
Acute Stress State Classification Based on
Electrodermal Activity Modeling

Alberto Greco ,Member, IEEE, Gaetano Valenza ,Member, IEEE, Jes�us L�azaro ,

Jorge Mario Garz�on-Rey, Jordi Aguil�o, Concepcion de la C�amara,

Raquel Bail�on,Member, IEEE, and Enzo Pasquale Scilingo ,Member, IEEE

Abstract—Acute stress is a physiological condition that may induce several neural dysfunctions with a significant impact on life quality.

Accordingly, it would be important to monitor stress in everyday life unobtrusively and inexpensively. In this paper, we presented a new

methodological pipeline to recognize acute stress conditions using electrodermal activity (EDA) exclusively. Particularly, we combined a

rigorous and robust model (cvxEDA) for EDA processing and decomposition, with an algorithm based on a support vector machine to

classify the stress state at a single-subject level. Indeed, our method, based on a single sensor, is robust to noise, applies a rigorous

phasic decomposition, and implements an unbiased multiclass classification. To this end, we analyzed the EDA of 65 volunteers

subjected to different acute stress stimuli induced by a modified version of the Trier Social Stress Test. Our results show that stress is

successfully detected with an average accuracy of 94.62 percent. Besides, we proposed a further 4-class pattern recognition system

able to distinguish between non-stress condition and three different stressful stimuli achieving an average accuracy as high as

75.00 percent. These results, obtained under controlled conditions, are the first step towards applications in ecological scenarios.

Index Terms—Stress recognition, electrodermal activity, convex optimization, trier social stress test, stress sources
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1 INTRODUCTION

PHYSIOLOGICAL stress response provides the organism
with the required alertness, energy, physiological regu-

lation, and immunological activation that help the individ-
ual to survive in critical cases. Up to a certain level, stress

can be helpful in demanding situations, e.g., presentations
at work or exams at school. However, whether it exceeds
certain levels or persists for a long time, stress is no longer
beneficial, but it becomes detrimental to health, emotional
regulation, productivity and life quality.

Although the scientific literature reveals two detached
states of the art on stress and emotions, the topic of stress is
interdependent with the field of emotions. Based on Laz-
arus’s theories, what causes the stress reaction is not the envi-
ronmental stressor alone but also the associated emotion and
its significance as appraised by the person who encounters it
[1], [2]. Certain emotions like anger, shame, and anxiety usu-
ally arise from stress, which refers to harmful, threatening, or
challenging conditions, showing a close relationship between
stress and negative emotions. For instance, some researchers
have defined depression as a form of stress response [3], [4]
and Fiedler, et al. [5] have proven that stress can successfully
predict anxiety symptoms.

Stress can be classified as either acute or chronic [6], [7].
According to the American Psychological Association, acute
stress is the immediate physiological response to demands
and pressures of the recent past as well as those anticipated
in the near future [8]. These can derive from critical situa-
tions such as athletic performance, personal losses, trau-
matic accidents, or abrupt environmental changes. When
acute stress episodes frequently occur or people are subject
to long-standing pressures as a result of socioeconomic,
interpersonal, or working difficulties, then stress condition
may become chronic [6]. Both acute and chronic stress
exhibit symptoms that can affect human physical condition
and health. Particularly, acute stress can be commonly
associated with several symptoms ranging from headache,
digestive tract issues, muscular tension, or emotional
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distress to more serious and rare issues that can lead to
heart attacks, arrhythmias, or even sudden death [9], [10],
[11]. If acute episodes proliferate and persist as in a chronic
condition even the milder stress symptoms can cause exten-
sive damage, strongly reducing the quality of life [10].
Indeed, it has been identified as a risk factor for hyperten-
sion and coronary disease [9], [12], irritable bowel syn-
drome, gastroesophageal reflux disease [13], and mental
diseases, e.g., anxiety disorder and depression [14]. All this
also has inevitable economic consequences by increasing
absenteeism, staff turnover, presenteeism, and tardiness
[14]. Accordingly, the development of early stress-detection
methods would be extremely important.

The measure of psychological stress is conventionally
based on three main methods. Most of the psychiatric or
psychological diagnoses of stress are based on interviews,
questionnaires and self-assessment tests, including the
State-Trait Anxiety Inventory test (STAI). Although these
methods have been validated, there is still the issue of sub-
jective response bias that leads to the need for objective
measures. In the clinical practice, this latter often consists
in invasive methods, i.e., blood analysis or cortisol sam-
ples, that do not apply to the purpose of long-term moni-
toring in ecological scenarios, e.g., in the workplace [15].
To overcome these issues, in recent years different methods
have been proposed to measure human psychological
stress using physiological data, and more specifically
Autonomic Nervous System (ANS) peripheral correlates.
Indeed, extant studies have demonstrated that stress stim-
uli (stressors) trigger the hypothalamus brain area (hypo-
thalamus-pituitary-adrenal (HPA) axis) that is involved in
the hormone secretion procedure and the emotion process-
ing [16]. The HPA axis activates the sympathetic (“fight-or-
flight” response) and parasympathetic (“rest-and-digest”
response) branches of the ANS maintaining the homeosta-
sis of the human body. The action of biological agents
upon the parasympathetic and sympathetic nervous
system (PNS and SNS respectively) produces specific reac-
tions on peripheral ANS signals [16]. Particularly, the SNS
activity induces pupil dilation and a sudden increase in
the sweat gland activity, during the initial alarm response,
and in the breath rate [16], [17], [18], [19]. At the cardiovas-
cular level, the sympathovagal balance moves toward sym-
pathetic predominance determining an increase in the
mean heart rate and a shift of the power spectrum toward
the low-frequency band [20]. Furthermore, stress-induced
vasopressin secretion leads to blood volume, pressure, and
peripheral blood vessel resistance increase [17].

Accordingly, typical applications of physiological data
analysis for stress state recognition have concerned a combi-
nation of different noninvasive physiological signals such as
heart rate variability (HRV), respiration activity, electroder-
mal activity (EDA), skin temperature, photoplethysmogram
(PPG) or electromyography (EMG). Most of previous stud-
ies have relied on a similar analysis chain, but with striking
differences at each node. First, they have induced stress
using specific experimental paradigms designed to acquire
multiple physiological data in laboratory-controlled condi-
tions [21], [22], [23], [24], [25] or, less commonly, during sim-
ulated ecological scenarios using wearable devices [26], [27],
[28]. Typical stimuli have involved the Trier Social Stress

Test [29], [30], Stroop test [31], video stimuli, or arithmetic
tasks [32]. Afterward, a variety of features have been
extracted and then used as input of a machine learning
model, e.g., support vector machines [30], [33], random for-
est [33], neural networks [34], Bayesian networks [35] or
fuzzy logic [22], [36] to automatically discriminate stress
states. Of note, only a few studies have shown a classifica-
tion of multiple levels of stress, e.g., [23], [24], [33], usually
related to the intensity of a single kind of stressor.

The aforementioned studies suggest the need for a large
number of sensors to detect stress, making it difficult to
design practical or commercial systems for real-world appli-
cations due to their obtrusiveness and computational cost.
Indeed, a significant part of the literature considers a multi-
variate, multi-organ approach necessary for a comprehen-
sive characterization of the ANS activity [37]. However, it is
often indispensable to find a compromise between a deep
ANS characterization and the possibility to export the
results in daily life scenarios. For this reason, research
should be directed towards the development of an effective
method to detect stress by using the smallest practical num-
ber of sensors, without negatively affecting the quality of
stress detection. Healey et al. [23] have pointed out the rele-
vance of EDA and HRV as the best correlates in stress detec-
tion tasks among other physiological signals. Particularly,
EDA could provide a reliable metrics of stress and it has
been used as a ground-truth to compare the performance of
other signals [38].

In this study, we focused on stress classification using
solely EDA analysis. Electrodermal signal describes the
alterations of skin electrical properties due to psychologi-
cally-induced eccrine sweat. It can be decomposed into its
phasic and tonic components, which are characterized by
different time scales and contain complementary psycho-
physiological information. Phasic electrodermal response
(EDR) is the event-related relatively fast-changing compo-
nent, whereas the tonic component represents the slow-
varying baseline. EDA can be considered as a robust indica-
tor of the ANS activity and is a widely used measurement
in the affective computing field [39], [40], [41], [42]. Of note,
unlike other physiological signals, which are affected by
both the sympathetic and parasympathetic branches of ANS
(e.g., HRV), EDA reflects only the SNS activity [43]. Further-
more, EDA has also been applied to investigate different
stress disorders such as psychosocial stress [44], social anxi-
ety disorders on children [45], or acute stress in autism spec-
trum disorder [46].

Some studies have already used EDA as the only input of
a supervised classifier to discriminate between stress and
non-stress or to differentiate between cognitive load and
stressful tasks [47], [48], [49], [50], [51]. Despite the efforts
made, there are methodological barriers that prevent the
export of the aforementioned studies based solely on EDA
to real-life scenarios. First, in daily use, EDA signals are
frequently contaminated by noise and motion artifacts
whose frequency spectrum is often overlapped to the EDA
frequency band. Second, there is a high probability of multi-
ple uncontrollable stressful stimuli with very short inter-
stimulus intervals (ISI), which leads to overlapped EDRs.
This overlapping is probably the main limitation in a set of
factors regarding the decomposition of EDA into its phasic
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and tonic components inducing an inaccurate estimation of
their psychophysiological information. Third, the computa-
tional cost and the overfitting risk of the classification
should be mitigated. Hence, it is necessary to perform an
unbiased subject-independent classification and to control
the number of features extracted. Lastly, given the multiple
daily sources and different types of stress, it would be
important to distinguish multiple stressors. Nevertheless, in
the previously mentioned literature, most of these issues
have not been addressed or authors have applied heuristic
methods and ad-hoc analyses. On the other hand, empirical
evidence suggests that the model-based approach for EDA
analysis has greater validity when compared to conven-
tional methods [52]. The former makes explicit accessible
assumptions, enabling probabilistic model inversion to sup-
press measurement noise and increase the sensitivity of sta-
tistical inference. Accordingly, model-based methods have,
in general, increased sensitivity and replicability compared
to operational approaches [52], [53], [54], [55], [56].

In this paper, we propose a processing chain for acute
stress states classification based on EDA modeling, a proper
learning model and a feature selection algorithm aimed at
improving robustness, replicability, interpretability and
subject-independence. EDA modeling is based on a previ-
ously validated model, called cvxEDA, providing a robust
and rigorous method to estimate the latent variable, i.e., the
SNS activity directed to sweat glands, from the observed
EDA [40], [42], [55], [57]. Our approach will be tested on a
modified Trier Social Stress Test (TSST), which includes dif-
ferent types of stress stimuli [58], [59]. See details in the next
sections that are organized as follows: first, in the Section 2,
we describe the TSST protocol and cvxEDA methods, fea-
ture extraction, statistical analysis, and classification, then,
we present experimental results and a discussion on them
in Sections 3.1 and 4 respectively.

2 METHODS

2.1 Experimental Protocol and Data Collection

We enrolled 65 healthy young participants in the study. The
group of subjects was a socio-demographic homogeneous
sample with an average age of 21:76� 4:48 years old. The
local Ethics Committee approved the experimental protocol
and each volunteer signed an informed consent. The sub-
jects were instructed to avoid the consumption of alcohol,
tobacco, or any kind of psychotropic substances. They also
had to avoid practicing physical exercise for 24 hours before
the experiment, to wake up two hours before, and to have a
light breakfast without coffee or tea.

Each subject underwent on two experimental sessions in
two different days. The first session consisted of a 35-min
resting-state phase. The second session aimed to induce
emotional stress through a modified Trier Social Stress Test
(TSST) [58], [60], which is currently widely used and
accepted in experimental psychology as a robust and reli-
able acute stressor [60], [61]. In the classical TSST, partici-
pants are first requested to prepare a speech to be presented
in front of a panel of assessors, and then to perform a mental
arithmetic task. The combination of public speaking, mental
arithmetic task, anticipation, and social evaluation have
been shown to produce consistent moderate stress response

[62]. Several adaptations of the TSST employing stressor
tasks associated with social-evaluative threat and uncontrol-
lability have been successfully proposed in the literature
[62]. In our study, to emphasize the stressful effect, a pool
of psychologists have proposed to replace the public speak-
ing task with a speaking memory task, which was video
recorded and then displayed interleaved with the video of
an actor correctly performing the memory task. This modifi-
cation has been applied maintaining the philosophy and
general structure of the original TSST. More in detail, the
presented stress session was made up of the following
stages (see Fig. 1):

1) Baseline stage (BS) of relaxing audition for 10
minutes.

2) Story-telling (ST): the subject listens to three stories
with many details and the subject is requested to
remember as many details as possible, demanding a
great amount of attention.

3) Memory task (MT): the subject is requested to repeat
each story aloud as detailed as he/she can remember.

4) Stress anticipation (SA): the subject waits 10 minutes
in a room for the memory test evaluation.

5) Video exposition (VE): a projection of a video with
the subject’s performance in the memory test is
shown. The video shows twice each one of the three
stories. First, an actor correctly repeats the story,
trying to make the subjects believe that this is the
common case. Subsequently, the subject (recorded
during theMT stage) repeating the story is displayed.

6) Arithmetic task (AT): within 5 minutes, the subject is
asked to perform a count down subtraction starting
from 1022, repetitively subtracting 13 and giving the
answer aloud each time. If a mistake is made, the
subject is asked to start over, from 1022.

For the total duration of both resting and stress sessions,
EDA was recorded at a sampling rate of 250 Hz through the
Encephalan-EEGR-19/26 device (Medicom MTD ltd). Two
electrodes were placed on the distal phalanx of the index
and ring fingers of the non-dominant hand. Before the
beginning of the experiment, the subjects were asked, if pos-
sible, to avoid just sudden hand movements, but we did not
prevent or control any natural gesture.

2.2 Stress Assessment: Psychometric Tests

The stress reference variables were estimated from psycho-
metric tests. More specifically, after each session, the
subjects filled out the Perceived Stress Scale (PSS) [63], the
Visual Analog Scale (VASS) [64] and the STAI [65]. The PSS
measures the degree of overall stress of the individual or
the extent to which life situations are appraised as stressful.
The VASS records the self-perceived stress level. The STAI

Fig. 1. TSST protocol time-line. The stage durations represent the
median values among subjects.
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evaluates anxiety from two different points of view: as a
measure of the subject state (STAI-s) at a given time, and as
the trait (STAI-t) or stable tendency of the individual to
respond by increasing his/her level of anxiety in stressful
situations.

2.3 EDA Processing Using cvxEDA Algorithm

The EDA signal has been recorded by applying an electrical
potential of 0.5 V between the distal phalanges of the index
and ring fingers of the non-dominant hand and then
estimating the skin conductance. It consists of two different
components, tonic and phasic, within the frequency range
of 0�2Hz. The tonic component, which refers to the baseline
slow variations of the EDA, i.e electrodermal level (EDL),
contains information about the subject’s general psycho-
physiological state and his autonomic regulation [66]. On
the other hand, the phasic component reflects the short-time
response directly induced by an external stimulus (electro-
dermal response, EDR). The shape of a single EDR is charac-
terized by a rapid ascension from the baseline signal
succeeded by an asymptotic exponential decrease towards
the baseline. In the case of an ongoing sustained elicitation,
or, more generally, when the phasic response can not be
linked to a specific stimulus, it can reflect spontaneous fluc-
tuations; in this case, we refer to the single EDR as non-spe-
cific EDR (NS-EDR). Variations in the EDA signal are
strictly related to sweat production and diffusion process,
which are directly controlled by the SNS. Therefore, EDA
can be considered an effective way to indirectly monitor the
SNS activity.

The main difficulty of the decomposition procedure is
represented by the overlapping of two consecutive EDRs
(or NS-EDR), which occurs when the time interval between
consecutive stimuli is shorter than EDR recovery time. This
generates an inaccurate estimation of the information con-
tained in the two components. To overcome this problem
different model approaches have been presented in the liter-
ature (see e.g., [52], [55], [67], or [56]).

In this paper, we applied the convex optimization model
(cvxEDA) presented in [55]. It proposes a representation of
the electrodermal signal as the output of a linear time-
invariant system to accurately decompose consecutive over-
lapped EDRs. More in detail, cvxEDA directly estimates the
unobservable process, i.e., the neural sympathetic activity,
that underlies the recorded electrodermal signal. This
model is grounded on Bayesian statistics and on a simple
yet physiologically sound representation of the observed
EDA as the sum of three components: the tonic (t) signal,
the phasic (r) signal, and an independent identically distrib-
uted zero-average Gaussian noise term (�), which incorpo-
rates all measurement errors and artifacts:

y ¼ rþ tþ �; (1)

The phasic activity is defined as the convolution between
the neural activity of the SNS p (more specifically the sudo-
motor nerve activity, SMNA) and a bi-exponential function
hðtÞ (known as Bateman function) which models the sweat
diffusion process [54]:

hðtÞ ¼ ðe� t
t1 � e�

t
t2ÞuðtÞ; (2)

where t1 and t2 are the two time constants that determine
the shape of the single phasic response (with t1 > t2), and
uðtÞ is the unitary stepwise function. The discrete-time
approximation (with sampling time d) of the Laplace trans-
form of hðtÞ function defines an autoregressive moving
average (ARMA) model, which is represented by H ¼
MA�1. M and A are tridiagonal matrices with the MA and
AR coefficients along the diagonals. Consequently, the pha-
sic component. r, is given by:

r ¼ MA�1p ¼ M q; (3)

where q is an auxiliary variable defined as q ¼ A�1 p. Con-
cerning the tonic component, according to its smooth
dynamics and frequency domain (�0:05Hz), t is modeled
by means of cubic B-spline functions with equally-spaced
knots every 10s, and an offset term:

t ¼ B‘þ Cd; (4)

where B is a tall matrix of which columns are cubic B-spline
basis functions, ‘ is the vector of spline coefficients, C is a
N � 2matrix with Ci;1 ¼ 1, Ci;2 ¼ i=N and N is the length of
the EDA time series, d is a 2� 1 vector with the offset and
slope coefficients for the linear trend.

In conclusion, substituting both the phasic and tonic
terms, the final EDAmodel is the following:

y ¼ M q
|{z}

phasic

þB‘þ Cd
|fflfflfflfflffl{zfflfflfflfflffl}

tonic

þ �: (5)

Once the observation model is defined, the goal is to esti-
mate the maximum a posteriori tonic signal (t) and the neu-
ral bursts (p), parametrized by ½q; ‘; d�, for the measured
EDA signal (y):

½q; ‘; d� ¼ argmax
q;‘;d

P ½q; ‘; d j y�: (6)

Considering the three parameters, representing the phasic
and tonic activity and the drift, as independent and apply-
ing Bayes’ theorem, we obtain:

P ½q; ‘; d j y� / P ½y j q; ‘; d�P ½q�P ½‘�P ½d�; (7)

Unlike other approaches in the literature, cvxEDA relies
only on the definition of the three priors — which are
described in detail in [55] — without the need for pre-proc-
essing or post-processing heuristics procedures (e.g., to
comply with negative neural activations). Finally, to solve
the MAP problem and obtain the neural phasic activity and
the smooth tonic signal, cvxEDA converts the Bayesian
problem (7) into a constrained minimization quadratic pro-
gramming convex problem (see [55] for further details):

minimize
1

2
Mq þB‘þ Cd� yk k22þa Aqk k1þ

g

2
‘k k22

subj. to Aq � 0:
(8)

The parameters a and g control the strength of the
penalty for the phasic and tonic components, respectively.

In Fig 2 an example of the resulting signals of the decom-
position algorithm is reported.
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2.4 Feature Extraction

In this study, we analyzed only the stress stages during
which the subjects were not talking to avoid any interaction
between EDA signals and speech [66]. Indeed, speech indu-
ces physiological irregular respiration that activates the
sympathetic reflex and consequently affects the sweat gland
dynamics and the related EDA signal [66], [68]. Accord-
ingly, we selected three stress stages: ST, SA, VE in addition
to the basal stage (BS). For each of these stages, to estimate
the sympathetic activity, several features in the time and fre-
quency domains were extracted from both the phasic and
tonic components. A summary of the extracted features is
shown in Table 1. Of note, EDASymp is considered a reli-
able index of the sympathetic activity, which has been
recently introduced by Posada-Quintero [69]. EDASymp
was calculated by computing the power spectral density in
the frequency range of 0:045�0:25Hz of the EDA signal, i.e
the sum of r and t components.

2.5 Statistical Analysis

To evaluate psychometric changes induced by the stressful
protocol, we performed a paired Wilcoxon statistical test
between the psychometric test scores obtained on the first
day (basal session) and those obtained on the second day
(stress session).

Concerning the EDA analysis, features extracted dur-
ing the first resting state session were compared to those
extracted during the baseline stage of the second acquisi-
tion session. Afterward, the three stress stages ST, SA, VE
together with the BS were statistically compared using
the non-parametric Friedman’s test for each feature. The
choice of this specific statistical test is justified by the
non-normal distribution of the dataset. Moreover, a post-
hoc analysis was performed using the non-parametric
Wilcoxon signed-rank test with Bonferroni correction: the
significance level a initially set to 0.05, was reduced to a
new value computed as abon ¼ 0:05=m, where m is the
number of comparisons.

2.6 Classification - Stress and Stressor Recognition

The EDA feature-set was used to discriminate both the
stress/non-stress condition and the four stressors selected
from the TSST protocol. To this aim, two supervised binary
and multiclass classifications were performed by using a
Support Vector Machine with Recursive Feature Elimina-
tion algorithm (SVM-RFE), recently proposed by Yan and
Zhang [70]. This learning algorithm implements an embed-
ded method (EM) as a feature selection strategy, which
allows not only to maximize the classification accuracy but
also to facilitate data understanding and to reduce the risk
of overfitting. In EMs, the search of the optimal subset is not
separated from the learning part, but it is built into the clas-
sifier construction [71], therefore the structure of the classi-
fier plays a crucial role. Due to their characteristics, EMs
have the important advantages to be less computationally
expensive and less prone to overfitting than other feature
selection strategies [72]. In our study, we tested three com-
mon classifier categories whose structure allows having a
built-in ability to select features [71], i.e., SVM, Random For-
est, and Linear Discriminant Analysis (LDA). SVM-RFE out-
performed with higher recognition accuracy, both Random
Forest and LDA. This could be partially explained by the
ability of SVM-RFE to handle sparse features (as those
related to the phasic EDA component), and to always find
the optimal margin solution. Furthermore, the adopted
SVM-RFE algorithm presents the unique characteristic of
incorporating an embedded correlation bias reduction [70].
More specifically, we used a nonlinear nSVM-RFE employ-
ing a radial basis function (RBF) kernel, with the following
parameters: n equal to 0.5; g (of the RBF kernel) equal to 0.1;
and tolerance of termination criterion equal to 0.001. The
RFE method [73] selects a subset of size r among m features
(r < m), which maximizes the performance of the SVM
classifier. The method is based on a backward sequential
selection. Specifically, at each iteration of the RFE proce-
dure, the feature that has the least influence on the SVM
weight-vector norm is removed. Of note, in the multiclass

Fig. 2. Application of the cvxEDA decomposition to the SC signal
recorded during the TSST protocol. (Top) Raw SC signal, (Middle)
Estimated tonic component t, (Bottom) Estimated sparse phasic
component p.

TABLE 1
Features Extracted From the Tonic and Phasic Components

MedianPhasic Median value over time of the phasic
component.

MedianTonic Median value over time of the tonic
component.

AUCPhasic Area under the curve of the phasic
component
(normalized by the length of the session).

AUCTonic Area under the curve of tonic component
(normalized by the length of the session).

maxPhasic Maximum peak value of
the curve of the phasic component

maxTonic Maximum peak value of
the curve of the tonic component

stdPhasic Standard deviation of the phasic component.
stdTonic Standard deviation of the tonic component.
NS-EDR-freq number of significant SMNA peaks

(normalized by the length of the session)
AmpSum mean value of the amplitude of

significant SMNA peaks
EDASymp PSD of EDA signal in the

frequency range of 0:045�0:25Hz
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case, as suggested by the authors of [70], to rank the
features, we simply add the feature weights of each binary-
class sub-problems.

To assess the out-of-sample predictive accuracy of the
system we adopted a Leave-One-Subject-Out cross-
validation (LOSO). More in detail, the LOSO procedure
used, at each iteration, the data records of a single sub-
ject as the validation set and the remaining observations
of n� 1 subjects as the training set (where n is the total
number of subjects). Accordingly, we ranked the features
and repeated the SVM classification m times removing
the last ranked features at each repetition [73]. The accu-
racy level of each repetition was calculated in compli-
ance with the LOSO cross-validation to avoid biased
performance estimation.

We implemented the classification code inMatlab� using
the LIBSVM library [74]. An overall block diagram of the
mentioned method is presented in Fig. 3.

3 EXPERIMENTAL RESULTS

In this section, we show the results achieved through each
of the previously described analytical methods.

Psychometric scores confirmed the difference in the
perceived stress between the basal condition and the stress
elicitation. This difference was strongly reflected also by most
of the EDA features, which showed statistically significant
variations between the stress stages and the initial resting
state. Furthermore, MedianTonic, aucTonic, and EDASymp
significantly differed even among different kinds of stressors.

The devised pattern recognition systems achieved
good accuracy for both classification analyses (binary and
multiclass). Particularity, our methodological pipeline
was able to recognize the stress condition with an average
accuracy of 94.62 percent and to distinguish among the

4 experimental stages with an average accuracy of
75.00 percent, selecting 8 and 6 features from both phasic
and tonic groups, respectively.

3.1 Group Differences in Psychometric Scores
and EDA Features

The statistical analysis computed on the four psychometric
tests showed a significant statistical increase, after the
experimental session, of the STAI-s and VASS scores (see
Table 2). On the other hand, the STAI-t subscale as well as
the PSS did not show significant changes.

Concerning the statistical comparison of EDA features
among the four stages, some of both phasic and tonic fea-
tures resulted to be effective in distinguishing, not only
between the baseline and stress stages, but often also among
the different stressors (ST, SA, VE), see Fig. 4. More in detail,
tonic features (except for stdTonic) and maxPhasic showed
significant statistical differences between the stages ST, SA,
VE. However, only EDASymp discriminated among all the
stressors and the baseline. On the other hand, the remaining
phasic features were capable to discriminate between BS
and each of the other stress stages with a p < 0:001.

3.2 Single-Subject Classification
and Feature Selection

After the exploratory statistical analysis, we performed the
automatic classification of stress and stressors using the
nonlinear SVM-RFE algorithm with LOSO cross-validation,
as described in Section 2.6.

Figs. 5 and 6 show the average accuracy at each iteration
of the SVM-RFE algorithm for the binary and 4-class classifi-
cations, respectively. The peak of the accuracy trend for the
stress/non-stress problem was 94.62 percent and was
obtained when the first eight most relevant features, accord-
ing to the RFE criterion, were considered. It is worthwhile
noting that the difference between the minimum and the
maximum accuracy level was less than 2 percent. Instead,
concerning the 4-class problem, the accuracy trend was
much more variable and we achieved a maximum of 75.00
percent with the first six selected features. The features
were ranked as shown in Table 5. In addition, classification
results obtained through the subset of features that achieved
the maximum average accuracy are shown also in the form
of a confusion matrix and reported in Tables 3 (binary)
and 4 (multiclass). The diagonal of the two tables represent
the percentage of true positive of each class. As is shown
in Table 4, we achieved an average accuracy of 75 percent
for the 4-class problem. Stages BS and SA showed the
best correct detection rates, i.e., 90.77 and 81.54 percent,
respectively. The accuracy decreased considering, instead,

Fig. 3. Block diagram of the system recognition proposed method. The
EDA signals are processed and decomposed by cvxEDA. Feature
extraction is applied from the resulting signals and used as an input of
an SVM classifier with the LOSO cross-validation resampling technique
for the model selection.

TABLE 2
MEDIAN �MAD of Selected Psychometric Tests

in Rest and Stress Sessions

Test PSS STAI-s STAI-t VASS

Basal condition 20 � 2.4 12 � 6.1 18 � 7.4 30 � 18.6
Stress condition 20 � 2.5 22.5 � 9.8 19 � 7.7 50 � 17.6
p-value >0.05 <0.001 * >0.05 <0.001 *

	=significant p-values.
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the VE and ST stage the correct detection rates were 64.61
percent for ST and 63.07 percent for VE. On the other hand,
concerning the most accurate result of the binary classifica-
tion, the confusion matrix shows a balanced accuracy as
high as 91.03 percent (i.e., the average of the specificity and
sensitivity of the confusion matrix). Of note, in this case, the
balanced accuracy differs from the average one because the
two classes did not comprise the same number of observa-
tions. In Table 3, we can observe a false positive rate (error
type I) of 15.38 percent and a very low false negative rate of
2.56 percent (error type II).

Considering the relevance of the tonic-related features,
we performed a further classification analysis using only

this feature subset as input. Results confirmed a high
accuracy of 93.46 percent in the binary case, however,
for the multi-class problem, the balanced accuracy signifi-
cantly decreases to 65.38 percent. Therefore, the pattern

Fig. 4. Statistical comparison for each of the features extracted. The figure shows significant differences between the stages after the Wilcoxon
signed rank test and the application of Bonferroni correction. Givenm the number of multiple comparisons, the differences are indicated by asterisks
(that are value of the p-value p (	 : p < 0:05=m; 		 : p < 0:01=m; 	 	 	 : p < 0:001=m).

Fig. 5. Accuracy trend of stress/non-stress recognition problem as
a function of the number of selected features. The curve shows
the accuracy considering the first N ranked features (from 1 to 11).
The features are ranked according to the SVM-RFE criterion.

Fig. 6. Accuracy trend of 4-class recognition problem as a function of the
number of selected features. The curve shows the accuracy considering
the first N ranked features (from 1 to 11). The features are ranked
according to the SVM-RFE criterion.

TABLE 3
Confusion Matrix - Binary Classification

Non-Stress Stress

Non-Stress 84.62% 15.38%
Stress 2.56% 97.44%

Results achieved from a dataset of 260 observations divided into 65
basal observations and 195 stress observations; balanced Accuracy:
91.03 percent; Average Accuracy: 94.62 percent.

TABLE 4
Confusion Matrix - Multiclass Classification

BS ST SA VE

BS 90.77% 6.15% 3.08% 0.00%
ST 4.62% 64.61% 4.62% 26.15%
SA 4.62% 6.15% 81.54% 7.69%
VE 4.62% 21.54% 10.77% 63.07%

Results achieved from a dataset in which every class counts 65 obser-
vations for a total of 260 observations; balanced Accuracy: 75.00
percent.

TABLE 5
Feature Ranking

Binary Multiclass

(94.62%) (75.00%)

medianTonic maxTonic
aucTonic EDASymp
aucPhasic stdPhasic
maxTonic maxPhasic
EDASymp stdTonic
stdTonic aucTonic
AmpSum
NS-EDR-freq
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recognition system guaranteed good performance even
without the phasic-related information when the classifica-
tion was quite simple, as the stress/non-stress detection,
but it showed the relevant role of both components once
that the recognition problem increased its complexity.

4 DISCUSSION AND CONCLUSION

In the current scientific literature about stress detection,
there are methodological barriers that prevent the replica-
bility of laboratory results in real-life scenarios.

Here, we presented a methodological pipeline that aims
at creating the conditions to export our promising results
outside the laboratory setting. Particularly, following a
specific analysis strategy, we tried to overcome some of
the common issues in the scientific literature, as it follows.
First, we used a single sensor, i.e., the EDA sensor, select-
ing the one whose correlation with psychometric stress
metrics has been proven to outperform the other ANS cor-
relates frequently used in previous laboratory studies:
ECG, electromyogram, and respiration [23]. EDA is partic-
ularly advantageous for stress monitoring because the
sweat glands are exclusively innervated by the SNS,
whereas most other organs are under the influence of both
autonomic branches [75]. Moreover, EDA sensors have
become a popular form of stress detection since they are
non-obtrusive and easy to use due to a little cumbersome
setup [10], [15], [76].

Second, we analyzed the recorded EDA signals using the
cvxEDA method. This is a rigorous and robust model [55]
to decompose the EDA into the phasic and tonic compo-
nents automatically removing the noise and measurement
errors and overcoming the common issues related to over-
lapped phasic responses both characteristic of real-life
recordings [55]. In addition, cvxEDA can estimate the latent
SNS activity signal. While EDA intrinsically shows very
large variations among subjects, the estimated SNS activity,
due to its neutral nature, has a reduced variability among
subjects helping the statistical analysis. Indeed, the statisti-
cal comparison between the two relaxation sessions
recorded on two different days, which showed no signifi-
cant differences, gave the first evidence of the replicability
of our method.

Finally, the last link in the processing chain lays in the
pattern recognition system. Our approach combined
the ability to reduce the number of features identifying the
most relevant subset and performing a subject-independent
stress recognition. Both two characteristics are extremely
relevant in ecological scenarios. Indeed, they (i) reduce the
computational cost, which is a critical factor for wearable
systems, (ii) make our result more interpretable, identifying
which signal properties are important, and (iii) make the
estimated accuracy applicable to any new single-subject
observation with no need of history from previous record-
ing (thanks to the LOSO cross-validation). In addition, in
real-world scenarios, it might be important to discriminate,
along with different levels of stress, also different stressors.
Accordingly, we tested whether our approach could distin-
guish the four experimental stages of our TSST, even though
these stressors might be different and/or a subset of those
encountered in real-life.

Indeed, although the final aim is to export results in
ecological scenarios, the first step to investigate the psy-
chophysiological response to acute stress needs a reliable
and valid stressor, able to robustly induce an acute stress
response under controlled conditions. The early detection
of acute stress episodes can be a valid strategy to control
their proliferation and prevent the transition to chronic
stress. To this aim, we designed an experimental para-
digm where we maintained the essential structure of the
TSST, but we modified the stressors including social-eval-
uative threat and uncontrollability to induce more consis-
tent stress responses [17], [62]. Analyses of psychometric
measures, physiological signals, saliva cortisol change,
blood copeptin, and prolactin, performed on a subset of
subjects, have validated the effectiveness of our experi-
mental protocol in inducing stress, as shown in [17]. Par-
ticularly, the psychometric test demonstrated a significant
increase of the STAI-s and VAS scores among subjects
after the TSST experiment, confirming that the TSST may
produce measurable stress in the participants. In addi-
tion, as expected, the STAI-t and the PSS were not
affected by the TSST. In fact, while questions related to
state (STAIs) refer to the present moment, questions
related to the trait (STAIt) refer to the subject’s general
tendency to perceive many situations as threatening.
Therefore, specific time-limited acute stress elicited by the
TSST was expected to cause changes in STAIs but not in
STAIt [77]. Likewise, PSS is based on the reported feelings
and thoughts during the last week, so it is supposed not
to be affected by the stress session.

To date, only a few studies have proposed a stress detec-
tion based only on EDA, showing methodological limita-
tions that reduce the application to real-life scenarios. In
fact, despite satisfactory accuracies, they have often shown
limitations in the EDA decomposition method, which affect
the reliability of the estimated sympathetic response [47],
[48], [50], [51]. More specifically, they have applied trough-
to-peak algorithms (i.e., without decompose into tonic and
phasic components) [48], [50] or filtering approaches [47],
[51], achieving an average accuracy between 74.19 and 85.5
percent in binary classification. These two methods have
been extensively demonstrated to underestimate the sympa-
thetic response in the frequent case of overlapped skin con-
ductance phasic responses compared to a model-based
approach (e.g., cvxEDA) [52], [54], [55], [66] (and others).

Both our statistical and classification results support the
goodness of our methodological approach. In fact, as a pre-
liminary step, we performed a statistical comparison
between EDA features recorded at rest the day before the
TSST protocol, and the baseline stage prior to the stress
stimulation. No statistical differences were found between
these two resting conditions suggesting that the subjects
started the experiment from a non-stress condition.

A further monovariate statistical analysis was performed
to compare the EDA features extracted during the TSST
stress stages with those acquired at baseline. Results showed
that most of the proposed time and frequency domain analy-
sis provide significant features to distinguish not only the BS
from the stress stages but also the different sources of stress:
ST, SA, and VT. More in detail, we found that features
medianTonic and aucTonic were able to differentiate among
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the stages pairs, except for ST-VE one, for which none of the
time-domain features was found statistically different.
In sight of this, we analyzed EDA in the frequency-domain,
calculating the EDASymp index introduced by [69].
EDASymp detected significant variations between all stress
stages, including ST and VE. EDASymp, as an SNS indicator,
confirmed that during an acute stress condition, the sympa-
thetic activity significantly increased and it may be modu-
lated by the level of stress and the kind of stressors.

Afterward, to investigate whether EDA solely was able to
provide accurate discrimination of stress states, we employed
an automatic classification algorithm. Specifically, we chose
the well-known SVM-RFE method of classification due to its
increasinglywidespread use in biomedical literature. A previ-
ous study on this dataset [17] has combined multiple physio-
logical signals (i.e., skin temperature, heart rate, and pulse
wave signals) and identified five statistically different stress
levels induced by the different experimental tasks.

Through a LOSO validation, the present study success-
fully develops a single-subject level classification of stress
state-based on EDA dynamics alone. Indeed, we obtained an
accuracy of 94.62 percent from a binary classification of the
stress/non-stress condition. Note that with a single feature
(i.e., meanTonic) we already achieved an accuracy of over
92 percent. Moreover, we performed a further classification
to distinguish among the three selected stressors together
with the BS. The 4-class classification yielded an average
accuracy of 75.00 percent. The lower detection rates were
64.61 and 63.07 percent for ST and VE, respectively. Mean-
while, the higher rates were obtained for BS and ST with
90.77 and 81.54 percent, respectively. It is worthwhile noting
that the classification results demonstrated that stages VE
and ST generate a distinguishable physiological response
even showing slight similarities in the stress elicitation.

The feature-selection stage did not give a big contribution
to improving binary accuracy. The maximum was achieved
with eight features out of eleven and the difference among the
RFE iterations was not significant. Nevertheless, it may per-
haps be observed that the majority of the most relevant fea-
tures were related to the tonic activity. Instead, when the
4-class problem is considered, the feature-selection procedure
strongly improved the prediction performance. Themost per-
forming subset of features is a nonlinear combination of tonic,
phasic and frequency-domain features. This result demon-
strates that an effective, comprehensive assessment of ANS
dynamics should includemultivariatemeasures.

4.1 Limitations

Despite the promising results, results, some limitations have
to be considered. First, the accuracy is still estimated on data
acquired in controlled conditions. In ecological scenarios,
the stress/non-stress conditions may not be such a clear-cut
distinction or, at least, they may coexist simultaneously
with other relevant psychophysiological conditions There-
fore, it will be necessary to test our methodological
approach also on new datasets acquired in the real environ-
ment. In this context, additional precautions would be likely
considered, e.g., signal portions irremediably corrupted by
macroscopic hand movements should be identified and
excluded from the successive processing phase. The auto-
matic identification of such segments can be performed by

combining EDA sensors with an accelerometer, which is a
common strategy in most of the commercial EDA devices
(e.g., Empatica E4 or Shimmer GSR+). Also, the disadvan-
tages due to a continuous, totally uncontrolled measure of
the EDA should be avoided. Instead, it could be better to
acquire data only at specific intervals of the day where con-
founding factor effects are mitigated (e.g., sitting in front of
a desk for 30 sec). A second limitation concerns the TSST
design, although we followed the same strategy of canonical
TSST paradigms [61], [62], [78], the fixed-order stimulation
might affect the perception of the stress induced at each dif-
ferent stage. Moreover, we could not administrate the psy-
chometric stress tests after each TSST stage to verify the
perceived level of stress. Third the sample population is
very homogeneous in age. Since there might be an effect of
age on the physiological response to TSST [62] as well as on
ANS functioning [79], [80] and skin conductance measure-
ment [81], having a homogeneous sample population is
important when dealing with reduced sample sizes. How-
ever, these results might not be extrapolated to other age-
groups, and further studies will be needed.

Furthermore, it is important to note that acute stress also
induces (gender dependent) emotional response such as
increases in anxiety and irritability, which may occur inde-
pendently of SNS physiological response [82]. There is an
open debate about whether the sympathetic, HPA axis, and
affective components of the stress response are distinct
events or elements of a coordinated integrated response
[83], [84], [85]. In the literature, the TSST has repeatedly
been demonstrated to induce reliable HPA responses, but
less attention has been paid to their subjective-psychological
(affective) concomitants [85]. In the current study, there are
nuances in terms of the affective response that the different
stressors could produce: e.g., SA and, especially, VE might
induce a more affective response than the other TSST stages.
However, here, we have not investigated this debated rela-
tionship and we have not performed a specific record of the
affective response limiting our study on the recognition of
different physiological (sympathetic) reactions to different
stressors. Thus, further studies simultaneously evaluating
both the physiological and psychological components of the
stress response are needed to investigate their interrelation-
ships and to understand how variation in stress responses,
including sex differences, might influence the progression
toward stress-related disorders [82], [85].

5 CONCLUSION

In conclusion, EDA was confirmed to be a good marker
of stress by means of its phasic and tonic components.
Accordingly, we proposed a pattern recognition system
based on cvxEDA model and SVM algorithm able to auto-
matically recognize stress at a single-subject level using
only EDA correlates. This study is a further demonstration
of reliable monitoring of acute stress levels using physiolog-
ical signals and responds to the growing request to control
this alarming disorder also in a free-living condition. EDA
can be seen as an alternative to the more common ECGmea-
sure. Indeed, ECG acquired during the same experimental
protocol has been already successfully analyzed in recent
studies showing good results for the stress/non-stress
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assessment and the advantages in developing wearable sys-
tems with a limited number of sensors [58], [86]. However,
our results outperform stress recognition performance
shown using ECG exclusively, paving the path towards an
unobtrusive and wearable device to assess stress, e.g., in
working environments or during rehabilitative procedures
in a natural fashion. Indeed, although many improvements
are still needed in terms of the quality of the signal pro-
vided, several portable EDA sensors have been already
developed. Some of them have been also integrated into
wearable devices that are very popular in the everyday life
(e.g., smartwatches). Accordingly, future endeavors will be
directed to implement our approach into a portable device,
which integrates EDA sensors. Particularly, such an EDA
sensor will be able to implement a pseudo-real-time EDA
deconvolution based on the cvxEDA approach. This will
automatically and in pseudo-real-time filter the measure-
ment noise and estimate the SNS neural activity addressing
the issue caused by overlapped phasic responses.
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