF-based measures

In order to describe HRV complexity during emotion elicitation, the evolution of the

information function over the time scale τ should be taken into consideration. The

AMIF (Fig. 4.1) applied to the RR(t) time series was characterized by the following

parameters: BD is the beat decay that corresponds with the AMIF decay from τ = 0

s to τB = 0.6 s, which represents a standard mean beat period [77]. Also, ATRR is the

total area under the curve that has been proposed to characterize the morphology,

predictability and regularity of the signal [12].

The AMIF applied to the filtered time series RRLF (t), RRHF (t) and RRSC(t) was

characterized by the following parameters: PDδ is the peak decay that shows the

information decay at the maximum peak defined in the interval [τa, τb]; PDmδ
is the

mean peak decay within a time range [τa, τb] that indicates the mean information

decrease between two time lags τa and τb; and ATδ
is the total area under the curve

in the same time range [τa, τb], where δ = {LF , HF , SC}.
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Figure 4.1: The normalized Auto-Mutual Information Function (AMIF) as function
of the time scale τ . The AMIF value at τ = 0 represents the entire information of a
time series. Beat decay (BD) indicates the AMIF decay over a standard heart beat
period (τB). Mean peak decay (PDm) indicates the mean information decrease be-
tween τa and τb. Peak decay (PD) indicates the information decay at the maximum
peak (τp) defined in the interval [τa, τb].

Since the information flow of oscillators has its peak starting at half the period τ

= (1/(2f ), 1/f, 3/(2f ), ...), the lower and upper time scale boundaries [τa, τb] within

the AMIF were chosen at τ = 1/(2f ), where f is the frequency band boundaries

used in the band pass filters [48] as: (1) the traditional LF range of [0.04, 0.15] Hz

corresponds to a LF prediction time range of τLF = [τa = 1/(2*0.15), τb = 1/(2*0.04)]

= [3.33, 12.5] s; (2) the traditional HF range corresponds to a HF prediction time

range of [0.15, 0.40] Hz as τHF = [τa = 1/(2*0.40), τb = 1/(2*0.15)] = [1.25, 3.33]

s and (3) the SCHF band [amax, bmax] corresponds to a SCHF prediction time range

of τSC = [τa = 1/(2bmax), τb = 1/(2amax)] s. In Table 4.2, the values for lower- and

upper-time scale boundaries corresponding to the SCHF prediction time range of

τSC in terms of median and interquartile ranges, as first and third quartile, (Median

(Q1|Q3)) are specified.

4.2.4 Cross-Mutual Information Function

The CMIF is a non-linear equivalent of the cross-correlation function, based on the

Shannon entropy similarly to the AMIF, but quantifying the coupling between two
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Table 4.2: Median (Q1|Q3) values for lower- (τa) and upper-time (τb) scale boun-
daries corresponding to the SCHF prediction time range for relax, joy, fear, sadness
and anger.

Elicitation τa τb
Relax 1.25 (1.19|1.43) 2.38 (1.85|2.78)
Joy 1.22 (0.98|1.28) 2.00 (1.85|2.27)
Fear 1.25 (1.14|1.39) 2.08 (1.92|2.50)
Sadness 1.25 (1.11|1.39) 2.08 (1.85|2.50)
Anger 1.25 (1.16|1.39) 2.08 (1.85|2.38)

signals x(t) and y(t). This function describes the amount of common information

between a time series x(t) and a time shifted time series y(t+τ). Then, the CMIF of

x(t) and y(t+τ) is given by Hx(t), by Hy(t+τ), and their bivariate probability distribu-

tion leading to Hx(t)y(t+τ) as shown in Eq. 4.3 [49].

CMIFxy(τ) = Hx(t)+Hy(t+τ)−Hx(t)y(t+τ) (4.3)

In contrast to the AMIF, the CMIF is not normalized for its analysis and it does not

present a symmetric distribution around zero. Therefore, left and right sides of the

CMIF around zero were analyzed. The non-linear analysis of the coupled signals

using the CMIF was as described for the AMIF, i.e., the CMIF at τ = 0 represents the

common maximum information of both time series and the decay of this function

over a prediction time describes the loss of information over this τ [49].

4.2.5 CMIF-based measures

In order to quantify and extract the amount of mutual information between the syn-

chronized registered time series of HRV and respiration during emotion elicitation,

the coupling between RR(t) and r(t), and between RRSC(t) and r(t) was investigated.

Only the RR(t) and the RRSC(t) series have been taken into consideration because

respiratory information is not consistently contained in the LF or HF bands for all

subjects.
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The following parameters were calculated from the CMIF of the synchronized car-

diac and respiratory signals: CMIF0 defined as the CMIF value at τ = 0 that repre-

sents the amount of common information between both time series without time lag;

CMIFmax defined as the maximum CMIF value that shows the maximum coupling

between the signals; and τmax defined as the time lag between CMIFmax and CMIF0,

that indicates the time lag between the amount of common information of the time

series and the maximum coupling between the signals. For this analysis, the CMIF

parameters were defined as follow: CMIF0γ
, CMIFmaxγ

and τmaxγ
in the coupling

between each γ = {RR, SC} and r(t). In Fig. 4.2, it is presented a CMIF function.
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Figure 4.2: The Cross-Mutual Information Function (CMIF) of the coupling be-
tween RR(t) and r(t) as function of the time scale τ .The CMIF value at τ = 0
(CMIF0) represents the amount of common information of the time series without
time lag and the maximum coupling between the signals is represented by CMIFmax.

4.2.6 Selection of the number of bins

The discrete probability distribution p(xi(t)) corresponds to a partitioning of the

amplitude range of each signal in a histogram, and I = 2N represents the maximum

possible information that can be obtained (I is the number of bins of the histogram

and N is the number of bits).

In order to adapt the algorithms of the AMIF and the CMIF to short-term time

series, 2N for N = {3, 4, 5, 6, 7, 8, 9} bits were considered in the calculation

methodology. The number of parameters able to statistically discriminate between

relax and emotions and between pairs of emotions were assessed to determine the

adequate number of histogram bins I.
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4.2.7 Statistical analysis

Normality distribution of all parameters was evaluated by Lillie test. Then, the T-

test or the Wilcoxon test when necessary, depending on normality test results, was

applied to evaluate differences for the followed paired conditions: relax and each

emotion and also each emotion was compared with each other.

The significance statistical level was p-value≤ 0.05, since this threshold provides a

reliable value for statistical discrimination [86]. Additionally, AUC index was stud-

ied to analyze the capability of the parameters to discriminate the studied elicita-

tions and AUC≥ 0.70 was used to determine statistically significant differences for

each studied parameter. Furthermore, leaving-one-out cross validation method was

used [71] to assess sensitivity, specificity and accuracy values for each parameter

in 2-class emotion classification. These statistical parameters were required to be

≥ 70% to determine statistically significant differences for each studied parameter.

These thresholds have been selected as optimal cut-points values due to sensitivity

and specificity being the closest to the value of the area under the ROC curve [97].

The number of bins I was selected as the value which yielded the highest number

of parameters with statistically significant differences (p-value ≤ 0.001) between

relax and each emotion and between pairs of emotions.

4.3 Results

4.3.1 Selection of the number of bins

The following analyzes have been performed to evaluate the adequate I for the

AMIF and the CMIF calculation for emotion recognition using short-time HRV

signals.

In Fig. 4.3, it is shown the percentage of the number of parameters that present

statistically significant differences for each proposed I, when comparing relax with

each emotions or between each pairs of emotions. The value I = 25 was selected,
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since it presents the highest number of parameters with statistically significant diffe-

rences, p-value ≤ 0.001 and sensitivity, specificity and accuracy ≥ 70% and AUC

index ≥ 0.70 for both non-linear techniques.
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Figure 4.3: Percentage of number of parameters derived from the AMIF and the
CMIF function of each proposed bin number I presenting statistically significant
differences: (p-value ≤ 0.05, p-value ≤ 0.01 and p-value ≤ 0.001 when comparing
relax and each emotion and between pairs of emotions. All these counted parame-
ters also presented a sensitivity, specificity and accuracy ≥ 70% and AUC index ≥
0.70).

4.3.2 AMIF-based measures

Those AMIF-based parameters that revealed statistically significant differences be-

tween relax and the different emotions or between pairs of emotions are presented

in Fig. 4.4. In this figure, boxplots are shown in terms of median and interquartile

ranges as first and third quartile: ATγ
(Fig. 4.4a) for γ = {RR, LF , HF , SC}; BD

(Fig. 4.4b) analyzed on RR(t); and PDmδ
(Fig. 4.4c) for δ = {LF , HF , SC}.

In Table 4.3, p-value, AUC and accuracy values are remarked in bold type for those

AMIF-based parameters that revealed statistically significant differences between

the emotional states studied. The presented emotion conditions were those which

revealed statistically significant differences.
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Figure 4.4: Boxplots of the parameters derived from the AMIF: (a) ATγ
for γ = {RR,

LF , HF , SC}; (b) BD analyzed on RR(t); and (c) PDmδ
for δ = {LF , HF , SC}. Only

compared elicitations with statistically significant differences are presented: relax
and joy (R-J), relax and fear (R-F), joy and fear (J-F), joy and sadness (J-S), joy and
anger (J-A), fear and sadness (F-S) and fear and anger (F-A). Statistical significance
is denoted by: * for p-value ≤ 0.05, ** for p-value ≤ 0.01 and *** for p-value ≤
0.001, all showed sensitivity, specificity and accuracy values≥ 70% and AUC index
≥ 0.70. The number of the analyzed subjects is indicated in parentheses.
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Table 4.3: Values of p-value, AUC and accuracy for the parameters derived from
the AMIF which statistically discriminate between some pair of elicitations: relax
and joy (R-J), relax and fear (R-F), joy and fear (J-F), joy and sadness (J-S), joy
and anger (J-A), fear and sadness (F-S) and fear and anger (F-A). The number
of the analyzed subjects for each parameter and pair of elicitations is indicated in
parentheses.

Parameters R-J R-F J-F J-S J-A F-S F-A
ATRR (35) (43) (35) (25) (29) (31) (35)
p-value n.s. ≤0.001 ≤0.001 n.s. n.s. ≤0.001 ≤0.001†
AUC 0.62 0.81 0.72 0.63 0.55 0.73 0.72
Accuracy (%) 61 77 71 64 60 73 73
ATLF (35) (43) (35) (25) (29) (31) (35)
p-value ≤0.001 ≤0.001 ≤0.05 ≤0.001 ≤0.05 ≤0.01 ≤0.05
AUC 0.76 0.82 0.64 0.71 0.62 0.73 0.67
Accuracy (%) 73 78 66 70 62 70 64
ATHF (35) (43) (35) (25) (29) (31) (35)
p-value n.s. ≤0.001 ≤0.001 n.s. n.s. ≤0.001 ≤0.05
AUC 0.63 0.71 0.77 0.58 0.53 0.67 0.70
Accuracy (%) 64 70 71 62 57 65 70
ATSC (12) (33) (13) (9) (11) (22) (26)
p-value ≤0.001 ≤0.001 ≤0.001 ≤0.05 ≤0.001 ≤0.01 ≤0.05
AUC 0.83 0.75 0.95 0.88 0.85 0.66 0.68
Accuracy (%) 75 74 92 78 77 66 71
BD (35) (43) (35) (25) (29) (31) (35)
p-value ≤0.01 ≤0.001 ≤0.01 ≤0.01 n.s. ≤0.01 ≤0.001
AUC 0.65 0.78 0.68 0.67 0.62 0.72 0.71
Accuracy (%) 67 77 67 66 60 73 73
PDmLF (35) (43) (35) (25) (29) (31) (35)
p-value ≤0.001 ≤0.001 ≤0.01 ≤0.01 n.s. ≤0.01 ≤0.05
AUC 0.76 0.81 0.63 0.71 0.61 0.70 0.67
Accuracy (%) 73 77 69 70 60 70 63
PDmHF (35) (43) (35) (25) (29) (31) (35)
p-value ≤0.01 ≤0.001† ≤0.001 n.s. n.s. ≤0.01 ≤0.01
AUC 0.70 0.71 0.81 0.64 0.59 0.68 0.72
Accuracy (%) 71 72 80 66 64 68 70
PDmSC (12) (33) (13) (9) (11) (22) (26)
p-value ≤0.05 ≤0.001 ≤0.001 n.s. n.s. ≤0.01 ≤0.01
AUC 0.72 0.81 0.99 0.79 0.64 0.74 0.70
Accuracy (%) 75 77 96 78 68 70 70
n.s. Stands for non-significant.
† Sensitivity or specificity ≤ 70%.
Note that parameters with p ≤ 0.05, AUC index ≥ 0.70, sensitivity, specificity, accuracy values ≥ 70% are
remarked in bold type.

4.3.3 CMIF-based measures

All parameters derived from the CMIF have been evaluated, however, only those

that revealed statistically significant differences for their ability to discriminate be-
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tween pair of emotions are shown in Fig. 4.5. In this figure, boxplots are shown

in terms of median and interquartile ranges as first and third quartile: CMIF0γ
(Fig.

4.5a); CMIFmaxγ
(Fig. 4.5b) and τmaxγ

(Fig. 4.5c) for the coupling between each

signal γ = {RR, SC} and r(t).

In Table 4.4, p-value, AUC and accuracy values are remarked in bold type for those

CMIF-based parameters that revealed statistically significant differences between

the emotional states studied. The presented elicited conditions were those which

revealed statistically significant differences.

4.4 Discussion

The AMIF and the CMIF techniques have been proposed to study the non-linear

relationships between HRV and respiration for human emotion recognition. Both

non-linear techniques may provide complementary information to that captured by

linear techniques for emotion recognition.

The adequate number of bins I was estimated to adapt the AMIF and the CMIF al-

gorithms to short-time signals for emotion recognition, since the values of I applied

to long-term HRV may not be suitable for short-term. The value of I determines the

histogram partitioning. The greater the I value is, the histogram represents more

faithfully the probability density function. Nevertheless, each partitioning of the

histogram needs to contain a minimum number of samples in order to capture the

regularity and complexity signal contain more appropriately. Therefore, a com-

promise between the greatest number of partitioning of the histogram for faithfully

describing the signal, and the adequate number of samples contained in each parti-

tioning, should be taken into consideration.

In [49], the AMIF and the CMIF histogram were constructed by using 25 bins, when

studying short-term RR signals according to Task Force guidelines [87, 93], in a

group of patients after acute myocardial infarction and a control group. However,

23 bins were proposed in [48] for the AMIF histogram computation for short and
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Figure 4.5: Boxplots of the parameters derived from the CMIF: (a) CMIF0γ
, (b)

CMIFmaxγ
and (c) τmaxγ

, for the coupling between each of the signals γ = {RR, SC}
and r(t) and all emotion conditions studied with statistically significant differences:
relax and joy (R-J), relax and fear (R-F), joy and fear (J-F), joy and anger (J-A),
fear and sadness (F-S) and fear and anger (F-A). Statistical significance is denoted
by: * for p-value ≤ 0.05, ** for p-value ≤ 0.01 and *** for p-value ≤ 0.001, all
with sensitivity, specificity and accuracy ≥ 70% and AUC index ≥ 0.70. In each
x-axis the number of the analyzed subjects is indicated in parentheses.

long-term signals, to analyze the risk stratification of patients with multiple organ

dysfunction syndrome, cardiac arrest patients and a control group. In this work, the
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Table 4.4: Values of p-value, AUC and accuracy for the parameters derived from
the CMIF which statistically discriminate between some pair of elicitations: relax
and joy (R-J), relax and fear (R-F), joy and fear (J-F), joy and anger (J-A), fear and
sadness (F-S) and fear and anger (F-A). The number of the analyzed subjects for
each parameter and pair of elicitations is indicated in parentheses.

Parameters R-J R-F J-F J-A F-S F-A
CMIF0RR (35) (43) (35) (29) (31) (35)
p-value n.s. ≤0.001† ≤0.01 n.s. ≤0.01 ≤0.05
AUC 0.61 0.75 0.65 0.53 0.65 0.65
Accuracy (%) 61 78 70 53 66 64
CMIF0SC (12) (33) (13) (11) (22) (26)
p-value ≤0.05 ≤0.001 ≤0.001 n.s. ≤0.05 ≤0.05
AUC 0.70 0.73 0.85 0.69 0.72 0.70
Accuracy (%) 71 73 85 64 70 70
CMIFmaxRR (35) (43) (35) (29) (31) (35)
p-value n.s. ≤0.001† ≤0.05 n.s. ≤0.01 n.s.
AUC 0.62 0.72 0.60 0.64 0.63 0.66
Accuracy (%) 64 76 70 66 68 63
CMIFmaxSC (12) (33) (13) (11) (22) (26)
p-value ≤0.001 ≤0.001 ≤0.001 ≤0.01 ≤0.01 ≤0.01
AUC 0.88 0.74 0.95 0.79 0.77 0.68
Accuracy (%) 83 71 85 77 75 69
τmaxRR (35) (43) (35) (29) (31) (35)
p-value n.s. n.s. n.s. n.s. n.s. n.s.
AUC 0.62 0.53 0.66 0.56 0.53 0.55
Accuracy (%) 66 55 67 57 56 57
τmaxSC (12) (33) (13) (11) (22) (26)
p-value n.s. ≤0.01 ≤0.05 n.s. ≤0.05 n.s.
AUC 0.62 0.68 0.75 0.66 0.62 0.51
Accuracy (%) 63 65 77 68 61 60
n.s. Stands for non-significant.
† Sensitivity or specificity ≤ 70%.
Note that parameters with p ≤ 0.05, AUC index ≥ 0.70, sensitivity, specificity, accuracy
values ≥ 70% are remarked in bold type.

highest percentage of number of parameters that presents statistically significant

differences (p-value ≤ 0.001) between each pair of elicited states was obtained for

I = 25 bins, (see Fig. 4.3).

Table 4.5 displays the parameters which statistically discriminate between each pair

of elicitations. The pair of elicited conditions which did not show statistically signi-
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ficant differences by means of any of the parameters considered in this work were:

relax and sadness (R-S), relax and anger (R-A) and sadness and anger (S-A). It

should be noted that no statistically significant differences between relax and emo-

tions or between pairs of emotions were found by any parameter derived from ana-

lysis of the coupling between the signals RR(t) and r(t). As it was found by ana-

lyzing the AMIF technique, the pair of elicitation conditions which did not show

statistically significant differences in the CMIF by means of any of the parameters

considered was: relax and sadness (R-S), relax and anger (R-A), joy and sadness

(J-S) and sadness and anger (S-A).

Table 4.5: Parameters derived from the AMIF and the CMIF which statistically
discriminate between the studied elicitations.

Compared elicited states R-J R-F J-F J-S J-A F-S F-A

Parameters derived from the AMIF
ATRR - yes yes - - yes -
ATLF yes yes - yes - yes -
ATHF - yes yes - - - yes
ATSC yes yes yes yes yes - -
BD - yes - - - yes yes
PDmLF yes yes - yes - yes -
PDmHF yes - yes - - - yes
PDmSC yes yes yes - - yes yes

Parameters derived from the CMIF
CMIF0SC yes yes yes - - yes yes
CMIFmaxSC yes yes yes - yes yes -
τmaxSC - - yes - - - -

The nomenclature used for the elicited states is:
relax (R), joy (J), fear (F), sadness (S) and anger (A)

Regarding the ability of the AMIF parameters to discriminate emotions, the total

areas (Fig. 4.4a), ATSC was the only parameter capable of statistically distinguishing

joy and anger among all the studied parameters derived from the AMIF. This result

shows the importance of redefining the boundary of the HF band for a correct evalu-

ation of physiological changes of the ANS [42,100]. Fear revealed a greater median

value than any other emotion. It can be noted that an enlargement of the area under

the AMIF curve indicates a better predictability of future heart beats, and therefore,
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a lower complexity [12].

Evaluating the beat decay BD (Fig. 4.4b), fear presented smaller median values than

any other compared elicitation. Furthermore, this parameter was able to statistically

distinguish between fear and relax, sadness and anger. However, the remaining pair

of compared elicited states did not show such a clear pattern as fear. Additionally,

PDmδ
(Fig. 4.4c) presented a similar tendency as the BD for fear with a smaller me-

dian value than any other elicitation state. The BD and PDmδ
presented results with

complementary information, and statistically significant values, and also adequate

sensitivity, specificity, accuracy and AUC index.

The CMIF has been proposed to reveal non-linear cardiorespiratory interdependen-

cies [49], which might be altered during emotion elicitation. For example, a sig-

nificant increase in the CMIF of electroencephalographic signals has been also ob-

served in the presence of stress [1]. In our study, the parameter CMIF0SC (Fig. 4.5a)

and the parameter CMIFmaxSC (Fig. 4.5b) provide similar information, although the

slight differences in the calculation of both parameter revealed that CMIFmaxSC is

able to discriminate with an equal or better p-value, sensitivity, specificity, accu-

racy and AUC index than CMIF0SC in all compared elicited states, except for fear

and anger. Moreover, evaluating CMIF0SC and CMIFmaxSC , it is possible to extract

a similar pattern for fear presenting a greater median value than any other elicited

state.

The time lag between CMIF0 and CMIFmax in the SCHF band was only able to dis-

tinguish between joy and fear, and it suggested less non-linear correlation between

HRV and respiration during joy. A complexity reduction is observed during fear

elicitation as reflected by a lower value of parameter τmaxSC .

Furthermore, joy or fear versus sadness can be discriminated by parameters ob-

tained from RRLF (t) signals and joy or fear versus anger from RRHF (t) signals.

Predominant autonomic rhythms can be assessed by the complex information loss

over their respective prediction time horizon [49]. In this sense, those parameters

studied in the LF band reflect the complexity of vagal and sympathetic mechanisms,

and those parameters studied in the HF band reflect the complexity of vagal and res-
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piratory rhythms [49].

Comparing the results obtained from the AMIF and the CMIF techniques, it is worth

noting that filtering the HRV signals into a redefined HF band presents better discri-

mination power for parameters derived from the AMIF than from the CMIF ones.

Furthermore, applying the CMIF into the RR time series filtered into the redefined

HF band provided relevant complexity information to discriminate between HRV

and respiratory mechanisms in the case of fear.

A complexity reduction is observed during fear elicitation as reflected by sma-

ller BD, PDmδ
and τmaxSC values together with a greater total area, CMIF0SC and

CMIFmaxSC .

In [13], a physiological explanation of non-linear HRV parameters was reported. In

this work, non-linear HRV indices during ANS pharmacological blockade and body

position changes were studied in order to assess their relation with sympathetic and

parasympathetic activities. Parasympathetic blockade caused a significant decrease

in complexity values, while sympathetic blockade produced a significant increase in

the non-linear parameters. We hypothesize that the decrease in complexity observed

during fear elicitation reflects vagal activity, while more random RR series during

joy might reflect sympathetic activity.

The results derived from this work have been compared with a previous work on

the same emotion database, where a linear-based methodology was applied [100]

(Table 4.6). In both cases the HF band was analyzed after redefining it considering

the HRV-respiration interaction [100]. All the elicited states able to be discriminated

with linear techniques, remain discriminated with the non-linear features (Table

4.6). In addition, during fear elicitation, heart rate presents a better predictability,

implying lower complexity, as compared to other elicited states, resulting in extra

discriminating power between fear and relax or anger (Table 4.6) non accessible

from linear features. These results may indicate that the non-linear indexes are

suitable for discrimination between different emotions.

Furthermore, other non-linear HRV parameters as the Correlation Dimension, the
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Table 4.6: Discriminating possibility in comparing between elicited states with li-
near and non-linear techniques.

Compared elicited states Linear techniques [100] Non-linear techniques (This work)
R-J yes yes
R-F no yes
R-S no no
R-A no no
J-F yes yes
J-S yes yes
J-A yes yes
F-S yes yes
F-A no yes
S-A no no

The nomenclature used for the elicited states is:
relax (R), joy (J), fear (F), sadness (S) and anger (A)

Approximate Entropy and the Sample Entropy have been investigated in the same

emotional database. However, these parameters did not present the ability to sepa-

rate the emotional states in this analyzed database (Table 4.7, Table 4.8). Although

in some comparisons exposed in Table 4.8 the p-value ≤ 0.05, AUC index ≥ 0.7,

or sensitivity, specificity or accuracy ≥ 70% criteria were not met.

Table 4.7: Median with the first and third interquartile ranges in terms of
(m(1st|3th)) for the non-linear techniques Correlation Dimension (D2), Approxi-
mate Entropy (ApEn) and Sample Entropy (SampEn) for the elicitations: relax, joy,
fear, sadness and anger.

Elicited states D2 ApEn SampEn
Relax 4.18 (3.72|4.63) 0.84 (0.78|0.91) 1.09 (0.96|1.29)
Joy 3.89 (3.32|4.60) 0.84 (0.71|0.93) 1.13 (0.81|1.23)
Fear 4.20 (3.69|4.87) 0.85 (0.79|0.95) 1.18 (0.93|1.33)
Sadness 4.42 (4.06|4.73) 0.87 (0.81|0.93) 1.14 (0.98|1.34)
Anger 4.21 (3.84|4.67) 0.89 (0.78|0.93) 1.15 (0.90|1.31)

In Table 4.1, there are summarized the non-linear techniques used to detect emo-

tional stimuli based on HRV analysis. In [101], the emotional states were concep-

tualized in two dimensions by the terms of valence and arousal. The Dominant

Lyapunov Exponent and the Approximate Entropy techniques showed differences

between the neutral and the arousal elicitation. These results are in concordance

with the ones obtained in this study by means of the AMIF and the CMIF tech-

niques, since statistically significant differences between the neutral state of relax
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and the two high arousal elicitations of joy and fear were found. Furthermore, it

was found in [101] that the Dominant Lyapunov Exponent became negative, and

the mean Approximate Entropy decreased during arousal elicitation. In accordance

with the Dominant Lyapunov Exponent and the Approximate Entropy, during fear

elicitation the non-linear HRV parameters obtained in the present study revealed a

reduced complexity level. In [12], an increment of the total area under the AMIF

curve was observed revealing an indication of decreased complexity of cardiac regu-

lation in depressed patients. However, in [111], a consistent increasing trend among

most entropy measures for different depression levels was found. This suggested

a reduced regularity and predictability of the depressed patients. The depression

state is considered by means of the circumplex model of affect as having negative

valence with low arousal, as can be sadness [101]. Considering the parameter ATRR

in the comparison between fear and sadness (emotional states with the same ne-

gative valence but different arousal), it could be observed that sadness presents a

lower median value, being an indicator of decreased complexity as reported in [12],

and being in agreement with the results obtained by [111]. In [109], a significantly

increase of the entropy measures was found during the emotional states of happi-

ness, sadness, anger, and disgust. These results are in concordance with the ones

obtained in this study for fear, which revealed increased regularity and a reduced un-

predictability. In [30], significant decreases in the Entropy, the Dominant Lyapunov

Exponent, and the Pointwise Correlation Dimension, and an increase in the short-

term fractal-like scaling exponent of the Detrended Fluctuation Analysis were found

during anxiety situations, compared with the rest period. These results suggest that

an increase of anxiety was related to the decrease in the complexity. The anxiety

state can be considered by means of the circumplex model of affect [101] as having

negative valence with high arousal, similar to fear. Both the state of anxiety stud-

ied in [30] and the emotional state of fear, studied in this work, presented the same

tendency in level of complexity. In [43], maximum changes in the Lagged Poin-

caré Plot measures were found during the happiness stimuli, and minimum changes

were obtained during the fear inducements. These results are in agreement with

the ones obtained by means the CMIF technique applied in the present study, were
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differences between joy and fear could be found.

There are also some limitations to note regarding this study. First, the sample size

database used is small. Nonetheless, the results obtained advocated in support of

using the proposed approaches, although a bigger sample size database could proba-

bly yield better statistics. Second, likewise, long-time emotional monitoring could

probably provide additional information that cannot be detected in short-time series

analyzes. Although, short-term emotional analyzes are more suitable for outpatient

patient monitoring and applications where the result is urgently needed. Third, there

are emotions that could not be expressed by the subject all the time the videos last,

but they have been treated as if the subject expresses that emotion all the time.

Despite these limitations, the parameters derived from the AMIF and the CMIF

techniques which presented statistically significant differences for emotion discri-

mination seem to be good candidates to be implemented on a biomedical equip-

ment, providing a tool for mental illness diagnoses. In addition, analyzing the role

of mutual information-based HRV measures to explore a multi-variable approach

combining with other non-linear parameters could open a door to extract new suita-

ble parameters for emotion recognition.
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Table 4.8: Values of p-value, AUC index, sensitivity, specificity and accuracy for the
non-linear techniques Correlation Dimension (D2), Approximate Entropy (ApEn)
and Sample Entropy (SampEn) for all elicitation compared.

Compared elicited states Parameter D2 ApEn SampEn

Relax vs. Joy

p-value n.s. n.s. n.s.
AUC 0.57 0.50 0.55
Sensitivity (%) 51 40 46
Specificity (%) 69 77 69
Accuracy (%) 60 59 57

Relax vs. Fear

p-value n.s. 0.03 n.s.
AUC 0.52 0.58 0.53
Sensitivity (%) 56 44 47
Specificity (%) 49 77 72
Accuracy (%) 52 60 59

Relax vs. Sadness

p-value n.s. n.s. n.s.
AUC 0.54 0.53 0.53
Sensitivity (%) 63 57 57
Specificity (%) 57 53 57
Accuracy (%) 60 55 57

Relax vs. Anger

p-value n.s. n.s. n.s.
AUC 0.54 0.57 0.56
Sensitivity (%) 56 62 59
Specificity (%) 59 59 62
Accuracy (%) 57 60 60

Joy vs. Fear

p-value n.s. n.s. n.s.
AUC 0.56 0.54 0.56
Sensitivity (%) 60 63 43
Specificity (%) 52 46 74
Accuracy (%) 56 54 59

Joy vs. Sadness

p-value 0.01 0.05 0.01
AUC 0.70 0.57 0.60
Sensitivity (%) 80 68 76
Specificity (%) 64 52 48
Accuracy (%) 72 60 62

Joy vs. Anger

p-value n.s. n.s. 0.04
AUC 0.62 0.55 0.60
Sensitivity (%) 72 55 41
Specificity (%) 55 62 83
Accuracy (%) 64 59 62

Fear vs. Sadness

p-value n.s. n.s. n.s.
AUC 0.58 0.49 0.52
Sensitivity (%) 84 68 65
Specificity (%) 45 45 45
Accuracy (%) 65 56 55

Fear vs. Anger

p-value n.s. n.s. n.s.
AUC 0.52 0.53 0.48
Sensitivity (%) 66 71 57
Specificity (%) 49 40 49
Accuracy (%) 57 56 53

Sadness vs. Anger

p-value n.s. n.s. n.s.
AUC 0.58 0.53 0.50
Sensitivity (%) 60 60 44
Specificity (%) 60 44 68
Accuracy (%) 60 52 56
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5.1 Introduction

New generations of human emotion recognition tools are based in classification

analysis. A wide range of methods has been used to study affective states. Classi-

fiers like Fisher Discriminant [60], Linear Discriminant Function [107], k-Nearest

Neighbour [107], Multilayer Perceptron [107], Neural Networks [50, 59], Support

Vector Machines [50, 53, 60] and others are useful to detect emotional elicitation

states. Some of these techniques have also been used to study relationships between

HRV and respiration signals [50,107]. Table 5.1 reports a summary of different cla-

ssification techniques applied to HRV parameters during diverse emotional states.

Table 5.1: Summary of classification techniques applied to HRV parameters in di-
fferent emotional states.

Ref. Emotional state Technique Classification rate

[50] relax, neutral, startle, apprehension and very apprehension

ANN 77.3%
SVM 78.5%
RF 80.8%

NFS 84.3%

[107] joy, anger, sadness and pleasure
MP 88.6%
kNN 90.9%
LDF 92.1%

[53] sadness, anger, stress, surprise SVM 61.8%

[59] sadness, anger, fear, surprise, frustration, amusement
kNN 72.3%
LDF 75.0%
MBP 84.1%

[60] amusement, contentment, disgust, fear, neutrality, sadness FD + SVM 92.0%
The nomenclature used is:
Articial Neural Networks (ANN), Support Vector Machines (SVM), Random Forests (RF),
Neuro-Fuzzy System (NFS), Linear Discriminant Function (LDF), k-Nearest Neighbour (kNN),
Multilayer Perceptron (MP), Marquardt Backpropagation (MBP), Fisher Discriminant (FD)

In this chapter the classification ability of the HRV parameters presented in previous

chapters is investigated using a linear discriminant analysis. The choice of linear

discriminant analysis instead of other more complex approaches, such as ANN or

SVM, is motivated to facilitate the interpretation of the classification model and

to prevent overfitting due to the reduced number of subjects in the database. A

linear classifier has been used to identify the best subset of HRV parameters to

discriminate between pairs of emotions and between emotional valences.
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5.2 Methods

The linear discriminant analysis is a statistical method used to construct a predictive

model of group classification based on the characteristics observed for each case

[58]. The method generates a discriminant function based on linear combinations

of the prediction parameters, which allows to obtain the best classification between

groups.

The use of a statistical test, such as the analysis of variance (ANO-VA, ANalysis

Of VAriance), quantitatively determines how separate the values that each characte-

ristic of the analysis takes in the different groups through the significance obtained

in the rejection or acceptance of the null hypothesis [2, 46]. In order the results

derived from the statistical study to be considered valid, it is necessary that the cha-

racteristics studied meet the normality requirement: they must present a normal or

Gaussian distribution and they have equal variances in the groups.

5.2.1 Estimation of discriminant function

The discriminant function is generated from the values of the prediction parame-

ters of a set of cases whose classification in the different groups is known. Then,

this function can subsequently be applied to new cases where the classification is

not known, from measurements of the parameters on which the prediction is based.

For the classification into two groups, a unique discriminating function needs to be

built. The coefficients of the discriminant function are estimated by means of the

Fisher procedure. This procedure assigns weights to the parameters which maximi-

zes the variability between the groups (variance between groups) and minimizes the

variability within the groups (intragroup variance).

Once the coefficients of the discriminant function have been obtained, the discrimi-

nant scores, d (equation (5.1)), for each case are calculated. The scores are the basis

for the classification in one of the groups.
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d = c0 + c1χ
1 + + cpχ

p = cT
χ (5.1)

where c j, j = 0, ..., p, are the coefficients of the discriminant function and χ j re-

present the values of the p parameters selected for each case. The values of the

discriminant scores d defined by the c j coefficients should be close between cases

of the same group, and differ as much as possible between cases of different groups.

Therefore, this criterion maximizes the variability between the groups (maximizes

the variance between groups) while minimizes the variability within the groups (in-

tragroup variance).

Once the discriminant function has been obtained and the discriminant scores calcu-

lated for each case, a classification rule is used to make the assignment to a specific

group. The classification of each case with a score of d in group g is done by means

of the Bayes classification rule [79].

5.2.2 Parameter selection

During the process of parameter selection, all the parameters considered in this

study could be included in order to have a greater number of degrees of freedom

in the discriminant function, and thus obtain a better classification. However, a co-

mmonly accepted and widely used rule is that the number of classification parame-

ters should be less than the square root of the number of cases in the smallest group.

In fact, the use of an excessive number of parameters with respect to the number of

cases leads to a biased estimate of the discriminant function, which decreases their

ability to classify new cases [4].

It is applied a forward-backward selection method that allows a reduction in the

number of parameters involved in discrimination. In each step new parameters are

added or excluded, so that in each step it is obtained the set of parameters with

greater discriminant power according to a certain statistical criterion. Among the

criteria for selecting parameters in this study the Wilks′s Lambda minimization and
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the F statistic have been used.

Wilks′s Lambda (Λ) distribution is a probability distribution used especially in the

context of the likelihood-ratio and multivariate analysis of variance [62]. Λ re-

presents the proportion of the total variability due to differences within groups

or, alternatively, the proportion of variability not explained by differences between

groups. It is calculated as the ratio of the intragroup covariance, CI , which is the

sum of intragroup squares, measuring the variability within each group, and the

total covariance matrix, CT , which is the sum of total squares, measuring the total

variability, according to the equation (5.2) [78].

Λ =
|CI|
|CT |

(5.2)

The value of Wilks′s Lambda is limited between 0 and 1. Values close to 0 indicate

that the means of the groups are different (the variability within the groups is small

compared to the total variability) while values close to 1 indicate that the means

are close. Although Wilks′s Lambda criterion identifies the parameters with the

greatest discriminating power, it is the F statistic that determines which parameters

should be taken into account in the model [78]. The F statistic is calculated based

on the Wilks′s Lambda according to the equation (5.3).

F =
N−G− p

G−1

1− Λp+1
Λp

Λp+1
Λp

(5.3)

N is the total number of cases, G is the number of groups, p is the number of

independent parameters, Λp is the Wilks′s Lambda calculated before the inclusion

of the variable being evaluated, and Λp+1 is the Wilks′s Lambda calculated after

the inclusion of the variable. The F statistic represents the increase produced in

discrimination after the inclusion of the parameter p + 1 with respect to the total

already reached with the p parameters previously included. The stepwise inclusion

method are:

• First step: if the input criterion is met (F statistic is statistically significant
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(F>3.84)) the parameter with the lowest value of the Wilks′s Lambda is in-

cluded.

• Second step: if the input criterion is met, the included parameter is matched

with each of the remaining parameters and that pair with the highest value of

the F statistic is chosen.

• Third and subsequent steps: the third and subsequent parameters are selected

in a similar way, but checking after each step if the previously included para-

meters remain significant or if, on the contrary, they can be excluded if they

meet the exit criteria (F<2.1). When none of the parameters included meet

the input and the exit criterion the process of parameter selection ends.

5.2.3 Performance measures of a classifier

To improve the estimation of the correct classification rate, the cross validation tech-

nique leaving-one-out method has been applied [71]. In this method, each case is

classified by the discriminant function derived from all cases except it. This method

is the one used in this study because it corresponds to a more realistic situation, since

the case that is classified does not intervene in the elaboration of the model [32].

In addition to the classification rate, there are other classifier performance measures

interesting to analyze. If the cases are available in two groups, positive and negative,

the results of the classifier can be divided into:

• True positive (TP): cases that are positive, and the classifier considers posi-

tive.

• False negatives (FN): cases that are positive, but that are classified as negative.

• True Negative (TN): cases that are negative, and the classifier considers ne-

gative.

• False positives (FP): cases that are negative, and the classifier considers posi-

tive.
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The parameters that allow evaluating the performance of a classifier are defined

below:

• Sensitivity (Se): it is defined as the percentage of cases classified as positive

among all positive cases (5.4).

Se(%) =
T P

T P+FN
100 (5.4)

• Specificity (Sp): it is defined as the percentage of cases considered negative

by the classifier, among all the negative cases (5.5).

Sp(%) =
T N

T N +FP
100 (5.5)

• Positive predictive value (P+): it is the percentage of cases classified as posi-

tive, which are really positive (5.6).

P+(%) =
T P

T P+FP
100 (5.6)

• Negative predictive value (P-): it is the percentage of cases classified as ne-

gative, which are really negative (5.7).

P− (%) =
T N

T N +FN
100 (5.7)

• Accuracy (Acc): it is the percentage of cases classified correctly. It is, in fact,

the classification rate (5.8).

Acc(%) =
T P+T N

T P+FP+T N +FN
100 (5.8)

In a good classifier, all values should be close to 100%. There is no point in ob-

taining a very high sensitivity value if the specificity is very low, and vice versa. In

general, increasing sensitivity decreases specificity and vice versa, so a compromise

between the two must be reached.
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5.2.4 Parameters considered in the analysis

Only the parameters which presented statistically significant differences in chapter

3 (linear features) and in chapter 4 (non-linear features) were selected as characte-

ristics to be investigated. Nine different subsets of parameters have been analyzed:

• Subset 1 (S1). Classic HRV analysis based on the standard definition of HF

band [0.15,0.4 Hz] defined in [93]. The parameters analyzed in this group

are: PHF , PLFn, R and FR.

• Subset 2 (S2). HRV parameters based on the shifted HF band centered at

FR with fixed bandwidth: the HF band was centered at FR and had a fixed

bandwidth of 0.11 Hz (HFFR). The parameters analyzed in this group are:

PHFFR
, PLFnFR

, RFR and FRFR
.

• Subset 3 (S3). HRV parameters based on the shifted and resized HF band

based on Spectrum Correlation (SCHF): the HF band is redefined based on

the correlation between the power content of HRV and respiration. The para-

meters analyzed in this group are: PLFnSC , RSC and ρmax.

• Subset 4 (S4). HRV parameters derived from the Auto-Mutual Information

Function analysis of HRV: the parameters analyzed in this group are: ATRR ,

ATLF ,ATHF , PDmLF and PDmHF .

• Subset 5 (S5). HRV parameters derived from the Auto-Mutual Information

Function analysis of HRV and respiration: the parameters analyzed in this

group are: ATSC and PDmSC .

• Subset 6 (S6). HRV parameters derived from the Cross-Mutual Informa-

tion Function analysis of HRV: the parameters analyzed in this group are:

CMIF0RR , CMIFmaxRR and τmaxRR .

• Subset 7 (S7). HRV parameters derived from the Cross-Mutual Information

Function analysis of HRV and respiration: the parameters analyzed in this

group are: CMIF0SC , CMIFmaxSC and τmaxSC .

• Subset 8 (S8). The best characteristics: those parameters which classify be-
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tween the groups S1, S2, S3, S4, S5, S6 and S7.

• Subset 9 (S9). The best characteristics which only consider the HRV infor-

mation: those parameters which classify between the groups S1, S2, S3, S4,

S5, S6 and S7, but only take into account the HRV information.

All these nine subsets have been performed into three analyzes attending to the

elicitations considered as well as to the normalization of the HRV parameters. And

within each analysis, two groups of elicitations (G1 = Group 1; G2 = Group 2) are

analyzed as presented below, and are schematized in Table 5.2:

• Analysis 1: classification between relax and emotions which comprises: re-

lax vs. all emotions, relax vs. positive valence (joy), relax vs. all negative

valences (fear, sadness and anger), relax vs. fear, relax vs. sadness and re-

lax vs. anger. In this analysis, HRV parameters were considered without any

normalization.

• Analysis 2: classification between positive and negative valences and be-

tween negative valences which comprise positive valence (joy) vs. all ne-

gative valences (fear, sadness and anger), joy vs. fear, joy vs. sadness, joy vs.

anger, fear vs. sadness, fear vs. anger and sadness vs. anger. In this analysis,

HRV parameters were considered without any normalization.

• Analysis 3: classification between positive and negative valences and between

negative valences. In this analysis, HRV parameters were normalized by their

value during the relax session which preceded each emotion.

Table 5.2: Relationship between analyzes and groups of elicitations (G1 = Group 1;
G2 = Group 2).

Analysis 1 Analysis 2 Analysis 3 (*)
G1 G2 G1 G2 G1 G2

relax all emotions joy all negative valences joy all negative valences
relax joy joy fear joy fear
relax all negative valences joy sadness joy sadness
relax fear joy anger joy anger
relax sadness fear sadness fear sadness
relax anger fear anger fear anger

sadness anger sadness anger
(*) HRV parameters were normalized by their value in the preceding relax session.
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5.3 Results

In Table 5.3, 5.4 and 5.5, there are shown the number of comparison between each

group (G1 for the first group and G2 for the second group), sensitivity, specificity,

positive and negative predictive value and accuracy from the parameter set S1 to

S9 when comparing between relax and emotions, between emotions and between

emotions normalized by the basal condition, respectively.

It can be noted that when sensitivity, specificity and accuracy are all greater than

70% the results are remarked in bold type.

5.3.1 Evaluation of the analysis 1

Regarding the results obtained by the analysis 1 (Table 5.3), it can be observed that

only the comparison between relax and joy can be classified by the set of parameters

S8 with a sensitivity, sensitivity and accuracy greater than 80%. In the S8 analysis,

it was considered the best classified characteristics derived from all set of parame-

ters (i.e. S1, S2, S3, S4, S5, S6 and S7 analysis), therefore the resulting classified

parameters are derived from the lineal and the non-linear analysis. The characteris-

tics that classified relax vs. joy were: FR, FRFR
and RSC for the linear analysis and

ATSC and PDmHF for the non-linear analysis. It can be noted that all these parameters

take into account the respiratory signal except PDmHF . However, it also accounts

for the respiratory frequency band information.

5.3.2 Evaluation of the analysis 2

The results regarding the analysis 2 (Table 5.4) are presented by means of the com-

parisons between positive and negative valences or between negative valences. It

can be observed that joy vs. fear could be classified by the sets of parameters S5, S7

and S8, and joy vs. sadness and joy vs. anger by means of the set of parameters S7.

It can be noted that the classified characteristics of the S5 and S7 analyzes are based
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in the SCHF methodology which take into account the respiratory signal informa-

tion of each subject, and they are also derived from the non-linear methodology, the

AMIF and the CMIF, respectively.

The characteristics which best classify joy and fear are: FR derived from the linear

analysis, PDmSC derived from the AMIF non-linear technique and considering the

HFSC band, and CMIFmaxSC derived from the CMIF non-linear technique and also

considering the HFSC band. The characteristic which best classify joy vs. sadness

and joy vs. anger is CMIFmaxSC . Therefore, the common characteristic which cla-

ssify among all these groups is CMIFmaxSC .

5.3.3 Evaluation of the analysis 3

It can be observed in Table 5.5 that positive vs. all negative valences, joy vs. fear,

joy vs. sadness, joy vs. anger and fear vs. sadness can be all classified by the set

of parameters S7, which is derived from the CMIF non-linear technique and also

it considers the SCHF method, with a sensitivity, sensitivity and accuracy greater

than 80%. It needs to be pointed out that both methodologies, the CMIF and the

SCHF combined, consider the cardiorespiratory coupling between the HRV and

respiratory signals. It can be observed that the characteristic able to classify between

all these groups is the parameter CMIFmaxSC .

Each of the comparisons is analyzed in detail below. Related to the comparison

between joy with all negative valences together (fear, sadness and anger) the best

results are obtained from the sets of parameters S7, S8, and S9. The resulting cla-

ssificatory characteristics are: CMIFmaxSC for S7; R, FRFR
, RFR , ρmax and CMIFmaxSC

for S8; and R and PDmHF for S9. With regard to analyzing joy with each single

negative valence, the results obtained are the following. About joy vs. fear, the

best classificatory characteristics are derived from S3, S7, S8 and S9 analysis. The

resulting classificatory characteristics are: ρmax for S3; CMIFmaxSC for S7; FR and

CMIFmaxSC for S8; and R and PDmHF for S9. In respect of joy vs. sadness, the sets of

characteristics which are good candidates to classify between both groups are ρmax
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for S3; CMIFmaxSC for S7; and ρmax, ATLF and CMIFmaxSC for S8. As regard joy vs.

anger, again the analysis S3, S7 and S8 presents the best set of characteristics which

discriminates between both emotions as ρmax for S3; CMIFmaxSC for S7; and ρmax,

PDmLF and CMIFmaxSC for S8. Analyzing fear vs. sadness, it can be observed that

only the S7 analysis can provide a classificatory characteristic: CMIFmaxSC .
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Chapter 5. Classification Analysis

5.4 Discussion

The results derived from the three analyzes have been evaluated as shown below.

Regarding the results obtained by the analysis 1 (Table 5.3), it can be observed that

only the comparison between relax and joy permits good classifications of the sub-

jects by means of the characteristics: FR, FRFR
, RSC, ATSC and PDmHF . Comparing

these results with the linear analysis exposed in chapter 3, the statistics of the para-

meter RSC are in concordance with the ones presented in chapter 3 where it was

obtained that a p-value ≤ 0.05 and sensitivity, specificity and accuracy ≥ 70% and

AUC index ≥ 0.70. On the other hand, the parameters FR and FRFR
did not show

significant statistical differences between this pair of elicitations but could classify

as part of the parameter set S8. In addition, as in this classification analysis, no

linear parameters were able to discriminate between relax and negative valences. In

the non-linear analysis, exposed in chapter 4, among all parameters that presented

statistically significant differences between relax and joy, ATSC and PDmHF both re-

sulted in a p-value≤ 0.01 and sensitivity, specificity and accuracy≥ 70% and AUC

index ≥ 0.70. Furthermore, by means of the non-linear analysis, it was possible to

extract parameters which differentiated between relax and fear.

Although in [60], different classifier methods are used compared to the ones applied

in this work, it could be observed a classification rate of 92% among the basal state

of neutrality against amusement, contentment, disgust, fear or sadness.

Regarding the results obtained by the analysis 2 (Table 5.4), it can be observed that

joy vs. fear, joy vs. sadness and joy vs. anger can be classified with a common

characteristic: CMIFmaxSC . Comparing these results with the non-linear analysis,

exposed in chapter 4, CMIFmaxSC resulted in a p-value ≤ 0.001, sensitivity and

specificity ≥ 70%, accuracy ≥ 85% and AUC index ≥ 0.95 for joy vs. fear. In

addition, the parameter CMIFmaxSC resulted in a p-value ≤ 0.01, sensitivity and

specificity ≥ 70%, accuracy ≥ 75% and AUC index ≥ 0.77 for joy vs. sadness and

joy vs. anger.

The results regarding the analysis 3 are presented in Table 5.5 which shows that
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subjects can be well classified when positives vs. all negative valences, joy vs.

fear, joy vs. sadness, joy vs. anger and fear vs. sadness are normalized by a basal

condition of relax.

It can be observed that the parameter CMIFmaxSC , which considers the non-linear

coupling between the HRV and the respiratory information in a HF band redefined

by the SCHF method, is the recurrent characteristic that appears in all classifications

between positive and all negative valences together, between joy and each single

negative valence and between fear and sadness. Another interesting parameter to

be mentioned is ρmax, since it was able to classify between joy vs. all negative

valences, joy vs. fear, joy vs. sadness and joy vs. anger. It can be noted that ρmax

also takes into account the common information between HRV and respiration.

Unfortunately, it is difficult to make comparisons between these results and the

studies found in the bibliography because all differ on the database recording cri-

teria that directly affect on the classification accuracy as happens with the number

of participants, the emotion elicitation, the duration of the affective elicitation, the

signals recorded and the classifier method [22]. Nonetheless, in Table 5.1 it has

been reported studies close to the study developed in this thesis, that have taken into

account HRV signals with visual or music elicitation, although with an elicitation

with smaller duration or with different size database used. In [107], the same classi-

fier technique than in the present thesis was performed to discriminate among joy,

anger, sadness and pleasure with an overall result of 92.1%. In the present thesis,

the percentage of original grouped cases correctly classified obtained comparing joy

and all negative valences together was 84.9%, for joy vs. fear it was 84.4%, for joy

vs. sadness it was 85.3%, for joy vs. anger it was 84.2% and fear vs. sadness it was

72.7%. Although [50,53,59,60] used different classifier methods that those used in

the present thesis, it could be observed that the best results are obtained for those

studies which considered positive and negative valences, as it was reported here.

In some studies, more sophisticated methodologies have been used which have ma-

naged to improve the classification results in front of the linear classifiers. However,

in [107], a linear methodology LDF has been used to distinguish between human
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emotions and it has offered a better result than the more sophisticated methodolo-

gies. This fact supports the choice of using a linear classifier to analyze between

groups of human emotions.

There are some limitations to note regarding the classificatory study. The use of a

linear classifier which is based on LDF makes results not optimal, since the features

do not follow the assumption of normality and they are not independent. In addition,

the sample size database used is small, and there are many emotions to classify and

a high variability in the signals. That is why it has been selected a LDF algorithm

in order to avoid an overtraining which could lead to a positive bias of the result.

The results extracted from this chapter suggest that although the analysis based on

the analysis 2 has been able to obtain characteristics that classify between joy vs.

fear, joy vs. sadness and joy vs. anger, the results obtained by the analysis 3 may

be more reliable since it considers the emotions normalized by their baseline state

and therefore eliminates the variability that these signals present. Furthermore, to

take into account the relationship between the HRV and the respiratory informa-

tion combined with lineal and non-lineal methodologies increases the reliability for

human emotion recognition.

86



Chapter 6

Conclusions

Contents
6.1 Conclusions for linear analysis methodology . . . . . . . . . 88

6.2 Conclusions for non-linear analysis methodology . . . . . . . 89

6.3 Conclusions for the classification analysis . . . . . . . . . . . 89

6.4 Future extensions . . . . . . . . . . . . . . . . . . . . . . . . 90

87
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Interest in emotion recognition has increased in recent years as a useful tool for

diagnosing psycho-neural illnesses. In this dissertation, linear and non-linear me-

thods based on the analysis of HRV were proposed for human emotion recognition.

For the linear analysis methodology, it was proposed the joint analysis of HRV and

respiration to improve human emotion characterization. With this purpose, the HF

band was defined based on the maximum spectral correlation between HRV and

respiration. The ρmax itself was proposed as an index to identify emotions. The

hypothesis was that this index could add relevant information to HRV analysis to

describe human emotions.

Regarding to the non-linear analysis methodologies, the AMIF technique was ap-

plied to HRV signals to study complex interdependencies, and the CMIF technique

was considered to quantify the complex coupling between HRV and respiratory sig-

nals. Both algorithms were adapted to short term RR time series. Traditional band

pass filtering was applied to the RR series at LF and HF band, and also the redefined

HF based on the maximum spectral correlation between HRV and respiration was

investigated. Both the AMIF and the CMIF algorithms were calculated with regard

to different time scales as specific complexity measures.

The ability of the parameters derived from the linear and non-linear techniques was

evaluated on the database of video-induced emotion elicitation.

6.1 Conclusions for linear analysis methodology

In chapter 3, human emotion recognition was assessed by HRV analysis. To in-

crease the reliability of HRV measurements, a novel methodology based on spectral

correlation of HRV signal and respiration was proposed.

The new proposed method, the Spectrum Correlation for High Frequency band, re-

vealed an improvement in the reliability for sympathovagal balance estimation ca-

pable of discriminating between relax vs. joy, joy vs. each of the negative valences

and fear vs. sadness.
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This method provided the novel index, ρmax, which offers additional information

for emotion recognition, based on the relationship between HRV and respiration.

6.2 Conclusions for non-linear analysis methodology

The results extracted from chapter 4 suggested that the non-linear AMIF and the

CMIF techniques characterized the negative valence of fear, by reflecting a lower

complexity than the other emotions. Parameters derived from the AMIF allowed

extending the description of the complexity of vagal and sympathetic autonomic

rhythms. Parameters derived from the CMIF at the respiration-based bandwidth

provided relevant information related to non-linear mechanisms between vagal and

respiratory activity, especially for fear.

Furthermore, filtering the HRV signals into a redefined HF band provided a better

discrimination for parameters derived from the AMIF between relax and joy, relax

and fear, joy and all remaining emotion conditions as well as fear and all remaining

emotion conditions.

The non-linear AMIF and CMIF techniques provided complementary information

to other linear and non-linear methods.

6.3 Conclusions for the classification analysis

The results extracted from chapter 5 suggested that relax vs. joy, positive vs. all

negative valences, joy vs. fear, joy vs. sadness, joy vs. anger and fear vs. sadness

can be all classified.

Although the analysis based on the analysis 2 has been able to obtain characteristics

that classify between joy vs. fear, joy vs. sadness and joy vs. anger, the results

obtained by the analysis 3 may be more reliable since it considers the emotions

normalized by their baseline state and therefore eliminates the variability that these

signals present.
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The parameter CMIFmaxSC , which considers the non-linear coupling between the

HRV and the respiratory signal information in a HF band redefined by the SCHF

method, is the recurrent characteristic that appear in all classifications between po-

sitive and all negative valences together, and between joy and each single negative

valence. Another interesting parameter to be mentioned is ρmax, since it was able to

classify between joy vs. all negative valences, joy vs. sadness and anger. It can be

noted that ρmax also take into account the common information between HRV and

respiration.

6.4 Future extensions

The current clinical practice for diagnosing patients affected by psychological or

psychiatric disorders is based solely on verbal interviews and on specific question-

naire scores, and there are no reliable and objective psychophysiological markers

that are taken into account. For these reason, the characterization of emotional pa-

tterns can have an impact in the treatment of certain psychological pathologies.

In future works, it will be proposed to implement the algorithms and indices de-

rived from this research within a hardware like a biomedical equipment, an app or

a remote server which sends the signal to a health professional to be analyzed. This

tool opens the door to help in identifying emotional behaviors in people suffering

from mental pathologies. However, further studies are needed to test the validity

and reliability of the proposed index outside laboratory settings.

Another future extension to be considered is the outpatient monitoring, which con-

sist on tracking changes in the health status of patients outside the classical hospital

environment. Outpatient monitoring might be crucial after surgery, heart failure,

diabetes, mental illness, among others to monitor emergency patients before they

arrive at the hospital. This enables to improve the care patients receive and also

their diagnosis.

For these reason, the algorithms and indices derived from this research could be im-
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plemented on mobile devices which record and transmit medical data, being a low

cost and easy solution to obtain continuous and long term dynamic physiological

data. This tool could provide an intelligent monitoring of outpatient individuals

with mental illnesses with the purpose of designing individualized therapies. The

importance of monitoring by means of an ambulatory system, individuals with de-

pression or anxiety, between other mental illness, comes from the fact that it could

alert during or before emergency crisis and also, it could maintain their attention on

modulating their emotional responses.
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El interés en el reconocimiento de emociones ha aumentado en los últimos años

por ser una herramienta útil para diagnosticar enfermedades psico-neurales. En esta

disertación se han propuesto métodos basados en análisis lineales y no lineales para

analizar la variabilidad del ritmo cardı́aco con la finalidad de identificar emociones

humanas.

Para el análisis lineal se propuso analizar conjuntamente la variabilidad del ritmo

cardı́aco y la respiración para ası́ mejorar la caracterización de las emociones hu-

manas. Con este propósito, la banda de alta frecuencia se definió mediante la

correlación espectral máxima entre la variabilidad del ritmo cardı́aco y la respir-

ación. Además, ρmax fue propuesta como un ı́ndice para identificar emociones, con

la hipótesis de que este ı́ndice podrı́a agregar información relevante al análisis de la

variabilidad del ritmo cardı́aco para describir las emociones humanas.

Con respecto al análisis no lineal, la Función de Auto Información Mutua se ap-

licó a las señales de variabilidad del ritmo cardı́aco para estudiar las interdepen-

dencias complejas, y se consideró la Función de Información Mutua Cruzada para

cuantificar el acoplamiento complejo entre la variabilidad del ritmo cardı́aco y las

señales respiratorias. Ambos algoritmos se adaptaron a series temporales RR de

corta duración. Se aplicó un filtro pasabanda tradicional a la serie RR en las bandas

de baja y alta frecuencia, y también se investigó la banda de alta frecuencia redefi-

nida según la correlación espectral máxima entre la variabilidad del ritmo cardı́aco

y la respiración. Los algoritmos de la Función de Auto Información Mutua y de

la Función de Información Mutua Cruzada se calcularon con respecto a diferentes

escalas de tiempo como medidas de complejidad especı́ficas.

Se evaluó la capacidad de los parámetros derivados de las técnicas lineales y no

lineales en la base de datos de emociones inducidas mediante videos.
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7.1 Conclusiones del análisis lineal

En el capı́tulo 3, se evaluó el reconocimiento de emociones humanas mediante el

análisis de variabilidad del ritmo cardı́aco. Para aumentar la fiabilidad de las medi-

ciones de variabilidad del ritmo cardı́aco se propuso una nueva metodologı́a basada

en la correlación espectral máxima entre la señal de variabilidad del ritmo cardı́aco

y la respiración.

Este nuevo método propuesto, la correlación espectral en la banda de alta frecuen-

cia, mejoró la estimación del equilibrio simpáticovagal capaz de discriminar entre la

relajación versus alegrı́a, alegrı́a versus cada una de las valencias negativas y miedo

versus tristeza.

Además este método proporcionó un nuevo parámetro, ρmax, que ofrece inform-

ación adicional para el reconocimiento de emociones, basado en la relación entre la

variabilidad del ritmo cardı́aco y la respiración.

7.2 Conclusiones del análisis no lineal

Los resultados extraı́dos del capı́tulo 4 sugirieron que las técnicas no lineales Función

de Auto Información Mutua y Función de Información Mutua Cruzada caracteri-

zan la valencia negativa del miedo, al reflejar una menor complejidad que las otras

emociones. Los parámetros derivados de la Función de Auto Información Mutua

permitieron ampliar la descripción de la complejidad de los ritmos autónomos va-

gales y simpáticos. Los parámetros derivados de la Función de Información Mutua

Cruzada en la banda de alta frecuencia basada en la respiración proporcionaron

información relevante relacionada con mecanismos no lineales entre la actividad

vagal y respiratoria, especialmente para el miedo.

Además, filtrar las señales de variabilidad del ritmo cardı́aco en una banda de alta

frecuencia redefinida proporcionó una mejor discriminación de los parámetros de-

rivados de la Función de Auto Información Mutua entre relajación y alegrı́a, rela-
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jación y miedo, alegrı́a y todas las condiciones emocionales restantes, ası́ como el

miedo y todas las condiciones emocionales restantes.

Las técnicas no lineales Función de Auto Información Mutua y Función de Inform-

ación Mutua Cruzada proporcionaron información complementaria a otros métodos

lineales y no lineales.

7.3 Conclusiones del análisis de clasificación

Los resultados extraı́dos del capı́tulo 5 sugirieron que ha sido posible clasificar re-

lajación versus alegrı́a, alegrı́a versus todas las valencias negativas juntas, alegrı́a

versus miedo, alegrı́a versus tristeza, alegrı́a versus ira y miedo versus tristeza.

A pesar de que mediante el estudio basado en el análisis 2 se han podido obtener

caracterı́sticas que clasifican entre alegrı́a versus miedo, alegrı́a versus tristeza, y

alegrı́a versus ira, los resultados obtenidos mediante el análisis 3 pueden ser más

significativos ya que este análisis considera las emociones normalizadas por su es-

tado basal y, por lo tanto, elimina la variabilidad que presentan estas señales.

El parámetro CMIFmaxSC , que considera el acoplamiento no lineal entre la variabili-

dad del ritmo cardı́aco y la información respiratoria en una banda de alta frecuencia

redefinida por el método SCHF, ha sido una caracterı́stica recurrente que aparece

en todas las clasificaciones entre alegrı́a versus todas las valencias negativas juntas,

entre alegrı́a versus cada valencia negativa individual, y entre miedo versus tristeza.

Otro parámetro interesante a mencionar es ρmax, ya que ha sido capaz de clasificar

entre alegrı́a versus miedo, alegrı́a versus tristeza y alegrı́a versus ira. Cabe señalar

que ρmax también tiene en cuenta la información común entre la variabilidad del

ritmo cardı́aco y la respiración.
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7.4 Extensiones futuras

La práctica clı́nica actual para diagnosticar pacientes afectados por trastornos psicológicos

o psiquiátricos se basa únicamente en entrevistas verbales y en puntajes de cuestio-

narios especı́ficos, y no hay marcadores psicofisiológicos adecuados y objetivos que

se tengan en cuenta. Por esta razón, la caracterización de los patrones emocionales

puede tener un impacto en el tratamiento de ciertas patologı́as psicológicas.

En trabajos futuros, se propondrá implementar los algoritmos y parámetros deriva-

dos de esta investigación dentro de un hardware como por ejemplo puede ser un

equipo biomédico, una aplicación o un servidor remoto que envı́e la señal a un pro-

fesional de la salud para su posterior análisis. Esta herramienta abre la puerta para

ayudar a identificar comportamientos emocionales en personas que sufren pato-

logı́as mentales. Sin embargo, se necesitan más estudios para probar la validez y

confiabilidad de los parámetros propuestos fuera de los entornos de laboratorio.

Otra extensión futura a considerar es la monitorización ambulatoria, que consiste

en rastrear los cambios en el estado de salud de los pacientes fuera del entorno

hospitalario clásico. El monitoreo ambulatorio puede ser crucial después de una

cirugı́a, insuficiencia cardı́aca, diabetes, enfermedades mentales, entre otros, para

monitorear a los pacientes ante una emergencia antes de llegar al hospital. Esto

permite mejorar la atención que reciben los pacientes y también su diagnóstico.

Por esta razón, los algoritmos y parámetros derivados de esta investigación podrı́an

implementarse en dispositivos móviles que registran y transmiten datos médicos,

siendo una solución fácil y de bajo coste para obtener datos fisiológicos dinámicos

continuos y a largo plazo. Esta herramienta podrı́a proporcionar un monitoreo in-

teligente de pacientes ambulatorios con enfermedades mentales con el propósito de

diseñar terapias individualizadas. La importancia del monitoreo por medio de un

sistema ambulatorio a individuos con depresión o con ansiedad, entre otras enfer-

medades mentales, viene del hecho de que podrı́a alertar durante o antes de una

crisis de emergencia y también, podrı́a mantener su atención en la modulación de

sus respuestas emocionales.
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8.1 Scientific contributions

The methodologies and results presented in this dissertation and elaborated during

my PhD studies have been published in the following works.

International Journals:

• [100] Valderas, M.T., Bolea, J., Orini, M., Laguna, P., Orrite, C., Vallverdú,

M. and Bailón, R., Human emotion characterization by heart rate variability

analysis guided by respiration, IEEE Journal of Biomedical and Health In-

formatics, 2019, DOI: 10.1109/JBHI.2019.2895589.

• [98] Valderas, M.T., Bolea, J., Laguna, P., Bailón, R. and Vallverdú, M.,

Mutual information between heart rate variability and respiration for emotion

characterization, Physiological Measurement, Volume 40, Number 8, 2019,

DOI: 10.1088/1361-6579/ab310a.

International conferences:

• [99] Valderas, M.T., Bolea, J., Laguna, P., Vallverdú, M. and Bailón, R.,

Human emotion recognition using heart rate variability analysis with spectral

bands based on respiration, 37th International Conference on IEEE EMBS

International Conference on Engineering in Medicine and Biology Society,

2015, 6674-6677, DOI: 10.1109/EMBC.2015.7319792.

8.2 Acronyms

In this section a glossary with the most used abbreviations and parameters, with

nomenclature and definition, is presented.

8.2.1 List of abbreviations

• µ: mean.
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• σ : standard deviation.

• A: anger.

• AMIF: Auto-Mutual Information Function.

• ANN: Articial Neural Networks.

• ANO-VA: analysis of variance.

• ANS: autonomic nervous system.

• ApEn: Approximate Entropy.

• ARMA model: time-varying autoregressive moving average model.

• AUC: receiver operating characteristic curve.

• BNE: Basic Negative Emotion.

• BP: blood pressure.

• bpm: beats per minute.

• BPE: Basic Positive Emotion.

• CFMEn: Cross Fuzzy Measure Entropy.

• CMIF: Cross-Mutual Information Function.

• CSEn: Cross Sample Entropy.

• DFA: Detrended Fluctuation Analysis.

• DLEs: Dominant Lyapunov Exponents (DLEs).

• ECG: electrocardiography.

• EEG: electroencephalography.

• F: fear.

• FD: Fisher Discriminant.

• FMEn: Fuzzy Measure Entropy.
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• GSR: galvanic skin response.

• HF: high frequency.

• HFFR: shifted HF band centered at FR with fixed bandwidth.

• HFSC: redefined HF band based in the Spectrum Correlation HF method.

• HRV: heart rate variability.

• IPFM model: integral pulse frequency modulation model.

• J: joy.

• kNN: k-Nearest Neighbour.

• LDF: Linear Discriminant Function.

• LF: low frequency.

• LLP: Lagged Poincaré Plot.

• MBP: Marquardt Backpropagation.

• MP: Multilayer Perceptron.

• MRE: mean relative error.

• NFS: Neuro-Fuzzy System.

• PANAS-X: the Positive and Negative Affect Schedule - Expanded Form.

• PD2: Pointwise Correlation Dimension.

• PE: Permutation Entropy.

• PME: Permutation Min-Entropy.

• PSD: power spectrum density.

• Q1: interquartile ranges in the first quartile.

• Q3: interquartile ranges in the third quartile.

• R: relax.
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• RF: Random Forests.

• RSA: respiratory sinus arrhythmia.

• S: sadness.

• SA node: sinoatrial node.

• SCHF method: Spectrum Correlation HF method.

• SEn: Sample Entropy.

• ST: skin temperature variation.

• SVM: Support Vector Machines.

• ULF: ultra low frequency.

• VLF: very low frequency.

8.2.2 List of parameters

• ρmax: maximum spectral correlation between HRV and respiration.

• τ: prediction time or time lag of the AMIF or the CMIF.

• τa: lower-time scale boundary corresponding to the SCHF prediction time

range.

• τb: upper-time scale boundary corresponding to the SCHF prediction time

range.

• τmaxRR: time lag between CMIFmax and CMIF0 studied in the RR(t) series.

• τmaxSC : time lag between CMIFmax and CMIF0 studied in the (RRSC(t)), which

is the RR(t) series filtered in the HFSC band.

• ∆HF : distance between the lower and the upper limit of the HFSC band.

• Λ: Wilks′s Lambda.

• amax: lower limit of the HFSC band.
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• ATRR: total area under the curve RR(t) series.

• ATLF : total area under the curve RRLF (t) series.

• ATHF : total area under the curve RRHF (t) series.

• ATSC : total area under the curve RRSC(t) series.

• Acc: accuracy.

• bmax: upper limit of the HFSC band.

• BD: beat decay.

• CMIF0RR: CMIF value at τ = 0 of the RR(t) series.

• CMIF0SC : CMIF value at τ = 0 of the RRSC(t) series.

• CMIFmaxRR: maximum CMIF value of the RR(t) series.

• CMIFmaxSC : maximum CMIF value of the RRSC(t) series.

• dHR(t): instantaneous heart rate.

• dHRM(t): time-varying mean heart rate.

• dHRM: mean of dHRM(t).

• FR: respiratory frequency.

• FRFR
: respiratory frequency of the recordings which accomplishes the restric-

tion of FR ≥ 0.10 Hz.

• FRSC : respiratory frequency of the recordings which accomplishes all the re-

strictions imposed in Section 3.2.2 Frequency band definition.

• FN: false negatives.

• FP: false positives.

• Hx(t): Shannon entropy.

• I: Number of bins.

• m(t): modulating signal.
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• P-: negative predictive value.

• P+: positive predictive value.

• PHF : power content in the HF band.

• PHFFR
: power content in the HFFR band.

• PHFSC : power content in the HFSC band.

• PLF : power content in the LF band.

• PLFn: normalized power in the LF band.

• PLFnFR
: normalized power in the LF band considering the HFFR band.

• PLFnSC : normalized power in the LF band considering the HFSC band.

• PD: Peak decay.

• PDm: mean peak decay.

• PDmLF : mean peak decay of the RRLF (t) series.

• PDmHF : mean peak decay of the RRHF (t) series.

• PDmSC : mean peak decay of the RRSC(t) series.

• r(t): respiratory signal.

• R: ratio LF/HF.

• RFR: ratio LF/HFFR .

• RSC: ratio LF/HFSC.

• RR(t): RR time series.

• RRLF (t): RR(t) series filtered in the LF band.

• RRHF (t): RR(t) series filtered in the HF band.

• RRSC(t): RR(t) series filtered in the HFSC band.

• Se: sensitivity.
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• Sp: specificity.

• Sattentiveness: attentiveness scale.

• S f atigue: fatigue scale.

• S f ear: fear scale.

• Sguilt : guilt scale.

• Shostility: hostility scale.

• S joviality: joviality scale.

• Ssadness: sadness scale.

• Ssel f−assurancescale: self-assurance scale.

• Sserenity: serenity scale.

• Sshyness: shyness scale.

• Sm( f ): power spectrum density of m(t).

• Sr( f ): power spectrum density of r(t).

• Ssurprise: surprise scale.

• TN: true negatives.

• TP: true positive.
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R. Inclusion of respiratory frequency information in heart rate variability

analysis for stress assessment. IEEE Journal of Biomedical and Health In-

formatics 20, 4 (2016), 1016–1025.

[48] HOYER, D., FRIEDRICH, H., FRANK, B., POMPE, B., BARANOWSKI, R.,

ZEBROWSKI, J. J., AND SCHMIDT, H. Autonomic information flow im-

proves prognostic impact of task force hrv monitoring. Computer Methods

and Programs in Biomedicine 81 (2006), 246–255.

[49] HOYER, D., LEDER, U., HOYER, H., POMPE, B., SOMMER, M., AND

ZWIENER, U. Mutual information and phase dependencies: measures of

reduced nonlinear cardiorespiratory interactions after myocardial infarction.

Medical Engineering and Physics 24 (2002), 33–43.

112



BIBLIOGRAPHY

[50] KATSIS, C. D., KATERTSIDIS, N. S., AND FOTIADIS, D. I. An integrated

system based on physiological signals for the assessment of affective states

in patients with anxiety disorders. Biomedical Signal Processing and Control

6, 3 (2011), 261–268.

[51] KEMENY, M. E., AND GRUENEWALD, T. L. Affect, cognition, the immune

system and health. Progress in brain research 122 (2000), 291–308.

[52] KEMP, A. H., QUINTANA, D. S., GRAY, M. A., FELMINGHAM, K. L.,

BROWN, K., AND GATT, J. M. Impact of depression and antidepressant

treatment on heart rate variability: A review and meta-analysis. Biological

Psychiatry 67, 11 (2010), 1067–1074.

[53] KIM, K. H., BANG, S. W., AND KIM, S. R. Emotion recognition system

using short-term monitoring of physiological signals. Medical and Biological

Engineering and Computing 42, 3 (2004), 419–427.
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BAILÓN, R. Human emotion recognition using heart rate variability ana-

lysis with spectral bands based on respiration. In IEEE EMBS International

Conference on Engineering in Medicine and Biology Society (2015), 37th

International Conference on, pp. 6674–6677.

118



BIBLIOGRAPHY

[100] VALDERAS, M. T., BOLEA, J., ORINI, M., LAGUNA, P., ORRITE, C.,
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