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Abstract

Cardiovascular diseases represent the main cause of mortality and morbidity in indus-
trialized societies. A significant percentage of deaths associated with these diseases
is related to the generation of cardiac arrhythmias, defined as abnormalities in
the electrical functioning of the heart. Three major elements are involved in the de-
velopment of arrhythmias, which include an arrhythmogenic substrate, a trigger and
modulating factors. The Autonomic Nervous System (ANS) is the most rele-
vant of these modulators. The ANS is composed of two branches, sympathetic and
parasympathetic, which to a certain extent act antagonistically to each other. The
possibility of revealing how the sympathetic nervous system modulates the activity of
the ventricles (lower heart chambers) and participates in the development of arrhyth-
mias, as reported experimentally, could be crucial to advance in the design of new
clinical therapies aimed at preventing or treating these rhythm abnormalities.

This thesis investigates spatio-temporal variability of human ventricular repolar-
ization, its modulation by the sympathetic nervous system, the mechanisms behind
highly elevated variability and the relationship to the generation of ventricular ar-
rhythmias. To that end, methodologies combining signal processing of ventricular
signals and in silico modeling of human ventricular myocytes are proposed. The
developed in silico models include coupled theoretical descriptions of electrophysiol-
ogy, calcium dynamics, mechanical stretch and β-adrenergic signaling. To account
for temporal (beat-to-beat) repolarization variability, stochasticity is added into the
equations defining the gating of the ion channels of the main currents active dur-
ing action potential (AP) repolarization, i.e. during the return of the cell to the
resting state after an excitation. To account for spatial (cell-to-cell) repolarization
variability, a population of models representative of different cellular characteristics
are constructed and calibrated based on available experimental data. The theoretical
computational research of this study, combined with the processing of clinical and
experimental ventricular signals, lays the ground for future studies aiming at improv-
ing arrhythmic risk stratification methods and at guiding the search for more efficient
anti-arrhythmic therapies.

In Chapter 2, a population of experimentally-calibrated stochastic human ven-
tricular computational cell models coupling electrophysiology, mechanics and β-adrener-
gic signaling are built to investigate spatio-temporal variability. Model calibration is
based on experimental ranges of a number of AP-derived markers describing AP du-
ration, amplitude and shape. By using the proposed population of stochastic AP
models, the experimentally reported interactions between a particular type of tempo-
ral variability associated with low-frequency (LF) oscillations of AP duration (APD)
and overall beat-to-beat variability of repolarization (BVR) in response to enhanced
sympathetic activity are reproduced. Ionic mechanisms behind correlated increments
in both phenomena are investigated and found to be related to downregulation of the
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inward and rapid delayed rectifier K+ currents and the L-type Ca2+ current. Con-
comitantly elevated levels of LF oscillations of APD and BVR in diseased ventricles
are shown to lead to electrical instabilities and arrhythmogenic events.

In Chapter 3, the time delay for manifestation of LF oscillations of APD, as
a particular form of repolarization variability, is investigated in ventricular myocytes
in response to sympathetic provocation. By using an experimentally-calibrated pop-
ulation of human ventricular AP models, as in Chapter 2, this oscillatory latency
is demonstrated to be associated with the slow phosphorylation kinetics of the slow
delayed rectifier K+ current IKs in response to β-adrenergic stimulation. Prior stimu-
lation of β-adrenoceptors substantially reduces the time required for the development
of LF oscillations. In addition, short time lapses are shown to be related to large APD
oscillatory magnitudes, as measured in Chapter 2, particularly in cells susceptible to
develop arrhythmogenic events in response to sympathetic stimulation.

The experimental calibration of the population of models used in Chapter 2 and
Chapter 3, despite ensuring that simulated population measurements lie within exper-
imental limits, does not guarantee that each model in the constructed population rep-
resents the experimental measurements of an individual human ventricular cardiomy-
ocyte. It is for that reason that in Chapter 4 a novel methodology is developed to
construct computational populations of human ventricular cell models that more faith-
fully recapitulate individual available experimental evidences. The proposed method-
ology is based on the formulation of nonlinear state-space representations and the use
of the Unscented Kalman Filter (UKF) to estimate parameters and state variables of
an underlying stochastic AP model given any input voltage trace. Tests performed
over synthetic and experimental voltage traces demonstrate that this methodology
successfully renders a one-to-one match between input AP traces and sets of model
parameters (ionic current conductances) and state variables (ionic gating variables
and intracellular concentrations). The proposed methodology is shown to be robust
for investigation of spatio-temporal variability in human ventricular repolarization.

Chapter 5 improves the methodology developed in Chapter 4 to more accurately
estimate parameters and state variables of stochastic human ventricular cell models
from individual input voltage traces and to reduce the converge time so as to pro-
vide faster estimation. The improvements are based on the combined use of the UKF
method of Chapter 4 together with Double Greedy Dimension Reduction (DGDR)
method with automatic generation of biomarkers. Additionally, on top of estimat-
ing ionic current conductances at baseline conditions, the approach presented in this
chapter also provides a set of β-adrenergic-induced phosphorylation levels, thus con-
tributing to the analysis of spatio-temporal repolarization patterns with and without
autonomic modulation.

In conclusion, this thesis presents novel methodologies for characterization of
spatio-temporal variability of human ventricular repolarization, for dissection of its
underlying mechanisms and for ascertainment of the relationship between elevated
variability and increased risk for ventricular arrhythmias and sudden cardiac death.
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Sets of stochastic human computational cell models with representation of ventricu-
lar electrophysiology, mechanics and β-adrenergic signaling are developed and used
to analyze overall beat-to-beat and cell-to-cell repolarization variability as well as a
particular type of variability in the form of LF oscillations. To faithfully reproduce
experimentally measured variability patterns in a one-to-one manner, methodologies
are proposed to construct populations of human ventricular AP models where the pa-
rameters and state variables of a model are estimated from a given input voltage trace.
These personalized models open the door to more robust investigation of the causes
and consequences of spatio-temporal variability of human ventricular repolarization.





Resumen y Conclusiones

Las enfermedades cardiovasculares representan la principal causa de mortalidad y mor-
bilidad en las sociedades industrializadas. Un porcentaje significativo de las muertes
asociadas a estas enfermedades está relacionado con el desarrollo de arritmias cardía-
cas, siendo éstas definidas como anomalías en el funcionamiento eléctrico del corazón.
Tres son los elementos principales que están involucrados en el desarrollo de las ar-
ritmias: un sustrato arritmogénico, un desencadenante y factores de modulación. El
Sistema Nervioso Autónomo (SNA) es el más relevante de estos factores modu-
ladores. El SNA está compuesto por dos ramas, simpática y parasimpática, que en
cierta medida actúan de forma antagónica entre sí. La posibilidad de identificar cómo
el sistema nervioso simpático modula la actividad ventricular y participa en el desar-
rollo de arritmias, tal y como se ha observado experimentalmente, podría ser crucial
para avanzar en el diseño de nuevas terapias clínicas dirigidas a prevenir o tratar estas
anomalías rítmicas.

Esta tesis investiga y analiza la variabilidad espacio-temporal de la repolarización
ventricular humana, su modulación por el sistema nervioso simpático, los mecanismos
que subyacen a incrementos notables en dicha variabilidad y la relación que existe
con la generación de arritmias ventriculares. Para ello, se proponen metodologías
que combinan el procesado de señales ventriculares y el modelado in silico de
miocitos ventriculares humanos. Los modelos in silico desarrollados incluyen descrip-
ciones teóricas acopladas de la electrofisiología, la dinámica del calcio, el estiramiento
mecánico y la señalización β-adrenérgica. Para tener en cuenta la variabilidad tempo-
ral (latido a latido) de la repolarización, se añade estocasticidad en las ecuaciones que
definen la apertura y cierre de los canales iónicos de las principales corrientes activas
durante la fase de repolarización del potencial de acción (AP), es decir, durante el
retorno de la célula al estado de reposo después de una excitación. Por otro lado,
para tener en cuenta la variabilidad espacial (célula a célula) de la repolarización, se
construye y calibra una población de modelos representativos de diferentes caracterís-
ticas celulares utilizando para ello datos experimentales disponibles. La investigación
teórica y computacional de este estudio, combinada con el procesado de señales ven-
triculares tanto clínicas como experimentales, sienta las bases para futuros estudios
que tengan como objetivo mejorar los métodos de estratificación del riesgo arrítmico
y guiar la búsqueda de terapias antiarrítmicas más eficaces.

En el Capítulo 2, se construye una población de modelos computacionales es-
tocásticos representativos de células ventriculares humanas, los cuales se calibran ex-
perimentalmente. Estos modelos combinan la electrofisiología, la mecánica y la señal-
ización β-adrenérgica y se utizan para caracterizar de modo teórico la variabilidad
espacio-temporal. La calibración de los modelos se basa en rangos experimentales de
una serie de marcadores derivados del AP que describen su duración, amplitud y mor-
fología. Mediante el uso de esta población de modelos estocásticos de AP se reproducen
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x Resumen y Conclusiones

las interacciones descritas experimentalmente entre un tipo particular de variabilidad
temporal, asociada con las oscilaciones de baja frecuencia (LF) de la duración del AP
(APD), y la variabilidad global latido a latido de la repolarización (BVR) en respuesta
a un incremento de la actividad simpática. Además, en este capítulo se han estudiado
los mecanismos iónicos que están detrás de los incrementos simultáneos de ambos fenó-
menos y se ha demostrado que dichos mecanismos están asociados con la disminución
de las corrientes rectificadora de entrada y rectificadora retardada rápida de K+ y a su
vez de la corriente de Ca2+ tipo L. Finalmente, se ha probado que niveles elevados de
oscilaciones de baja frecuencia del APD y de BVR en ventrículos enfermos conducen
a inestabilidades eléctricas y al desarrollo de eventos arritmogénicos.

En el Capítulo 3, se investiga el retardo necesario para la manifestación de las os-
cilaciones LF del APD, como una forma particular de variabilidad de la repolarización,
en los miocitos ventriculares en respuesta a la provocación simpática. Mediante el uso
de una población calibrada experimentalmente de modelos de AP ventriculares hu-
manos, como en el Capítulo 2, se ha demostrado que esta latencia oscilatoria está
asociada con la cinética lenta de fosforilación de la corriente rectificadora retardada
lenta de K+ (IKs) en respuesta a la estimulación β-adrenérgica. La estimulación pre-
via de los receptores β reduce sustancialmente el tiempo requerido para el desarrollo
de oscilaciones LF. Además, se ha demostrado que lapsos de tiempo cortos están ín-
timamente relacionados con mayores magnitudes oscilatorias del APD, medidas en el
Capítulo 3, particularmente en células susceptibles de desarrollar eventos arritmogéni-
cos en respuesta a la estimulación simpática.

La calibración experimental de la población de modelos utilizados en los Capítulos
2 y 3, pese a asegurar que las medidas simuladas a partir de la población construida
se encuentran dentro de límites experimentales descritos en la literatura, no garantiza
que cada modelo de la población represente las medidas de un cardiomiocito ven-
tricular humano individual. Es por esta razón que en el Capítulo 4 se desarrolla
una metodología novedosa para construir poblaciones computacionales de modelos
celulares ventriculares humanos que recapitulen más fielmente las evidencias exper-
imentales disponibles. La metodología propuesta se basa en la formulación de rep-
resentaciones estado-espacio no lineales y en el uso del filtro de Kalman unscented
(UKF) para la estimación de los parámetros y las variables de estado de un mod-
elo AP estocástico subyacente para cada señal de potencial dada como entrada. Las
pruebas realizadas sobre series de potencial sintéticas y experimentales demuestran
que esta metodología permite establecer una correspondencia entre las trazas AP de
entrada y los conjuntos de parámetros del modelo (conductancias de corriente iónicas)
y las variables de estado (variables relacionadas con la apertura/cierre de los canales
iónicos y concentraciones iónicas intracelulares). A su vez, se ha demostrado que la
metodología propuesta es robusta y adecuada para la investigación de la variabilidad
espacio-temporal en la repolarización ventricular humana.

En el Capítulo 5 se proponen varias mejoras a la metodología desarrollada en el
Capítulo 4 para estimar con mayor precisión los parámetros y las variables de estado
de los modelos estocásticos de células ventriculares humanas a partir de señales indi-
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viduales de AP dadas como entradas y, a su vez, para reducir el tiempo de convergencia
a fin de proporcionar una estimación más rápida. Las mejoras se han basado en el uso
combinado del método UKF, presentado en el Capítulo 4, junto con el método Double
Greedy Dimension Reduction (DGDR) con generación automática de biomarcadores.
Además de estimar las conductancias de las corrientes iónicas en condiciones basales,
el enfoque presentado en este capítulo también proporciona un conjunto de niveles de
fosforilación inducidos por la estimulación β-adrenérgica, contribuyendo así al análisis
de patrones de repolarización espacio-temporal con y sin modulación autonómica.

En conclusión, esta tesis presenta novedosas metodologías enfocadas hacia la
caracterización de la variabilidad espacio-temporal de la repolarización ventricular hu-
mana, el análisis de sus mecanismos subyacentes y la determinación de la relación entre
aumentos en la variabilidad y el mayor riesgo de sufrir arritmias ventriculares y muerte
súbita cardíaca. Se desarrollan conjuntos de modelos computacionales estocásticos
celulares humanos con representación de la electrofisiología ventricular, la mecánica y
la señalización β-adrenérgica para analizar la variabilidad global de la repolarización,
latido a latido y célula a célula, así como de un tipo particular de variabilidad en forma
de oscilaciones de baja frecuencia. Para reproducir fielmente los patrones de variabili-
dad medidos experimentalmente de manera individual, se proponen metodologías para
construir poblaciones de modelos AP ventriculares humanos donde los parámetros y
las variables de estado de cada modelo se estiman a partir de una serie de potencial
de entrada dada. Estos modelos personalizados abren la puerta a una investigación
más robusta de las causas y consecuencias de la variabilidad espacio-temporal de la
repolarización ventricular humana.
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1.1 Cardiac Arrhythmias

Cardiovascular diseases (CVDs) are the first cause of mortality and morbidity in the
world, representing over one third of all global deaths [1]. By 2030 the annual number
of deaths from CVDs is expected to reach 22 million. In Spain, more than 120,000
people die from CVDs each year, which corresponds to approximately 29% of all
deaths [2]. CVDs comprise a group of disorders related to the heart and blood vessels,
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2 Chapter 1. Introduction

including diseases like coronary heart disease, high blood pressure, cerebral heart
disease, heart failure and cardiomyopathies, to name a few.

A significant percentage of deaths from CVDs are related to cardiac arrhythmias,
defined as abnormalities in the electrical functioning of the heart [3], which may in
some cases lead to sudden cardiac death. According to the etymology of the word
arrhythmia, this represents a problem in the rhythm of the heartbeat, which may be
too fast, too slow or even not present a definite pattern. Of all the different types of
cardiac arrhythmias, bradycardias, premature or ectopic beats, atrial fibrillation and
ventricular fibrillation are common ones.

Three main elements are involved in the development of arrhythmias, including an
arrhythmogenic substrate, a trigger and modulators. The Autonomic Nervous System
(ANS) is the most relevant of these modulators. The ANS is composed of two branches,
sympathetic and parasympathetic, which to some extent act antagonistically to each
other. To date, the action of the ANS on the sino-atrial node, the heart’s natural
pacemaker, has been exhaustively investigated, mainly by quantifying its effects on the
heart rate and its variability. There is, however, much larger uncertainty regarding
the effects associated with the autonomic innervation of other regions in the heart,
such as the atria and the ventricles, i.e. the upper and lower cavities of the heart,
respectively [4].

Considering ventricular arrhythmias that may end up in sudden cardiac death,
the possibility of revealing how ANS modulates ventricular activity and participates
in the development of arrhythmias could be crucial to advance in the proposal of more
robust techniques for arrhythmic risk stratification and in the design of novel clinical
strategies aimed at preventing or treating arrhythmias. Based on this, the present the-
sis investigates spatio-temporal variability in human ventricular electrical activity and
its modulation by the ANS, dissects mechanisms underlying autonomically-mediated
elevations in repolarization variability and assesses the implications in terms of ar-
rhythmia generation. To conduct these investigations, methodologies are proposed
that combine processing of ventricular signals and in silico modeling of ventricular
electrico-mechanical activity with integrated regulation by the ANS.

In the following sections, a general introduction into the electrical functioning
of the heart and the ANS acting as a modulator of such functioning is presented.
Subsequently, in silico cellular modeling of cardiac electromechanics and β-adrenergic
(β-A) signaling is introduced, providing an overview of the main characteristics of
computational models so far published in the literature. A more extensive description
of the O’Hara-Virág-Varró-Rudy (ORd) human ventricular electrophysiological cell
model [5] is presented, as it represents the basis for subsequent computational models
developed in this thesis to analyze spatio-temporal variability of human ventricular
repolarization.
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1.2 The Heart

1.2.1 Anatomy and Function

The heart is the most important organ of the circulatory system, being responsible
for pumping oxygen-rich blood to the rest of the body so that all body parts can
function in a correct way [6]. The heart, which is about the size of a fist, is divided
into two similar sides, left and right, which beat synchronously, although each side is
responsible for a part of the circulatory system. As illustrated in Fig.1.1, the two sides
of the heart, each of them comprised by an atrium and a ventricle, are separated by a
muscular wall called the septum. Inside the heart, there are four valves that control
the blood flow between the atria and the ventricles, so-called atrioventricular (mitral
and tricuspid) valves, and between the ventricles and the arteries that deliver blood
to the lungs and to the rest of the body, so-called pulmonary and aortic valves.

Figure 1.1: Scheme of the anatomy of the heart and the main vessels. The arrows illustrate
blood flow direction. Figure adapted from [7].

Under physiological operating conditions, oxygen-poor blood enters the heart
through the right atrium and, after atrial contraction, passes into the right ventri-
cle through the tricuspid valve. From there, ventricular contraction pumps the blood
to the lungs, through the pulmonary valve, for subsequent blood oxygenation. Mean-
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while, on the left side of the heart, oxygen-rich blood enters the atrium from the lungs
and, following atrial contraction, passes into the ventricle through the mitral valve.
Left ventricular contraction is responsible for pumping this oxygen-rich blood to the
rest of the body. On the above basis, it can be understood that proper blood circu-
lation is founded on the perfect mutual interplay of heart’s electrical and mechanical
functioning, which ensures an appropriate contraction-relaxation cycle following prop-
agation of the electrical impulse throughout the heart. Contraction and relaxation
movements are also known as systole and diastole, respectively.

1.2.2 Cellular Electrical Activity

Cardiomyocytes are surrounded by a lipid bilayer membrane that restricts the flow of
water-soluble substances, such as ions, except for specific ion-permeable pores in the
membrane called ion channels. These ion channels are pore-forming proteins embedded
in the membrane that selectively allow ions to pass through them. The main ions
in the intracellular and extracellular media of cardiomyocytes are potassium (K+),
sodium (Na+), calcium (Ca2+) and chloride (Cl−), being their movement driven by
the electrical gradient force and the chemical gradient force.

This ionic movement across the cell membrane, in relation to the opening and
closing of ion channels, generates a transmembrane potential which can be explained
by the different ion concentrations between the inside and the outside of the cell and
the permeability of each ion. The evolution of this transmembrane potential along
a cardiac beat is called action potential (AP). The AP of cardiac myocytes is de-
fined by a fast increase (depolarization) followed by a slow decrease (repolarization)
in transmbembrane voltage. This property of excitability, i.e. a brief stimulus pro-
duces an electrical response in the form of a change in transmembrane voltage before
the eventual return to equilibrium, is one of the main characteristics of atrial and
ventricular cardiomyocytes [7].

Fig 1.2 illustrates the AP of a ventricular cell together with an indication of its
different phases along a cycle:

• Phase 0. Rapid Depolarization: This phase, also known as AP upstroke, is
caused by a rapid inflow of Na+ through voltage-gated sodium channels, which
generates a sharp increase in transmembrane potential as long as the cell has
been excited with an stimulus current of sufficient magnitude to raise voltage over
the threshold for sodium channels to open. During this phase, transmembrane
potential may change from -85 mV to more than 20 mV in approximately 3-5 ms
[8, 9].

• Phase 1. Early Repolarization: In this phase, also known as AP dome, the
sodium channels become inactivated, whereas the outward transient potassium
current begins to repolarize the cell, thus transiently reducing the transmem-
brane potential [8, 9].
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Figure 1.2: Illustration of an AP as obtained by the computational ORd human ventricular
cell model [5], with an indication of the different AP phases.

• Phase 2. Plateau: This AP plateau phase is due to the balance between the
influx of Ca2+ ions through the slow calcium channels and the slow opening of
outward K+ channels [8, 9].

• Phase 3. Repolarization: In this phase, the transmembrane potential returns
to the resting potential due to inactivation of Ca2+ channels while K+ channels
are open [8, 9].

• Phase 4. Resting Potential: In this final AP phase the transmembrane
potential reaches the resting potential value (aproximately -85 mV), with a large
contribution of outward K+ currents [8, 9].

The electrical activity of cardiac myocytes can be recorded by several experimental
techniques, such as patch-clamp and optical mapping. Patch-clamp allows studying
the electrophysiological properties from the whole-cell to single ion channels. Erwin
Neher and Bert Sakmann earned the Nobel Prize for developing this technique [10].
By measuring the ionic current that passes through a patch formed by the tip of a glass
pipette and the cell membrane, the system injects the opposite amount of current to
clamp the membrane potential to a specific voltage. The two main configurations of
the patch-clamp technique are the whole-cell, where the electrical activity of the entire
cell is recorded, and the cell-attached, where the electrical activity of a specific area
or a single channel is recorded (Fig. 1.3)[10, 11]. One limitation of the patch-clamp
technique is that the system can not clamp voltage for multiple cells connected to each
other, as when they are forming the so-called myocardial syncytium.

On the other hand, the optical mapping technique allows obtaining an estimation
of the evolution of voltage along time for cardiac cells and tissues. This technique
exploits the fluorescent properties of voltage-dependent dyes that are used to load
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Figure 1.3: Scheme of the patch-clamp technique for cell-attached version. Figure from [12].

the cells or tissues with. An optical mapping equipment, with specific filters and
fast recording cameras, measures changes in fluorescence along time as an indirect
measurement of transmembrane voltage. One important advantage of this approach
is that it can be used to simultaneously record the transmembrane potential and the
intracellular calcium transient of a cardiac cell, tissue or even the whole heart with
high spatio-temporal resolution [13].

1.2.3 Electromechanical Coupling

Cardiac electromechanical coupling is responsible for an appropriate contraction -
relaxation cycle of the heart, with electrical depolarization triggering contraction of
cardiac cells. The opening of calcium channels, caused by depolarization of the cell
membrane, generates an inward calcium current into the cell that results in the AP
plateau phase. This entry of calcium ions through the L-type calcium channels leads
to an increase in the calcium concentration of the dyadic space (an internal subspace
composed by T-tubules), which triggers the opening of the calcium-sensitive ryanodine
receptors (RyR) in the adjacent sarcoplasmatic reticulum (SR). This, in turn, leads
to a calcium release from the SR, so-called calcium-induced calcium release, which
increases calcium availability in the cytosol. Part of the calcium in the cytosol binds
to troponin and calmodulin. Binding of calcium to troponin promotes myofilament
contraction, as the binding produces a conformational change that allows myosin heads
to interact with actin filaments in the so-called crossbridge cycling, which generates
tension. When contraction ends, the SR Ca-ATPase (SERCA) pump returns the
intracellular calcium ions to the SR. The joint ordered contraction of cardiac cells in
a small period of time allows blood to be pumped by the heart.

So far, excitation-contraction coupling has been described. However, not only does
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electrical excitation influence mechanical contraction, but also the deformation of the
heart alters cellular excitation as a result of the so-called mechano-electrical feedback
(MEF). MEF has been shown to play an important role in cardiac arrhythmias. One
of the MEF mechanisms has to do with the effect of myofilament length on calcium
dynamics, as the buffer ability of troponin increases when myofilaments are stretched
[14], which has an impact on the AP [15]. Another relevant MEF mechanism is through
mechano-sensitive ion channels, like the stretch-activated channels (SAC) in the cell
membrane, whose current is closely controlled by the contraction of the medium. Upon
stretch of cardiac cells or tissues, SACs alter AP properties, including duration, resting
membrane potential, refractory period or rate dependence [16, 17].

1.2.4 Electrical Propagation in Tissue and throughout the Heart

Properly synchronized electrical activation of different regions in the heart is key for
correct heart functioning. Each cardiac cycle commonly starts when an AP is fired
by the natural pacemaker of the heart, the sinoatrial (SA) node, which is a group
of cells located in the upper part of the right atrium, specifically at the junction
of the right atrium and the superior vena cava. SA node cells are self-activated at
a rate of about 70-80 beats per minute. From the SA node, the electrical impulse
propagates throughout the atria, first activating the right atria and subsequently the
left atria. Before reaching the ventricles, the electrical impulse propagates through the
atrioventricular (AV) node, where it is delayed to allow blood to pass from the atria
to the ventricles before the valves separating them become closed. Once the impulse
traverses the AV node, it goes through the bundle of His, which is subsequently divided
into the right and left bundle branches. These branches get ramified into the Purkinje
fibers, which are connected to the ventricles and allow the impulse to quickly spread
throughout the ventricles. Upon electrical depolarization, the ventricles contract and
pump out blood to the lungs and to the rest of the body.

Fig. 1.4 shows APs corresponding to different cardiac regions, with delays between
different APs similar to those reported for a healthy human heart. Not only do APs
from different regions present varied AP durations, but also varied AP shapes.

1.2.5 Electrograms and Electrocardiograms

An intracardiac electrogram (EGM) is a signal obtained by placing directly, and thus
invasively, electrodes on the heart surface to measure localized electrical activity in the
region of the heart where the recording electrodes are positioned. The EGM represents
the instantaneous difference between signals recorded from two electrodes. If the two
are intracardiac, a bipolar EGM is obtained, whereas if one is intracardiac and the
other one is positioned remotely, a unipolar EGM is obtained. If the two electrodes are
nearly located, the EGM signal is more insensitive to far-field components and more
closely reflects the near-field component, even if this is at the cost of a lower amplitude
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Figure 1.4: AP waveforms for cells corresponding to different cardiac regions, with delays
between different APs similar to those reported for a healthy human heart. Figure adapted
from [18].

signal. On the other hand, if the two electrodes are far apart, the EGM signal will
collect information from a larger cardiac region and will show larger amplitude, but
the local potential will be more contaminated from far-field components. An example
of an EGM signal is presented in Fig.1.5.

In this thesis, measurements from unipolar EGM signals sampled at 512 Hz from
patients with an implanted biventricular pacing resynchronization device are used.
EGMs are recorded from an epicardial electrode of the device, which allows ambula-
tory recording of electrophysiological signals. Activation-recovery intervals (ARIs) are
obtained from EGMs as surrogate measures of AP duration (APD). ARIs are measured
from the time of the minimum derivative of the QRS complex in the EGM, represent-
ing local activation time, to the time of the maximum derivative of the subsequent
T-wave, representing local repolarization time [20].

An electrocardiogram (ECG) is a signal obtained by placing electrodes at specific
locations on the body surface to measure the electrical activity of the heart. As de-
polarization and repolarization occur throughout the heart, electrical currents spread
in the body, since this acts as a volume conductor. In a standard 12-lead ECG, elec-
trodes are placed on the arms and legs, which serve to record standard (I, II, III) and
augmented (aVR, aVL, aVF) limb leads, and six electrodes are placed at specific loca-
tions on the chest, which serve to measure precordial leads (V1, V2, V3, V4, V5, V6).
These leads measure voltage differences between electrodes. In the case of standard
limb leads, these are bipolar and measure the voltage difference between a positive
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Figure 1.5: Unipolar EGM signals (ABLtip and ABL2) recorded at tip and second electrode
of an ablation catheter and Bipolar EGM signal (ABLdist) from the ablation catheter. Figure
extracted from [19].

and a negative electrode in the limbs. In the case of the augmented leads and precor-
dial leads, these are unipolar and measure the voltage difference bewteen a positive
electrode and a combination of other electrodes to serve as a negative electrode. Fig.
1.6 shows the electrode positions and the leads of a standard 12-lead ECG.

Figure 1.6: Left: Schematic diagram of some ECG electrode positions. Right: Leads of the
standard 12-lead ECG. Figure extracted and adapted from [21].

Each cardiac cycle in the ECG is represented by characteristic waveforms, seg-
ments and intervals, as illustrated in Fig. 1.7:

• The P-wave represents the sequential activation of the right and left atria.

• The QRS complex represents the activation of the right and left ventricles, with
a greater contribution from the left ventricle due to its larger mass. Atrial
repolarization is masked within the QRS complex.

• The T-wave represents the repolarization of the ventricles.
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• The QT interval represents the time for ventricular depolarization and repolar-
ization.

• The ST segment, betweeen ventricular depolarization and repolarization, repre-
sents an isoelectric segment under physiological conditions.

Figure 1.7: ECG cycle with definition of the main waves, segments and intervals. Figure
extracted from [8].

1.3 The Autonomic Nervous System

As mentioned above, the ANS is a very relevant modulator of cardiac electrical activity
and plays a major role in the generation of arrhythmias. Activation of the sympathetic
branch of the ANS leads to increases in heart rate (HR), conduction velocity, contrac-
tility and rate of myocyte relaxation, while activation of the parasympathetic branch
produces just the opposite effects. Autonomic effects on cardiac function are medi-
ated by the release of neurotransmitters. Sympathetic nerves release norepinephrine,
which binds to α- and β-A receptors (adrenoceptors) of cardiac cells to activate signal-
ing pathways. On the other hand, parasympathetic nerves release acetylcholine that
binds to muscarinic receptors to regulate cardiac performance.

Of all adrenoceptors, β-adrenoceptors, and in particular β1-adrenoceptors, are
the main mediators of sympathetic stimulation in ventricular myocytes. When cate-
cholamines, including norepinephrine, are released from the sympathetic nerves, they
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bind to β1-adrenoceptors and this activates a receptor-bound stimulatory G-protein
(Gs) pathway that stimulates adenylyl cyclases to produce the ubiquitous second mes-
senger 3́-5́-cyclic adenosine monophosphate (cAMP) and activate protein kinase A
(PKA). PKA activation leads to phosphorylation of cellular substrates involved in
excitation-contraction coupling. Some of these substrates include the L-type calcium
current (ICaL), slow delayed rectifier potassium current (IKs), fast sodium current
(INa), sodium-potassium pump current (INaK), RyR, phospholamban (PLB) and Tro-
ponin I (TnI). PKA activation increases intracellular calcium transient amplitude and
rate of decay.

At the level of the cellular ventricular AP, β-A stimulation (β-AS) shortens the
APD and increases the slope of the APD restitution curve, among other effects. At the
whole-ventricular level, β-AS increases spatial repolarization gradients, both trans-
mural and apico-basal gradients, as the degree of β-AS-induced APD shortening is
heterogeneous along the ventricles.

1.4 Computational Modeling of Human Ventricular
Electrophysiology, Mechanics and Autonomic Mod-
ulation

1.4.1 In silico Modeling as a Complement to in vitro and in vivo
Research

As in many fields of science, in silico modeling of cardiac electrophysiology has be-
come a powerful tool to complement experimental and clinical research. As a result
of advances in mathematical methods and computer processing performance, realistic
computational simulations that were unaffordable a few years ago due to their high
computational cost can now be carried out. In the field of cardiac electrophysiology,
detailed computational models covering spatial scales ranging from sub-cellular, cel-
lular, tissue and up to whole organ have been published that enable a large number
of simulation possibilities to deepen our understanding of cardiac electrophysiology
in health and disease. Models for most cardiac regions and species are now available
based on extensive experimental data used for model development, calibration and
validation.

The intrinsic characteristics of cardiac electrophysiology, where changes at the
subcellular scale influence all the other spatial scales, from cell to whole organ and
even to torso, encourage the use of computational models where different underlying
ionic mechanisms and their macroscopic effects can be analyzed systematically. Fur-
thermore, cardiac models can offer the possibility to integrate in a single model the
descriptions of the electrical function of a cell or tissue together with the descriptions
of the mechanical function and the modulation by other systems like the ANS, as
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described above.

The applications of computational modeling are extensive. It has been shown that
in silico modeling and simulation can guide the design and testing of new drug com-
pounds, as well as of other therapeutic interventions, and to contribute to monitoring
processes. This in silico evaluation complements in vitro and in vivo experimentation,
helping to avoid, at least partially, unnecessary testing on animals before going into
human trials. In addition, in silico modeling can be of great help in simulating sce-
narios that are not feasible to perform through in vivo experimentation due to ethical
considerations or high implementation costs. Furthermore, another important benefit
of cardiac modeling is in improving currently used systems for medical decision making
and personalized therapy by the development of personalized computational models
that reproduce as faithfully as possible the individual behavior e.g. in response to
ANS maneuvers, the effects of treatment and/or of diseased conditions.

1.4.2 Electrophysiological Models of Human Ventricular Cells

1.4.2.1 Hodgkin & Huxley Model

In 1952, Alan Lloyd Hodgkin & Andrew Fielding Huxley proposed the first action-
reaction electrophysiological model (called HH) [22], based on precise measurements
of sodium and potassium ion channel kinetics and electrical activity of the squid giant
axon by the voltage-clamp technique [23]. Hodgkin & Huxley were the first to describe
the electrical activity of an excitable cell in terms of a simple electrical circuit con-
taining resistors (ion channels), capacitors (cell membrane) and voltage sources. The
HH model described the electrical activity of the squid giant axon with only four dif-
ferent ionic currents, displayed in parallel as shown in Fig. 1.8: sodium current(INa),
potassium current (IK), leak current (IL) and capacitive current (IC). It is interesting
to highlight that the leak current comprises the current generated by the rest of ions.
In the next paragraphs, the mathematical formulations used by Hodgkin & Huxley to
described this electrical circuit are presented.

Ionic movement across the cell membrane is mediated by electrostatic attrac-
tion/repulsion forces and diffusion forces. The equilibrium between these two forces
is calculated by the Nernst Equation as follows:

Vx = − RT
zxF

log

(
[x]i
[x]o

)
, (1.1)

where Vx is the Nernst Potential for a specific ion x, R is the ideal gas constant, T
is the absolute temperature, zx is the ion valence, F is Faraday’s constant, [x]o is the
ionic concentration in the extracellular media and [x]i is the ionic concentration in the
intracellular media.

As can be observed from the right panel of Fig. 1.8, the diffusion force can be
modeled by a voltage source (a battery) following the Nernst equation. On the other
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Figure 1.8: Left: Schematic diagram of the Hodgkin-Huxley model showing the cell membrane
and the three typologies of ionic channels. Right: Scheme of the equivalent circuit of the
Hodgkin-Huxley model with the sodium, potassium and leak currents. Figure extracted and
adapted from [24, 25].

hand, by the use of Ohm’s law, it is straightforward to obtain the conductance per
unit area, gx, for a specific ion x as in Eq. 1.2, where Ix is the current through the ion
channels of type x, Vm is the transmembrane voltage and Vx is the Nernst potential.

gx =
Ix

Vm − Vx
. (1.2)

Following the HH formulation, each type of ion is only able to pass across channels
that are specifically selective for that ion type, being the opening and closing of the
channels regulated by the transmembrane voltage Vm. In the HH model for a squid
giant axon, potassium channels are composed by four equal n type (activation) gates,
whereas sodium channels are composed by three m type (activation) gates and one h
type (inactivation) gate. The activation gates have the ability to open when voltage
increases while they remain closed during the resting AP phase. On the other hand,
inactivation gates are open during the resting AP phase and have the capability to
close when transmembrane potential increases. In this way, the potassium and sodium
ionic currents can be calculated by the following equations:

IK = gK(Vm − VK) = gKmaxn
4(Vm − VK) (1.3)

INa = gNa(Vm − VNa) = gNamaxm
3h(Vm − VK) , (1.4)

where gKmax and gNamax represent the maximal conductances of potassium and sodium
channels, respectively. Following the HH formulation, the n, m and h variables rep-
resent the gates used to define the open probability of each typology of ionic channel.
It is interesting to highlight that, for a specific ion channel, if all the gates are in the
open state, the ionic conductance is equal to the maximal ionic conductance.
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The intrinsic opening/closing behavior of a specific ionic gate y is modeled by the
following ODE:

dy

dt
= αy(1− y)− βyy , (1.5)

where αy is the transfer rate coefficient for particles from closed to open state, β is the
transfer rate coefficient from open to closed state and y is the proportion of channels
in the open state.

Based on the descriptions above, the total current through the cell membrane can
be obtained in the HH model as the sum of each ionic current (potassium, sodium and
leak) and the capacitive current as is indicated in Eq. 1.6:

Itot = Cm
dVm
dt

+ IK + INa + Ileak. (1.6)

The HH-based mathematical definition of channel opening probability is formu-
lated using the subunit-based approach, where the open probability of a certain channel
is the probability that every gate is in the open state. However, the channel-based
approach described by [26] defines this opening probability as the proportion of chan-
nels in the open state with respect to the total number of channels of the analyzed
typology. Using as an example a channel composed by two different ionic gates r
and s, the four possible channel states are ropen-sopen, ropen-sclose, rclose-sopen and
rclose-sclose. The opening probability is defined as the proportion of channels in the
ropen-sopen state with respect the total number of channels. This methodology is fully
detailed in Chapter 4.

1.4.2.2 Human Ventricular Cell Models

Ten years after the HH model was presented, Denis Noble proposed the first math-
ematical mammalian model for cardiac cells based on the HH model. Specifically,
this first cardiac model was developed to reproduce the electrical activity of Purkinje
cells, whose behavior is far away from the neuron activity modeled by HH. The Noble
model, with only four ODEs, has been the foundation for the development of the pre-
sentally available set of cardiac computational models, both for humans and animals,
for different types of cardiomyocytes.

The Noble model was developed when calcium ion channels had not yet been
discovered. As experimentation in ionic channels has progressed, the computational
models have become more complex, with more number of variables and ODEs, to
reproduce the available experimental evidences. Four years after the Noble model was
published, Krause et al. [27] formulated the first mammalian ventricular model and
thirty two years later, Priebe & Beuckelmann [28] proposed the first human ventricular
cell model with a total of 22 ODEs.

At present, tens of computational models have been proposed in the literature
to reproduce the electrical activity of human ventricular cells, tissue and whole heart.
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Some cellular models have been developed from scratch, such as [28, 29], whereas other
models represent extensions of previous models aimed at improving their performances
[30, 31]. In this thesis, populations of cellular AP models with representations of
spatio-temporal variability, β-AS and mechanical stretch are built taking the ORd
model [5] as a basis.

1.4.3 Coupled Models of Electrophysiology and Mechanics in
Human Ventricular Cells

To investigate how electrical and mechanical activities of human ventricular myocytes
influence each other, models coupling electrophysiology, calcium dynamics and me-
chanical stretch are used. In the literature, both strongly coupled and weakly coupled
models are used [32]. Under the assumption that the mechano-electrical feedback
can be neglected, weakly coupled models calculate electrical activation independently
from the mechanical description and use such electrical activation as an input to solve
the mechanical model. On the other hand, if for the problem at hand the mechano-
electrical feedback wants to be accounted for, electrical activation should be solved
while taking into consideration the mechanical description, as done in strongly cou-
pled models [16, 33].

In this thesis strongly coupled electro-mechanical models are used. The free cy-
toplasmic Ca2+ concentration computed according to the electrophysiological model
is used as an input to the mechanical model. The mechanical model feeds back the
amount of Ca2+ buffered to troponin, computed as a function of sarcomere length
(SL), into the electrophysiological model.

For the mechanical model, a version of the Niederer-Hunter-Smith model [14]
adjusted to human cell characteristics is used following an approach as that described
in [16] and [33], which involves modifications in the relaxation rates αr1 and αr2
to account for increases in these rates under higher body temperatures as well as
modifications in the parameters Tref and Ca50ref determining contractile tension.

Models for SACs can be introduced in the electromechanical cell models by defin-
ing the total current through SACs as the sum of the current through K+-selective
SACs and the current through non-specific cationic SACs. For the current through
non-selective cationic SACs, a linear time-independent formulation is commonly used,
while the current through K+-selective SACs is usually modeled as an outwardly-
rectifying current [16, 33].
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1.4.4 Models of β-AModulation of Cellular Ventricular Electro-
Mechanical Activity

Due to the high complexity of β-AS effects on ventricular electrophysiology, in sil-
ico modeling and simulation can be of major benefit to shed light into the involved
mechanisms, both in health and in disease. A number of models have been proposed
in the literature to describe β-AS in ventricular myocytes with varied levels of detail.
Saucerman and McCulloch first integrated the cAMP/PKA signaling pathway in a
ventricular myocyte model [34]. Soltis and Saucerman later published a computa-
tional model that includes PKA as well as calmodulin kinase II (CaMKII) pathways
[35]. Xie and coworkers updated the model by Soltis and Saucermann to slow down
the IKs phosphorylation and dephosphorylation rate constants to fit experimental ob-
servations [36]. Also, PKA-mediated phosphorylation of phospholemman (PLM) was
accounted for by increasing the Na+-K+-ATPase (NKA) affinity for the intracellular
Na+ concentration [36]. Negroni et al. later proposed a model that incorporates β-AS
effects on properties like myofilament Ca2+ sensitivity and titin stiffness as well as
cross-bridge cycling rate [37]. The use of this model allows dissecting the contribution
of β-AS-induced effects on myofilament properties to the ventricular AP separately
from the contribution of β-AS-induced effects on ionic currents and fluxes. Heijman
et al. proposed a model that is novel in that it includes localized signaling domains, it
incorporates β1 and β2 receptor isoforms and it uses a detailed population-based ap-
proach to integrate the β-adrenoceptors and Ca2+/CaMKII signaling pathways while
considering a wide range of cellular substrates.

For the purposes of this thesis, the Xie-Grandi-Puglisi-Sato-Bers model [36] is used
that includes definition of graded and dynamic phosphorylation levels of cellular PKA
substrates. Main PKA cellular substrates include ICaL, RyR gating, PLB-dependent
SERCA, PLM-dependent NKA, IKs, cystic fibrosis transmembrane regulator current
(ICFTR) and myofilament sensitivity.

1.4.5 The ORd Human Ventricular Cell Model

1.4.5.1 Overall Description

The ORd model [5], developed from extensive undiseased human ventricular data, is
the most detailed human ventricular computational AP model to date and presents
thoroughly validated descriptions of cardiac electrophysiology. This model has the
ability to reproduce the electrical activity of epicardial, endocardial and midmyocardial
cells. It contains a total of 41 state variables (41 ODEs) and reproduces the activity
of 16 different ionic currents (12 myoplasmic currents and 4 subspace currents), as
shown in Fig. 1.9. The main novelties of the ORd model with respect to previous
human ventricular models published in the literature are the formulations of major
ionic currents like the transient outward potassium current (Ito), the inward rectifier
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potassium current (IK1), the sodium-calcium exchanger current (INaCa), IKs, IKr,
INa and the late sodium current (INaL). An additional interesting feature of the ORd
model is that it presents formulations to reproduce the effects of phosphorylation by
CaMKII in the ionic gates of Ito, INa and ICaL currents.

Figure 1.9: Schematic representation of ORd model [5] and ionic currents and fluxes. Figure
extracted and adapted from [5].

This model is used in this thesis as a basis to construct the populations of deter-
ministic and stochastic human ventricular cell models with representation of spatio-
temporal variability of repolarization. Each of the models of the constructed popula-
tion is coupled to mechanical and β-A signaling models.

1.4.5.2 Main Ionic Currents

Potassium currents

• Transient outward potassium current (Ito): it has large influence in phase 1 of the
AP. Their ion channels are modeled by an activation gate a and an inactivation
part composed by two gates, ifast and islow.

• Slow delayed rectified potassium current (IKs): it has influence in the AP repo-
larization phase. In the ORd model, this current has less influence on the AP
than in previously published human ventricular computational models in the
absence of β-AS. Their channels are modeled by one activation gate xs1 and one
deactivation gate xs2.



18 Chapter 1. Introduction

• Rapid delayed rectified potassium current (IKr): it is the principal current re-
sponsible for AP repolarization. Their channels are modeled by one activa-
tion/deactivation fast gate xr,fast and one activation/deactivation slow gate
xr,slow.

• Inward rectifier potassium current (IK1): it is closely related with the resting
membrane potential and it is modeled by an instantaneous rectification gate and
a time-dependent inactivation gate xk1.

Sodium currents

• Fast sodium inward current (INa): it is a very relevant component of the sodium
current in human ventricular cells and it is responsible for AP depolarization.
Their ion channels are modeled by three activation gates m and two inactivation
gates h and j.

• Late sodium inward current (INaL): it remains activated during the AP plateau
and repolarization. It is considered to be another mode of the global sodium
current together with the fast sodium current. Under diseased conditions, it has
large impact in the development of early and delayed afterdepolarizations. Their
ion channels are modeled by one activation gate mL and one inactivation gate
hL.

Calcium current

• L-type calcium inward current (ICaL): it has large influence in the AP plateau
phase and it is integrated by one activation gate d and a combination of voltage-
dependent and Ca2+-dependent inactivation gates f and fCa, respectively.

• The ORd model presents two other related currents defined as ICaNa, i.e. sodium
current through L-type channels, and ICaK , i.e. potassium current through L-type
channels.

Pump, Exchanger and Background currents

• Other important ionic currents in the ORd model include the sodium-potassium
ATPase pump current (INaK), the sodium-calcium exchanger current (INaCa),
the sarcolemmal calcium pump current (IpCa) and the sodium, potassium and
calcium background currents, i.e INab, IKb, ICab, respectively.
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1.5 Objectives of the Thesis

This thesis aims at providing a comprehensive theoretical characterization of temporal
and spatial variability in human ventricular function, both under basal conditions and
in response to enhanced sympathetic activity. On the basis of such characterization, a
more profound knowledge on the mechanisms underlying sympathetically-mediated
increments in temporal and spatial dispersion of repolarization is aimed at being
achieved. The dissected mechanisms are expected to allow discovering new strate-
gies for arrhythmic risk stratification and for the design of more efficient therapies to
prevent or treat ventricular arrhythmias.

The specific objectives of this thesis are:

1. Theoretical characterization of repolarization in human ventricular cells, with
representation of spatial and temporal heterogeneities

Clinical, experimental and computational studies have provided evidence on the
key role of spatio-temporal variability in human ventricular repolarization at a range
of scales covering from the cellular AP to the body surface ECG. Although different
methodologies have been proposed in the literature for theoretical characterization
of spatio-temporal heterogeneities in human ventricular repolarization, there is still
a long way to go for such characterization to realistically represent available experi-
mental data. In this thesis novel methodologies for identification of the parameters
and state variables of an underlying computational AP model given any experimental
voltage trace are proposed. Those methodologies combine fast estimation techniques
based on biomarkers’ information with other more complex methodologies based on
full voltage traces’ information. The ability of the proposed methodologies to charac-
terize spatio-temporal variability of human ventricular repolarization is assessed.

2. Evaluation of the modulation of spatio-temporal variability of ventricular repo-
larization by the sympathetic nervous system

At the level of the heart, the sympathetic nerves innervate the ventricular my-
ocardium and elicit changes in a number of ion channels, pumps and transporters
that regulate the ventricular AP and contractile function. Sympathetically-induced
changes in human ventricular AP repolarization are a critical component of ventricular
arrhythmias and, thus, it is of major interest to fully understand how the sympathetic
nervous system modulates temporal and spatial heterogeneities in human ventricular
repolarization. In this thesis, stochastic computational models with coupled descrip-
tions of electrophysiology, calcium dynamics, mechanics and β-AS of human ventric-
ular myocytes are developed to assess AP response to sympathetic provocation (SP)
in a population of cells with distinct ionic characteristics while additionally evaluating
beat-to-beat AP repolarization changes.
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3. Unraveling of the mechanisms underlying changes in spatio-temporal variability
of human ventricular repolarization mediated by the sympathetic nervous system

Different studies in the literature have investigated the mechanisms underlying
changes in temporal and spatial variability of ventricular repolarization mediated by
the action of the sympathetic nervous system. Although evidence has been provided on
the role of β-AS as a contributor to enhanced spatial repolarization dispersion and to
increased beat-to-beat variability, particularly under conditions of reduced repolariza-
tion reserve, it is still unclear how particular forms of arrhyhmogenic variability, such
as low-frequency (LF) oscillations of APD, are modulated by the sympathetic action.
In this thesis, stochastic electrophysiology-mechanics-adrenergic signaling models to-
gether with statistical methods based on Automatic Relevance Determination are used
to unravel the major ionic contributors to augmented overall beat-to-beat variability
as well as LF oscillations of APD in response to SP.

4. Determination of the relationship between elevated spatio-temporal variability
in human ventricular repolarization and increased risk for ventricular arrhythmias in
response to sympathetic provocation

Instabilities in the repolarization phase of the ventricular AP are relevant to
arrhythmogenesis. There is substantial evidence that elevated variability of ven-
tricular repolarization is associated with ventricular arrhythmias and sudden cardiac
death. However, a full explanation of how the sympathetic nervous system contributes
to such elevated variability, particularly in the form of LF oscillations, and of its
role in arrhythmogenesis is still lacking. In this thesis, a computational approach
is used to establish a relationship between the mechanisms dissected as underlying
sympathetically-mediated elevation of spatio-temporal repolarization variability and
arrhythmogenesis. Statistical methods grounded on Canonical Correlation Analysis
are employed.

1.6 Outline of the Thesis

The thesis is organized as follows:

• Chapter 2: Low Frequency Oscillations and Temporal Variability of
Human Ventricular Repolarization. This chapter theoretically characerizes
the experimentally reported interactions between overall beat-to-beat repolar-
ization variability (BVR) and a particular type of variability in the form of LF
oscillations of APD in response to SP. An experimentally-calibrated population
of computational stochastic human ventricular cell models are generated to re-
produce such interactions, to analyze their underlying ionic mechanisms and to
link elevated BVR and LF oscillations of APD with increased risk for ventricular
arrhythmias. The results of this chapter have been published in two scientific
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papers and have been presented in two international conferences:

– D. A. Sampedro-Puente, J. Fernandez-Bes, B. Porter, S. Duijvenbo-
den, P. Taggart E. Pueyo. “Mechanisms Underlying Interactions between
Low-Frequency Oscillations and Beat-to-Beat Variability of Cellular Ven-
tricular Repolarization in Response to Sympathetic Stimulation: Implica-
tions for arrhythmogenesis.” Frontiers in Physiology, 2019. DOI: 10.3389/
fphys.2019. 00916.

– S. van Duijvenboden, B. Porter, E. Pueyo, D. A. Sampedro Puente, J.
Fernandez-Bes, B. Sidhu, J. Gould, M. Orini, Martin Bishop, B. Hanson, P.
Lambiase, R. Razavi, C. A. Rinaldi, J. S. Gill and P. Taggart. “Complex In-
teraction between Low-Frequency APD Oscillations and Beat-to-Beat APD
Variability in Humans is Governed by the Sympathetic Nervous System.”
Frontiers in Physiology, 2019. DOI: 10.3389/fphys.2019.01582 .

– D. A. Sampedro-Puente, J. Fernandez-Bes, B. Porter, S. Duijvenbo-
den, P. Taggart, E. Pueyo. “Mechanisms underlying interactions between
low-frequency oscillations and beat-to-beat repolarization variability in hu-
man ventricles under sympathetic provocation.” European Working Group
on Cardiac Cellular Electrophysiology EWGCCE. Essen (Germany). June
2018.

– D. A. Sampedro-Puente, J. Fernandez-Bes, B. Porter, S. Duijvenbo-
den, P. Taggart, E. Pueyo. “Mechanisms underlying interactions between
low-frequency oscillations and beat-to-beat repolarization variability under
sympathetic provocation.” V Virtual Physiological Human Conference
VPH 2018. Zaragoza (Spain). September 2018, p.33.

• Chapter 3: Time Course of Low-Frequency Oscillations of Human
Ventricular Repolarization. This chapter analyzes the time course for the
development of the LF oscillatory behavior investigated in Chapter 2. The ionic
mechanisms underlying the time lag for the manifestation of LF oscillations of
APD in response to enhanced sympathetic activity are dissected, which serves to
establish a relationship between concomitant short time lags/large magnitudes
of APD oscillations and arrhythmic risk under simulated disease conditions. The
results of this chapter have been published in a scientific journal paper and have
also been presented in two international conferences:

– D. A. Sampedro-Puente , J. Fernandez-Bes, N. Szentandrássy, P. P. Ná-
nasi, P. Taggart and E. Pueyo. “Time Course of Low-Frequency Oscillatory
Behavior in Human Ventricular Repolarization Following Enhanced Sympa-
thetic Activity and Relation to Arrhythmogenesis.” Frontiers in Physiology,
2019. DOI: 10.3389/fphys.2019.01547.

– J. Fernandez Bes, D. A. Sampedro-Puente, P. Taggart, E. Pueyo. “Time
Course of Cardiac Electrical Oscillatory Behavior in Response to Enhanced
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Sympathetic Activity and Relation to Arrhytmogenesis.” 10th European
Study Group on Cardiovascular Oscillations ESGCO. Viena (Austria). Sep-
tember 2018.

– D. A. Sampedro Puente, J. Fernandez-Bes, A. Olivan-Viguera, M. Perez-
Zabalza, S. Orós, S. van Duijvenboden, B. Porter, P. Taggart, E. Pueyo.
“The interplay of autonomic and mechanical modulation of ventricular re-
polarization in Human.” 8th International Workshop Cardiac Mechano-
Electric Coupling and Arrhythmias. Freiburg (Germany). September 2019.

• Chapter 4: Data-Driven Identification of Stochastic APModels for the
Study of Spatio-Temporal Human Ventricular Repolarization Vari-
ability. This chapter introduces a novel methodology for the construction of
populations of computational AP models more faithfully representing available
experimental data. The proposed methodology jointly estimates the parameters
and state variables of stochastic human ventricular AP models given an input
voltage trace, as could be measured experimentally. This methodology, based
on formulation of nonlinear state-space representations and Unscented Kalman
Filter (UKF) contributes to improve the characterization of spatio-temporal re-
polarization variability. The results of this chapter have been published in a
scientific journal paper and have been presented in four scientific conferences:

– D. A. Sampedro-Puente, J. Fernandez Bes, L. Virág, A. Varró, E.
Pueyo. “Data-driven Identification of Stochastic Model Parameters and
State Variables: Application to the Study of Cardiac Beat-to-beat Vari-
ability.” IEEE Journal of Biomedical and Health Informatics, 2019. DOI:
10.1109 / JBHI.2019.2921881.

– D. A. Sampedro-Puente, J. Fernandez Bes, E. Pueyo Paules. “Unscented
Kalman Filter for Unobservable Parameter Estimation in Heart Cell Sig-
nals.” V Jornada de Jóvenes Investigadores del I3A. Zaragoza (Spain).
May 2016, pp. 27-28.

– J. Fernandez-Bes, D. A. Sampedro-Puente, E.Pueyo. “Identification of
Parameters describing Phenomenological Cardiac Action Potential Models
using Sigma-Point Methods.” XLIV International Conference on Comput-
ing in Cardiology CINC. Rennes (France). September 2017, pp. 1-4. DOI:
10.22489/CinC.2017. 060-109.

– J. Fernandez-Bes, D. A. Sampedro-Puente, E. Pueyo. “Unscented Kal-
man Filter para el ajuste de parámetros de modelos fenomeno-lógicos de
potencial de acción.” XXXV Congreso de la Sociedad Española de Inge-
niería Biomédica CASEIB. Bilbao (Spain). November 2017, pp. 499-502.

– J. Fernandez-Bes, D. A. Sampedro-Puente, E. Pueyo Paules. “A Baye-
sian Filtering methodology to identify key drivers of ventricular repolar-
ization variability.” V Virtual Physiological Human Conference VPH2018.
Zaragoza, (Spain). September 2018, p.19.
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• Chapter 5: Fast and Accurate Computational Characterization of
Spatio-Temporal Human Ventricular Repolarization Variability. This
chapter presents several improvements to the methodology presented in Chap-
ter 4. The UKF method for model and state variable estimation is combined
with the Double Greedy Dimension Reduction method with automatic biomarker
generation, leading to more accurate results in reproducing input AP traces and
statistical distributions of AP-derived biomarkers. Also, the convergence of the
new method is made significantly faster. Importantly, the proposed methodol-
ogy is tested not only over AP signals measured under baseline conditions but
also in response to β-AS. This chapter contains the work developed during a
research visit to the REO Group (Mathematical Modelling and Numerical Sim-
ulation of Biological Flows) from Institut National de Recherche en Informatique
et en Automatique INRIA (Paris, France) under the supervision of Dr. Damiano
Lombardi. The results of this chapter have led to a scientific journal paper that
has been submitted to IEEE Journal of Biomedical and Health Informatics:

– D. A. Sampedro-Puente, F. Raphael, J. Fernandez-Bes, P. Laguna, D.
Lombardi. E. Pueyo. “Characterization of Spatio-Temporal Cardiac Vari-
ability at Baseline and under β-Adrenergic Stimulation by Combined Un-
scented Kalman Filter and Double Greedy Dimension Reduction.” IEEE
Journal of Biomedical and Health Informatics, 2019. Submitted, under re-
view process.

• Chapter 6 presents the most relevant conclusions of the thesis and indicates
research lines for future investigations.
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2.1 Introduction

BVR is an inherent property of ventricular electrical function [38, 39]. When enhanced,
this temporal variability has been associated with arrhythmia vulnerability in patients
with structural heart disease [40], drug-induced long QT syndrome [41], heart failure
[42], and catecholaminergic polymorphic ventricular tachycardia [43]. A link between
increased BVR and arrhythmogenesis has been established in a range of animal models
as well [39, 44, 45]. Various approaches have been proposed in the literature to quantify
BVR at the level of the body surface ECG, including measurements of QT interval
variability [38], T-wave alternans, [46] or T-wave morphology variations [47].

Recent studies have shown that BVR presents a clear LF oscillatory pattern that
can be quantified from the ECG by measuring LF oscillations of the T-wave vector,
so-called Periodic Repolarization Dynamics (PRD) [48, 49]. PRD has been shown
to be unrelated to heart rate variability or respiratory activity and has been postu-
lated to most likely reflect the effect of phasic sympathetic activity on the ventricular
myocardium. Increases in PRD have been associated with destabilization of repolar-
ization leading to ventricular arrhythmias and sudden cardiac death [48, 50]. The
described T-wave oscillations have been suggested to reflect oscillations of the ventric-
ular APD [20, 49, 51]. In in vivo studies on heart failure patients, APD has been shown
to indeed oscillate at the same LF range [20]. Additional studies have demonstrated
that both LF oscillations of APD and BVR are significantly augmented in response
to physiologically-induced increased sympathetic activity, with a close interaction be-
tween both observed increments [51, 52].

The mechanisms underlying the interactions between BVR and LF patterning
of APD in response to SP and its potential link to arrhythmogenesis remain to be
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investigated. Regarding BVR, a growing number of studies, both experimental and
computational, have provided evidence on the role of ion channel stochasticity and
Ca2+ cycling variations as underlying mechanisms of temporal variability at different
scales, covering from isolated cells [53–58] to coupled cells / tissue [55, 56, 58–60] to
whole heart [38, 61]. Furthermore, the action of adrenergic stimulation in modulating
those BVR mechanisms and facilitating arrhythmia initiation by the formation of af-
terdepolarizations and triggered activity has been reported in single cells [62–66] and
in the whole heart [45]. In respect of LF oscillations of APD, computational investi-
gations in single cells have suggested that sympathetic nerve activity promotes their
generation by both a direct β-A action and through the intermediary of mechano-
electric feedback [33]. In the presence of disease-related conditions, like Ca2+ overload
and reduced repolarization reserve (RRR), these oscillations have been shown to con-
tribute to pro-arrhythmia [33].

In the work presented in this chapter, which builds on the work published in
[33], a set of stochastic human ventricular AP models are developed to reproduce the
sympathetically-mediated interactions between BVR and LF patterning of APD ob-
served experimentally, to investigate their underlying mechanisms and to establish a
link to arrhythmic risk. The developed models are representative of a whole range
of AP characteristics and include biophysically detailed descriptions of the electro-
physiology, Ca2+ dynamics, β-A signaling and mechanics of human ventricular cells
in health and disease. Stochastic gating of ion channels are incorporated into ma-
jor currents active during AP repolarization. An approach based on the Automatic
Relevance Determination (ARD) technique [67] is adopted to unravel the major ionic
contributors to augmented BVR and LF oscillations of APD in response to SP, with
subsequent analysis of the involved mechanisms. The relationship between the unrav-
eled mechanisms and arrhythmogenesis is established by a methodology grounded on
Canonical Correlation Analysis (CCA) [68].

2.2 Materials and Methods

2.2.1 Human Data

Previously acquired human data has been described in detail elsewhere [51]. Briefly,
eleven heart failure patients with cardiac resynchronization therapy defibrillator de-
vices had ARIs recorded from left ventricular epicardial electrodes alongside simulta-
neous non-invasive blood pressure and respiratory recordings. Heart rate was clamped
by right ventricular pacing. Recordings took place during resting conditions and fol-
lowing an autonomic stimulus (Valsalva maneuver). The study was approved by the
West London Ethics Committee and conformed to the standards set by the Declara-
tion of Helsinki (latest revision: 64th WMA General Assembly). Informed consent
was obtained in writing from all subject.



28 Chapter 2. LF Oscillations and Temporal Repolarization Variability

2.2.2 Stochastic Human Ventricular Models

2.2.2.1 Models of Electrophysiology

The ORd human ventricular epicardial cell model [5] served as a basis to construct
a set of AP models covering a range of experimentally observed electrophysiological
characteristics. Each AP model in the dataset, which represents a different virtual cell,
was obtained by varying the ionic conductances of the following currents: slow delayed
rectifier K+ current, IKs; rapid delayed rectifier K+ current, IKr; transient outward
K+ current, Ito; L-type Ca2+ current, ICaL; inward rectifier K+ current, IK1; sodium
current, INa; Na+-K+ pump current, INaK; and Na+-Ca2+ exchanger current, INaCa.
A total of 500 models were initially generated by sampling the nominal conductance
values of the ORd model in the range ±100% using the Latin Hypercube Sampling
method, [33, 69].

Out of all the generated models, only those satisfying the calibration criteria
shown in Table 2.1 were retained. Such criteria were based on experimentally available
human ventricular measures of steady-state AP characteristics taken from [5, 70–73].
These characteristics included: APD90|50, denoting 1 Hz steady-state APD at 90%|50%
repolarization (expressed in ms); RMP, standing for resting membrane potential (in
mV); Vpeak, measuring peak membrane potential following stimulation (in mV); and
∆APD90, calculated as the percentage of change in APD90 with respect to baseline
when selectively blocking IKs, IKr or IK1 currents (measured in ms). After applying
the described calibration criteria, the initial set of 500 models was reduced to a set of
161 selected models. In addition, models leading to pro-arrhythmic events at baseline
conditions were excluded because they did not allow quantification of BVR or LF
oscillations of APD, thus resulting in a final population of 123 models. For each of
those models, the parameters θKs, θKr, θto, θCaL, θK1, θNa, θNaCa and θNaK were
defined to take the values of the factors multiplying the nominal conductances of IKs,
IKr, Ito, ICaL, IK1, INa, INaK and INaCa, respectively, with respect to the original ORd
model, i.e. Ij = θj Ij,ORd, where Ij,ORd represents current j in the ORd model, with
j being one of the elements in the set {Ks, Kr, to, CaL, K1, Na, NaCa, NaK}.

Table 2.1: Calibration criteria applied onto human ventricular cell models.
AP characteristic Min. acceptable value Max. acceptable value

Under baseline conditions [5, 70, 71]
APD90 (ms) 178.1 442.7
APD50 (ms) 106.6 349.4
RMP (mV) -94.4 -78.5
Vpeak (mV) 7.3 -

Under 90% IKs block [5]
∆APD90 (%) -54.4 62

Under 70% IKr block [73]
∆APD90 (%) 34.25 91.94

Under 50% IK1 block [72]
∆APD90 (%) -5.26 14.86
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Stochasticity was incorporated into the equations describing the ionic gating of
four major currents active during AP repolarization, namely IKs, IKr, Ito and ICaL,
following the approach described in [56]. For a gating variable x, the temporal evo-
lution of the probability of this gate being open was calculated as in Eq. 2.1, where
the variance of the stochastic term introduced to formulate the Stochastic Differential
Equation (SDE) describing ionic fluctuations was inversely proportional to the num-
ber of channels of each species. In equation 2.1, x∞ and τx represent the steady-state
value of x and the time constant to reach that steady-state value, with x, x∞ and τx
being functions of voltage, while w is a Wiener process. The number of channels N
associated with each species j were obtained for each virtual cell by multiplying the
ionic factor θj of that cell by the corresponding number of channels in the ORd model,
i.e. Nj = θj Nj,ORd.

dx =
x∞ − x
τx

dt+

√
x∞ + (1− 2x∞)x√

τx N
dw. (2.1)

The number of channels NORd of each ionic species “x” was computed as follows.
For IKs, IKr and Ito, experimentally measured unitary conductance values were avail-
able and were used to calculate Nx,ORd as the maximum conductance of ion channel
“x” in the ORd model, denoted by Gx,ORd, divided by the unitary conductance of ion
channel “x”, denoted by gx. Table 2.2 presents the values used in the computations,
where values for Gx,ORd correspond to the epicardial version of the ORd model and a
capacitance value of Cm = 153.4 pF, and values for gx are taken from [56, 74, 75] and
adjusted to temperature and/or extracellular K+ concentration following [76, 77].

Table 2.2: Number of channels for IKs, IKr and Ito.

Gs (pS) gs (pS) Ns
IKs 1140 6.74 169
IKr 9174 2.53 3621
Ito 12272 20.2644 606

For ICaL the number of channels was computed by dividing the maximum ICaL
current by the single-channel current iCaL times the channel opening probability. Con-
sidering the value of iCaL = −0.12 pA for V = 0 mV and [Ca2+] = 2 mM reported in
[78], the calculated number of ICaL channels was NCaL = 20121 ' 20000.

2.2.2.2 Models of PKA Phosphorylation

β-AS effects were modeled as in [33] by using a modified version of the Xie model [36],
with definition of graded and dynamic phosphorylation levels of cellular PKA sub-
strates. This model was updated from the original β-A signaling formulation proposed
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in [35] to slow down the IKs phosphorylation and dephosphorylation rate constants to
fit experimental observations. PKA-mediated phosphorylation of PLM was accounted
for by increasing the NKA affinity for the intracellular Na+ concentration, as in [36].
RyR phosphorylation was described in this work following the formulation proposed
in [79].

2.2.2.3 Models of Electromechanical Coupling

An extended version of the Niederer model [14], adjusted to human cell characteristics,
as in [16] and [33], was used for the electromechanical coupling model. The current
through SACs, ISAC, was introduced as in [33], with the total current obtained as the
sum of the current through K+-selective and non-specific cationic SACs.

The current through SACs was defined as the current through K+-selective and
non-specific cationic SACs. A linear time-independent formulation was used for the
current through non-selective cationic SACs [80, 81]:

ISAC,ns = GSAC((λ− 1)/(λmax − 1))(V − ESAC,ns), ifλ > 1 (2.2)

ISAC,ns = 0, ifλ < 1 (2.3)

where λ is the ratio between SL and the resting SL defined in the model and λmax is
set to 1.1 [16, 80]. The reversal potential ESAC,ns was set to -10 mV [82, 83] and the
conductance GSAC,ns to 0.006 nS/pF for physiological as well as mild and moderate
disease conditions [84, 85]. When simulating severe disease conditions, GSAC,ns was
set to 0.01 nS/pF following studies showing higher stretch sensitivity of these channels
in disease [82]. The current through K+-selective SACs was modeled as an outwardly-
rectifying current [80, 81]:

ISAC,K = GSAC((λ− 1)/(λmax − 1))(1/(1 + exp((V − 19.05)/29.98))), ifλ > 1
(2.4)

ISAC,K = 0, ifλ < 1
(2.5)

The conductance GSAC,K was set to match experimental current values measured
in epicardium [86].
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2.2.2.4 Simulation of Baseline and Sympathetic Provocation

A 0.1 Hz periodic stepwise dose of the β-A agonist Isoproterenol (ISO) was simulated,
in accordance with the pattern of muscle sympathetic nerve activity in humans [87].
For the first half of the simulated ISO period, the ISO dose was set to either 0.01 µM,
for simulated baseline conditions, or 1 µM, for simulated SP, while it was 0 µM for
the second half in both cases. Additionally, phasic changes in hemodynamic loading
accompanying enhanced sympathetic activity were simulated at the same 0.1 Hz fre-
quency by varying the stretch ratio following a sinusoidal waveform with a maximum
change of 1% for baseline conditions and 10% for SP. Sympathetically induced changes
in β-AS and hemodynamic loading were considered to be in-phase with each other. A
total of 640 beats (320 for baseline and 320 for SP) were simulated while pacing the
cells at 1 Hz frequency. Fig. 2.1 illustrates simulation of β-AS and stretch effects at
baseline and in response to SP, while Fig. 2.2 illustrates the APD time series of a cell
in the generated population in response to the simulated protocol. For comparison
purposes, additional simulations were run under constant β-AS and/or hemodynamic
loading.
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Figure 2.1: Simulation of 0.1 Hz phasic β-AS and stretch effects at baseline and following
SP: (a) ISO dose and (b) stretch ratio λ.

2.2.2.5 Simulation of Disease-Related Conditions

On top of simulating physiological conditions, models describing disease conditions
were built by including representations of: RRR, defined by simultaneous blockades
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Figure 2.2: Simulated APD series representative of baseline and SP phases (0.1 Hz phasic
β-AS and stretch effects) for a virtual cell of the population under mild disease conditions.

of IKs and IKr currents; and Ca2+ overload, defined by increases in the extracellular
Ca2+ levels. In both cases, an approach like the one described in [33] was used. Mild
disease conditions were simulated by a 1.5-fold increment in the extracellular Ca2+
concentration and 7.5% and 20% inhibitions of IKr and IKs currents, respectively.
Moderate disease conditions were simulated by a 2.5-fold increment in the extracel-
lular Ca2+ concentration and 22.5% and 60% inhibitions of IKr and IKs currents,
respectively. Severe disease conditions were simulated by a 4-fold increment in the
extracellular Ca2+ concentration, 30% and 80% inhibitions of IKr and IKs currents,
respectively, and by additionally increasing the conductance of non-specific cationic
SACs as described in [83] (GSAC,ns changed from 0.006 nS/pF for physiological, mild
and moderate disease conditions to 0.01 nS/pF for severe disease conditions). Ta-
ble 2.3 summarizes how physiological as well as mild, moderate and severe disease
conditions were simulated in this study.

Table 2.3: Simulation of RRR and Ca2+ overload and GSAC,ns conductance value for physi-
ological as well as mild, moderate and severe disease conditions.

RRR
IKs IKr Ca2+ overload GSAC,ns
(% Block) (% Block) (factor on Ca2+o ) (nS/pF)

Physiological 0 0 1 0.006
Mild 20 7.5 1.5 0.006
Moderate 60 22.5 2.5 0.006
Severe 80 30 4 0.01
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2.2.3 Measurements of Repolarization Variability

For each of the developed AP models, APD at 90% repolarization, denoted as APD
in the following, was calculated for every beat of the stochastic realizations. A trian-
gulation measure (T1) was calculated as the difference between APD at 90% and 50%
repolarization. The last L = 120 beats of each condition (baseline and SP) were used
for evaluation of measures describing BVR and LF oscillatory behavior. Averages of
those measures over stochastic realizations were computed.

2.2.3.1 Beat-to-beat Variability of Repolarization

The following BVR measures were evaluated:

• Standard deviation of APD over the last L beats:

mSD =

√√√√ 1

L− 1

L∑
l=1

(APD(l)−APD)2 (2.6)

where APD is the average APD over those L beats.

• Normalized variance of APD over the last L beats:

mNSD =
m2

SD

APD
2 . (2.7)

• Short-Term Variability (STV) of APD, defined as the average distance perpen-
dicular to the identity line in the Poincaré plot, computed as the average over
windows of Lwin = 30 beats sliding every one beat along the last L = 120
simulated beats:

mSTV =
1

L− Lwin + 1

(
L−Lwin+1∑

l=1

l+Lwin−1∑
i=l

|APD(i+ 1)−APD(i)|
(Lwin − 1)

√
2

)
. (2.8)

• Normalized STV:

mNSTV =
m2

STV

APD
2 . (2.9)

2.2.3.2 Low-frequency Repolarization Variability

Spectral analysis was performed to compute LF variability measures following the
methodology described in [51]. The APD time series of the last L = 120 beats,
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for either baseline or SP, was linearly detrended. Power Spectral Density (PSD) was
estimated after fitting an autoregressive model to the detrended APD time series using
the Yule-Walker method. The optimal order of the autoregressive model was chosen
in the range between L/3 and L/2 to minimize Akike’s Information Criterion, with a
requisite on the residuals to pass a whiteness test. Two measures were extracted from
the estimated PSD:

• LF power (mPLF), calculated as the integral of the PSD over the [0.04, 0.15] Hz
band.

• Normalized LF power (mNPLF): LF power normalized by the total power in the
[0.04, 0.5] Hz frequency band.

2.2.4 Contributors to BVR and LF Oscillations

ARD was used to unravel individual and common factors, in the form of ionic con-
ductance levels, contributing to BVR and LF oscillations of APD in response to SP.
ARD is a Bayesian sparsity method, first proposed in the context of neural network
models [67], which has been successfully used to determine the relevance of various
input features to given measures, see e.g. [88].

In a regression problem where an output variable (in this case, a BVR or LF
oscillatory measure) is aimed to be predicted by several input variables (in this case,
the conductances of ionic currents), it commonly happens that some of the variables
are irrelevant to the prediction. However, when a finite dataset is analyzed, random
correlations between the irrelevant inputs and the output are always obtained, dimin-
ishing the capability of the techniques employed for the prediction. A method like
ARD, able to infer which input variables are relevant and prune all the irrelevant
ones, is advantageous. ARD works by adjusting multiple weight constants, one asso-
ciated with each input, which are inferred from the data and automatically set to be
large for the relevant features and small for the irrelevant ones. The fact that ARD
renders a sparse set of explanatory variables makes its results more interpretable than
for other correlation-based methods (see e.g. [89] for the relation between sparsity and
interpretability).

Each virtual cell n out of the N simulated models was considered as a data point
determined by its D = 8 parameters (factors multiplying ionic conductances). Those
factors were stacked in a row vector x(n) = [θ(n)Ks , θ

(n)
Kr , θ

(n)
to , θ

(n)
CaL, θ

(n)
K1 , θ

(n)
Na , θ

(n)
NaCa, θ

(n)
NaK],

representing the feature vector of each data point. All data were stacked in the feature
matrix X, i.e., X = [x(1); · · · ;x(N)]. Hence an element of X, denoted as xn,i, was the
value of the i-th conductance parameter of virtual cell n. In addition, y is used
as a wildcard to denote the column vector with the values of the analyzed variability
measure for the data points. Hence, the values in y can either correspond to a temporal
BVR measure or a measure of the magnitude of APD LF oscillations: mSD, mNSD,
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mSTV, mNSTV, mPLF and mNPLF. To simplify the training process of the algorithm,
the values of y were standardized to zero mean and unit variance. Using this input-
output definition the following regression model is posed

y(n) = f(x(n)) + r(n) (2.10)

where r(n) is additive random Gaussian noise with variance σ2
r and f is a function

linking the inputs and the outputs. Typical choices for f include linear, polynomial
or neural network functions, with the ones most extensively used by the Bayesian
learning community being Gaussian Processes [88], which represent a powerful and
flexible non-parametric option:

f(x(n)) ∼ GP
(
m(x(n)), c(x(n),x(n′))

)
(2.11)

where m(x(n)) is the mean function and c(x(n),x(n′)) is the covariance function be-
tween data points n and n′. In its simplest form, m(x(n)) = 0 and all the complexity
of the model is captured by the covariance function. The covariance is commonly
described by linear, polynomial or radial basis functions, or other more complicated
functions, see e. g. [88]. In this work, a linear function was used for the covariance:

c(x(n),x(n′)) =

D∑
i=1

σ2
d,ixn,ixn′,i. (2.12)

Considering this choice, f(x(n)) can be shown to define a set of linear functions with
respect to x(n), where directions (i.e. the different factors contained in each x(n)) are
weighted according to σ2

d,i.

ARD was applied to optimize type II Maximum Likelihood (ML-II) with respect
to σ2

d,i and σ
2
r . Specifically, a quasi-Newton method (in the case of this implementation,

L-BFGS, see e.g. [90]) was used to find the values of the hyperparameters leading to
maximization of the following function:

L(σ2
d,1, · · · , σ2

d,8, σ
2
r) =

1

2
log detCext(σ

2
d,1, · · · , σ2

d,8, σ
2
r)

+
1

2
yTCext(σ

2
d,1, · · · , σ2

d,8, σ
2
r)−1y +

N

2
log(2π) (2.13)

where Cext(σ
2
d,1, · · · , σ2

d,8, σ
2
r) = C(σ2

d,1, · · · , σ2
d,8) + σ2

rI, with I being the identity
matrix and C(σ2

d,1, · · · , σ2
d,8) being the matrix obtained by evaluating the covariance

function c(x(n),x(n′)) for every pair of data points in X. To avoid overfitting, ten-fold
cross validation was applied. Results are presented after averaging the ten correspond-
ing values for each σ2

d,i. The higher the value of σ2
d,i, the more relevant the i-th factor

(input parameter) is for the prediction.
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This methodology allows establishing which factors are more relevant to predict
a given output measure (i.e. a BVR or LF oscillatory measure). In the following,
these relevance values are presented as normalized values so that they add up to one
to facilitate assessment of the relative relevance of each factor. Since relevance factors
do not account for the sign of the contribution, that is, whether an increase in the
BVR or LF oscillation measure corresponds to upregulation or downregulation of an
ionic current, the Gaussian Process regression was interpreted as a linear regression
where the covariance matrix is Cext and the sign of each contribution was calculated
as

sθi = sign((C−1extX)
T
y) (2.14)

where θi is each of the conductance parameters and T denotes matrix transposition.

Finally, to address the fact that a factor may only be relevant in association
with another one, the same methodology was applied after removing one factor (ionic
conductance) at a time. If after removing a specific factor, the relevance associated
with another factor was found to be significantly changed, a tight relationship between
the effects of the two factors was postulated and common mechanisms underlying such
a relationship were explored.

2.2.5 Contributors to Arrhythmogenesis

CCA [68, 91] was used to identify the ionic conductances with the largest contribution
to the occurrence of arrhythmogenic events under simulated diseased conditions. This
method has been widely used in several different applications (see e.g. [92–94] for some
representative examples).

Similarly to the description of ARD above, the data were stacked in the feature
matrix X, with xn,i, being the value of the i-th factor for virtual cell n. A binary
vector z of length N was generated, which contained a value of 1 in the positions
corresponding to virtual cells for which pro-arrhythmic events were observed following
SP and 0 otherwise.

Given X and z, CCA was applied to compute the values of the canonical variables
wx and wz such that:

(w∗x, w
∗
z) = arg max

wx,wz
corr(Xwx, zwz) (2.15)

with corr being the linear correlation between the projected versions of X and z, i.e.,
Xwx, zwz. The elements of vector w∗x represent the projection of ionic factors into a
subspace common with zw∗z and can be interpreted as the correlations of each of these
factors with the presence of pro-arrhythmic events. Hence, the higher the value of an
element in w∗x, the higher the relevance of such factor to the events in z.
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2.3 Results

2.3.1 Sympathetic Provocation Increases BVR and LF Oscil-
lations of APD

Fig. 2.3 shows representative examples of zero-mean time series of experimental ARI
(ARI - ARI, with ARI denoting temporal mean of ARI, left panel) and simulated
APD (APD - APD, with APD denoting temporal mean of APD, right panel) and
corresponding PSDs at baseline and following SP. In both experiments and simulations,
a remarkable increase in BVR in response to SP can be clearly appreciated from the
APD series. Also, the experimental and simulated spectra corresponding to SP show
notably more marked peaks in the LF band as compared to baseline.

Of note, the peaks in the high frequency band present in the experimentally
recorded data were not analyzed in this study, as vagal or respiratory effects were not
included in these simulations for being out of the scope of the present study. The sim-
ulated results presented in this and the next sections correspond to simulation of mild
disease conditions, since these are compared with experimental results obtained from
heart failure patients (see section 2.2.1). Results for physiological conditions remained
qualitatively unchanged with respect to those shown for mild disease conditions.

Experimental Simulation

Figure 2.3: Left panel: Experimental zero-mean ARI series (ARI - ARI) and corresponding
spectra at rest (left) and following Valsalva maneuver (right). Right panel: Simulated zero-
mean APD series (APD - APD) and corresponding spectra at baseline (left) and following
SP (right). The LF region of the spectra is shadowed in red and the high frequency region
in green.

Fig. 2.4 shows relative measures of BVR and LF oscillations at baseline and fol-
lowing SP for each individual of the experimental and simulated datasets (the cases
shown in Fig. 2.3 are highlighted in blue). For the vast majority of individuals, mNSD
and mNPLF increased in response to augmented sympathetic activity. Importantly,
both the level of BVR and LF oscillations as well as the magnitude of change in re-
sponse to SP presented a high degree of variation between individuals, as shown in
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Fig. 2.4. As expected, the mNSD values in the simulations were higher than in the ex-
periments, as simulations correspond to single epicardial cells while experimental data
is from left ventricular epicardial EGMs and, thus, includes the effects of intercellular
coupling acting to mitigate cell-to-cell variability.

In both experiments and simulations, the sympathetically-mediated increases in
BVR and LF oscillations were confirmed either when quantified in absolute terms by
mSD, mSTV and mPLF or in relative terms by mNSD, mNSTV and mNPLF.

Experimental Simulation

Figure 2.4: Left: Normalized variancemNSD (top) and Normalized LF powermNPLF (bottom)
at rest and following Valsalva maneuver calculated from experimental ARI series. Right:
mNSD (top) and mNPLF (bottom) at baseline and following SP calculated from simulated
APD series. The cases presented in Fig. 2.3 are highlighted in blue.

2.3.2 Close Interaction between BVR and LF Oscillations of
APD, particularly in Response to Sympathetic Provoca-
tion

Table 2.4 shows correlation values between measures of BVR and LF oscillations of
APD, both calculated using absolute and normalized indices. As can be seen in Table
2.4, the LF power of APD, mPLF, was highly correlated with BVR measured by the
short-term variability of APD, mSTV, and, even to a larger extent, by the standard
deviation of APD,mSD. This observation held true when the correlation was evaluated
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both at baseline and in response to SP. The strong association found between BVR
and LF oscillations of APD in these SP simulations was in line with the one measured
experimentally, where the Spearman correlation coefficient between mPLF and mSD
was 0.679.

Table 2.4: Spearman correlation coefficients between simulated BVR and LF oscillation mea-
sures.

Baseline Sympathetic Provocation
mPLF (ms2) mNPLF (nu) mPLF (ms2) mNPLF (nu)

mSD (ms) 0.9744 -0.1606 0.9439 0.5969
mNSD (nu) 0.8528 -0.1602 0.8784 0.5721
mSTV (ms) 0.9096 -0.3381 0.8341 0.4054
mNSTV (nu) 0.7646 -0.3530 0.7638 0.3868

When normalized measures were considered, Table 2 shows that the correlation
between the normalized LF power of APD,mNPLF, and the normalized BVR measures,
mNSTV and mNSD, was notably reduced. This highlights the relevance of absolute
APD values in modulating the interactions between BVR and LF oscillations of APD.
The reduction in correlation after considering normalized measures was particularly so
for baseline conditions, while following SP there was still a high interaction between
normalized BVR and LF oscillations of APD.

Fig. 2.5 illustrates the simulated relationships between the absolute measures
mPLF and mSD and between the relative measures mNPLF and mNSD at baseline and
in response to SP.
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Figure 2.5: Relationship between mSD and mPLF (top) and mNSD and mNPLF (bottom)
at baseline and following SP for the population of models under simulated mild disease
conditions.
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Based on the fact that the two ways of evaluating BVR, i.e. by standard deviation
and by short-term variability of APD, led to very similar outcomes in terms of the
relationship with LF oscillations of APD, the results in the next sections will be shown
formSTV and its normalized counterpartmNSTV. For APD oscillatory behavior, mPLF
and mNPLF will be used.
2.3.3 K+ and Ca2+ Current Densities are Common Modulators

of BVR and LF Oscillations of APD

Fig. 2.6 illustrates the major contributors to the values of mSTV, mNSTV, mPLF and
mNPLF found in the simulated population in response to SP. The sign of the relation-
ship between the contributing ionic current conductances and the evaluated BVR or
LF oscillation measurements was negative in all relevant cases, meaning that downreg-
ulation of the ionic current density led to an increment in the analyzed measurement.
Note that each bar in the graphs of Fig. 2.6 represents relative relevance with respect
to the other evaluated factors, all adding up to one.
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Figure 2.6: Relevance of ionic current conductances to mPLF (a), mNPLF (b), mSTV (c) and
mNSTV (d), calculated from simulated APD series following SP.

According to the results in Fig. 2.6, mSTV and mPLF shared the same major
contributors to their observed values following SP. Specifically, the three ionic con-
ductances with the most relevant role in determining the values of mSTV and mPLF
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were those of IKr, IK1 and ICaL currents. For the normalized measurements mNSTV
and mNPLF, a substantial reduction in the relevance of IKr conductance was observed
with respect to that quantified for the non-normalized measurements. IK1 and ICaL
current conductances remained as the two most relevant contributors to the values of
mNSTV and mNPLF following SP.

To assess potential associations between ionic conductances in their contributions
to the evaluated BVR and LF oscillations measures, the same ARD technique was
applied after removing one ionic conductance at a time. For the majority of cases,
the computed relevance levels were highly similar after such removals, meaning that
there is no co-dependency in the contribution of the different ionic conductances.
However, when IK1 conductance was removed from the analysis, the relevance of other
repolarization currents, like IKr and IKs, in their contribution to mNSTV was notably
increased. This increment reveals common mechanisms in the contributions of all these
repolarization currents to the mNSTV values following SP.

Since the same ionic conductances were found to modulate BVR and LF oscil-
lations of APD following SP, simulations were ran in which β-AS and stretch were
modeled as constant, with assigned values corresponding to the maximal effects in the
above simulations. As can be seen in Fig. 2.7, in those cases IKr and IK1 were still the
major modulators of BVR whereas the contribution of ICaL was drastically decreased.
Thus, ICaL modulation of BVR was mediated by the increment in the LF oscillations
of APD, while the role of IKr and IK1 as modulators of BVR did not present such a
strong dependence.
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Figure 2.7: Relevant factors for (a) mSTV and (b) mNSTV following constant β-AS and
mechanical stretch.

For healthy conditions, results were essentially the same as those shown in Fig.
2.6 for mild disease conditions, with only a slight decrease in the relevance of INaCa
contribution to mPLF. This is illustrated in Fig. 2.8.
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Figure 2.8: Relevant factors for (a) mPLF, (b) mNPLF, (c) mSTV, and (d) mNSTV following
SP under physiological conditions.

2.3.4 Modulation of BVR and LF Oscillations of APD by K+

and Ca2+ Current Densities is Explained by their Effects
on Ionic Gating Stochasticity, β-AS and Hemodynamic
Loading

Before describing the mechanisms by which IKr, IK1 and ICaL current densities modu-
late BVR and LF oscillatory measures following SP, the differential effects of the two
components associated with enhanced sympathetic activity, namely β-AS and mechan-
ical stretch, to such measures were analyzed. Fig. 2.9 illustrates the variations in BVR
and LF oscillation measurements in the simulated population for different scenarios,
including combined phasic β-AS and mechanical stretch, only phasic β-AS, only phasic
mechanical stretch and only phasic mechanical stretch without SACs. Results showed
that the largest contribution to LF oscillations, measured either by mPLF or mNPLF,
was caused by phasic mechanical stretch, particularly when SACs were included in
the models. Regarding BVR, both effects contributed to mSTV and mNSTV, even if
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Figure 2.9: Distributions of BVR and LF oscillation measurements for simulated scenarios
including individual and combined β-AS and mechanical stretch effects, with and without
the contribution of SACs.

not in an additive manner and with the contribution of β-AS being larger than that
of mechanical stretch. Additional effects associated with stochastic ionic gating of
currents active during AP repolarization added to the BVR values presented in Fig.
2.9.

2.3.4.1 Mechanisms Underlying the Role of IK1 as a Modulator of BVR
and LF Oscillations of APD

The role of IK1 current density as a modulator of APD oscillatory behavior following
SP was only relevant when phasic mechanical stretch was simulated and particularly
so when SACs were included in the models. The mechanism of action was as follows.
Downregulation of IK1 increased resting membrane potential (Fig. 2.10 a) and this
increment was associated with an enhancement of the total ISAC current in the zenith
of the oscillation, where phasic stretch reached maximal values (Fig. 2.10 b and c).
These effects altered the AP shape at the end of the repolarization phase (Fig. 2.10 d)
and this, in turn, had an impact on the calculated APD. In particular, the magnitude
of the APD oscillations was amplified (Fig. 2.10 e), which led to increases in both
mPLF and mNPLF (Fig. 2.10 f).

Furthermore, IK1 current density had an impact on modulating BVR following
SP, especially when including the effects of SACs. Specifically, the above described
alterations in AP morphology induced by IK1 downregulation, manifested as a slowing
down of the final part of AP repolarization, rendered the AP more sensitive to the
effects of stochastic ionic gating. This led to increased variability in APD values of
consecutive beats, thus enlarging mSTV and mNSTV.
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Figure 2.10: (a) Resting membrane potential versus IK1 current conductance in the popu-
lation of virtual cells; (b) ISAC current for two examples corresponding to upregulated and
downregulated IK1 while keeping all the other currents at their default values in the ORd
model; (c) Minimum ISAC current value versus IK1 current conductance in the population;
(d) AP traces and (e) zero-mean APD series (APD - APD) for the examples in (b); (f)mNPLF

values versus IK1 current conductance in the population.

2.3.4.2 Mechanisms Underlying the Role of IKr as a Modulator of BVR
and LF Oscillations of APD

The impact of IKr current density on the magnitude of BVR and LF oscillations of
APD was related to modulation of AP repolarization duration. This is evidenced by
the fact that the contribution of IKr conductance was very relevant in the modulation
of mPLF and mSTV but was notably reduced for their normalized counterparts mNPLF
and mNSTV.

In the case of mPLF, the mechanism of action was as follows. IKr downregulation
led to AP prolongation, which in these simulations including phasic β-AS and stretch
could be seen as an increase in both the minimum and the average APD within each
oscillation period (Fig. 2.11 a). The observed AP lengthening correlated with an
increment in the magnitude of the APD oscillations, quantified by the APD range
(Fig. 2.11 b). This was the result of amplified effects of β-AS and stretch on the
prolonged AP. In relation to the amplified oscillation amplitude, mPLF was increased.
Representative examples are shown in Fig. 2.11 c, where the case with longer APD
induced by downregulated IKr was associated with larger LF oscillations.
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In the case of mSTV, the lengthening of AP repolarization induced by IKr down-
regulation led to more accentuated temporal voltage variations. This occurred under
phasic β-AS, stretch and the combination of both effects associated with enhanced
sympathetic activity.
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Figure 2.11: (a) Minimum APD versus IKr current conductance in the population of virtual
cells; (b) APD range versus minimum APD; (c) zero-mean APD series (APD - APD) for two
examples corresponding to downregulated and upregulated IKr while keeping all the other
currents at their default values in the ORd model.

2.3.4.3 Mechanisms Underlying the Role of ICaL as a Modulator of BVR
and LF Oscillations of APD

The contribution of ICaL to BVR and LF oscillations was relevant under both simulated
β-AS and mechanical stretch, with an important role of SACs in explaining ICaL
modulation of APD oscillations.

ICaL downregulation shortened the AP plateau, leading to more triangular APs
(Fig. 2.12 a). This, in turn, magnified the effects of phasic β-AS and accentuated the
APD differences within each simulated oscillation period. This change produced an
increase in the magnitude of LF oscillations of APD, associated with increments in both
mPLF andmNPLF (Fig. 2.12 b). Representative examples of low and high BVR and LF
oscillations of APD related to up- and downregulation of ICaL current are presented in
Fig. 2.12 c. In close correspondence with the above described mechanisms, the more
triangular AP induced by ICaL downregulation facilitated larger voltage fluctuations.
This was seen as increased mSTV and mNSTV.

Under simulated mechanical stretch on top of β-AS, there was an additional
change in the amplitude and duration of intracellular and subspace Ca2+ concentra-
tions as well as in the ISAC current. All these effects modified the AP repolarization
morphology, enhancing the differences within each simulated oscillation period. As
a consequence, mPLF and mNPLF were further increased and, correspondingly, mSTV
and mNSTV too.
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Figure 2.12: (a) Average triangulation versus ICaL current conductance and (b) mPLF values
versus average triangulation for the population of virtual cells; (d) zero-mean APD series
(APD - APD) for two examples corresponding to downregulated and updownregulated ICaL

while keeping all the other currents at their default values in the ORd model.

2.3.5 Severe Disease Conditions Accentuate both BVR and LF
Oscillations of APD, Leading to Electrical Instabilities

Disease conditions simulated by Ca2+ overload and RRR had an impact on sympa-
thetically mediated BVR and LF oscillations of APD. Specifically, when severe disease
conditions were simulated, including also an associated increase in the conductance of
non-specific cationic SACs, pro-arrhythmic events could be observed. These occurred
in 35% of the cases in the population and took the form of early afterdepolarizations
(EADs), EAD bursts and spontaneous beats. Examples are presented in Fig. 2.13.

For those cases where arrhythmogenic events were observed under severe disease
conditions (denoted as subpopulation A), BVR and LF oscillations of APD were in-
creasingly accentuated for higher levels of disease conditions, as illustrated in Fig. 2.14.
As can be noted from the figure,mNSTV andmNPLF took larger values for progressively
higher levels of Ca2+ overload and RRR. Similarly occurred for the non-normalized
indices mSTV and mPLF. Those cases not presenting arrhythmogenic events under
severe disease conditions (denoted as subpopulation NA) showed lower values of BVR
and LF oscillation measures for both mild and moderated disease conditions. This
can be appreciated in Fig. 2.14 as well.

The results of CCA performed to assess major contributors to pro-arrhythmic
events under severe disease conditions are presented in Fig. 2.15. According to these
results, the ionic currents with a major involvement in pro-arrhythmicity were IKr,
ICaL, IK1 and INaK, the first three being major modulators of BVR and LF oscillations
of APD. The sign of the relationship between ionic conductances and pro-arrhythmicity
was negative (i.e. current downregulation facilitating pro-arrhythmic events) in all
cases except for ICaL.
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Figure 2.13: Pro-arrhythmic events observed following SP in cells under simulated severe
disease conditions.

The role of IKr, ICaL and IK1 in contributing to pro-arrhythmicity is further
illustrated in Fig. 2.16, which shows the distribution of virtual cells as a function of
their IKr, ICaL and IK1 conductances (θKr, θCaL and θK1, respectively). As can be
appreciated, pro-arrhythmic cells were most commonly located in regions with low
θKr and θK1, thereby exemplifying how IKr and IK1 downregulation contribute to pro-
arrhythmicity. The effect of ICaL was only significant in the region where θKr < 1,
implying that the role of ICaL was dependent on IKr expression.

2.4 Discussion

A population of human ventricular stochastic AP models was built and shown to re-
produce a range of responses in terms of BVR and LF oscillations of APD following
enhanced sympathetic activity, as reported experimentally [51]. The models included
descriptions of electrophysiology, β-A signaling, mechanics and ionic gating stochastic-
ity and served to investigate the interactions between the two investigated phenomena,
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Figure 2.14: Violin plots representing the distributions of log(mPLF), mNPLF, mSTV and
mNSTV for mild and moderate disease conditions. The whole population of models is di-
vided into two subpopulations: the set of cells presenting (denoted by A) and not presenting
(denoted by NA) pro-arrhythmic events following SP under severe disease conditions.

namely temporal variability and LF oscillatory behavior of APD, following SP. Ionic
mechanisms underlying inter-individual differences in those phenomena were ascer-
tained and individual characteristics associated with concomitantly large beat-to-beat
variability and LF oscillations of repolarization were established. These were linked
to higher susceptibility to electrical instabilities in the presence of disease conditions
like Ca2+ overload and RRR.

2.4.1 Relation between Sympathetically Mediated BVR and
LF Oscillations of APD in a Human Ventricular Popula-
tion

Increases in LF oscillations of repolarization in response to enhanced sympathetic ac-
tivity have been described at the level of the electrocardiographic T-wave and QT
interval in humans and animals [48, 49, 95] and at the level of the ventricular APD
in ambulatory patients [20, 51]. A direct effect related to enhanced activity of the
sympathetic nerves innervating ventricular myocardium, rather than just an effect at-
tributable to heart rate variability, has been proved [48, 51, 95]. In this study, phasic
β-AS and mechanical stretch were simulated in association with muscle sympathetic
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Figure 2.15: Relevance of ionic current conductances to pro-arrhythmic events.

nerve activity patterns during enhanced sympathetic activity [87]. Pacing at a con-
stant rate was applied to the models. In accordance with experimental observations,
increments in absolute and normalized LF power of APD have been overall measured
in this population. Nevertheless, there is a high degree of inter-individual variability,
with some individual cases showing no change or even a decrease in LF oscillations of
APD in response to SP, which is in line with experimental reports as well.

Additionally, clinical and experimental studies have reported that enhanced sym-
pathetic activity leads to increased BVR in patients with the long QT syndrome type
1 [96] and animal models of this disease [45] as well as in heart failure patients [52].
Human ventricular AP models, by including stochastic expressions of ionic current
gating, allowed investigation of BVR at baseline and in response to SP. In agreement
with experimental evidences, most of the models in the diseased population have shown
sympathetically-mediated increments in BVR. The increase in BVR in the referred ex-
perimental/clinical studies as well as in the simulations of disease could be explained
by β-AS effects under conditions of reduced IKs, which is indeed the case in the simula-
tions and in long QT syndrome type 1 investigations and could also be the case in heart
failure following previous reports suggesting downregulation of this current in failing
hearts [97]. Also, mechanical effects associated with increased sympathetic activity
could synergistically enhance BVR. Furthermore, in these simulations, a wide range
of individual behaviors in terms of BVR patterns could be characterized following SP,
in line with experimental data.

The interactions between BVR and LF oscillations of APD have been recently
investigated in ambulatory patients with heart failure following a standard SP maneu-
ver [51]. In the present study, a strong correlation between BVR and LF oscillation
measures has been measured as well by simulation of SP through phasic β-AS and
mechanical stretch in human ventricular myocytes. This holds true for physiological
conditions and for disease conditions, simulated by Ca2+ overload and RRR, which
are characteristic of diseased hearts like those of heart failure patients. In both sim-
ulations and experiments the variability measurements mSD, mNSD, mPLF and mPLF
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Figure 2.16: Location of cells presenting (red) and not presenting (gray) pro-arrhythmic
events under simulated severe disease conditions as a function of relevant ionic current con-
ductance values.

were quantified. In addition, the BVR measurement mSTV, which accounts for in-
formation on the APD variation between consecutive beats and has been extensively
used for arrhythmic risk prediction [42, 98], was included in this work together with
its APD-normalized version mNSTV.

The strong correlation between mSTV and mPLF found in simulations and exper-
iments can be explained in light of the simulation outcomes. On the one hand, an
increment in temporal APD variability associated with random ionic gating directly
augments the LF power of APD, as it induces a rise in the power of APD at all fre-
quencies. Although the measurement mNPLF normalizes mPLF by the total power,
this marker turns out to be more insensitive to the amplitude of the LF oscillations
of APD than mPLF, while still indicative of the presence or absence of such oscilla-
tory behavior. In the case of BVR, the normalized measurement mNSTV has been
quantified on top of mSTV to correct for the dependence on the APD. Even if the
applied APD correction is able to reduce the correlation between APD and mNSTV to
a good extent, it does not abolish it completely. The very strong correlation between
mPLF and mSTV, both at baseline and following SP, dropped to very low correlation
when mNPLF and mNSTV were evaluated at baseline. Following SP, the correlation
between mNPLF and mNSTV was still remarkable, which can be explained by the fact
that the presence of a marked LF oscillatory pattern directly impacts the temporal
APD variability by increasing beat-to-beat APD differences.
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2.4.2 Main Contributors to Increased BVR and LF Oscillations
of APD following Enhanced Sympathetic Activity

The tight relationship between BVR and LF oscillations of APD following enhanced
sympathetic activity suggests there could be common modulators of both phenom-
ena. By building a population of virtual cells representing a range of experimentally
reported characteristics, in this work it was possible to elucidate the ionic current con-
ductances with a major contribution to inter-individual differences in absolute (mSTV
andmPLF) and normalized (mNSTV andmNPLF) BVR and LF oscillation markers. For
such elucidation, an approach based on the ARD technique was developed. Similar
approaches have been proposed in the context of magnetoencephalography [99] and
wireless communications [100], among others, but to the best of our knowledge this is
the first time an ARD-based technique is used to identify ionic modulators of cardiac
electrophysiological phenomena.

In [33] the mechanisms underlying LF oscillations of ventricular APD were investi-
gated by simulating phasic β-AS and mechanical stretch in association with enhanced
sympathetic activity. Differential IKs and ICaL phosphorylation and dephosphoryla-
tion kinetics in response to β-AS together with variations in Ca2+ cycling and SACs
in response to stretch were found to synergistically underlie LF oscillatory behavior
under SP. While that study provided meaningful insights into the bases for LF oscil-
lations of ventricular repolarization, only an average cell was modeled, which did not
allow investigation of inter-individual differences in LF oscillations of APD as in the
present study. Also, the models of the population built here are stochastic, as opposed
to the deterministic models employed in [33], thus allowing to quantify BVR at base-
line and its change in response to SP. This is of major relevance for investigation of
the interactions between BVR and LF oscillations of APD and of their modulators in
a whole population.

Our results highlighted the relevance of IKr, ICaL and IK1 conductances in mod-
ulating inter-individual differences in both BVR and LF oscillatory pattern of APD
under SP. Regarding IKr, its downregulation was shown to be a key factor for aug-
mentation of mSTV and mPLF but less important when considering their normalized
counterparts mNSTV and mNPLF. Concerning LF oscillations of APD, there is little
investigation in the literature into factors acting to modulate their magnitude. In
[33], a reduction in the repolarization current was shown to amplify APD oscillatory
behavior. Results are in line with such observations. Considering the fact that mNPLF
does not reflect the magnitude of the oscillations but mostly its presence or absence,
this normalized marker was found not to be modulated by IKr. Regarding BVR, a
variety of experimental, clinical and computational studies have addressed the role of
ionic current conductances in modulating beat-to-beat temporal variability quantified
by markers such as mSTV or mSD. In accordance with the results presented in [56] for
baseline conditions and [65] for β-AS, this work has shown IKr downregulation to act
as a contributor of BVR magnification. Since such a contribution is to a large extent
mediated by APD lengthening, it becomes importantly reduced when measured by
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markers that include APD normalization, such as mNSTV or mNSD.

Another very relevant current in the modulation of BVR and LF oscillatory behav-
ior of APD was ICaL. Although no previous studies in the literature have investigated
the role of ICaL as a modulator of LF oscillation amplitude, there have been a number
of studies addressing its role as a modulator of BVR. In [55], ICaL downregulation was
shown to increase the random channel fluctuation effects in guinea pig models, which
is in good agreement with the presented results. On top of the contribution of ICaL,
a role for IKs and persistent INa currents in enhancing BVR was also demonstrated in
[55]. It could not have been found such a role for those two currents, which could be
due to differences between species (guinea pig in [55] and human in this study) and
to the fact that this study investigated conditions of enhanced sympathetic activity
rather than baseline conditions.

Regarding IK1 regulation, this is, to the best of our knowledge, the first work
identifying its relevance to BVR and LF oscillations of APD. In these results, IK1
downregulation appears as a relevant contributor when SACs are incorporated into the
models to simulate mechanical stretch changes associated with SP. Under donwregu-
lated IK1, SACs contribute to alter the AP shape during the last part of repolarization
in a phasic manner, leading to increments in both BVR and LF oscillations.

As chronotropic effects of SP have been well documented in in vivo studies, com-
putational simulations were additionally carried out while pacing the virtual cells at
higher frequencies. The main ionic contributors IKr, IK1 and ICaL are confirmed to
remain very relevant to explain inter-individual differences in BVR and LF oscillatory
behavior in response to SP. Of note, the relevance of INaK in determining LF oscilla-
tions of APD increases when the analysis is performed for pacing frequencies above 1
Hz.

2.4.3 Pro-Arrhythmic Events associated with Increased BVR
and LF Oscillations of APD under Severe Disease Con-
ditions

Ca2+ overload and RRR are properties commonly present in diseased hearts, like
those of patients with heart failure, ischemic heart disease or post-myocardial infarc-
tion, [101–106]. In this study, BVR and LF oscillations of APD have been found to
become increasingly accentuated in response to disease progression. These results are
in line with those reported in previous clinical, experimental and theoretical studies
of the literature. In isolated myocytes and animal models of diseases like diabetes,
heart failure or post-myocardial infarction, exaggerated temporal APD variability has
been observed in association with Ca2+ overload and RRR, [106–109]. In the long QT
syndrome type 1, involving loss of IKs function, elevated ventricular repolarization
variability in response to β-AS has been documented and mechanisms have been pro-
posed based on animal models, isolated myocytes and computer simulation research,
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[45, 63, 65, 66]. In chronic atrioventricular block dogs, where ventricular remodel-
ing importantly compromises repolarization reserve, beat-to-beat APD variability has
been found to be augmented with respect to healthy dogs, [110]; an observation also
confirmed at the level of ventricular myocytes, [53]. A mechanical challenge in the
form of preload variability has been reported to be essential in that augmentation,
with mechano-electrical feedback through SACs postulated as a major mechanism,
[110]. In [33], the presence of disease conditions has been reported to lead to notably
augmented LF oscillations of APD.

Under severe disease conditions, arrhythmogenic manifestations have been found
to arise in individual cases of the population presenting large temporal repolarization
variability, either quantified at the LF band (LF oscillations) or at all frequencies
(BVR). These observations are in agreement with studies relating disproportionate
APD fluctuations, particularly in response to enhanced sympathetic activity, and the
generation of afterdepolarizations and arrhythmias. In [45] the authors used an in vivo
canine model of the long QT syndrome type 1 to demonstrate that β-AS enhanced
temporal and spatial variability of ventricular repolarization, which precipitated Tor-
sades de Pointes (TdP) arrhythmias. The association between increased BVR and the
onset of TdP arrhythmias has also been demonstrated in dogs with chronic atrioven-
tricular block [39, 44]. In ventricular myocytes and wedge preparations from human
end-stage failing hearts, β-AS has been shown to generate electrical abnormalities that
result in EADs and delayed afterdepolarizations (DADs), [111, 112]. Using a rabbit
model mimicking electrophysiological and contractile alterations in human HF, β-AS
has been reported to be a key factor in inducing DADs and increasing the propensity
for triggered arrhythmias, [113]. At the level of the surface ECG, increased BVR and
LF oscillations of repolarization have been shown to be risk predictors of ventricular
arrhythmias and sudden cardiac death [38, 48, 50, 109].

Provided the tight relationship between magnification of BVR and LF oscilla-
tions of APD and pro-arrhythmic risk, the existence of common modulators has been
explored in the present study. Canonical Correlation Analysis has been proposed to
identify ionic factors contributing to pro-arrhythmic risk following enhanced sympa-
thetic activity. CCA revealed the important role of IK1, IKr and ICaL in the devel-
opment of pro-arrhythmic events. These same factors are those primarily involved in
modulation of sympathetically-mediated BVR and LF oscillations of APD. The role of
IK1 in contributing to arrhythmogenesis has been reported in a rabbit model of heart
failure, where the combination of upregulated INaCa, downregulated IK1 and residual
βA responsiveness has been shown to increase the propensity for triggered arrhythmias
[113]. In this work, the contribution of IK1 downregulation to pro-arrhythmicity in
association with elevated temporal variability might have been more prominent if the
population of stochastic AP models had been built based on an electrophysiological
model more likely producing delayed afterdepolarizations under downregulated IK1,
and possibly upregulated INaCa, as compared to the ORd model. The role of IKr in
arrhythmogenesis has been well established in a variety of previously published investi-
gations. In [106], the loss of repolarizing currents, including IKr, has been described to
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lead to increased BVR, repolarization instability and afterdepolarizations in myocytes
from dogs susceptible to sudden cardiac death. In [33] reduced IKr and IKs have been
reported to cause AP irregularities associated with enhanced LF oscillations of APD
induced by SP. The implications of IKr inhibition in promoting ventricular arrhythmias
associated with increased temporal APD dispersion has been further demonstrated in
animal models of disease [110]. On top of K+ currents, the present work has identified
ICaL current as another relevant contributor to pro-arrhythmia associated with ele-
vated BVR and LF oscillations of APD, even if conditioned to the presence of reduced
IKr. In line with these results, increased ICaL has been demonstrated to facilitate elec-
trical abnormalities in the form of EADs in ventricular myocytes from human failing
hearts [111]. The contribution of increased ICaL to arrhythmogenesis during β-AS has
been also shown in [66] under reduced IKs.

In this study, other currents, like IKs and INaL, were found to have minor rele-
vance as contributors to arrhythmogenesis in association with temporal dispersion of
repolarization. This is contrast to previous studies showing major roles of IKs down-
regulation and INaL upregulation [45, 63, 65, 66, 108, 109, 114]. This discrepancy may
be explained by differences between species, modeling characteristics and, importantly,
investigated conditions, since this work has focused on the investigation of arrhythmic
events occurring following enhanced sympathetic activity.

2.4.4 Limitations and Future Work

The stochastic models built in this work included random gating descriptions for major
ionic currents active during AP repolarization like IKs, IKr, Ito and ICaL, as in previous
studies of the literature [57, 115]. Future studies could include stochasticity in other
currents like INaL, whose contribution to BVR has been reported in canine ventricular
models [65].

In the present work the ORd ventricular AP model has been used, which was
developed based on extensive undiseased human data. In this model the effect of
varying the IKs current on AP is significantly smaller than in other human ventricular
cell models, like the ten Tusscher-Panfilov model [31]. The low relevance of IKs as
an ionic modulator of BVR and LF oscillations of APD found in this work may have
to do with it. In [33], which served as a starting point for the present work, several
electrophysiological, mechanical and β-A signaling models were tested and only some
quantitative differences could be found, while the conclusions remained qualitatively
the same for all models. Nevertheless, the role of certain ionic currents in modulating
inter-individual differences in BVR and LF oscillatory behavior, as investigated in this
study, might still be different if another AP model were used as a basis. This should
be addressed in future works.

Also in relation to the use of the ORd model as a basis for the development of the
population of models in this work, it should be noted that other ventricular AP mod-
els with updated mechanisms of Ca2+ induced Ca2+ release could provide additional
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insight into the occurrence of spontaneous Ca2+ release and delayed afterdepolariza-
tions in association with elevated BVR and LF oscillations of APD. Indeed, previous
studies have been shown that Ca2+ handling abnormalities are a major driver of BVR
during β-AS [66] and a link between Ca2+ handling and arrhythmia liability during
increased sympathetic activity has been demonstrated, particularly in the setting of
heart failure [116].

The population of human ventricular cells used in this work was generated by
varying the conductances of eight ionic currents. Ionic parameters other than max-
imal current conductances might also represent relevant mechanisms underlying the
interactions between BVR and LF oscillations of APD. In particular for the ICaL
current, previous studies have proved that modulation of other biophysical proper-
ties, like a reduction in the amplitude of the non-inactivating pedestal component of
ICaL, allows to effectively suppress EADs without blocking peak ICaL, thus preserving
excitation-contraction coupling [117]. Future work could address the investigations of
the present work by generating a population of virtual cells where biophysical ionic
parameters other than maximal conductances were varied, which could eventually lead
to findings that developed into more clinically useful therapeutic approaches.

The present chapter has focused on single cells, while the available experimental
data on the interactions between BVR and LF oscillations of human APD are from
in vivo measurements in ambulatory heart failure patients. Simulated results qual-
itatively reproduced the behavior observed in the experiments. Future work could
include assessment of those interactions in tissue and whole-heart models. Nonethe-
less, cell-to-cell coupling has been shown to be remarkably reduced in heart failure
and other disease conditions, which would render cell and tissue results close to each
other.

Statistical approaches based on ARD and CCA have been used in this study.
Future works could investigate generalization of these techniques to consider nonlinear
relationships by using kernel functions, even if a larger number of simulations would
be required to avoid overfitting.

2.5 Conclusions

Human ventricular models including descriptions of cell electrophysiology, ion chan-
nel stochasticity, β-A signaling and mechanical stretch were developed. These models
reproduced experimentally reported interactions between beat-to-beat variability and
low-frequency oscillations of repolarization in response to enhanced sympathetic ac-
tivity. Ionic factors underlying correlated increments in both phenomena were inves-
tigated, which included downregulation of the inward and rapidly activating delayed
rectifier K+ currents and the L-type Ca2+ current. Concomitantly elevated levels of
beat-to-beat repolarization variability and its low-frequency oscillations in diseased
ventricles led to electrical instabilities and arrhythmogenic events. This investigation
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serves as a basis for future studies aiming at improving arrhythmic risk stratification
and guiding the search for more efficient anti-arrhythmic therapies.
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3.1 Introduction

As described in Chapter 2, ventricular repolarization exhibits an LF oscillatory pat-
tern following enhanced sympathetic activity. In humans, this has been demonstrated
by quantification of PRD in the T-wave vector of the ECG [48, 49] as well as by in vivo
evaluation of LF components in ARIs of ventricular EGMs [20, 51]. In post-infarction
patients, an increased magnitude of LF oscillations in ECG repolarization has been
proved to be a significant predictor of total mortality and sudden cardiac death [50].
Most notably, a very recent study has shown that those periodic repolarization dynam-
ics are able to predict the efficacy of implanting a cardioverter defibrillator in patients
undergoing primary prophylactic treatment [118]. In silico studies have provided in-
sight into the cellular mechanisms underlying this oscillatory pattern of ventricular
repolarization, which have been explained by the synergistic effect of phasic β-AS
and mechanical stretch, both accompanying enhanced sympathetic nerve activity. In
brief, differential phosphorylation kinetics of calcium (ICa) and potassium (IK) cur-
rents upon phasic β-AS as well as changes in calcium cycling and the action of SACs
in response to phasic mechanical stretch have been shown to generate LF oscillations
in cellular APD [33]. Chapter 2 investigated inter-individual differences in LF os-
cillations of ventricular APD, concluding that calcium and potassium currents, ICa
and IK (specifically, the rapid delayed rectifier IKr and inward rectifier IK1), are ma-
jor ionic modulators of such inter-individual differences. Importantly, these identified
ionic factors are key for the development of arrhythmic events following enhancement
of APD oscillations’ magnitude. A very recent investigation has experimentally con-
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firmed in an arrhythmogenic in vivo dog model that ventricular remodeling associated
with chronic atrioventricular block (CAVB) augments LF oscillations of APD [119].
Most importantly, the oscillation magnitude has been reported to be larger in dogs
susceptible to dofetilide-induced TdP arrhythmias as compared to non-inducible dogs
[119].

For LF oscillations in the ventricular APD to become clearly manifested following
increased sympathetic activity, computational research has shown that some tens of
seconds or even a few minutes are required [33]. This requisite on a relatively long
exposure to enhanced sympathetic activity for repolarization oscillations to develop
may explain why experimentally measured APD oscillations appear to come and go
and do not remain as sustained oscillations for long recording periods [20]. Chapter
2 and [33] have shown that, upon a sympathetic rise, the cellular ventricular APD
shows a global trend of shortening, or brief prolongation followed by more prominent
shortening, which masks concurrent LF oscillations overlapping with the global APD
trend. The individual and combined roles of β-AS and mechanical stretch in deter-
mining the time lapse for LF oscillations to become visibly manifested are yet to be
explored. Experimental investigations in canine ventricular myocytes have shown that
APD presents slow time-dependent changes following application of a constant dose of
the β-A agonist ISO [120]. The slow activation of IK currents (in particular, slow IKs
and rapid IKr delayed rectifier currents), as compared to the very fast activation of
the ICa current, has been demonstrated to be behind such APD lag following sudden
ISO exposure. The distinctively slow response of IKs to β-AS and its implications
in terms of APD adaptation time have been also described in other species, like the
rabbit [121]. On the other hand, APD dynamicity in response to constant mechanical
stretch or to the combination of constant β-AS and mechanical stretch has been less
studied experimentally.

The work presented in this chapter investigates the cellular ventricular APD re-
sponse to phasic, rather than constant, β-AS and mechanical stretch, in closer cor-
respondence with the experimentally reported LF patterns of efferent sympathetic
nerve activity [87, 122]. The global trend of APD response is in this case expected
to be concurrent with periodic changes in APD occurring at the frequency of sym-
pathetic activity. For this investigation, a population of computational cellular AP
models representative of experimentally reported human ventricular electrophysiolog-
ical characteristics is developed and coupled to models of β-AS and mechanics. By
using the developed models, the amount of time required for LF fluctuations of APD to
arise in response to phasic sympathetic activation is characterized and the ionic mech-
anisms underlying cell-to-cell differences in APD time lag are dissected. Experimental
confirmation of the obtained results is obtained. A relationship between the quantified
time lapse and the magnitude of APD oscillations is established, which serves to set
links to pro-arrhythmic risk under disease conditions associated with Ca2+ overload
and reduced RRR, both being commonly present in failing hearts.
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3.2 Methods

3.2.1 Experimental Data

Ventricular myocytes were isolated from the left ventricular wall of adult beagle dogs
as described in [120]. The isolation procedure followed a protocol approved by the
local ethical committee according to the principles outlined in the 1964 Declaration
of Helsinki and its later amendments. The cells used for the work described in this
chapter were obtained from the subepicardial layer.

Transmembrane potentials were measured at 37 ◦C by using 3 M KCl-filled sharp
glass microelectrodes with tip resistance 20-40 MΩ [120]. The electrodes were con-
nected to the input of an Axoclamp-2B amplifier (Molecular Devices, Sunnyvale, CA,
USA). Cardiomyocytes were paced at 1 s using 1-ms wide rectangular current pulses
with 120% threshold amplitude until steady-state. ISO was applied at a concentration
of 10 nM for 5 minutes. APs were sampled by periods of 30 s following ISO appli-
cation, with a sampling frequency of 200 kHz using Digidata 1200 A/D card (Axon
Instruments Inc., Foster City, CA, USA).

3.2.2 Electrophysiology Model

Similar to the description in Chapter 2, a population of human ventricular AP models
representative of a wide range of experimentally observed electrophysiological charac-
teristics was built based on the ORd epicardial model [5]. The population was obtained
by varying the ionic conductances of eight ionic currents in the ORd model, namely:
IKs, slow delayed rectifier potassium current; IKr, rapid delayed rectifier potassium
current; Ito, transient outward potassium current; ICaL, L-type calcium current; IK1,
inward rectifier potassium current; INa, sodium current; INaK , sodium-potassium
pump current; and INaCa, sodium-calcium exchanger current.

Initially, 500 models were generated by using the Latin Hypercube Sampling
method to sample the conductances of the above described currents in the range
±100% , [33, 69]. A set of calibration criteria based on experimentally available hu-
man ventricular measures of steady-state AP characteristics [5, 70–73] were imposed,
as described in Table 3.1. AP characteristics used for model calibration included:
APD90|50, which represents steady-state APD at 90%|50% repolarization correspond-
ing to 1 Hz pacing (expressed in ms); RMP, representing resting membrane potential
(in mV); Vpeak, representing peak membrane potential measured in the AP upstroke
(in mV); and ∆APD90, representing the percentage of change in APD90 with respect to
baseline following individual inhibitions of IKs, IKr or IK1 currents (measured in ms).
Of the initial 500 models, only 218 meeting all the calibration criteria were selected.
Additionally, models showing pro-arrhythmic behavior at baseline and/or under SP
were discarded, which led to a population of 188 models for the analysis of this work.
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Table 3.1: Calibration criteria applied onto human ventricular cell models.

AP characteristic Min. acceptable value Max. acceptable value
Under baseline conditions [5, 70, 71]

APD90 (ms) 178.1 442.7
APD50 (ms) 106.6 349.4
RMP (mV) -94.4 -78.5
Vpeak (mV) 7.3 -

Under 90% IKs block [5]
∆APD90 (%) -54.4 62

Under 70% IKr block [73]
∆APD90 (%) 34.25 91.94

Under 50% IK1 block [72]
∆APD90 (%) -5.26 14.86

3.2.3 PKA Phosphorylation Model

A modified version of the β-A signaling model proposed Xie et al. in [36] was used
as a basis to describe phosphorylation levels of cellular PKA substrates, as reported
in [33] and Chapter 2. The Xie model [36] represents an evolution from the Soltis
et al. signaling model [35] in which IKs phosphorylation and dephosphorylation rate
constants were updated to better match experimental observations reported in [121].
Also, as described in [36], PKA-mediated phosphorylation of PLM involved an increase
in the NKA affinity for the intracellular Na+ concentration. In the modified model
of this work, RyR phosphorylation was defined by using the formulation described in
[79].

For a specific set of simulations, IKs phosphorylation and dephosphorylation ki-
netics were defined as reported in [35] to assess the effects of faster phosphorylation
kinetics on the time lapse for APD oscillations development.

3.2.4 Mechanics Model

An updated version of the Niederer model was employed to describe cell mechanics [14],
with the values of some constants being adjusted to represent human cell characteristics
as in [16] and [33]. ISAC , denoting the current through SACs, was accounted for as in
[33] and Chapter 2. Specifically, ISAC was defined as the current through non-specific
cationic SACs plus the current through K+-selective SACs.
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3.2.5 Simulation of Enhanced Sympathetic Activity

Enhanced sympathetic activity was simulated by the combination of phasic β-AS and
mechanical stretch effects. Similarly to Chapter 2, phasic β-AS was simulated by a
periodic stepwise profile of the β-A agonist ISO according to muscle sympathetic nerve
activity patterns in humans [87]. The periodicity of the ISO profile corresponded to
a frequency of 0.05 Hz, this being within the reported Mayer wave frequency range
(0.03-0.15 Hz). The 20-second ISO period was composed of a 10-second time interval
where the ISO concentration was set to 1 µM and a subsequent 10-second time interval
where the ISO concentration was 0. Phasic changes in hemodynamic loading, a known
accompaniment of enhanced sympathetic activity, were simulated by phasic mechanical
stretch changes at the same 0.05 Hz frequency. Specifically, the stretch ratio was varied
during the 20-second period following a sinusoidal waveform with maximal change
being 10%, being such level of change in line with those of previous experimental
and computational studies [123, 124]. Phasic β-AS and mechanical stretch effects
were defined to be in-phase. A total of 500 beats at baseline and 500 beats following
enhanced sympathetic activity were simulated while pacing at 1 Hz frequency.

3.2.6 Simulation of Disease Conditions

For specific simulations, disease conditions were simulated by RRR and Ca2+ overload.
RRR was defined by concomitant inhibition of IKr and IKs currents by 30% and 80%,
respectively. Ca2+ overload was defined by a 4-fold increment in the extracellular
Ca2+ level.

3.2.7 Quantification of APD Time Lag in Response to Con-
stant β-AS and/or Mechanical Stretch

APD was evaluated at 90% repolarization in both simulations and experiments. The
simulated or experimentally measured APD time series following β-AS and/or mechan-
ical stretch is denoted by a[k], where the discrete index k represents cycle number.
Thus, k varies from 0 to K, with K being the number of cycles following β-AS and/or
mechanical stretch.

The time lapse, τAPD, for APD to reach a new steady-state following application
of β-AS and/or stretch was defined as the time taken by the APD time series to
attain convergence, with convergence characterized by the derivative of the APD time
series being below a predefined threshold. Specifically, the following steps were used
to compute the APD time lapse:

1. Smoothing

To remove short-term variability and make the estimation of the convergence
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time more robust, moving average smoothing was applied onto the APD time
series a[k] to obtain a smooth version of it, â[k]:

â[k] =
1

T

k+T∑
k′=k

a[k′] (3.1)

where T was set to the period in cycles of the sympathetic activity, T = 20
cycles.

2. Numerical Derivative

From â[k], the derivative d[k] was numerically estimated by computing the cen-
tral difference for the interior data points of â[k] and single-side difference for
the edges of â[k]:

d[k] =
â[k + 1]− â[k − 1]

2
, 0 < k < K (3.2)

d[0] = â[1]− â[0] (3.3)

d[K] = â[K]− â[K − 1] (3.4)

3. Time Lapse Calculation

A threshold on the maximum allowed variation in the derivative of the APD
time series for convergence to be attained was defined in this work by setting
θ = 0.5 ms. The number of cycles, kAPD, for APD convergence following β-AS
and/or stretch was defined as:

kAPD = min
0≤k≤K

{∣∣∣∣∣
K∑
k′=k

d[k′]

∣∣∣∣∣ < θ

}
(3.5)

The time lapse τAPD was obtained by converting kAPD into minutes:

τAPD = kAPD
CL

60
(3.6)

where CL is the cycle length in seconds (constant period between stimuli applied
to the cells to elicit APs).

Values of τAPD equal to 0 represent cases where convergence of the APD time
series was immediate.
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3.3 Results

3.3.1 Time Lapse for Development of LF Oscillations in APD

Fig. 3.1 shows examples of APD time series for two different human ventricular cells of
the simulated population presenting LF oscillations following SP. From this figure, it
is clear that not only the magnitude of the oscillations is different for the two cells but
also the time lapse required for LF oscillations of APD to become evident is remarkably
distinct. For the first virtual cell illustrated in Fig. 3.1, the time lapse was τAPD =
139 s, whereas for the second virtual cell, τAPD = 0 s. The characteristics of these two
cells in terms of ionic current conductances are presented in Table 3.2.
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Figure 3.1: Simulation of SP and APD response of two different cells in the population. First
row: Phasic ISO application at a frequency of 0.05 Hz. Second row: Phasic stretch ratio
variations at the same frequency. Third and fourth rows: APD time series corresponding to
two cells (virtual cell 1 and virtual cell 2) presenting LF oscillations in response to SP.
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Table 3.2: Factors multiplying ionic conductances of virtual cells 1 and 2 illustrated in Fig.
3.1.

Ionic factors θKs θKr θto θCaL θK1 θNa θNaCa θNaK
Virtual cell 1 1.83 0.88 0.78 0.46 1.16 1.70 0.40 1.37
Virtual cell 2 0.49 1.11 1.98 1.37 1.34 0.42 1.82 1.97

Fig. 3.2, left panel, presents a histogram of the time lapse for APD oscillations
developed in response to a rise in sympathetic activity for all the cells in our virtual
population. Inter-individual differences in the ionic characteristics of the virtual cells
had an impact on τAPD, which ranged from just a few seconds for some virtual cells
to more than three minutes for other cells. Similarly, Fig. 3.2, right panel, shows a
histogram of the power in the LF band (PLF) for APD oscillations under SP, repre-
sented in terms of log(PLF). Large inter-individual variability also exists in log(PLF),
with values covering from 0 to 10 ms2, although most cells present PLF values below
5 ms2.
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Figure 3.2: Histogram of the time lapse (left panel) and LF power (right panel) of APD in
response to increased sympathetic activity for all cells in the simulated population.

3.3.2 Contribution of β-AS and Mechanical Stretch to Time
Lapse of LF Oscillations in APD

The individual and combined contributions of phasic β-AS and mechanical stretch to
the time lapse in the occurrence of LF oscillations of APD is presented in Fig. 3.3, left
panel. As can be observed from the figure, individual application of phasic β-AS had
a major role in the time required for APD oscillations to develop, whereas individual
mechanical stretch had a more marginal influence, with the vast majority of simulated
cells developing LF oscillations in response to phasic stretch in less than one minute.
When the effects of β-AS and stretch were combined, the APD convergence time was
reduced with respect to that corresponding to only β-AS for practically all cells.

Additionally, Fig. 3.3, right panel, illustrates the oscillation magnitudes in terms
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of log(PLF) for individual and combined β-AS and mechanical stretch. Individual
mechanical stretch led to the largest oscillations magnitudes, in association with the
shortest time delays, whereas individual β-AS led to the smallest magnitudes, in as-
sociation with the largest time lapses. Nevertheless, high inter-individual variability
could be observed in all cases.
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Figure 3.3: Boxplots representing the time lapse (left panel) and the power in the LF band
(right panel) for oscillations of APD to develop in response to phasic β-AS (ISO 1µM),
mechanical stretch (10%) and the combination of both. Statistically significant differences by
Wilcoxon signed-rank test (p-value < 0.05) are denoted by ∗. Since the statistical significance
in the comparison of simulated data highly depends on the number of simulated cases, smaller
subsets of virtual cells were used to prove that p = 0.05 had already been achieved with a
much smaller number of virtual cells than those in the whole population.

3.3.3 Comparison of APD Time Lapse following β-AS in Ex-
periments and Simulations

Based on the results presented in sections 3.3.1 and 3.3.2 and the fact that LF os-
cillations of APD are superimposed to the general trend of APD decrease following
enhanced sympathetic activity, the time lapse for the development of APD oscilla-
tions can equivalently be determined by the time required for APD to converge to
steady-state following constant β-AS.

The temporal evolution of APD following constant application of an ISO dose of
10 nM was investigated in simulations based on the generated population of cells and
compared with the experimental data recorded by using the same β-AS protocol with
the same ISO dose. Fig. 3.4 presents ∆APD, calculated by subtracting the mean APD
value at baseline (prior to ISO application) to the APD time series measured following
β-AS, for both simulated and experimental data from single ventricular myocytes. It
can be noted from the figure that large cell-to-cell variability exists in the time lag
of measured APD responses, with the transition times required to reach steady-state
following ISO application varying by several minutes. This cell-to-cell heterogeneity
in the APD response to constant β-AS serves as a basis to explain the cell-to-cell
differences in the data presented in Fig. 3.3 (left column), corresponding to phasic
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β-AS at a 1 µM ISO dose, which includes APD oscillations overlapped with the de-
crease in APD. Of note, the simulated time lags in the virtual population of cells are
representative of the values measured experimentally in ventricular cardiomyocytes.
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Figure 3.4: Top panel: ISO dose in nM, where time zero indicates the time when the solution
containing ISO arrived to the cells and analogously for simulations. Bottom panel: Change
in APD with respect to baseline following application of a constant 10 nM ISO dose in
experiments (n=5, red) and simulations (grey) on single ventricular myocytes.

3.3.4 Reduction in Time Lapse for LF Oscillations of APD by
Prior Low-Level β-AS

The possibility that prior stimulation of β-adrenoceptors could reduce the time re-
quired for APD to develop LF oscillations in response to enhanced sympathetic ac-
tivity was next explored. Fig. 3.5 presents results of the time lapse for oscillations
development in response to phasic 1 µM ISO application for eight different cases with
prior β-AS corresponding to ISO levels varying from 0 to 0.07 µM in 0.01 µM-steps,
with each of these pre-stimulation periods applied for 500 beats at 1 Hz pacing fre-
quency. From this figure, it is clear that the time lapse was remarkably reduced as
a function of the pre-stimulation level. For a prior stimulation with an ISO dose of
0.05 µM, ie. 50 nM, most virtual cells developed LF oscillations in APD practically
in an instantaneous way after applying the maximal ISO dose of 1 µM. There are still
some cells for which the time lapse is above three minutes even if β-adrenoceptors
were previously stimulated.



68 Chapter 3. Time Course of LF Oscillations of Ventricular Repolarization

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

ISO Prestimulation level ( M)

0

1

2

3

4

A
P

D
 (

m
in

)

Figure 3.5: Time lapse for LF oscillations of APD to develop in response to phasic β-AS with
1 µM ISO dose as a function of prior phasic β-AS with lower ISO doses varying from 0 to
0.07 µM.

3.3.5 Ionic Mechanisms Underlying Time Lapse in LF Oscilla-
tions of APD

To ascertain the ionic mechanisms underlying the time required for APD to develop LF
oscillations following phasic β-AS, the effect of phosphorylation and dephosphorylation
kinetics of all cellular PKA substrates was investigated. Fig. 3.6, left panel, presents
the phosphorylation levels of all these substrates in response to 5-minute β-AS. As
can be observed from the figure, the substrates presenting slower phosphorylation
responses are the slow delayed rectifier channels, associated with the IKs current, and
ryanodine receptors, RyR.
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Figure 3.6: Left panel: Phosphorylation levels calculated as described in section 3.2.3. Right
panel: Time lapse for LF oscillations of APD to develop in response to phasic β-AS when
using PKA models with slow (left, [36]) and fast (right, [35]) IKs phosphorylation and de-
phosphorylation kinetics.
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To assess the extent to which variations in the phosphorylation and dephosphory-
lation kinetics of IKs influenced the time for development of APD oscillations, simula-
tions were run where the IKs phosphorylation and dephosphorylation rate constants
were increased to the values described in [35] from which an update was presented in
a subsequent study by [36] to more reliably recapitulate PKA-dependent regulation
of IKs. Specifically, the IKs phosphorylation rate constant was changed from 8.52 to
84 s−1 and the IKs dephosphorylation rate constant was changed from 0.19 to 1.87
s−1. According to the results presented in Fig. 3.6, right panel, it is clear that the
time lapse for APD oscillations was very notably reduced after increasing those rate
constants, thus indicating the dependence of the APD oscillatory time lapse on IKs
phosphorylation kinetics. On the other hand, variations in the phosphorylation kinet-
ics of RyR had no impact on the time lapse for APD oscillations to develop, even if
these were varied by a factor of up to ten times their nominal values.

Based on the above results, and considering that cell-to-cell differences in the
population of models correspond to different ionic current conductance contributions,
it was hypothesized that inter-individual differences in the time lapse for APD oscilla-
tion development was based on their differential IKs contributions. Simulations were
run where IKs was inhibited at different levels and a monotonic decrease in oscillation
time lapse could be quantified for increasingly larger inhibitions, as illustrated in Fig.
3.7 . For full IKs blockade, APD oscillations became apparent almost immediately.
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Figure 3.7: τAPD (top panels) and log(PLF) (bottom panels), presented in terms of median,
first quartile (Q1) and third quartile (Q3), for increasingly higher degrees of IKs inhibition,
both in response to phasic β-AS (ISO 1µM, left panels) and combined with phasic mechanical
stretch (10%, right panels) for the population of virtual cells under healthy conditions.
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3.3.6 Relationship between Time Lapse and Magnitude of LF
Oscillations of APD

To assess the relationship between the time lapse for development of LF oscillations in
APD and the magnitude of such oscillations, a set of models was built in such a way
that they all share the same characteristics of the ORd-Xie coupled electrophysiology-
β-A signaling model, except for IKs phosphorylation and dephosphorylation rate con-
stants, which were varied from model to model so that they covered from the slowest
dynamics reported in [36] to the fastest dynamics reported in [35]. Fig 3.8, left panel,
shows the relation between the magnitude of LF oscillations in APD, quantified by the
LF power in the 0.04-0.15 Hz band denoted by PLF, and the time lapse for oscillation
development, quantified by τAPD. It can be observed from the figure that the models
with the fastest IKs phosphorylation dynamics are those presenting the shortest time
lapse and the highest APD oscillatory magnitude.
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Figure 3.8: Left panel: log(PLF) vs. τAPD for varying IKs phosphorylation and dephospho-
rylation rate constants ranging from the values in [35] to the values in [36]. Right panel: IKs
phosphorylation levels for the models with IKs phosphorylation and dephosphorylation rate
constants as in [35] (gray line) and as in [36] (red line).

To substantiate this result, Fig. 3.8, right panel, shows IKs phosphorylation levels
calculated according to the signaling models in [36] and [35], corresponding to the two
most extreme points shown in Fig. 3.8, left panel. It can be observed from the graphic
that, for the model in [35], not only are the IKs phosphorylation dynamics faster but
also the associated oscillations are of larger magnitude. These enhanced oscillations
in IKs phosphorylation have an impact on the AP, which is manifested by a larger
oscillatory magnitude of APD.

In the whole population of virtual cells, where all cells present the same phospho-
rylation kinetics but the conductance of IKs varies from one cell to another, conse-
quently modulating the influence of IKs phosphorylation fluctuations on APD oscilla-
tory behavior, the inverse relationship between PLF and τAPD can still be appreciated.
This is shown in Fig. 3.11, which presents PLF vs τAPD for cells under healthy con-
ditions divided into two groups depending on the presence/absence of pro-arrhythmic
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effects when disease conditions were simulated, as described in the next section.

3.3.7 Effect of Disease Conditions in Time Lapse of LF Oscil-
lations of APD and Relation to Arrhythmogenesis

Simulation of disease conditions by Ca2+ overload and RRR in the population of
models led to a sharp decrease in the APD oscillatory time lapse following increased
sympathetic activity. This is illustrated in Fig. 3.9, left panel, which shows zero-mean
APD time series (after subtraction of the corresponding baseline value to facilitate
comparison) for one of the cells in the virtual population under healthy and patholog-
ical conditions. The value of τAPD decreased from 130 ms to 0 ms due to the effects of
disease. Fig. 3.9, right panel, summarizes the observed changes in τAPD when simulat-
ing disease conditions in the subpopulation of cells that did not present pro-arrhythmic
events. Whereas Ca2+ overload had mild effects on τAPD, the effects of RRR, individ-
ually or in the presence of Ca2+ overload, contributed to a very remarkable reduction
in the oscillatory time lapse.
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Figure 3.9: Left panel: Zero-mean APD series (APD - APDBaseline) in response to SP, for
healthy (red line) and disease (black line) conditions simulated for a virtual cell of the pop-
ulation. Right panel: Differences in τAPD due to Ca2+ overload and/or RRR with respect to
healthy conditions.

When disease conditions were simulated as accompanied by an increase in the
conductance of non-specific cationic SACs in accordance with experimental evidences
[82, 125], arrhythmogenic events were generated in some of the virtual cells of the pop-
ulation following SP. These were in the form of afterdepolarizations and spontaneous
beats and occurred in 46.34% of the virtual cells that did not show any pro-arrhythmic
manifestation at baseline. Examples are illustrated in Fig. 3.10. To assess whether in-
dividual cell oscillatory characteristics evaluated under healthy conditions were related
to pro-arrhythmicity, the time lapse, quantified by τAPD, and the magnitude of APD
oscillations, quantified by PLF, were compared between the groups of cells presenting
and not presenting arrhythmogenic events. Results are presented in Fig. 3.11, left and
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middle panels. As can be observed from the figure, little differences in the mean or me-
dian τAPD were found between the two groups. On the other hand, larger differences
in PLF were seen between the groups, with the one presenting arrhythmogenic events
in response to increased sympathetic activity being associated with remarkably larger
mean and median PLF (note that the logarithm of PLF is represented in Fig. 3.11).
Boxplots of τAPD and log(PLF) for the groups of cells presenting and not presenting
arrhythmogenic events are shown in Fig. 3.12.

The relationship between PLF and τAPD in the population of cells prior to intro-
ducing disease conditions is presented in Fig. 3.11, right panel, for the pro-arrhythmic
and non-pro-arrhythmic groups. In both groups, larger values of PLF were associ-
ated with shorter values of τAPD, although high inter-individual variability could be
noticed. The Spearman correlation coefficient was ρ = -0.82 in the pro-arrhythmic
group and ρ = -0.57 in the non-pro-arrhythmic group.
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Figure 3.10: Pro-arrhythmic events in virtual cells in response to increased sympathetic activ-
ity under diseased conditions simulated by Ca2+ overload, reduced repolarization reserve and
increased GSAC . Phase 2 and phase 3 early afterdepolarizations (EADs) (top panels), EAD
bursts (bottom left panel) and spontaneous beats (bottom right panel) could be observed.

3.4 Discussion

3.4.1 Inter-Individual Differences in the Time Lapse for Devel-
opment of LF Oscillations of APD Following Enhanced
Sympathetic Activity

The research presented in this chapter has shown that LF oscillations of human ven-
tricular repolarization, reported in the T-wave of the ECG and locally in ARIs of



3.4. Discussion 73

Figure 3.11: Left and middle panels: Violin representations of τAPD and log(PLF), respec-
tively, calculated under healthy conditions for subpopulations of cells presenting and not
presenting pro-arrhythmic events when disease conditions were simulated while pacing at
CLs of 1000, 2000 and 2500 ms. Right panel: τAPD vs. log(PLF) for the same two sub-
populations. The slopes of the regression lines for the subpopulations presenting (orange)
and not presenting (green) pro-arrhythmic events were statistically significantly different by
univariate analysis of variance (p-value < 0.05).

unipolar epicardial EGMs, do not develop immediately upon a sympathetic rise but
take some time to become apparent. An algorithm has been proposed to robustly
quantify the time lapse required for APD to develop sympathetically-mediated LF
oscillations. This time lapse has been shown to be highly variable from one cell to
another, ranging from just a few seconds to more than three minutes depending on the
ionic characteristics of each individual cell. Following enhanced sympathetic activity,
the APD shows a trend of shortening, or brief prolongation followed by more sustained
shortening, which masks overlapping oscillations. Only when such APD shortening has
been completed, APD oscillations become manifest.

The range of time lags for APD oscillatory behavior following SP is of the order
of adaptation lags reported for the QT interval of the ECG in response to increases
in sympathetic activity leading to abrupt heart rate increases, either measured from
ambulatory Holter recordings [126] or following tilt test [127, 128]. Those repolar-
ization dynamics have also been recently investigated in experimental studies using
fully innervated Langendorff-perfused mouse and rabbit hearts, where the APD re-
sponse to bilateral sympathetic nerve stimulation has been described [129]. In those
studies ventricular repolarization was modulated both by direct sympathetic action
on the ventricular myocardium as well as indirectly by heart rate-related effects. In
the present study, CL was kept constant and the ventricular response was thus only
assessed as due to sympathetic effects on the ventricle, as in in vivo EGM recordings
from patients where LF oscillations of ARI have been characterized while controlling
CL with right ventricular pacing [20, 51].

The prolonged time lapses for LF oscillatory behavior of APD following enhanced
sympathetic activity quantified in this work can help to explain why oscillations seem
to appear and disappear, as observed in in vivo studies [20], where APD oscillatory
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Figure 3.12: Boxplot of τAPD (left panel) and log(PLF) (right panel) calculated under healthy
conditions for subpopulations of cells presenting and not presenting pro-arrhythmic events
when disease conditions were simulated while pacing at CLs of 1000, 2000 and 2500 ms. Sta-
tistically significant differences by Wilcoxon rank-sum test (p-value < 0.05) are denoted by ∗,
while non-significant differences are denoted by n.s. See comment on statistical comparisons
of simulated data in the main manuscript.

behavior could only be measured at certain time intervals of the analyzed recordings.
Those time intervals could be speculated to be associated with sustained sympathetic
activation so that enough time was allowed for LF oscillations in APD to develop.

In this work SP was simulated by concomitant phasic changes in β-AS and me-
chanical stretch. The involvement of each of these two components in the protracted
LF oscillatory response to a sympathetic rise has been assessed. Results have de-
termined that mechanical stretch induces LF oscillations of APD in an almost in-
stantaneous manner, whereas β-AS entails much longer APD time courses until LF
oscillations can be clearly appreciated. Based on the fact that the time lapse is mainly
due to the slow response to β-AS, this work has next validated the calculated time
lapses against in vitro data from ventricular myocytes following sudden exposure to
ISO. Both in the experiments and the simulations of this work, the time required for
APD to reach steady-state following sudden β-AS was found to highly vary from cell
to cell. Simulated time lapses were comprised within the experimental limits quanti-
fied for the ventricular myocytes of this and other studies [120, 121], thus confirming
validation of the population of models to reproduce available evidences on the APD
time course in response to β-AS.

To further support the conclusions on the key role of β-AS in determining the time
lapse for LF oscillations of APD to develop, the effects of pre-stimulating ventricular
cells with a lower dose of the β-A agonist ISO have been tested. Results have con-
firmed that the oscillatory time lapse is highly dependent on β-adrenoceptors’ state.
The higher the prior stimulation level of β-adrenoceptors, the shorter the time for
development of LF oscillations. This reduction in the oscillatory time lapse by prior
ISO exposure agrees with common knowledge on pre-stimulation of β-adrenoceptors
altering the impact of β-AS. Under conditions associated with high sympathetic tone,
as in failing or aged ventricles, sympathetic surge would thus be expected to induce
LF oscillations of repolarization with shorter latency. Consequently, due to the less
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stringent requirements on the time period of sustained sympathetic activation for LF
oscillatory behavior to ensue in failing or aged ventricles, this is anticipated to facil-
itate the occurrence of such oscillations, with the corresponding potentially adverse
consequences, as described in Chapter 2 and [33, 48, 50].

3.4.2 Major Role of IKs Phospohorylation Kinetics in Deter-
mining the Time Lapse for LF Oscillations of APD

The mechanisms underlying the slow appearance of APD oscillations following SP,
particularly related to the protracted response to β-AS, have been ascertained in this
work by comparing the phosphorylated levels of all cellular substrates accounted for
in the modified β-A signaling model by [36] used as a basis for this study. Two
cellular substrates, namely IKs and RyR, have been shown to present responses to β-
AS being remarkably slower than those of all other substrates. The time required for
IKs and RyR phosphorylation levels to reach steady-state upon β-AS is around three
minutes, this being close to the maximum time lapse for APD oscillations to appear
in simulated population of models, while the phosphorylation levels of the remaining
cellular substrates reach steady-state in no more than 20-30 seconds. In other β-
A signaling models, as in the model by [79], IKs and RyR present slow kinetics too,
although there are other substrates, like the Na+-K+-ATPase current, with even slower
kinetics.

The impact of the slow IKs and RyR phosphorylation kinetics on the APD time
course following sympathetic stimulation has been assessed by varying their phospho-
rylation and dephosphorylation rate constants. Whereas variations in the kinetics of
IKs are proved to have relevant effects on the time lapse for APD oscillations, the
influence of variations in the RyR kinetics is negligible. The irrelevant role of RyR
phosphorylation on τAPD as compared to that of IKs phosphorylation can be explained
on the basis of their very distinct impact on APD. RyR phosphorylation has been de-
scribed in this work according to the formulation proposed in [79], where it has been
shown that disabling RyR phosphorylation leads to little variations in APD with re-
spect to measurements when all substrates are phosphorylated. On the other hand,
IKs phosphorylation has much more prominent effects on APD [36]. To further sup-
port the role of IKs in determining the APD oscillatory latency, this current has been
inhibited to various extents and it has been confirmed that the larger the IKs current
amplitude, the longer the latency. These results lead us to conclude that the high
inter-individual variability in the time lapse for APD oscillations characterized in the
population of models can be explained by differential IKs contributions from one cell
to another.

The important role of IKs during β-AS has been pointed out in numerous studies
[62, 63, 66, 130, 131]. Reduced IKs responsiveness to β-AS has been suggested to
increase arrhythmia susceptibility in a heart failure animal model [62]. In ventricular
myocytes, loss of IKs current has been experimentally shown to exaggerate beat-to-
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beat APD variability in response to β-AS [63, 66] and computationally proved to
facilitate the generation of pro-arrhythmic early afterdepolarizations [131]. Results
provide additional support to the role of IKs during β-AS, as reduced IKs shortens
the oscillatory latency and thus facilitates the occurrence of LF oscillations of APD.
This oscillatory behavior of ventricular repolarization can be seen as a particular form
of beat-to-beat variability restricted to frequencies in the Mayer wave frequency range
(0.03-15 Hz).

3.4.3 Increased Arrhythmic Risk as a Function of the Time
Lapse and Magnitude of LF Oscillations of APD

RRR, individually or combined with Ca2+ overload, has been found to dramatically
reduce the time lapse for sympathetically-induced oscillatory behavior. This can be
understood on the basis that under RRR the amount of IKs current is reduced and,
provided phosphorylation kinetics are not varied, this leads to a reduction in the
oscillation time lag of the APD. Since the above holds for each of the virtual cells in
the population built in this work, the time lapse values measured under pathological
conditions are lower than the ones corresponding to non-pathological conditions.

A comparison for time lapses calculated for cells under healthy conditions has been
established while considering two groups of interest, one composed of cells presenting
and the other one not presenting arrhythmogenic events after simulation of disease
conditions. Results have been shown to be comparable. However, in both the pro-
arrhythmic and non-pro-arrhythmic groups, there is an inverse relationship between
the magnitude of LF oscillations of APD, measured by PLF, and the time required
for such oscillations to develop. These findings indicate that cells in which APD
oscillations appear rapidly in response to enhanced sympathetic activity are associated
with larger oscillatory magnitudes. Although the inverse relationship between PLF
and the oscillatory time lapse holds true for both groups, such a relationship is steeper
in the pro-arrhythmic group, with given low time lapse values associated with larger
oscillatory magnitudes. Those enhanced magnitudes may facilitate the occurrence of
arrhythmic events that can act as triggers for arrhythmias and at the same time they
may contribute to a more vulnerable substrate by increasing spatial repolarization
inhomogeneities between regions being at different oscillating phases. This increased
arrhythmia susceptibility associated with elevated LF oscillations of repolarization has
been postulated by in silico studies, such as [33] and Chapter 2, and confirmed by in
vivo research on a CAVB dog model [119] as well as clinical studies in post-infarction
patients [50]. These results are in line with studies associating higher levels of temporal
repolarization variability, in the form of alternans or in other forms, with increased
arrhythmic risk [132, 133].

The role of IKs expression and phosphorylation dynamics in pro-arrhythmia that
has been uncovered in the present work is in line with previous studies investigating
ventricular repolarization response to β-AS. The slow IKs phosphorylation kinetics as
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compared to the fast ICa kinetics have been reported to be behind the generation of
transient arrhythmogenic early afterdepolarizations [36, 121] and APD alternans [134]
upon sudden ISO application. In this work, the fact of simulating a whole population
of cells allows to additionally reveal the importance of IKs conductance in determin-
ing τAPD, as IKs conductance modulates the relevance of IKs dynamics on APD time
course during β-AS. Additionally, differential IKs and ICa activation kinetics in re-
sponse to sudden β-AS have been shown to promote the transition from ventricular
tachycardia to ventricular fibrillation by transiently steepening APD restitution in
simulated ventricular tissues [135]. This same ionic mismatch has been suggested as a
plausible mechanism underlying a transitory increase in the risk for arrhythmias by ap-
plication of sudden adrenergic stress in isolated innervated rabbit hearts treated with
a potassium channel blocker and subjected to sustained parasympathetic stimulation
[136].

3.4.4 Limitations and Future Work

In the work presented in this chapter, simulations have been run to quantify the time
lapse for development of sympathetically-mediated LF oscillations of APD in a large
population of human ventricular AP models developed based on available experimen-
tal data. After confirming the role of β-AS, over the role of mechanical stretch, in
determining such oscillatory time lapse, these simulated results were compared with
available in vitro data from isolated canine ventricular myocytes in response to sud-
den administration of a β-A agonist. Despite differences between species, experimental
studies have shown that ventricular repolarization characteristics of canine cardiomy-
ocytes closely resemble those of human cardiomyocytes [137, 138]. If additional in
vitro and/or in vivo data became available to analyze the time required for ARI or
APD oscillations to become manifest following SP, further validation of the results
obtained in the present work could be performed.

The simulated results presented in this chapter correspond to single cells. As
a continuation of this investigation, tissue models built on the basis of the present
population of AP models could be used to assess whether other tissue-specific factors
could play a relevant role in the time required for APD oscillations to develop, in the
magnitude of such oscillations as well as in the associated consequences in terms of
pro-arrhythmic risk.

The population of human ventricular computational models built in this work
used the [5] model as a basis to describe human ventricular electrophysiology and cal-
cium dynamics, whereas mechanics were described by a modified version of the [14]
model. For β-A signaling, the [36] model was used as a basis and the [35] model was
used for additional comparisons. These selections might have an impact on the con-
clusions reached in this study, particularly regarding quantitative values for the time
required for LF oscillations of APD to develop. Nevertheless, in [33], different human
and animal cell models were tested for APD oscillatory behavior, confirming model-



78 Chapter 3. Time Course of LF Oscillations of Ventricular Repolarization

independence in qualitative terms with only some quantitative differences between
different electrophysiological models, particularly for different species. Future stud-
ies could address the investigations conducted in this work while using other cellular
models as a basis for construction of a population of models representative of human
or animal ventricular electrophysiological characteristics reported experimentally and
compare with the results of this study.

The developed population of human ventricular AP models was deterministic.
Future work could include incorporation of stochasticity into the main ionic currents
active during AP repolarization. This would allow accounting for beat-to-beat repo-
larization variability, which might have an effect in the time course for development
of LF oscillations of APD.

An ISO dose of 0 µM was used to represent β-AS under baseline conditions.
Although results are anticipated to be very similar to those obtained for a low ISO
dose slightly above 0, somewhat different time lapse values for APD oscillations might
be quantified.

3.5 Conclusions

Human ventricular repolarization presents low-frequency oscillations that develop fol-
lowing enhanced sympathetic activity at time lapses varying from a few seconds to
more than three minutes depending on individual cells characteristics. The latency
in the oscillatory development is due to the slow ventricular response to β-AS and,
specifically, it is associated with the slow phosphorylation kinetics of the IKs current.
Prior stimulation of β-adrenoceptors reduces the time required for the development
of repolarization oscillations. Short time lapses are associated with large APD oscil-
latory magnitudes, particularly in cells susceptible to develop arrhythmogenic events
in response to sympathetic stimulation.



4 | Data-Driven Identification
of Stochastic AP Models
for characterization of
Spatio-Temporal Human
Ventricular Repolarization
Variability

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.1 Human Ventricular Stochastic AP Models . . . . . . . . . . . . 82

4.2.2 State-Space Formulation . . . . . . . . . . . . . . . . . . . . . . 85

4.2.3 Augmented State-Space . . . . . . . . . . . . . . . . . . . . . . 86

4.2.4 UKF-based Joint State and Parameter Estimation . . . . . . . 87

4.2.5 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.6 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2.7 Methodology Assessment . . . . . . . . . . . . . . . . . . . . . 90

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1 Noisy AP Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.2 Sensitivity of the Methodology with respect to its own Parameters 93

4.3.3 Estimation of Model Parameters and Hidden States . . . . . . 94

4.3.4 Estimation of AP Markers . . . . . . . . . . . . . . . . . . . . . 95

4.3.5 Application onto Experimental Data . . . . . . . . . . . . . . . 97

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

79



80 Chapter 4. Data-Driven Identification of Stochastic AP Models

4.4.1 Methodology Calibration . . . . . . . . . . . . . . . . . . . . . 100

4.4.2 Filtering Noisy Data . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.3 Identification of Model Parameters and Hidden States . . . . . 101

4.4.4 Application onto Data from Different Origins . . . . . . . . . . 102

4.4.5 Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.6 Limitations and Future Works . . . . . . . . . . . . . . . . . . 103

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1 Introduction

As mentioned in Chapter 2 and Chapter 3, beat-to-beat and cell-to-cell variability
in ventricular electrophysiology has been well documented, this being an important
contributor to cardiac electrical function [57, 66, 139–141]. Enhanced levels of spatio-
temporal variability in ventricular repolarization have shown value to assess cardio-
toxic drug effects and to identify individuals at high arrhythmic risk [42, 142–144],
among others.

Temporal (beat-to-beat) variability in cellular ventricular electrophysiology has
been associated with randomness in ion channel gating and variations in intracellu-
lar calcium handling [53–56, 65, 145, 146]. On the other hand, spatial (cell-to-cell)
variability has been suggested to be at least partly mediated by differential ionic con-
tributions to the electrophysiology of individual cells [56, 64, 145, 147]. In this regard,
the effect of variations in ion channel numbers to differences across cells has been well
established, while that of variations in other characteristics related to ionic activation
or inactivation is less clear [148, 149]. Computational modeling and simulation has
greatly helped to shed light on the mechanisms underlying cardiac electrophysiological
variability and its ability to predict arrhythmic risk in different settings [56, 145, 148].
Specifically, computational approaches have been developed to investigate experimen-
tally observed cell-to-cell electrophysiological differences [56, 150–153] and/or beat-to-
beat AP variations, the latter after including stochasticity in modeled ionic currents
[55–57, 65, 153]. Despite these advances, there is still limited understanding of the
causes and consequences of ventricular repolarization variability, particularly in hu-
mans, where the less availability of data has hampered its research.

The most commonly available experimental measurement in ventricular cells is
transmembrane potential. Identification of individual characteristics of underlying AP
models, including estimation of model parameters and state variables, from available
voltage measurements would allow characterization of temporal and spatial variability
without the need of performing additional unaffordable experiments, which would at
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most provide partial descriptions of some model parameters/variables. In the present
chapter, similarly to other modeling works [115, 154], the estimated model parameters
are maximal ionic current conductances, whose variations have been established to
have a major impact on both temporal and spatial variability. This estimation prob-
lem has been addressed in the literature by using a variety of methods, even if typically
considering deterministic rather than stochastic cell models, thus only aiming at tack-
ling cell-to-cell variability while not targeting representation of beat-to-beat variability,
which is an important focus of the present work. As an example, approaches based
on the construction of populations of models calibrated according to experimentally
measured ranges [57, 152] or distributions [115, 149] of AP-derived markers or based
on emulation [155] have been proposed. These approaches, among which the ones used
in Chapter 2 and Chapter 3 are included, provide a set of model parameter estimates
for a whole population of cells, but do not provide robust identification of model pa-
rameters for each cell individually. The method proposed in this chapter works on
an individual cell basis and uses the whole transmembrane voltage recording, com-
prising several APs rather than a single AP from a unique beat, as an input for the
estimation, which is expected to provide more accurate representations of experimen-
tal measurement distributions even if at higher computational cost. In ventricular
electrophysiology research, and yet more notably in humans, available experimental
data is scarce, thus making this individual cell-based identification a feasible approach.
In [154, 156], a Markov Chain Monte Carlo (MCMC) method was proposed to esti-
mate the ionic conductances of AP models directly from voltage traces as well. The
methodology presented in this chapter, which departs from the hypothesis that model
parameter and variable estimation can benefit from taking into account beat-to-beat
variations in voltage signals, involves lower computational complexity than the one in
[154, 156] and additionally provides an estimation of hidden states together with model
parameters. Other approaches using optimization methods like Genetic Algorithms
[157] or Moment Matching [115] have also been considered for estimation of model
parameters, but not state variables, from transmembrane voltage measurements. Im-
portantly, none of the above cited schemes deals with stochastic models to account
for beat-to-beat AP variability, as does the methodology proposed in this chapter. In
the case of the optimization-based methods, the sequential nature of the AP data is
sometimes not even considered but all samples are pooled together when solving the
optimization problem [157]. Furthermore, these optimization-based methods do not
always offer uncertainty measurements for the estimations, as can be obtained with
the proposed methodology or with the method proposed in [154, 156]. As a conclusion,
this work is, to the best of our knowledge, the first one providing individual cell-based
identification of cardiac model parameters and variables while accounting for temporal
AP variability.

The methodology here proposed is based on formulating the identification prob-
lem by means of a nonlinear state-space representation [158] and using the Unscented
Kalman Filter (UKF) [159] to infer the parameters and non-measured dynamic state
variables of an underlying human ventricular AP model. In this work a stochastic
version of the ORd AP model [5] was developed and used as a basis for the state-space
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representations. The employed UKF filter, framed within the family of Sigma-Point
filters [160], offers a probabilistic inference method to estimate the hidden variables of
a non-linear system in a consistent and online manner. This constitutes a very power-
ful tool to reproduce both steady-state and dynamic characteristics of individual cells.
Performance evaluation of the proposed methodology is carried out using sets of syn-
thetic data generated from human ventricular AP models contaminated with different
levels of noise. The methodology is subsequently tested on experimentally measured
voltage traces. Preliminary results of a more simple methodology developed based
on a human ventricular phenomenological AP model were presented as a conference
contribution [161].

4.2 Materials and Methods

In this chapter, lowercase normal letters were used to denote scalar quantities, lower-
case boldface letters to denote column vectors and uppercase boldface letters to denote
matrices. Those quantities that are time-varying are written as x(t) for continuous
time and x(k) for discrete time. The notation T denotes matrix and vector transpose.

4.2.1 Human Ventricular Stochastic AP Models

Stochastic AP models were built based on the ORd human ventricular epicardial model
[5]. The ordinary differential equations representing ion channel gating were converted
into reflected stochastic differential equations, following the approach presented in
[26, 57]. This allowed physiologically realistic representation of stochastic ionic gating
fluctuations contributing to beat-to-beat AP variability. Let vector s(t) denote the
proportion of ion channels of species “s” in each state of the corresponding Markov
formulation for time t. The temporal evolution of s(t) was simulated according to:

ds(t) = A s(t) dt+
1√
Ns

E D(s(t)) dw + k(t). (4.1)

In the above equation, the first term represents the standard deterministic model of
ion channel dynamics, where matrix A contains the transition rates. The second term
accounts for the stochastic fluctuations due to intrinsic noise, which was formulated
using Wiener increments [57, 162]. The magnitude of this second term is inversely
proportional to the square root of the number of ion channels of species “s” in the cell
denoted by Ns, following the derivation of [57, 162]. The third term, k(t), represents
the projection that serves to ensure that s(t) remains in the probability simplex [163],
as described in [26].

Stochasticity was included in the ionic gating of four different currents, namely
IKs, IKr, Ito and ICaL, which are major currents active during AP repolarization
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[57, 154, 164]. Following the derivations of [26, 57], matrices A, E (stoichiometry)
and D (containing the rate of each transition as a function of s) in Eq. 4.1 for the
stochastic ORd model were calculated as described in the following. For ionic currents
defined by one ionic gate r in the ORd model, the possible channel states are open
and closed. The vector s of the proportions of channels in each state is s = [r1, r0]

T :

α
β
r

r

r0 r1

where the transition rates αr and βr are defined by:

αr =
r∞
τr

(4.2)

βr =
1

τr
− αr (4.3)

with r∞ and τr defined as in the ORd model. Letting the proportion of channels in
the open and closed states be denoted by r1 and r0, respectively, the matrices D, E
and A in the Markov formulation are as follows:

D =
[

2
√
r0 αr + r1 βr

]
E =

[
1
−1

]
A =

[
−βr αr
βr −αr

]

This scheme with only one ionic gate, and thus two different channel states, was used
for each of the fast and slow IKr currents that are weighted averaged to obtain the
IKr current.

For ionic currents defined by the product of two ionic gates r and s in the ORd
model, there are four possible channel states. The vector of proportions of channels
in those states is s = [r1s1, r0s1, r1s0, r0s0]

T , with transition rates αr, βr, αs and βs
defined analogously to those reported in the above paragraph:

α
β

α
β

αs βs

r

r

r

r

αs βs

r 00s r 01s

r 10s r 11s

Letting the proportion of channels in each of the four states be denoted by:



84 Chapter 4. Data-Driven Identification of Stochastic AP Models

• r0s0: proportion of channels in the state with the two gates r and s closed.

• r1s0: proportion of channels in the state with the r gate open and the s gate
closed.

• r0s1: proportion of channels in the state with the r gate closed and the s gate
open.

• r1s1: proportion of channels in the state with the two gates r and s open.

the matrices D, E and A in the Markov formulation are as follows:

D = diag

(
2
√
r0s1 αr + r1s1 βr

2
√
r0s0 αr + r1s0 βr

2
√
r1s0 αs + r1s1 βs

2
√
r0s0 αs + r0s1 βs


)

E =


1 0 1 0
−1 0 0 1
0 1 −1 0
0 −1 0 −1



A =


−(βr + βs) αr αs 0

βr −(αr + βs) 0 αs
βs 0 −(αs + βr) αr
0 βs βr −(αr + αs)


This scheme with two ionic gates, and four channel states, was used for IKs and Ito
currents. In particular, in the case of Ito, the total current was decomposed as a
weighted average of four individual currents, each of which represented by the product
of two ionic gates: a ifast, a islow, aCaMK iCaMK,fast and aCaMK iCaMK,slow.

For ICaL, ordinary differential equations representing gating variables were con-
verted into stochastic differential equations following the subunit-based approach used
in [56]. For a gating variable xs, the evolution of the probability of this gate being
open was calculated as:

dxs(t) =
xs∞ − xs

τs
dt+

√
xs∞ + (1− 2xs∞)xs√

τs Ns
dw. (4.4)

The number of channels Ns of each ionic species “s” was computed as follows. For
IKs, IKr and Ito, experimentally measured unitary current values were available and
were used to calculate Ns as the maximum conductance of ion channel “s” in the ORd
model, denoted by Gs, divided by the unitary conductance of ion channel “s”, denoted
by gs. Values for gs were taken from [56, 74, 75] and adjusted for temperature and/or
extracellular potassium concentration following [76, 77]. For ICaL, the number of
channels was computed by dividing the maximum ICaL current by the single-channel
current iCaL times the channel opening probability. Table 4.1 shows the values used
in the computations for the default ORd model.
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Table 4.1: Number of channels for IKs, IKr, Ito and ICaL.

IKs IKr Ito ICaL
Ns 169 3621 606 20121

4.2.2 State-Space Formulation

State-space representations were formulated to describe non-stationary stochastic pro-
cesses with measured and hidden variables [158]. Specifically, the stochastic ORd
model, described in section 4.2.1, but with unknown ionic current conductances, was
casted into a non-linear discrete-time state-space model, following numerical integra-
tion with the Euler-Maruyama method. As an example, Eq. 4.1 for vector s(t) was
written in the form:

s(k) = s(k − 1) + A s(k − 1) ∆t

+
1√
Ns

E D(s(k − 1)) dw + k(k − 1) (4.5)

where k is a discrete index (k ∈ N), ∆t is the integration time step (constant in
this work) and dw is a vector of independent Wiener increments sampled from a
Gaussian distribution with zero mean and variance equal to ∆t. The overall state-
space representation was described by the following two equations:

x(k) = f(x(k − 1),q(k − 1),θ) (4.6)
y(k) = h(x(k)) + r(k). (4.7)

Equation 4.6, called the process or transition equation, collects the discretized set
of differential equations that define the state variables of the stochastic ORd model,
stacked in vector x(k), thus including the equations that model the temporal evolution
of transmembrane voltage, intracellular ion concentrations and proportion of channels
in each state for each ionic species. The non-linear function f(·) in Eq. 4.6 has three
input vectors, namely the vector x(k) of model state variables, the vector q(k) of non-
additive process noises (related to the Wiener increments) described in 4.2.1 and the
vector θ of model parameters. The components of vector q(k) take values sampled
from independent Gaussian distributions with zero mean and variance equal to ∆t

for such components corresponding to the stochastic gating variables and zero for all
other components.

The ORd model was parametrized with factors multiplying the conductances of
the following ionic currents [115]: slow delayed rectifier potassium current, IKs; rapid
delayed rectifier potassium current, IKr; transient outward potassium current, Ito;
L-type calcium current, ICaL; inward rectifier potassium current, IK1; and sodium
current, INa. Hence, the vector θ = {θKs, θKr, θto, θCaL, θK1, θNa} of static model
parameters, represents variations in the ionic conductances of IKs, IKr, Ito, ICaL, IK1
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and INa relative to the default values in the ORd model, Ij = Ij,ORd θj . Note that
the same factor θj applies to the number of ion channels of each species (Table 4.1):
Nj = Nj,ORd θj , as the unitary conductance of each ionic species was assumed to be
constant based on previously reported experimental findings [165]. The values of the
parameters in θ were inferred for each input AP trace.

In Eq. 4.7, called the measurement equation, y(k) is the measured variable (trans-
membrane voltage), which is defined as y(k) = v(k) + r(k), where v(k) represents the
noiseless transmembrane potential and r(k) is additive white Gaussian noise. Hence,
the function h(·) in Eq. 4.7 is linear, as it takes only the component of x(k) corre-
sponding to the transmembrane voltage, v(k).

4.2.3 Augmented State-Space

A state augmentation approach [158] was used to jointly estimate the parameters and
state variables of the stochastic ORd model for a given input (synthetic or experi-
mental) AP trace. Following the notation introduced in 4.2.2, the static parameters
in vector θ were replaced with a new vector of time-varying variables θ̃(k) using a
random walk model with drift:

θ̃(k) = θ̃(k − 1) + δ(k) (4.8)

where the components of the artificial noise δ(k) introduced in the definition of θ̃(k)
dynamics are i.i.d. zero-mean Gaussian processes with very small variance. This
artificial noise allows adapting the parameter values in an online manner while the
input AP trace is being filtered and can be given an interpretation similar to the small
constant step size in adaptive filtering theory [166]. In this work, this artificial noise
had the same variance, σ2

θ , for all six individual parameters.

In addition to the augmentation due to the inclusion of the parameters as ad-
ditional state variables, the noise process q(k) was also incorporated as part of the
augmented state space. This is a standard approach for estimation when dealing with
non-additive noise processes (see e.g. [158, Chap. 5]). By stacking the vector x(k) of
model state variables, the new vector θ̃(k) of model parameters and the vector q(k)
of process noises, a new “augmented” state vector z(k) was defined as:

z(k) =
[
x(k),q(k), θ̃(k)

]T
. (4.9)

The resulting state-space model has the following formulation:

z(k) = fa(z(k − 1)) + ε(k) (4.10)
y(k) = ha(z(k)) + r(k) (4.11)

where fa and ha are the augmented versions of f and h from Eq. 4.6 and 4.7. The
vector ε(k) contains two types of noises, those associated with the Wiener increments
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of the stochastic model (accounted for by q(k)) and those associated with the new
parameter vector θ̃(k) (accounted for by δ(k)). The components in vector ε(k) cor-
responding to the original state variables x(k) take a value of zero, while the rest of
components are zero-mean Gaussian noises with variance equal to the integration time
step, ∆t, for the components corresponding to q(k) and variance equal to σ2

θ for the
components corresponding to θ̃(k).

4.2.4 UKF-based Joint State and Parameter Estimation

As the state-space representation defined in Eq. 4.10 and 4.11 is nonlinear, the UKF
[159] was used for state and parameter inference. UKF is based on approximating the
posterior distribution p(z(k)|y1:k), with y1:k denoting all the samples up to time k of
the measured variable y, by using a deterministic set of suitably chosen points called
Sigma Points. UKF has shown better performance than the Extended Kalman Filter
(EKF) at a comparable computational cost [167]. Also, UKF involves much lower
computational cost than Monte Carlo-based methods, like Particle Filters [158].

A scheme of the proposed methodology is shown in Fig. 4.1. A noisy (synthetic
or experimental) AP trace is provided as an input for UKF to infer the evolution of
a set of state variables (transmembrane voltage, ionic concentrations and ion channel
states) and model parameters (ionic current conductance factors) based on the state-
space representation described in Eq. 4.10 and 4.11.

Being Ls the dimension of this state-space representation, 2Ls + 1 Sigma Points
were deterministically generated for each time step. These Sigma Points were propa-
gated through the model transition function fa(·) and used to approximate the pos-
terior mean and covariance according to the so called Unscented Transform [159].
Since the dimension of z(k) was 95 (56 state variables, 33 process noises and 6 model
parameters), 191 Sigma Points were computed.

For the estimation process, two free hyper-parameters required prior definition:
the process noise variance σ2

θ related to model parameter estimation and the measure-
ment noise variance σ2

r . The practical selection of these parameters is not trivial and
its effects are explored for different scenarios in Section 4.3. In addition, the UKF
algorithm has three parameters, namely α, β and κ, which in this work were assigned
the following values: α = 1, β = 0, κ = 3− Ls, as in [161].

In the following the notation â was used to denote the estimate of a generic
variable a. Analogously, â(k) was used for a time-varying estimate. When in the
following a unique estimated value, e.g. for the parameter vector θ, is provided, the
average of the estimated values over the last N = 5 cycles was considered, as using a
larger number of cycles did not render improved estimation performance.
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Figure 4.1: Scheme of the proposed methodology. A noisy AP trace is the input to a model-
based filtering algorithm. This AP may have been synthetically generated using a compu-
tational AP model or experimentally recorded. The filtering algorithm outputs a filtered
(noiseless) AP and a set of estimated hidden states and model parameters for a computa-
tional AP model used as a basis for the work (ORd model in this study). New AP traces can
be computed from the estimated model under different simulation conditions.

4.2.5 Synthetic Data

A set of AP models was built based on the ORd human ventricular epicardial model
[5]. Each AP model in the dataset was obtained by varying the conductances de-
fined as parameters of the model: IKs, IKr, Ito, ICaL, IK1, and INa. These models
aimed to represent inter-cellular variability and were used to validate the presented
methodology.

Similarly to previous chapters, a total of 500 models were initially generated by
sampling the nominal conductance values of the ORd model in the range ±100% using
the Latin Hypercube Sampling method [57, 69, 152]. Out of all generated models, only
those satisfying the calibration criteria shown in Table 4.2 were retained. Such crite-
ria were based on experimentally available human ventricular measures of steady-state
AP characteristics [5, 70–73]. These characteristics included: APD90|50, denoting 1
Hz steady-state APD at 90%|50% repolarization (expressed in ms); RMP, standing
for resting membrane potential (in mV); Vpeak, measuring peak membrane potential
following stimulation (in mV); and ∆APD90, which was calculated as the percentage
of change in APD90 with respect to baseline when selectively blocking IKs, IKr or
IK1 currents (measured in ms). For some of the above characteristics, only experi-
mental values of the mean and standard error of the mean, rather than minimum and
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maximum limits, were available. In those cases, limits were defined by mean ± three
calculated standard deviations, as this would cover 99% of the measurements if the
data followed a normal distribution. After applying the described calibration criteria,
the initial set of 500 models was reduced to a set of 131 selected models.

Table 4.2: Calibration criteria applied onto human ventricular cell models.

AP characteristic Min. acceptable value Max. acceptable value
Under baseline conditions [5, 70, 71]

APD90 (ms) 178.1 442.7
APD50 (ms) 106.6 349.4
RMP (mV) -94.4 -78.5
Vpeak (mV) 7.3 -

Under 90% IKs block [5]
∆APD90 (%) -54.4 62

Under 70% IKr block [73]
∆APD90 (%) 34.25 91.94

Under 50% IK1 block [72]
∆APD90 (%) -5.26 14.86

In each model of this synthetic dataset, the variation in the conductances of the
four stochastic ionic currents with respect to the default ORd model was correspondent
with a proportional variation in the number of ion channels (used in the stochastic
term of the differential equations).

In addition to this synthetic dataset generated with the ORd model, additional AP
traces were generated with a stochastic version of the ten Tusscher-Panfilov (TP06)
epicardial AP model [31]. Those additional AP traces were used to test the per-
formance of the proposed methodology over data obtained from a different human
ventricular cell model.

Trains of 550 beats paced at a frequency of 1 Hz were simulated by using the
Euler-Maruyama scheme with an integration time step of dt = 0.02 ms. The stimulus
current was a 1-ms duration rectangular pulse of 52-pA/pF amplitude. Only the
last 50 simulated beats were used as input signals to the estimation methodology to
guarantee that steady-state had been reached. Gaussian noise, denoted by r(t), with
zero mean and noise variance σ2

r was added to the simulated membrane potential to
account for noise present in experimental recordings. The effect on the estimation
results of varying the values of σr to represent different signal-to-noise ratios (SNRs)
was analyzed.
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4.2.6 Experimental Data

Two ten-second AP recordings acquired using conventional microelectrode techniques
in trabecular preparations from right ventricles of undiseased human donor hearts, as
described in [5], were available for this work. The recordings were obtained from pre-
vious studies, with tissue preparations having been donated for research in compliance
with the Declaration of Helsinki and approved by the Scientific and Research Ethi-
cal Committee of the Medical Scientific Board of the Hungarian Ministry of Health
(ETT-TUKEB), under ethical approval No 4991-0/2010-1018EKU (339/PI/010). Pac-
ing frequency was 1 Hz. Each AP trace was linearly interpolated to a sampling interval
of 0.02 ms and was replicated five times. The resulting 50-cycle trace was fed as an
input to the estimation algorithm to ensure convergence to stable values for the last
analyzed replication.

4.2.7 Methodology Assessment

The proposed methodology was assessed as follows:

Noisy AP Filtering Capability

For synthetic data, the root mean square error ξv between the original noiseless AP
trace, v(k), and the estimated AP trace, v̂(k), was calculated over the last N = 5
simulated cycles:

ξv =

√√√√ 1

KN

KN−1∑
k=0

|v(k)− v̂(k)|2, (4.12)

where KN is the number of samples contained within the last N = 5 cycles.

State and Parameter Estimation

For the synthetic dataset generated with the ORd model, estimates of model pa-
rameters (i.e. factors multiplying maximal ionic conductances) and hidden states (i.e.
model state variables) computed using the proposed methodology were compared with
the original values used to generate the synthetic input AP traces. The mean rela-
tive error (ηzj ) between the actual and estimated values of each state variable was
calculated over the last N = 5 simulated cycles:

ηzj =
1

KN

KN−1∑
k=0

{
|zj(k)− ẑj(k)|
|zj(k)|

}
, (4.13)

where zj is the actual value of the state variable j and ẑj is the estimated value,
with j = 1, · · · , Ls, being Ls the length of the augmented state vector z(k). The
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mean relative error ηzj in the estimation of each model parameter zj was analogously
calculated.

A global accuracy measurement of model parameter estimation was defined as
the average of the mean relative errors (adimensional by definition) for all estimated
parameters:

η̄θ =
1

M

∑
θ′∈θ

ηθ′ , (4.14)

where ηθ′ is the mean relative error for model parameter θ
′ ∈ θ and M = 6 (the

number of estimated model parameters).

Reproducibility of AP Markers

For both synthetic and experimental data, the performance of the proposed method-
ology was additionally assessed by comparing AP-derived markers from input and
estimated AP traces. Specifically, given an input AP trace, estimates of the stochastic
ORd model parameters were computed using the proposed methodology and that es-
timated model was then simulated to generate new AP traces from which AP-derived
markers were computed.

The following steady-state and temporal variability measurements of repolariza-
tion were calculated over those input and simulated AP traces:

• Average of APD at 90% repolarization (APD90) over the last N = 30 cycles:

mAPD90 =
1

N

N∑
n=1

APD90(n), (4.15)

and standard deviation of APD90 over the last N = 30 cycles:

sAPD90 =

√√√√ 1

N − 1

N∑
n=1

(APD90(n)−mAPD90)2. (4.16)

• STV of APD90, defined as the average distance perpendicular to the identity
line in the Poincaré plot, computed for the last N = 30 cycles as:

STV =

N−1∑
n=1

|APD90(n+ 1)−APD90(n)|
(N − 1)

√
2

. (4.17)
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Figure 4.2: Last cycle of AP traces: In black, the synthetic noiseless AP trace generated
by the original ORd model; in blue line, the noisy version of that AP, y(k), which is used
as input to the proposed method with two different values for the standard deviation of the
measurement noise, σr; in red, the mean estimated voltage at each time instant, denoted
by x̄; and in grey, the estimated uncertainty bands, i. e., x̄ ± 3σx (with σx denoting the
estimated standard deviation of voltage).

4.3 Results

4.3.1 Noisy AP Filtering

The proposed methodology was able to filter out the measurement noise in input
AP signals even in cases of low SNR. Fig. 4.2 presents the last cycle of a synthetic
noiseless AP trace generated with the stochastic ORd model on top of two noisy APs
obtained by adding Gaussian noises with zero mean and standard deviation values
of σr = 0.25 mV and σr = 10 mV, respectively, and the filtered APs output by the
proposed methodology assuming the level of measurement noise was known. In this
figure, as well as in all subsequent figures, x̄ denotes the mean estimated value of
the represented variable and σx, the estimated standard deviation. For both levels
of noise, the methodology (with σθ = 10−12) was able to accurately estimate the
synthetic noiseless AP, thus rendering it useful to evaluate AP markers from noisy AP
traces as those obtained from experimental recordings.

In Table 4.3, root mean square error values ξv calculated according to Eq. 4.12 for
the two different SNR levels are presented. As can be observed, the proposed method
was able to almost entirely reduce the noise in the input AP traces even for a high
level of measurement noise.
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Table 4.3: ξv Root Mean Square Error (mV) in AP filtering.

σr (mV) 0.25 10
ξv (mV) 0.0160 0.1429

4.3.2 Sensitivity of the Methodology with respect to its own
Parameters

When the level of measurement noise is unknown, the value of σr needs to be set
according to some criteria. While under homoscedastic conditions σr could be readily
estimated during the resting phase of the AP, such an estimation might be poor under
other conditions. In Fig. 4.3 assessment of the sensitivity of the proposed methodology
with respect to the estimated value of σr is presented. Specifically, the effect of varying
the estimated measurement noise, σ̂r, on the error ξv is presented for two different
levels of noise added to input AP traces generated with the stochastic ORd model,
being these two levels correspondent with σr = 0.25 mV and σr = 10 mV. As can
be observed from the figure, in both cases there was a broad range of σ̂r values with
similarly good performance in terms of AP filtering (note the log-scale for the x-axis).
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Figure 4.3: Root mean square error ξv in AP filtering for different actual (σr) and estimated
(σ̂r) levels of measurement noise.

An apparently counter-intuitive result is that the optimal value of σ̂r did not ex-
actly match the value of σr, but it was slightly higher. This may be explained because
σ̂r accounts not only for measurement noise but also for model misspecification. Under
high SNR (low σr), this misspecification, which could be due to small errors in model
parameter estimation, can be comparable to the input noise.

Regarding the sensitivity of the methodology with respect to σθ, Fig. 4.4(a) shows
that varying σθ did not significantly affect the error in AP filtering. However, it more
notably affected the error in parameter estimation, particularly when very small or
very large σθ values were used, as shown in Fig 4.4(b).
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In particular, the estimation error ηθ was increased for very small values of σθ due
to lack of convergence in the estimation for 50 simulated APs. For very large σθ values
(≥ 10−6), ηθ was increased due to the algorithm being stuck in local minima where its
performance was not satisfactory and could not be improved in any direction or due to
notable oscillations around the mean estimated value. Consequently, the selection of
the value for σθ was deemed to be important to obtain an accurate model parameter
estimation.

According to the results shown in Fig. 4.3 and Fig. 4.4, σθ = 10−12 was selected
and all results presented in the following Sections 4.3.3 and 4.3.4 correspond to that
value, while the measurement noise variance was taken as σ̂r = σr.
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Figure 4.4: Root mean square error ξv in AP filtering (a) and average of mean relative
parameter estimation errors η̄θ (b) evaluated for different levels of σθ.

4.3.3 Estimation of Model Parameters and Hidden States

The proposed methodology was able to additionally estimate hidden states from a
given input AP trace according to the stochastic model described by fa(·) in Eq.
4.10. In particular, for the case of input AP traces being synthetically generated using
the stochastic ORd model, a comparison could be established between actual and
estimated values of model parameters and hidden states.



4.3. Results 95

Fig. 4.5 illustrates the input and estimated (mean ± three standard deviations)
proportions of open channels for IKr and IKs in the last two simulated cycles. The
proposed methodology was not only able to track the mean value of the state variables
describing the proportions of open channels at each time instant but also provided
uncertainty ranges, which were larger for IKs than for IKr.
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Figure 4.5: Open probability XKrf of IKr (top panel) and open probability XKs of IKs
(bottom panel). The value in the stochastic ORd model is shown in blue, while estimated
mean (x̄) and uncertainty bands (x̄± 3σx) are shown in red and grey, respectively.

Fig. 4.6 illustrates the estimated (mean ± three standard deviations) model
parameters along 50 simulated cycles. The mean estimated values converged to the
input value in less than 40 cycles. Uncertainty ranges in the estimation were provided
as well.

Results of model parameter estimation for the population of 131 stochastic AP
models described in Section 4.2.5 are presented in Fig. 4.7. As can be observed,
the estimation accuracy was very high for most parameters in the majority of tested
models. The maximum relative error ηθ′ was obtained for θKs due to the almost
negligible effect of its variations on the baseline AP.

4.3.4 Estimation of AP Markers

In this section the performance of the proposed methodology is evaluated in terms
of its ability to replicate input AP traces and AP-derived markers. Fig. 4.8 shows
the statistical distributions of mAPD90 and STV over the population of stochastic cell
models described in Section 4.2.5, calculated from both actual and estimated APs.
A very good match was observed between both distributions for each of the two AP
markers.
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Figure 4.6: Estimation of model parameters. Mean estimates (x̄) are shown in red and
uncertainty bands (x̄± 3σx), in grey.

Additionally, the accuracy of the proposed methodology to reproduce AP markers
measured from synthetic data was tested over APs generated with a different human
ventricular cell model, namely a stochastic version of the TP06 model [31]. Fig. 4.9
(top panel) shows input APs generated with the stochastic TP06 model, APs estimated
with the proposed methodology as well as APs generated with the default ORd model
(used as a basis for the proposed methodology) for comparison. Intrinsic differences
between the ORd and TP06 models (e.g. the TP06 model produces a much more
square AP) may explain the lack of complete match between input and estimated
APs. In terms of the root mean square error ξv, this took a value of 6.96 mV for the
proposed methodology versus 22.89 mV for the reference ORd model.

In addition, Fig. 4.9 (bottom panel) presents corresponding APD time series over
50 simulated cycles calculated for APs computed from the stochastic TP06 model, the
proposed methodology and the default stochastic ORd model. The match between
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Figure 4.7: Mean relative error ηθ′ for each of the estimated model parameters over a popu-
lation of 131 stochastic AP models.
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Figure 4.8: Statistical distributions over a population of 131 AP models of (left) mAPD90 and
(right) STV calculated from actual APs in blue and estimated APs in red.

input and estimated APDs was very good, with a mean absolute error of 0.16 ms
between average APDs, while such an error was of 71.68 ms for the default ORd
model. Beat-to-beat variability was, however, larger for the input data generated with
the TP06 model than for the estimated data or the data generated with the default
ORd model (STV being 3.42 ms, 1.69 ms and 1.89 ms, respectively).

4.3.5 Application onto Experimental Data

Application of the proposed methodology onto experimentally recorded input AP sig-
nals is illustrated in Fig.4.10. The value for the algorithmic parameter σθ was selected
by searching for in the range between 10−15 to 10−6. The best results were obtained
for 10−7, which is the value used for the results presented in the following. Also, the
value σr = 1 mV was set. Of note, when applying the proposed methodology onto
experimental data, which presents AP shapes different from the one of the default
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Figure 4.9: AP traces over 2 simulated cycles (top panel) and APD time series over 50 sim-
ulated cycles (bottom panel) generated with the stochastic TP06 model (in blue), estimated
with the proposed methodology (dashed red) and generated with the stochastic default ORd
model (black).

ORd model, issues regarding the estimation algorithm being stuck in local minima are
more common. For that reason, the choice of the value for σθ is especially important,
as too large or too small values might lead to estimated models not generating valid
AP traces.

In this section, methodological performance is evaluated by comparing experi-
mental AP traces and AP traces built from the parameterized ORd model with the
parameter values estimated by the proposed approach. This methodology departed
from the default ORd model (for both epicardial and endocardial cells) and refined
it to best fit the input AP trace. A satisfactory match was found between input and
estimated APs, with some differences in the plateau and resting phases, but with
good overall agreement and very close AP durations. APs generated with the default
epicardial and endocardial ORd models are shown for comparison.

Table 4.4 shows the root mean square errors ξv obtained in the estimation from
experimental human AP traces, while Table 4.5 shows the estimated parameter values.
As can be noted, the estimation errors obtained by the proposed methodology for the
two human AP traces were clearly lower than those obtained with epicardial and
endocardial ORd models.
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The performance of the proposed methodology was in this case not evaluated
in terms of variability measurements, as simulated APs corresponded to single cells
whereas experimental AP traces were recorded in tissue, where electrotonic coupling
notably mitigates the effects of ionic current fluctuations contributing to beat-to-beat
variability.

Table 4.4: ξv Root Mean Square Error (mV) in fitting experimental AP traces.

(mV) AP trace 1 (mV) AP trace 2
ξv (This Method - Endo) 8.2432 6.3393
ξv (ORd - Endo) 11.5096 10.1043
ξv (This Method - Epi) 5.0071 10.3788
ξv (ORd - Epi) 9.0270 14.8517
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Figure 4.10: Experimental AP traces (blue) and estimated AP traces obtained with the
proposed methodology based on stochastic versions of epicardial (dotted yellow) and endo-
cardial (dashed red) ORd models. Default stochastic epicardial (solid black) and endocardial
(dashed black) ORd models are shown as a reference. Top and bottom panels correspond to
two different experimental recordings.
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Table 4.5: Estimated parameter values for the two experimental AP traces using the human
ventricular endocardial ORd model.

θKs θKr θto θCaL θK1 θNa
Exp.1 1.9997 1.9996 1.9996 1.8027 0.0538 1.4840
Exp.2 0.5481 1.4217 0.7214 1.5032 1.2950 0.1368

4.4 Discussion

In this work, a novel approach based on formulation of state-space representations
and the use of UKF has been proposed as a method to estimate the non-measured
state variables and parameters of ventricular nonlinear stochastic computational mod-
els. The proposed methodology was able to reproduce individual input AP traces
and replicate statistical distributions of AP-derived markers like APD or STV. As
such, the methodology can be a powerful tool to investigate the ionic mechanisms
underlying human ventricular AP traces and their associated beat-to-beat variabil-
ity, particularly when experimental measurements are scarce, as is usually the case
with human data, and previously proposed methodologies are either not applicable or
present considerable limitations.

In the following subsections, relevant characteristics of the proposed methodology
as well as major benefits and shortcomings associated with its use are discussed.

4.4.1 Methodology Calibration

According to the presented results, calibration of two parameters of the proposed
methodology, σr and σθ, turns out to be important to obtain an accurate estimation.
The first one, σr, accounts for both measurement noise and model-to-data mismatch,
hence its calibration is relatively easy in most cases. Although, in principle, the
definition of σθ should not be so straightforward, results show that a wide range of
values for σθ provide similarly good estimation performance. Specifically, the analysis
on the synthetic data described in Section 4.2.5 has demonstrated that this feasible
range spans several orders of magnitude. In other cases where the model adjusts poorly
to the input AP trace, the optimal value for σθ can be found by sweeping over a large
range of values and selecting the one leading to the best match to the input data.

4.4.2 Filtering Noisy Data

The proposed methodology is able to filter out the measurement noise even for AP
recordings with very low SNR levels. This can be very useful to improve the accuracy
in the evaluation of AP markers from experimental noisy AP traces like, for instance,
those measured using optical mapping techniques.
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4.4.3 Identification of Model Parameters and Hidden States

In this work a state-augmentation approach was used for joint state and parameter
estimation, considering the compromise between performance and computational cost.
Other joint estimation techniques like Expectation Maximization or Rao-Blackwellization
[158] introduce a large penalty in the computational cost, associated with the need
to perform several passes over the hundreds of thousands of samples of AP traces,
and were thus discarded for this problem. Importantly, the probabilistic methodology
presented in this chapter provides estimation errors for each variable along time, thus
offering uncertainty measures associated with the estimation process, which could be
used as a basis for further Uncertainty Quantification studies (see e.g. [168]).

Results prove to be accurate for all estimated ionic factors except for the factor
related to the IKs conductance (Fig. 4.7). This lack of accuracy in the estimation of
one of the model parameters is related to the issues of identifiability and observability,
the latter possibly being in practice more difficult to satisfy [169]. Previous studies
targeting estimation of neuron model parameters from voltage time series have dealt
with this [170]. For the augmented state-space considered in this study, a formal
identifiability / observability analysis would be of high interest.

In this case, and in line with reported experimental and simulated evidences on
the lack of effects of IKs variations on baseline AP [73, 171, 172], the cellular ORd
model used as a basis for this work led to similar AP traces for a relatively large range
of IKs conductance values and, in such scenario, the estimation algorithm may fail
to identify the corresponding conductance value. Nevertheless, the intrinsic charac-
teristics of the proposed approach provide some advantages with respect other works.
This methodology, by using stochastic models, leads to a significant reduction in pa-
rameter uncertainty as compared to other studies where a cell model is fit to only
one (averaged or not) AP [173] rather than to a whole AP trace comprising several
consecutive beats. The fact of including data across several beats allows integrating
temporal variability information into the estimation process, thus making it more ro-
bust, as different parameter combinations might lead to comparable APs but dissimilar
beat-to-beat AP variability measurements. In addition, the proposed methodology is
also able to estimate model hidden states, including ionic gating characteristics and
intracellular concentrations, thus facilitating assessment of whether the model renders
physiologically plausible outcomes. Furthermore, Bayesian methodology explicitly de-
livers precision measurements for each estimated variable. When a parameter value
is difficult to identify, the proposed approach provides an associated high estimation
variance, as was for instance the case for θKs (Fig. 4.6).

The above described uncertainty in the estimation of one of the model param-
eters could be classified as ‘practical unidentifiability’ according to the classification
provided in [174], meaning that, by using input data obtained with a different protocol,
it could be possible to increase the amount of available information for the estima-
tion. In this case, one option would be to consider data measured at different pacing
frequencies as in [115, 154, 157] or to consider combined data measured under control
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and following ionic inhibitions as in [115]. Future studies should address the appli-
cation of the methodology proposed in this work onto AP data measured at different
stimulation frequencies or under ionic inhibitions.

4.4.4 Application onto Data from Different Origins

The presented methodology is able to adjust a developed stochastic version of the
ORd model to fit a population of input AP data in such a way that a one-to-one cor-
respondence is established between each individual AP and a set of model parameters
underlying it. This ability has been successfully tested over a synthetic population
of cellular AP data generated with the ORd model, where the proposed methodology
has additionally shown to provide a robust way to approximate distributions of AP
markers of interest.

For data presenting AP shapes markedly different from that of the ORd model
used as a basis for the estimation, either being recorded experimentally or generated
by other human ventricular computational models, the proposed methodology is still
able to reproduce the corresponding AP traces. Nevertheless, in those cases, some
differences exist between input and estimated APs due to the fact that some specific
characteristics of the ORd model cannot be modified by just varying maximal ionic
conductances. In particular, APs generated with the TP06 model show higher beat-
to-beat variability, for a comparable mean APD, than those generated with the ORd
model, as shown in the results. Remarkable differences in several ionic currents be-
tween the two models, including IKs characteristics, may explain such a divergence in
terms of beat-to-beat variability. In the case of the analyzed experimental AP traces,
beat-to-beat variability measurements could not be compared between input and es-
timated APs, as variability observed in tissue is considerably lower than in isolated
cells due to electrotonic coupling effects. Unfortunately, only human ventricular data
recorded in tissue, not in isolated cells, was available for this study. Nevertheless, the
proposed methodology was able to estimate the experimental AP traces, rendering
similar average APDs.

To the best of our knowledge this is the first work where stochastic cell models are
used as a basis for model parameter and state variable estimation from ventricular AP
data, thus aiming at providing a method to reproduce variability measurements and
investigate the mechanisms behind it. In [154] a method is presented to fit different
types of AP data but not to reproduce beat-to-beat variability. In [57], stochastic
cell models are used but model parameters representing ionic current conductances
are identified to replicate ranges of beat-to-beat variability measures only, while not
necessarily the actual statistical distribution of such measures or the corresponding AP
shapes. In other works based on the population-of-models approach, such as [115, 149],
methods are developed to reproduce distributions of AP markers, but in this case
without targeting beat-to-beat variability. The proposed approach can approximate
statistical distributions of AP markers and has the additional advantage of producing
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a one-to-one correspondence between individual AP traces (and corresponding AP-
based markers) and a set of parameter values for an underlying cell model. This can
be of significant help to unravel ionic mechanisms involved in different investigated
electrophysiological behaviors, including temporal variability.

4.4.5 Robustness Analysis

The proposed methodology is evaluated in a range of scenarios using both syntheti-
cally generated and experimentally measured AP data. In the case of synthetic input
data, the ability of the presented approach for model parameter and state variable
estimation is assessed by considering different SNR and a wide range of possible pa-
rameter values. The robustness of the method is verified, with similar performance of
the method achieved in all tested cases. In the case of experimental input data, with
available AP signals contaminated by non-Gaussian noise and artifacts, the method
still provides reliable voltage estimation. Importantly, this methodology provides un-
certainty estimation measures for all parameter and state variables, which is a useful
tool for performance evaluation.

4.4.6 Limitations and Future Works

The proposed methodology renders very good estimation performance even in very
noisy scenarios. Since only additive Gaussian noise was considered in this work for
synthetic AP data generation, future works could include other types of noise, like
impulsive noise, and assess the filtering ability of the methodology. Also, the variance
of this noise could be estimated jointly with other model parameters.

Further studies could also expand the investigation performed in this work on the
sensitivity of the proposed methodology to algorithmic parameters. Efficient auto-
matic approaches to select optimal values for algorithmic parameters could be explored
to help detecting and avoiding local minima in the estimation process.

Stochasticity was included in four ionic currents being active during ventricular
repolarization, namely IKs, IKr, Ito and ICaL. Future studies could address incorpo-
ration of stochasticity in other ionic currents, like INaL, which may have a relevant
contribution to beat-to-beat AP variability. In addition, other investigations could
assess whether estimating the maximal value of the sodium-potassium pump (INaK)
and the sodium-calcium exchanger (INaCa) currents could add to the estimation per-
formance. This would increase the computational complexity of the proposed method-
ology, particularly if longer AP recordings were considered for that purpose, but could
in turn render more accurate results. Also, estimation accuracy could be improved
by including more diverse input AP data, as those obtained after pacing at different
stimulation frequencies or following specific ionic current inhibitions.
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In this work limited experimental tissue data was used to provide a proof-of-
concept on the ability of the proposed methodology to reproduce individual experimen-
tally measured AP characteristics. Provided human ventricular AP traces recorded
in isolated cells were available for future studies, the performance of the proposed
methodology to replicate beat-to-beat variability and refine the match to cellular AP
shapes could be additionally tested. Also, other lines of research could build tissue
models based on the single cell models developed in the present chapter to compare
experimental and simulated tissue data.

4.5 Conclusions

A novel methodology based on state-space representations and UKF has been pro-
posed and tested over synthetic data and experimental human ventricular data. The
methodology has proven to successfully reproduce given input AP traces and iden-
tify hidden states and parameters of underlying computational models. Based on the
provided one-to-one match between AP traces and sets of model variables, the pro-
posed methodology is able to replicate statistical distributions of AP-based markers
and is suitable for investigation of spatio-temporal variability in human ventricular
repolarization.
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5.1 Introduction

Chapter 2, Chapter 3 and Chapter 4 have presented clinical, experimental and com-
putational evidences on the important role of cardiac spatio-temporal variability in
electrical function at a whole-range of scales from the cellular AP to the body surface
ECG [38, 46, 57, 66, 139–141, 175]. Specifically regarding variability in ventricular re-
polarization, numerous investigations have associated elevated temporal and/or spatial
variability with pro-arrhythmicity and sudden cardiac death [42, 142–144].

β-AS has been shown to produce exaggerated increases in BVR, particularly un-
der conditions of reduced repolarization reserve [45, 63, 66]. In vitro experiments
in isolated cardiomyocytes have suggested that this elevation in BVR by β-AS is a
relevant contributor to arrhythmogenesis by the development of afterdepolarizations
and triggered activity [62–66]. In an in vivo animal model of long-QT1 syndrome,
β-AS has been shown to induce increments in both temporal and spatial dispersion of
repolarization and to facilitate the development of EADs and left ventricular aftercon-
tractions, altogether providing the substrate and triggers for the ignition of TdP [45].
Computational investigations, including those presented in Chapter 2 and Chapter 3,
have further contributed to shed light into the mechanisms underlying the relation-
ship between β-AS-induced elevation in BVR and pro-arrhythmic risk [33, 55, 65, 145].
Nevertheless, most of the computational approaches employed so far in the literature
do not account for realistic modeling of cell-to-cell or beat-to-beat AP differences,
which should be fundamental to better understand the relationship between BVR and
arrhythmogenesis and its modulation by β-AS.

For the above reasons, the development of stochastic cardiac computational AP
models fed with information acquired from human cells or tissues becomes of major
interest. In recent years, different methodologies have been proposed to integrate in-
formation from cardiac AP signals, or from a set of markers derived from them, by
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identifying the values of parameters and/or state variables of an underlying electro-
physiological model. This allows obtaining a population of virtual AP models repre-
sentative of a set of experimental data of interest, with the advantage of facilitating
assessment of the causes and consequences of BVR by simultaneous assessment of
voltage and ionic currents and concentrations. In [115, 149, 155], methodologies based
on Genetic Algorithms, Moment-Matching and Gaussian Process Emulators were de-
signed for parameter identification at a population level, thus allowing to reproduce
the overall AP characteristics in the investigated cell population but hampering in-
dividual identification of the parameters associated with each cellular AP trace. In
[154, 156] ionic parameters were estimated from voltage signals by using MCMC-based
methods, which enable parameter estimation for each individual cell. However, on top
of the high computational load associated with these methods, they do not account
for beat-to-beat variability and do not provide an estimation for other non-measurable
state variables of the model, such as ionic concentrations or channel open probabilities,
as neither do the methods proposed in [115, 149, 155]. In Chapter 4, a methodology
based on nonlinear state-space representations [158] and the UKF [167] was proposed
to identify the parameters and state variables of stochastic human ventricular AP
models. This methodology provided robust one-to-one model parameter and state es-
timation for each AP trace individually, but the computational load was high and it
required a long AP signal for accurate estimation.

On the basis of the above described limitations, a methodology for AP model pa-
rameter and state estimation that combines fast methodologies based on biomarkers’
information with other more complex methodologies based on AP traces’ information
could be most useful. When condensing AP data into a set of biomarkers, it is im-
portant to keep a sufficient amount of information to avoid any risk of degradation
in the estimation. To ensure this, the number of biomarkers, also called dictionary
entries, can be potentially substantial (hundreds, thousands, ...) and even higher than
the sample size. In this regime, various phenomena can appear, referred as curse of
dimensionality [176], which require data processing to improve classification or regres-
sion. Recent studies have addressed this by using Double Greedy Dimension Reduction
(DGDR) [177]. In DGDR, the parameter estimations from AP signals are obtained by
building a low-dimensional classifier input, which is generated by projecting the dic-
tionary entries into a low-dimensional linear subspace to improve the success rate of
a given classification problem. This linear subspace is automatically built by a sparse
linear combination of the dictionary entries to prevent any over-fitting risk [178].

The present study proposes the combined use of DGDR- and UKF-based method-
ologies to extract information from AP signals at baseline and under β-AS. Initial
DGDR parameter estimates are used to initialize and/or update subsequent UKF es-
timates so as to facilitate that these remain close to their actual values. To assess the
performance of our proposed methodology, a population of stochastic human ventric-
ular cell models is constructed and used to run simulations at baseline conditions and
following β-AS. Methodological performance is first tested over the synthetic AP sig-
nals generated for baseline conditions, from which a set of ionic current conductances
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are inferred for each virtual cell. In a second step, the methodology is tested over
synthetic AP signals of the same population following β-AS, from which the phospho-
rylation levels of a set of cellular substrates are inferred, considering the previously
identified ionic conductances. The ability of our methodology to characterize spatial
and temporal variability in human ventricular repolarization is demonstrated, showing
remarkable improvement with respect to the individual use of DGDR- or UKF-based
methods while keeping the computational load at affordable levels.

To the best of our knowledge, this is the first work where a biomarker-based
estimation method, like DGDR, and an AP-driven method, like the one grounded on
state-space representations and UKF (developed in Chapter 4), are combined to obtain
a more robust and faster parameter and state variable identification for cardiac AP
models. Another major novelty of the present study lies on the fact that parameters
and state variables of an underlying cardiac AP model are not only identified for
baseline conditions, but, importantly, for β-AS conditions. This is particularly relevant
provided the role of β-AS in modulating spatio-temporal ventricular repolarization
variability and facilitating the development of arrhythmias at tissue and whole-heart
levels.

5.2 Methods

In this Chapter, scalar quantities are denoted by lowercase letters, vectors are denoted
by lowercase boldface letters and matrices are denoted by uppercase boldface letters.
Time-varying quantities are written as x(t) for continuous time and x(k) for discrete
time. Superscript T is used for matrix and vector transposition.

5.2.1 Stochastic AP Models at Baseline and following β-AS

Stochastic Human Ventricular ORd Model

A stochastic version of the ORd human ventricular epicardial AP model [5] was de-
veloped to reproduce experimentally observed BVR. Following the subunit-based ap-
proach described in [56], the set of ODEs describing ion channel gating for the four
principal currents active during AP repolarization, namely IKs (slow delayed rectifier
potassium current), IKr (rapid delayed rectifier potassium current), Ito (transient out-
ward potassium current) and ICaL (L-type calcium current), were transformed into
SDEs by adding a stochastic term of the form shown in Eq. 5.1 for a generic ionic
gate xg:

dxg =
xg∞ − xg

τxg
dt+

√
xg∞ + (1− 2xg∞)xg√

τxg Ng
dw. (5.1)
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The added stochastic term containing the increments of a Wiener process mul-
tiplied by a factor inversely proportional to the number of ion channels of the corre-
sponding type was added to the deterministic term defining xg gating. By including
this stochastic term with an accurately estimated number of channels, realistic fluc-
tuations in the ionic gates and the whole-cell ionic currents are reproduced, which are
the source for BVR in cellular AP. The number of channels associated with IKs, IKr,
Ito and ICaL were calculated by dividing the default ionic conductance values in the
ORd model by the corresponding single channel conductances reported in literature,
as described in Chapter 4.

β-A Signaling Model

β-AS effects were modeled following the approach described in previous chapters and
[33], where a modified version of the Xie model [36], with definition of graded and
dynamic phosphorylation levels of cellular PKA substrates, was used. The Xie model
was updated from the original β-A signaling formulation proposed in [35] to slow down
the IKs phosphorylation and dephosphorylation rate constants to fit experimental
observations. PKA-mediated phosphorylation of PLM was accounted for in [36] by
increasing the NaK pump affinity for intracellular Na+ concentration.

5.2.2 Synthetic Data

A population of stochastic AP models was constructed to reproduce the experimen-
tally reported inter-individual variability in human ventricular electrophysiological
properties. An initial population of virtual cells was generated by using a Monte-
Carlo method in which the conductances of eight main ionic currents were varied
in the range ±100% of their nominal values in the ORd model, with those currents
being: IKs, IKr, Ito, ICaL, IK1, INa, INaCa and INaK . This corresponded to defini-
tion of eight multiplying conductance factors, namely θKs, θKr, θto, θCaL, θK1, θNa,
θNaCa, θNaK , varying between 0 and 2. From the 8000 initially generated models, only
2373 models presenting electrophysiological properties within physiologically plausible
limits, were retained, with those limits shown in Table 5.1 as determined based on
[5, 70–73, 179, 180]. The quantified properties included APD at 90% (APD90) and
50% repolarization (APD50), RMP, peak membrane potential (Vpeak), percentage of
change in APD90 after blocking individual ionic currents (∆APD90) as well as maxi-
mal concentrations of intracellular sodium (Na+i ) and calcium (Ca2+i ). The retained
models represent virtual cells with distinct ionic properties.

To simulate a range of potentially different β-AS effects in the constructed popula-
tion of stochastic AP models, multiplying factors θfCal, θfKs and θfNaK for the PKA
phosphorylation levels fCaL, fKs and fNaK were varied so that these phosphorylation
levels ranged between the values at baseline (i.e. without ISO) and the values after
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application of an ISO dose of 1µM associated with maximal effects. This population
of phosphorylation levels, generated by using a Monte-Carlo method, was combined
with the above described population of stochastic AP models to obtain a global pop-
ulation of 2373 models with 11 simultaneously varying parameters. This population
was divided into training and validation subpopulations with 2000 and 373 models,
respectively.

Table 5.1: Calibration criteria applied onto ventricular human cell models.

AP characteristic Min. acceptable value Max. acceptable value
Under baseline conditions [5, 70, 71]

APD90 (ms) 178.1 442.7
APD50 (ms) 106.6 349.4
RMP (mV) -94.4 -78.5
Vpeak (mV) 7.3 -

Under 90% IKs block [5]
∆APD90 (%) -54.4 62

Under 70% IKr block [73]
∆APD90 (%) 34.25 91.94

Under 50% IK1 block [72]
∆APD90 (%) -5.26 14.86

Na+i Concentration in baseline conditions [179]
Max. Conc. (µM) - 39.27

Ca2+i Concentration in baseline conditions [180]
Max. Systolic (µM) - 2.23
Max. Diastolic (µM) - 0.40

AP traces of 1100 beats were simulated at baseline and following β-AS, respec-
tively, by applying 1-ms rectangular stimulus pulses of 52 pA/pF amplitude delivered
at 1 Hz pacing frequency. The Euler-Maruyama scheme was used to solve the SDEs
with an integration time step of dt = 0.02 ms. The last 100 beats of each condi-
tion (baseline, β-AS) were used for further analysis to ensure convergence had been
reached.

Independent standard Gaussian noise was added to the synthetically generated
AP data, as described in Chapter 4, to simulate recording noise as in experimentally
acquired data. These noisy APs were input to the estimation methodologies tested in
this study.
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5.2.3 State-Space Formulation and Augmented States

State-Space Formulation

The stochastic version of the ORd model with unknown ionic conductance factors (for
baseline conditions) or phosphorylation levels (for β-AS conditions) was formulated as
a non-linear discrete-time state-space model [158] following the approach described in
Chapter 4. In these state-space models the only measured variable was considered to
be transmembrane voltage, while there were a number of hidden variables, including
ionic concentrations and opening probabilities of ionic gates.

For baseline conditions, model parameters to be estimated were the factors mul-
tiplying the nominal conductances of IKs, IKr, Ito, ICaL, IK1, INa, INaCa and INaK .
Hence, the vector of static model parameters was θ = {θKs, θKr, θto, θCaL, θK1, θNa,
θNaCa, θNaK}, representing variations in the ionic conductances relative to the default
values in the ORd model, Ij = Ij,ORd θj , where j ∈ {Ks,Kr, to, CaL,K1, Na,NaCa,
NaK}. Note that the same factor θj applies to the number of ion channels of each
species: Nj = Nj,ORd θj , as the unitary conductance of each ionic species was assumed
to be constant based on reported experimental findings [165].

For β-AS conditions, model parameters to be estimated were the factors multi-
plying the phosphorylation levels of the PKA substrates whose phosphorylation had a
remarkably higher impact on the AP, which were IKs, ICaL and INaK currents [37], in
agreement with findings reported for other β-A signaling models [79]. Consequently,
the vector of static model parameters was θ = {θfKs, θfCaL, θfNaK}, representing
variations in the phosphorylation levels fKs, fCaL and fNaK relative to the default
values in the modified Xie model, fj = fj,Xie θj , where j ∈ {Ks,CaL,NaK}. For
both baseline and β-AS conditions, the vector θ of model parameters was estimated
for each given input AP trace.

The state-space representations used in this study were of the form:

x(k) = f(x(k − 1),q(k − 1),θ) (5.2)
y(k) = h(x(k)) + r(k), (5.3)

where the process equation (Eq. 5.2) was defined by a non-linear function f(·) with
three different input vectors: x(k), containing the state variables of the stochastic AP
model; q(k) representing non-additive process noises related to Wiener increments;
and θ containing the model parameters to be estimated. On the other hand, the
measurement equation (Eq. 5.3) was defined by the function h(·) relating the measured
variable (transmembrane voltage) with the vector of the model state variables. In this
study, y(k) = v(k)+r(k), where v(k) represents the noiseless AP and r(k) was assumed
to be an additive white Gaussian noise.
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Augmented State-Space

To perform joint estimation of model parameters and state variables for a given in-
put noisy AP, the state-space representation of Eq. (5.2)-(5.3) was reformulated as
described in Chapter 4. In brief, state augmentation [158] was applied to convert the
static parameter vector θ into a time-varying parameter vector θ̃(k) using a random
walk model with drift:

θ̃(k) = θ̃(k − 1) + δ(k), (5.4)

where δ(k) represents an artificial noise whose components were defined by i.i.d. zero-
mean Gaussian processes with very small variance. An augmented state vector z(k)

was built by joining the state variable vector x(k) with the new parameter vector θ̃(k)
and the process noise vector q(k):

z(k) =
[
x(k),q(k), θ̃(k)

]T
. (5.5)

The previous process (Eq. 5.2) and measurement equations (Eq. 5.3) were re-
placed with:

z(k) = fa(z(k − 1)) + ε(k) (5.6)
y(k) = ha(z(k)) + r(k), (5.7)

where fa and ha are the augmented versions of f and h, respectively, and ε(k) contains
noises related to the Wiener increments of the stochastic AP model represented by
q(k) and to the new parameter vector θ̃(k) represented by δ(k).

5.2.4 Individual and Combined DGDR- and UKF-based Meth-
ods

DGDR and Automatic Generation of Biomarkers

The DGDR method was used to estimate the parameters of the stochastic AP model,
which represent part of the components of the augmented state vector z(k). DGDR
is based on high-dimensional data analysis and aims at mitigating the curse of di-
mensionality [176] by projecting data into a low subspace through a sparse linear
combination of the dictionary entries. In this work, the dictionary entries comprised
a set of biomarkers related to AP amplitude and duration, such as Vpeak, RMP and
APD at different repolarization levels, biomarkers related to BVR, such as short and
long-term variability, as well as wavelet decomposition of the input AP signal. In
[177], data projection is performed such that a classification success rate is maximal,
which can be achieved by maximizing a score function based on the distributions of
the projected data of each class. To apply the DGDR method to regression problems,
the cost function was replaced by an `2 norm that minimizes the error between the
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actual values of the ionic conductances or phosphorylation levels and a sparse linear
combination of the dictionary entries in a training set:

ω∗ = arg min
ωi

∥∥∥∥ ng∑
i=1

ωigi − θc
∥∥∥∥
`2

(5.8)

where ωi are the weights to be determined, ng is the number of dictionary entries,
gi is the ith dictionary entry of the training set and θc are the known values of the
parameters in the training set.

As in [177], the early stopping criterion was applied on a validation set to avoid
over-fitting risk, which leads to a sparse combination of the dictionary entries and the
weight vector (‖ω‖`0 � ng). Thus, given a new AP trace in the validation set, the
learned linear combination was applied to estimate the model parameters. For this
study the number of extracted dictionary entries was 889, of which 100 were selected
for the linear combination. For all ionic conductances and phosphorylation levels, the
linear combination of 100 entries was a good choice to minimize the cost function in
the training set while avoiding over-fitting in the validation set.

We performed a learning phase for each of the parameters, separately. The se-
lected dictionary entries were not the same, which is a direct consequence of the
goal-oriented concept of the DGDR method and ensures a certain explanation of the
selected entries. The full process for the training step took around 3 hours on about
50 processors for the estimation of the eight ionic current conductances at baseline
and proportionally less for the estimation of the three phosphorylation levels under
β-AS. Once the learning phase was performed, the estimation of a new sample was
immediate (scalar product between two vectors).

This training process was performed over a population of 2000 models while eval-
uation was carried out over 273 models, leading to adequate levels of accuracy. Fig.
5.1 (left panel) illustrates an example of θNaK estimation by DGDR, showing the uni-
form dispersion of the point cloud that provides a measure of the uncertainty in the
estimation. In addition, the DGDR method led to similar accuracy levels for training
and evaluation populations as can be observed in Fig. 5.1 (right panel) where the
distribution of the absolute error between the actual (θNaK) and estimated (θ̂NaK)
parameter values is shown. Similar results were obtained in the estimation of the other
model parameters.

UKF

The UKF [167] was used to estimate the states of the nonlinear state-space formulation
described by Eq. (5.6)-(5.7), which provides estimates for the parameters and state
variables of a stochastic human ventricular cell model for any given AP trace. The
values of three UKF setting parameters, commonly denoted by α, β and κ, were set to
define the spreading of Sigma-Points around the mean state estimates (controlled by
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Figure 5.1: Left panel: Estimated (θ̂NaK) vs actual (θNaK) values of the factor multiplying
maximal INaK in the training and validation populations. Right panel: Density of the
absolute error in the estimation of θNaK for the training and validation sets.

α and κ) and to reflect prior knowledge of states’ statistical distributions (controlled
by β). In this work, α = 1, β = 0 and κ = 3-Ls were set [181], being Ls the number of
states (Ls = 71 for baseline and Ls = 68 for β-AS conditions). This led to a value for
the spread of the state covariance matrix corresponding to √γ = 1.7321, in accordance
with feasible values [182], and to sums of weights of means and covariances equal to
one:

∑2L
i=0W

(c)
i = 1,

∑2L
i=0W

(m)
i = 1.

Two additional hyper-parameters were set in the UKF implementation, which
determine the process noise variance σ2

θ (the same for all components of the model
parameter vector) and the measurement noise variance σ2

r . A range of values for σ2
θ

were tested and the one rendering best performance was selected. The value for σ2
r

was set to 1 mV, as in Chapter 4.

The initialization of the mean and covariance matrix of the state vector was
obtained from the training population. The state variables related to stochastic AP
model parameters (representing multiplying factors for ionic conductances at baseline
and for phosphorylation levels under β-AS) were constrained to remain in the interval
[0, 2].

Combined UKF-DGDR

DGDR and UKF methods were combined to enhance their individual characteristics
in terms of estimation accuracy and computational cost. In particular, DGDR was
used for initialization and updating of UKF estimation to take parameter estimates
closer to their actual values and to avoid local minima in the estimation:
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Initialization (INI): The model parameter estimates obtained by DGDR were
used to initialize the corresponding elements of the state vector, which was subse-
quently estimated by UKF. DGDR provided estimates for both the mean of the pa-
rameter vector, θ̂DGDR, and its covariance matrix, PDGDR.

Updating (UP): The model parameter estimates obtained by DGDR were used
to update the UKF-based parameter estimation in each cardiac cycle. At the end of
each cycle, the corresponding elements of the state vector estimated by UKF (mean
ẑk and covariance matrix Pk) were updated according to the estimates for the mean
θ̂DGDR and covariance matrix PDGDR obtained by DGDR as follows:

d = ẑDGDR −H ẑk (5.9)
S = H Pk HT + PDGDR (5.10)

Kup = Pk HT S−1, (5.11)

with ẑDGDR = [ONx θ̂
DGDR ONq], where ONx is a Nx × 1 zero vector and ONq is

a Nq × 1 zero vector, and H is a (Nx +Nθ +Nq)× (Nx +Nθ +Nq) matrix of 0 values
everywhere except for the last Nθ ×Nθ submatrix occupied by an identity matrix. In
the above, Nθ is the number of model parameters, Nx is the number of model state
variables and Nq is the number of Wiener processes.

The UKF-based updated estimates for the mean and the covariance matrix of the
state vector were:

ẑkup = ẑ−k +Kup d (5.12)
Pkup = (INθ

−Kup H)Pk. (5.13)

5.2.5 Performance Evaluation

The performance of DGDR, UKF and their combination was evaluated for estimation
of eight ionic current conductances at baseline conditions and for estimation of three
phosphorylation levels under β-AS conditions. In the latter case, the values for the
eight ionic conductances were set at those estimated at baseline. The estimation
performance was evaluated as in previous Chapter 4:

AP Estimation

The root mean square error between the generated noiseless AP trace and the esti-
mated AP trace was calculated over the last 5 cycles,

ξv =

√√√√ 1

KN

KN−1∑
k=0

|v(k)− v̂(k)|2, (5.14)

where KN is the number of samples contained within the last N = 5 cycles.
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State and Parameter Estimation

The mean absolute error between the actual and estimated values of each state was
calculated over the last 5 cycles,

ηzj =
1

KN

KN−1∑
k=0

{|zj(k)− ẑj(k)|} , (5.15)

where zj is the actual value of the state variable j and ẑj is the estimated value, with
j = 1, · · · , Ls, being Ls the length of the augmented state vector z(k).

A global accuracy measurement η̄θ of model parameter estimation was defined
as the average of the mean absolute errors ηθi , i = 1, · · · , Nθ, corresponding to all
estimated model parameters:

η̄θ =
1

M

∑
θ′∈θ

ηθ′ , (5.16)

where ηθ′ is the mean relative error for model parameter θ
′ ∈ θ and M = 8 (for

conductance factors) or M = 3 (for phosphorylation factors).

Reproducibility of AP Markers

AP-derived biomarkers were calculated from the noiseless AP trace and from the esti-
mated AP trace calculated according to the estimated values for the model parameters.
AP biomarkers comprised mean and standard deviation of APD90 (in the following
denoted by APD) and STV of APD calculated as the average distance perpendicular
to the identity line in the Poincaré plot (see Chapter 4), in both cases evaluated over
the last 30 cycles:

mAPD90 =
1

N

N∑
n=1

APD90(n), (5.17)

sAPD90
=

√√√√ 1

N − 1

N∑
n=1

(APD90(n)−mAPD90
)2, (5.18)

STV =

N−1∑
n=1

|APD90(n+ 1)−APD90(n)|
(N − 1)

√
2

. (5.19)
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5.3 Results

5.3.1 Implementation of DGDR and UKF Methods

The performance of the UKF method as a function of the process noise standard
deviation σθ is illustrated in Fig. 5.2, which shows the mean parameter estimation
error in the ORd model when varying σθ by several orders of magnitude. The minimal
average error E[ηθ] was achieved for σθ = 10−8, which was used for all subsequent
analyses. In the case of the root mean square error in AP estimation, ξv, its values
were minimally affected by the choice of σθ for all tested σθ values.
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Figure 5.2: Average of mean absolute parameter estimation error E[ηθ] in the ORd model as
a function of the standard deviation of the process noise σθ.

In the following sections the estimation performances of the DGDR and UKF
methods individually and in combination are presented.

5.3.2 Combined DGDR and UKF Methods: Initialization Ef-
fects

The use of the estimates obtained by DGDR for the mean, θ̂DGDR, and the covariance
matrix, PDGDR, of the model parameter vector as initialization for the UKF method
led to two important benefits. On the one hand, it reduced the time required for the
estimates to reach convergence, in turn diminishing the computational cost. On the
other hand, it led to more accurate estimates, as shown in Fig. 5.3 for the estimation
of θNa in one of the models of the population at baseline conditions. While for the
individual UKF method more than 40 beats were required for the estimation error to
be below 0.04, when the combined UKF+INI method was used the number of required
beats was 5 for that particular example.
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Figure 5.3: Actual θNa value and time course of θ̂Na as estimated by DGDR, UKF and
UKF+INI methods.

5.3.3 Combined DGDR and UKF Methods: Updating Effects

The use of the estimates obtained by DGDR for the mean,θ̂DGDR, and the covariance
matrix, PDGDR, of the model parameter vector to update the UKF estimation at the
end of each beat helped to retain the parameter estimates close to the actual parameter
values and to reduce the uncertainty in the estimation, as confirmed by a reduction in
the estimation covariance matrix. Additionally, this UKF+UP approach diminished
the convergence time and, thus, the associated computational cost. The benefit of
using the DGDR-derived estimates for UKF updating is illustrated in Fig. 5.4 for the
estimation of θKr in one of the models of the population at baseline conditions. When
only UKF is employed, the parameter estimates may fall in a local minimum and may
never reach a value close to the actual one. As can be observed from the figure, the
UKF and UKF+UP estimates were the same for the first beat whereas the updating
subsequently led to remarkably enhanced results.

5.3.4 Performance Comparison

The performances of the individual DGDR and UKF methods and their combinations,
either by initialization and/or updating, were assessed in terms of the average mean
E[η̄θ] and standard deviation E[σ̄ηθ ] of the absolute error. Top panel of Fig. 5.5
illustrates E[η̄θ] for the five evaluated methods at baseline conditions. As can be seen
from the figure, the individual DGDR and UKF methods led to approximately the
same level of error (E[σ̄ηθ ] values of 0.1806 and 0.1775, respectively), with a larger
associated computational cost in the case of the UKF method. The combination
of DGDR and UKF remarkably improved the estimation performance, either when
combined through initialization or through update and, particularly, when combined
through both (E[σ̄ηθ ] values of 0.1526 for UKF+INI, 0.1396 for UKF+UP and 0.1350
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Figure 5.4: Actual θKr value and time course of θ̂Kr as estimated by DGDR, UKF and
UKF+UP methods.

for UKF+INI+UP). Bottom panel of Fig. 5.5 presents the estimation uncertainty for
the five evaluated methods. As can be observed, initialization and updating by DGDR
contributed to reduce the parameter estimation uncertainty of the UKF method.
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Figure 5.5: Average of mean (left panel) and standard deviation (right panel) of absolute
parameter estimation error ηθ for the five evaluated methods.

Fig. 5.6 shows boxplots for the mean absolute error in the estimation of each
ionic conductance factor by each of the five evaluated methods at baseline conditions.
As can be observed from the figure, the combined UKF+INI+UP method presents
better performance than the individual DGDR and UKF methods for practically all
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estimated factors. The most accurate results were obtained for θNa, with median
estimation errors θ̂Na being lower than 0.05. On the other hand, the least accurate
results were obtained for θKs, θNaCa and θNaK .
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Figure 5.6: Boxplots of absolute estimation errors ηθ for the factors multiplying ionic current
conductances calculated for the five evaluated methods.

Fig. 5.7 presents results related to estimation uncertainty. Fig. 5.7 (left panel)
illustrates the time course of the estimation uncertainty quantified by the square root
of the covariance matrix

√
PNaK in the estimation of θNaK for one virtual cell in the

population at baseline conditions. As can be observed from the figure, the combination
of DGDR and UKF presented lower uncertainty than the individual DGDR and UKF
methods, with the impact of updating being notably larger than that of initialization.
Fig. 5.7 (right panel) provides an additional characterization of the estimation uncer-
tainty quantified by the number of beats required by each UKF-based method to reach
the same value of the averaged standard deviation of the absolute estimation errors
as the individual UKF. The impact of updating on the reduction of the estimation
uncertainty is clear from this figure too.

5.3.5 Replication of AP Traces and Biomarkers at Baseline

The performance of the five proposed methods to replicate AP traces at baseline
conditions was assessed by generating APs from the ORd model with the different
sets of estimated parameters and by comparing them with the input AP traces. Also,
the comparison was established in terms of AP-derived biomarkers like APD and STV.
Fig. 5.8 (left panel) shows the probability density function of the differences between
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Figure 5.7: Left panel: Time course of estimation uncertainty in terms of square root of
covariance matrix

√
PNaK for each of the five evaluated methods. Right panel: Number of

beats required by each evaluated method to reach the same level of accuracy as the UKF
method, as quantified by the averaged covariance over all estimated model parameters.

the APD from the input AP trace and the APD calculated from the estimated AP
trace for DGDR, UKF and UKF+INI+UP. Similarly, Fig. 5.8 (right panel) shows
results for STV. As can be observed from the figure, the combined UKF+INI+UP
method provides the best fitting to the actual data, as confirmed by the fact that the
distributions of ∆APD and ∆STV are more concentrated around 0. On the other
hand, the DGDR method presents reduced accuracy for APD estimation, although
very similar to UKF and UKF+INI+UP for STV estimation.
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Figure 5.8: Probability density function of ∆APD (left panel) and ∆STV (right panel) for the
validation population, with ∆APD (∆STV, respectively) calculated as the difference between
APD (STV, respectively) from the input AP trace and APD (STV, respectively) from the
estimated AP trace for each evaluated method under baseline conditions.
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5.3.6 Estimation of Phosphorylation Factors, AP Traces and
Biomarkers under β-AS

Considering the ionic conductance estimates obtained for baseline conditions, the next
step was to test the performance of DGDR, UKF and UKF+INI+UP to estimate the
phosphorylation levels for the validation population of models under β-AS effects.
Fig. 5.9 shows boxplots of the mean absolute errors ηθ for the estimation of the
three ISO-induced phosphorylation levels. As can be observed from the figure, the
UKF+INI+UP method increased the accuracy in the estimation of θfKs and θfNaK
with respect to the individual DGDR and UKF methods, whereas for θfCaL UKF was
slightly better in terms of median absolute error, but not in terms of averaged abso-
lute error (η̄θ = 0.34 for both methodologies). Taking together the three estimated
factors for the phosphorylation levels and results over the whole validation population,
the combined UKF+INI+UP method led to a reduction in the averaged mean abso-
lute error, E[η̄θ], of 15.29% and 20.01% with respect to the individual use of DGDR
and UKF, respectively. The average mean absolute errors, E[η̄θ], for ISO-induced
phosphorylation level factors were higher (0.38, 0.40 and 0.32 for DGDR, UKF and
combination respectively) than those obtained for ionic conductance factors due to
the fact that the error in the ionic conductance estimation was propagated into the
phosphorylation level estimation.
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Figure 5.9: Boxplots of absolute estimation errors ηθ for the factors multiplying ISO-induced
phosphorylation levels calculated for three evaluated methods.

Fig. 5.10 (left panel) shows the probability density function of the differences be-
tween the APD from the input AP trace and the APD calculated from the estimated
AP trace after estimation of the ionic conductances at baseline and phosphorylation
factors under β-AS for DGDR, UKF and UKF-INI-UP. Fig. 5.8 (right panel) shows
analogous results for STV. Again, the combined UKF-INI-UP provided the best fit-
ting for both ∆APD and ∆STV, whereas the DGDR method presented the highest



5.4. Discussion 123

differences between actual and estimated APD and comparable performance to UKF
and UKF+INI+UP in the case of STV.

β-AS conditions
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Figure 5.10: Probability density function of ∆APD (left panel) and ∆STV (right panel)
for the validation population, with ∆APD (∆STV, respectively) calculated as the difference
between APD (STV, respectively) from the input AP trace and APD (STV, respectively)
from the estimated AP trace for each evaluated method under β-AS conditions.

As an illustration of the above results, Fig. 5.11 shows the actual and estimated
APs (mean over 100 beats) calculated from the set of estimated parameters by each
of the evaluated methods for a cell in the validation population. Both at baseline and
under β-AS, the AP estimated by DGDR+UKF remarkably better matched the actual
AP as compared to those obtained by DGDR or UKF individually. Not only the mean
AP, but also the variability over 100 beats was better reproduced by DGDR+UKF as
compared to DGDR and UKF.

5.4 Discussion

A novel approach based on the combined use of the DGDR, with Automatic Generation
of Biomarkers, and the UKF has been proposed as a method for joint estimation of
parameters and state variables of computational human ventricular stochastic models
from given input AP traces. By using this combined methodology, different sets of ionic
parameters, namely ionic current conductances and phosphorylation levels of cellular
substrates, are estimated for each given individual AP trace at baseline conditions and
following β-AS. The proposed methodology outperforms individual DGDR and UKF
methods and has an affordable computational cost. It allows realistic characterization
of spatio-temporal variability at baseline and following β-AS, thus enabling improved
investigation of variability mechanisms and arrhythmic risk prediction. This can prove
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Figure 5.11: Actual and estimated APs (mean over 100 beats) calculated from the set of
estimated parameters by each evaluated method at baseline (left panel) and under β-AS
(right panel) for one of the virtual cells in the validation population.

fundamental to assess the role of β-AS in leading to exaggerated increases in BVR that
facilitate the occurrence of arrhythmic events in certain cases but not in others [183].
In the following, relevant characteristics of the proposed methodology as well as major
benefits and shortcomings associated with its use are discussed.

5.4.1 DGDR Method

The DGDR method was used to obtain estimates for the model parameters, which
were subsequently fed to the UKF method to build the combined DGDR-UKF method.
The intrinsic characteristics of the DGDR method, which include one-to-one matching
between input AP traces and the set of estimated model parameters, ability to manage
the stochastic behavior of the AP traces and low computational burden make this
methodology suitable for the problem at hand.

A key factor in the performance of the DGDR method relies on a correct training
phase. To obtain high levels of estimation accuracy, training should be performed
over large populations, which in the case of this study corresponds to a large set of
synthetic AP traces. Confirmation on the appropriateness of the training population
dimension was provided by the fact that similar estimation errors were attained in
both the training and validation populations. If training dimension had not been
sufficient, estimation uncertainty in the validation population would have been much
greater than that obtained in the training population. The time required to obtain the
estimation dictionaries from the training population was just three hours, being sub-
sequent calculation of parameter estimation immediate (scalar product of two vectors)
when given a new AP trace of the validation population.
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5.4.2 UKF Method

After formulating the problem to be solved as a nonlinear state-space representation
where a noisy voltage trace is considered as the observed variable and SDEs defining
a human ventricular cell model are used to describe the process equations, the UKF
method was applied for joint estimation of model parameters and state variables, pro-
viding not only mean estimates but also measurements of estimation uncertainty. The
UKF algorithm presents better performance than other methods used for parameter
and state estimation of nonlinear state-space representations, such as the EKF algo-
rithm, with the added advantage of not requiring calculation of Jacobians [167]. Also,
as compared to other Monte-Carlo-based methods, such as Particle Filters [151], the
UKF algorithm is associated with notably lower computational cost.

When using the UKF, appropriate calibration of its hyperparameters σθ and σr,
representing process and measurement variances, respectively, is a critical point to
achieve high levels of accuracy. According to our results, an inadequate selection of
these hyperparameters may lead to an increase in the estimation error above 50% of
the value attained for optimally adjusted σθ and σr values. Based on Chapter 4, σr
was set to 1 mV, equal to the variance of the measurement noise added to the clean
synthetic AP signal. In the case of σθ, which is closely related to the convergence speed
and potentially oscillatory behavior of the estimates, its value was set to σθ = 10−8, as
this value led to a minimum average mean absolute error in parameter estimation, as
shown in section 5.3.1. This value is in the range of feasible values shown in Chapter 4,
with a slight difference in the optimal value justified by the fact that a higher number
of model parameters were estimated in this study as well as to the fact that a subunit-
based formulation of SDEs for ionic gates, rather than the channel-based formulation
used in Chapter 4, was here employed.

5.4.3 Combined DGDR-UKFMethod by Initialization and Up-
dating

The use of DGDR estimates for both initialization and updating of the UKF estimates
has been demonstrated to play a very significant role in improving the estimation per-
formance. On the one hand, providing an initialization for the UKF method in terms
of its mean and covariance matrix based on DGDR estimates allowed reducing the
mean estimation error and the uncertainty around it. Also, the convergence time was
remarkably diminished, as described in section 5.3.2. As a proof, the combined DGDR
initialization + UKF approach required approximately 35% of the number of beats
than the individual UKF method to reach the same level of estimation uncertainty.

On the other hand, updating the UKF estimates at the end of each cardiac beat
by using the DGDR estimates allowed the solution of the combined method to remain
within a relatively narrow range around the actual parameter values and avoided the
estimation to fall into local minima. In addition, it contributed to accelerate the
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estimation convergence, reducing by more than 95% the number of beats required by
the UKF method to reach the same level of uncertainty. It is interesting to highlight
that this updating process improved the estimation of not only the mean and the
covariance of the model parameters, but also of all the other model state variables.

The enhanced performance and reduced convergence time attained by the com-
bined DGDR-UKF method are particularly relevant for subsequent studies aimed at
investigating repolarization variability from human ventricular experimental voltage
traces, which are commonly of short duration.

5.4.4 Estimation of Ionic Current Conductances at Baseline

Eight ionic current conductances were estimated at baseline conditions, as variations
in those conductances have been postulated to be major factors for spatial (cell-to-cell)
AP variability [56, 64, 147, 149, 184]. Other studies in the literature have addressed
estimation of ionic current conductances, even if not in all cases for as many currents
as in this work and not always considering temporal (beat-to-beat) AP changes but
just focusing on a steady-state AP [115, 154, 185]. In the present study, stochastic
human ventricular cell models accounting for temporal variability were developed to
improve the estimation accuracy by considering dynamic information additional to the
static information commonly considered in the literature. The eight estimated model
parameters were multiplying factors for the conductances of six major ionic currents
(IKs, IKr, Ito, ICaL, IK1, INa) and the maximal values of INaCa and INaK with
respect to their nominal values in the ORd model.

The least accurate results with our DGDR-UKF method, as happened with all
other tested methodologies (individual DGDR and UKF methods and UKF with only
initialization or updating from DGDR), were obtained for θKs, in line with results
reported in Chapter 4. This can be due to the intrinsic characteristics of the ORd
model, in which the IKs current has little influence on the AP, and consequently on
AP-derived biomarkers, at baseline conditions. Other experimental and computational
studies support this outcome regarding the limited influence of IKs on the AP shape
and duration at baseline [36, 171, 172]. Since a wide range of θKs values generate little
differences in the corresponding AP traces, accurate identification becomes challeng-
ing. This issue is framed within the context of identifiability and observability and
may be solved in future studies by complementing the estimation process with signals
obtained while stimulating the cells at other pacing frequencies or under ionic current
blocks. Similarly, the estimation errors associated with θNaCa and θNaK were among
the highest for all tested methodologies, which can in this case be due to the longer
time scale required for INaCa and INaK variations to impact the AP.

Of note, estimation of θto rendered much higher errors when the DGDR method
was used as compared with any of the other methods involving UKF. This can be
attributed to the fact that none of the defined AP-derived biomarkers may be closely
related to the AP notch, which is the AP phase where this current has the largest
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influence. Similarly happened with θK1, for which estimation errors where higher for
DGDR than for any UKF-based method. In this case, despite considering biomarkers
in the DGDR method like the resting membrane potential, which are expected to
contribute to θK1 identification, the UKF-based methods can deliver more accurate
results because they use all samples of the AP trace, both during the AP as well as
during the resting phase, and thus have a larger amount of information to adjust θK1

estimation.

5.4.5 Estimation of Phosphorylation Levels of Cellular Sub-
strates under β-AS Conditions

The phosphorylation levels corresponding to the three cellular substrates most signif-
icantly contributing to AP changes under β-AS were estimated using our proposed
DGDR-UKF method and compared with other tested methods. To the best of our
knowledge, this is the first study where the phosphorylation levels of a β-A signaling
model have been estimated, together with other state variables, based on the static
and dynamic AP changes induced by β-AS. The results obtained with our proposed
combined method were generally better than those of individual DGDR and UKF
methods. Nevertheless, it should be noted that the average mean absolute errors
obtained for phosphorylarion levels under β-AS were higher than those obtained for
ionic conductances at baseline. This can be partly explained because the errors in the
estimated baseline conductances were propagated to the estimation of the phosphory-
lation levels, as the latter were calculated based on the corresponding APs estimated
at baseline.

Although simultaneous estimation of ionic conductances and phosphorylation lev-
els under β-AS could be thought of, this turns out to be unfeasible due to the mul-
tiplicative relation of ionic conductances and phosphorylation levels in the coupled
electrophysiological-adrenergic signaling model. On the basis of such multiplicative
relation, many combinations of conductance and phosphorylation level values could
lead to the same estimation results even if the estimated parameter values were in fact
far from their actual values.

5.4.6 Characterization of Spatio-Temporal AP Variability from
Parameter Estimates

It is a main purpose of this study to propose a method suitable for investigation of
temporal and spatial variability in human ventricular repolarization, with one-to-one
identification of an underlying computational AP model for each experimentally avail-
able voltage trace. Provided data is available at baseline and under β-AS conditions,
our proposed DGDR-UKF method can identify the specific electrophysiological and
β-A signaling characteristics at those two conditions. This method was indeed able
to precisely reproduce the AP shape, duration and variability of individual AP traces,
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rendering statistical distributions of the errors in the estimation of APD and STV re-
markably more concentrated around 0 than those obtained with other tested methods,
particularly when comparing with the DGDR method.

On top of the DGDR-UKF method rendering better match between actual and
estimated AP-derived biomarkers than other methods, it led to improved match be-
tween actual and estimated voltage traces, as illustrated in section 5.3.6. This can be
justified on the basis that our methodology provides estimates of not only the param-
eter values but of the complete vector of model state variables, which allows for more
accurate AP reconstruction than that based on estimated parameter values only.

5.4.7 Limitations and Future Works

In this work a total of 11 different human ventricular cell model parameters have been
identified, corresponding to 8 ionic current conductances at baseline and 3 phospho-
rylation levels under β-AS. Future studies could include estimation of additional ionic
currents conductances (e.g. for ICab, INab, IKb or IpCa), phosphorylation levels (e.g.
for ryanodine receptors, phospholamban or troponin I) or time constants of ionic gates
(e.g τxrs, τxs1 or τxk1).

To test the performance of our proposed methodology for estimation of model
parameters and one-to-one replication of AP traces and AP-derived biomarkers, syn-
thetic voltage traces were generated at 1 Hz stimulation frequency. Future studies
could test the extent to which the estimation performance is improved by applying
the proposed DGDR-UKF method onto voltage traces obtained at different stimulation
frequencies. In addition, voltage traces could be generated under different ionic blocks
to offer additional information to be used for parameter identification, which could
prove particularly useful for identification of θKs, θNaCa, θNaK , whose estimation was
the most challenging in the present work.

A set of AP-derived biomarkers were used in the DGDR method and, conse-
quently, in the DGDR-UKF method. Those biomarkers reflect AP characteristics
related to its upstroke, repolarization and resting potential as well as temporal APD
variability. Novel AP-derived biomarkers reflecting additional information from the
AP notch and plateau phases could help in the identification of model parameters, like
θCaL and θto, thus globally improving the performance of the DGDR method and of
the combined DGDR-UKF method.

This study has presented the combined DGDR-UKF method and has assessed its
performance over a large set of synthetically generated AP traces. As a next step, the
proposed method could be tested over experimental AP traces recorded from human
ventricular cardiomyocytes or even extend the method to be applied onto voltage
traces measured from human ventricular tissues. This would allow identification of
underlying computational tissue models with representation of cell-to-cell electrical
coupling.
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5.5 Conclusion

A novel methodology based on the combined use of DGDR, with Automatic Gener-
ation of Biomarkers, and the UKF has been proposed to estimate parameters and
state variables of an underlying human ventricular AP model for any given input volt-
age trace. The proposed methodology is tested over synthetic voltage traces gener-
ated from an experimentally-calibrated population of stochastic human ventricular cell
models at baseline and under β-AS. The combined methodology remarkably improves
the estimation performance of individual DGDR and UKF methods while reducing the
computational cost. The estimated ionic current conductances at baseline conditions
and phosphorylation levels of cellular substrates under β-AS allow for computational
characterization of spatio-temporal ventricular repolarization, which can prove very
useful to investigate variability changes induced by disease or drugs, uncover its un-
derlying ionic mechanisms and establish a relationship with arrhythmic risk.
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6.1 Conclusions

6.1.1 General Conclusions

This thesis investigates temporal and spatial variability in human ventricular repo-
larization by building computational stochastic AP models that couple theoretical
descriptions of electrophysiology, calcium dynamics, mechanical stretch and β-A sig-
naling. The constructed models are used to dissect the mechanisms underlying the
experimentally observed interactions between a particular type of temporal variabil-
ity associated with low-frequency oscillations of APD and the overall beat-to-beat
APD variability quantified by the standard deviation or the STV of the APD series.
Common ionic factors potentiating those two phenomena in response to increased
sympathetic activity are elucidated and shown to be factors facilitating the generation
of sympathetically-induced arrhythmic events. These findings are reached by using
a population of models calibrated with experimental data regarding physiologically
plausible ranges for a set of biomarkers describing AP shape, duration and amplitude
characteristics. However, such calibration does not guarantee that the constructed
population shares the same statistical distribution for each AP biomarker as the ex-
perimental data it was based on and not at all that each model in the population rep-
resents the measurements of an individual human ventricular cardiomyocyte. Based
on such considerations, this thesis subsequently explores the use of methodologies for
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parameter and state estimation that allow identifying an underlying computational
AP model for each given voltage trace, both at baseline and following β-AS. Of all
tested methodologies, the one based on combining DGDR with UKF is found to pro-
vide the most accurate results in terms of estimation of ionic current conductances at
baseline and of phosphorylation levels under β-AS. Both temporal and spatial vari-
ability of AP repolarization are shown to be precisely reproduced by this combined
DGDR-UKF methodology. Provided experimental human ventricular AP traces, or
additional experimental measurements, are available, the population of models con-
structed by the DGDR-UKF methodology to fit such measurements would render a
well suited computational ground to more robustly investigate the causes and conse-
quences of spatio-temporal variability in its different forms. All in all, the research in
this thesis offers a solid basis for future studies aiming at improving arrhythmic risk
stratification and guiding the search for more efficient anti-arrhythmic therapies.

6.1.2 Interactions between LF Oscillations and Temporal Vari-
ability in Human Ventricular Repolarization following
Sympathetic Provocation: Mechanisms and Relation to
Risk

Chapter 2 investigates the experimentally reported interactions between LF oscilla-
tions of APD and BVR following enhanced sympathetic activity. A population of
stochastic human ventricular AP models with representation of cellular electrophysi-
ology, calcium dynamics, mechanics and β-A signaling is proposed, which allows repro-
ducing the concomitant increments in LF oscillatory behavior and BVR in response
to SP. High spatial (i.e. inter-cellular) variability is quantified, in line with experi-
mental observations, with some cells showing little increments whereas others present
exaggerated increases in the two phenomena following enhanced sympathetic activity.
The main ionic contributors to such inter-individual variability are dissected by ARD
analysis and found to be related to the magnitude of the IKr, IK1 and ICaL currents.
Under disease conditions involving reduced repolarization reserve and Ca2+ overload,
electrical instabilities and arrhythmogenic events occur in some virtual cells, which by
CCA are determined to be driven by the same ionic factors underlying elevated LF
oscillations and BVR.

Chapter 3 deals with investigation of the time for the appearance of the LF
oscillatory behavior whose magnitude was explored in Chapter 2 as a particular form
of temporal repolarization variability. By using a population of models as in Chapter
2 and by developing an algorithm for robust quantification of the time lapse for LF
oscillations to be manifested, such lapse is characterized to vary between a few seconds
to more than three minutes. Prior stimulation of β-adrenoceptors remarkably reduces
such time lapse. In terms of its underlying mechanisms, phasic mechanical stretch
is found to induce oscillations in an almost immediate manner, whereas phasic β-AS
is shown to induce a much more slow response, in agreement with experimentally
analyzed data on ventricular cardiomyocytes subjected to ISO. Such slow response is
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mediated by the phosphorylation and dephosphorylation kinetics of the IKs current.
Consequently, depending on the magnitude of the IKs current of each individual cell,
the time lapse may extensively vary. An inverse relationship between the time lapse
(investigated in Chapter 3) and the magnitude (investigated in Chapter 2) of LF
oscillations of APD is demonstrated, being such a relationship more accentuated in
cells susceptible to develop arrhythmogenic events in response to SP under disease
conditions.

6.1.3 Theoretical Characterization of Spatio-Temporal Vari-
ability in Human Ventricular Repolarization at Baseline
and following Sympathetic Provocation

Chapter 4 proposes a novel methodology to construct computational populations of
models that more faithfully recapitulate available experimental evidences. The virtual
populations constructed in Chapter 2 and Chapter 3 are based on initially generating
a large set of models, which are subsequently calibrated based on physiological ranges
reported in the literature for a number of AP characteristics, including its duration,
shape and amplitude at several relevant time points. Even if the results obtained with
such models closely match experimental findings in terms of sympathetically-mediated
LF oscillations and BVR, the method used to develop and calibrate the population of
models does not guarantee that each individual cell of the population represents the
characteristics of a human ventricular myocyte. It is for that reason that Chapter 4
deals with the development of individualized stochastic AP models directly fed with
a voltage trace as could be measured experimentally. The methodology proposed in
Chapter 4 is based on the formulation of nonlinear state-space representations and the
use of the UKF algorithm to estimate the ionic current conductances of an underlying
AP model provided a given voltage signal is input into the methodology. Tests are
conducted over experimental and synthetic AP signals to demonstrate the ability of
this UKF-based methodology to filter out the input voltage signals, estimate both
parameters and state variables of an AP model and replicate the distributions of AP-
based markers, including some describing BVR.

Chapter 5 deals with two relevant improvements to the methodology proposed in
Chapter 4. On the one hand, identification of an underlying AP model for a given volt-
age signal is carried out not only for signals recorded at baseline but, importantly, also
for signals recorded under β-AS. Considering the important role of β-AS in modulat-
ing spatio-temporal human ventricular repolarization variability and in facilitating the
development of arrhythmias upon elevation of such variability, the possibility to theo-
retically characterize AP variability under β-AS is of high interest. On the other hand,
the method developed in Chapter 4 has a high computational load due to its long con-
vergence time. In Chapter 5 a methodology for model parameter and state estimation
is proposed that combines the UKF method of Chapter 4 with the DGDR method in-
cluding automatic generation of biomarkers to improve its performance and accelerate
its convergence by either initializing or updating (along time) the UKF estimates with
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those provided by DGDR. In contrast to Chapter 4, where only ionic current conduc-
tances at baseline were estimated, the approach presented in Chapter 5 additionally
provides estimates for the phosphorylation levels of cellular substrates in response to
β-AS. Also in this case, the new approach provides one-to-one matching between the
input AP trace and the set of estimated ionic conductances and phosphorylation fac-
tors. The performance of the DGDR-UKF method is shown to be remarkably better
than that of the individual DGDR and UKF methods while the computational load
is significantly reduced. A highly accurate reproduction of AP traces and AP-derived
biomarkers is proved. Consequently, the combined DGDR-UKF methodology is sug-
gested for any future study aimed at theoretically investigating the mechanisms and
the relation to arrhythmic risk associated with spatio-temporal variability in human
ventricular repolarization. The only requirement for the use of such methodology is to
have available experimental AP traces from a number of cells to construct the matched
population of computational models.

6.2 Future Work

• The stochastic human AP computational models built in this thesis have been
based on the ORd epicardial model [5], which was developed from extensive
undiseased human data. Due to the intrinsic characteristics of the ORd model
when simulating baseline conditions, the IKs current has much smaller influence
on the AP shape and duration than other computational models such as the Ten
TP06 model [31]. When the mechanisms underlying LF oscillations of APD and
BVR were ascertained in this thesis, the IKs current was found to have little
contribution, which might be related to the fact of using the ORd model for the
investigations. Although based on previous work [57] qualitative conclusions are
expected to remain the same, quantitative differences in the role of certain ionic
currents, like IKs, might be found.

Similarly, when identifying an underlying human ventricular cell model for a
given input AP trace and estimating ionic current conductances at baseline, the
largest estimation error was obtained for the IKs current conductance by all
tested estimation methods, which could again be explained by the fact of using
the ORd model as the basis for building the models employed in this thesis.

Future studies could replicate the investigations here described while using other
human computational cell models and could assess whether the conclusions
reached in this thesis remain qualitatively or quantitatively the same.

• The research of this thesis has focused on the single cell level. Although the
phenomena of interest for our research, namely LF oscillations of APD and
BVR, occur in single cells, both the mechanisms and the consequences of the
oscillations and the variability may be modulated by other factors involved in
tissue and whole-heart levels. Future studies could extend the present work to
run tissue simulations based on the cell simulations of this thesis. Nevertheless,
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when investigating disease conditions, like heart failure or ischemic heart disease,
cell-to-cell coupling has been shown to be remarkably reduced, which would
render tissue results close to the cell results presented here.

• The populations of models developed in this thesis have been generated by vary-
ing the conductances of a number of ionic currents, including IKs, IKr, Ito, ICaL,
IK1, INa, INaCa and INaK . The selection of these currents was based on their
reported contributions to AP shape and duration, particularly in relation to re-
polarization, which is the main research target of this thesis. Other background
and plateau currents, such as INab, IKb, ICab or IpCa, might still add relevant
information and could be the focus of further research. Also, on top of varying
ionic current conductances to build the populations of models, time constants of
ionic gates could help to explain additional mechanisms for human ventricular
spatio-temporal variability and could be added to the stochastic models devel-
oped in this thesis. This would allow for more degrees of freedom and might
render more accurate results, both in terms of reproducing available experimen-
tal data by constructed AP models and in terms of the research conducted with
those AP models.

• The stochastic human ventricular AP models developed in this thesis departed
from deterministic versions built from the ORd model in which stochasticity was
added into the four main ionic currents active during AP repolarization, i.e. IKs,
IKr, Ito and ICaL. Although the investigation of spatio-temporal variability in
this thesis focuses on the repolarization phase and these four currents are the
ones expected to contribute the most to the variability measures, additional work
could be undertaken in which stochasticity were added to the ionic gates of other
ionic currents. Of particular relevance is the INaL current. More work would
be required to formulate the SDEs for the random gating of this current as well
as to estimate the associated number of channels, as in the ORd model the fast
and late sodium currents are not considered to be separate channels but rather
to represent different gating modes being functionally separated in time.

• Some of the simulations of this thesis were run at more than one stimulation
frequency. However, other simulations were carried out while stimulating the
cells at 1 Hz pacing frequency only. The use of several stimulation frequencies
for all conducted research could certainly improve the identification of computa-
tional AP models representative of human ventricular data and could be of major
interest for the investigations of the mechanisms underlying spatio-temporal vari-
ability and its relation to arrhythmic risk. Future studies could extend the work
of this thesis by including various stimulation frequencies.

• For the investigation of human ventricular spatio-temporal variability, several
measures have been investigated. Still, novel markers quantifying variability in
the overall AP morphology or in the morphology during the AP repolarization
phase could be added for further characterizations.
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• For theoretical characterization of spatio-temporal repolarization, variability meth-
odologies based on DGDR and UKF were proposed in this thesis to estimate the
parameters and state variables of underlying AP models. These methodologies
allowed to accurately reproduce beat-to-beat and cell-to-cell variability at base-
line and under β-AS. For investigation of additional conditions or to further
improve the estimation accuracy, other methodologies based on Artificial Neural
Networks, the combination of Lineal Kalman Filters with Reduced Order Models
or Bayesian Optimization could be explored in subsequent studies.



Glossary

ANS Autonomic Nervous System
AP Action Potential
APD Action Potential Duration
ARD Automatic Relevance Determination
ARI Activation Recovery Interval
AV Atrio Ventricular
BVR Beat-to-beat Variability of Repolarization
β-A β-Adrenergic
β-AS β-Adrenergic Stimulation
Ca2+ Calcium
cAMP 3’-5’-Cyclic Adenosine MonoPhoshate
CaMKII Calmoduline Kinase
CAVB Chronic Atrioventricular Block
CCA Canonical Correlation Analysis
CL Cycle Length
CVD Cardio Vascular Disease
DAD Delayed After-Depolarization
DGDR Double Greedy Dimension Reduction
EAD Early After-Depolarization
ECG Electrocardiogram
EGM Electrogram
EKF Extended Kalman Filter
GP Gaussian Process
HH Hodgkin & Huxley model
HR Heart Rate
ICa Calcium current
ICaL L-type calcium current
IK Potassium current
IK1 Inward rectifier potassium current
IKr Rapid delayed rectifier potassium current
IKs Slow delayed rectifier potassium current
INa Sodium current
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INaCa Sodium-calcium pump current
INaK Sodium-potassium exchanger current
ISAC Stretch Activated Channels current
ISAC,ns Non-Specific cationic Stretch Activated Channels current
ISAC,K Potassium Specific Stretch Activated Channels current
Ito Transient outward potassium current
INI Intialization of UKF method by DGDR
ISO Isoproterenerol
K+ Potassium
KF Kalman Filter
LF Low Frequency
LQT1 Long QT syndrome Type 1
LQT2 Long QT syndrome Type 2
Ls Length of state vector
LTV Long Term Variability
MCMC Markov Chain Monte Carlo
MEF Mechano-Electrical Feedback
ML-II Maximun Likelihood type II
MM Moment-Matching
NLTV Normalized Long Term Variability
NKA Na+-K+-ATPase
NSTV Normalized Short Term Variability
NPLF Normalized Power of Low Frequency
NPHF Normalized Power of High Frequency
NSD Normalized Standard Deviation
ODE Ordinary Differential Equation
ORd O’Hara-Virág-Varró-Rudy epicardial 2011 model
PDR Periodic Repolarization Dynamics
PLF Power of Low Frequency band
PHF Power of High Frequency band
PKA Protein Kinase A
PLM Phospholemman
PSD Power Spectral Density
RMP Resting Membrane Potential
RRR Reduced Repolarization Reserve
RyR Ryanodine Receptors
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SA Sino Atrial
SAC Stretch Activated Channel
SD Standard Deviation
SDE Stochastic Differential Equation
SERCA Sarcoplasmic Reticulum Ca-ATPase
SL Sarcomere Length
SNR Signal-to-Noise Ratio
SP Sympathetic Provocation
SR Sarcoplasmatic Reticulum
STV Short-Term Variability
τAPD Time lapse of APD oscillations
TdP Torsade des Pointes
TP06 Ten Tusscher-Panfilov 2006 model
Vpeak Peak membrane potential in the upstroke phase
UKF Unscented Kalman Filter
UP Updating of UKF method by DGDR
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