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Abstract—The tools for spectrally analyzing heart rate
variability (HRV) has in recent years grown considerably,
with emphasis on the handling of time-varying conditions
and confounding factors. Time–frequency analysis holds
since long an important position in HRV analysis, how-
ever, this technique cannot alone handle a mean heart rate
or a respiratory frequency which vary over time. Overlap-
ping frequency bands represents another critical condition
which needs to be dealt with to produce accurate spectral
measurements. The present survey offers a comprehensive
account of techniques designed to handle such conditions
and factors by providing a brief description of the main
principles of the different methods. Several methods derive
from a mathematical/statistical model, suggesting that the
model can be used to simulate data used for performance
evaluation. The inclusion of a respiratory signal, whether
measured or derived, is another feature of many recent
methods, e.g., used to guide the decomposition of the HRV
signal so that signals related as well as unrelated to respira-
tion can be analyzed. It is concluded that the development
of new approaches to handling time-varying scenarios are
warranted, as is benchmarking of performance evaluated in
technical as well as in physiological/clinical terms.

Index Terms—Heart rate variability, time-varying analy-
sis, confounding factors, spectral analysis, redefinition of
frequency bands, respiration-guided decomposition.

I. INTRODUCTION

R ESEARCH on heart rate variability (HRV) has over the
years expanded to become a genuinely multidisciplinary

area which today includes a wide range of engineering aspects
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as well as innumerable physiological and clinical applications.
In spite of the expansion, the basis of HRV analysis remains
as modest as it was in the very first studies published some
50 years ago, namely an RR interval series obtained from the
single-lead ECG. The simple, noninvasive recording procedure
is likely one of several reasons why HRV analysis has gained
such widespread popularity.

By analyzing the ever-present beat-to-beat changes in heart
rate, the complex interaction between the parasympathetic and
sympathetic branches of the autonomic nervous system (ANS)
on the sinoatrial node can be assessed indirectly. In healthy sub-
jects, the instantaneous heart rate represents the net effect of the
neural output of the two branches, causing the heart rate to adjust
itself to the subject’s current situation; heart rate is decreased
by parasympathetic stimulation and increased by sympathetic
stimulation. Impaired interaction between the two branches is
often reflected by a reduced HRV associated with cardiovascular
risk factors and disease states, including hypertension, heart
failure, diabetes, and obesity [1]. However, the relevance of HRV
analysis goes far beyond the understanding of somatic condi-
tions as its popularity in social, psychological, and behavioral
research has grown considerably in recent years for the purpose
of assessing, e.g., mental stress, cognitive performance, fitness
and sports performance [2], [3].

The information carried by the RR interval series need to
be translated to a set of indices reflecting, among other phys-
iological mechanisms, the interaction between the parasympa-
thetic and sympathetic branches—a translation problem which
has received much attention in the realm of engineering. The
simplest approach to HRV analysis is to compute univari-
ate statistical dispersion measures of the RR interval series.
Since such measures are blind to the rhythmical variation in heart
rate, power spectral analysis was introduced at an early stage of
the history of HRV analysis [4], [5], [6], [7], later to become the
preferred approach in clinical studies. Since the RR interval se-
ries is sampled at irregular time instants, equidistant resampling
has to be performed to allow proper interpretation of the power
spectrum, unless the spectral method is designed to handle irreg-
ularity [8]. By computing the power of different frequency bands
(very low frequency, VLF, 0.0033–0.04 Hz; low frequency, LF,
0.04–0.15 Hz; high frequency, HF, 0.15–0.40 Hz), information
on the ANS can be inferred. For example, it has been shown
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that the HF band mainly reflects efferent vagal activity due to
respiratory activity since total vagal blockade essentially cancels
the power of this band [6], [7], [9]. On the other hand, the LF band
is influenced by both parasympathetic and sympathetic activity,
making its interpretation more complicated. The interpretation
of the VLF band involves additional mechanisms related to
long-term regulation, e.g., thermoregulation. However, correct
interpretation of the VLF band calls for stationary, long-term
recordings, which are very difficult to obtain.

The relevance of spectral analysis is not only related to
whether a frequency band reflects a certain dynamic of the
ANS, but also whether the RR interval series can be treated as
a stationary process—an assumption implicit to power spectral
analysis. In practice, this assumption rarely holds, and less so
as the ECG recording becomes increasingly longer [10]. Rather
than employing a statistical test on stationarity [11], [12], the
relevance of spectral analysis is often, though not always, judged
from the context in which the ECG is recorded. Time–frequency
analysis is the preferred approach when recordings made under
nonstationary conditions are to be analyzed, e.g., physical ac-
tivity and autonomic response to provocation including deep
breathing, exercise stress testing, ambulatory monitoring, Val-
salva maneuver, and head-up tilt [13], [14], [15].

An entire ecosystem of indices has grown up aiming to provide
information on the nonlinear dynamics of RR intervals, which
makes it possible to capture information of physiological and
diagnostic significance. Long-range correlation and fractal anal-
ysis, short-term complexity, entropy and regularity, nonlinear
dynamical systems and chaotic behavior, as well as many other
aspects have been explored [16], [17], [18].

A number of confounding factors of electrophysiological and
mechanical origin influencing the RR interval series render the
assessment of HRV complicated, irrespective of whether linear
or nonlinear techniques are used. The following factors have
been treated to various extents in the literature:

� presence of occasional ectopic beats,
� influence of a time-varying mean heart rate,
� aliasing at low mean heart rates,
� respiration and frequency band definitions,
� overlapping frequency bands, and
� non-neural and mechanical mechanisms, including atrial

stretching due to respiration and cardiolocomotor cou-
pling.

Of these factors, handling of occasional ectopic beats has
received by far the most attention, whereas handling of the other
factors have been addressed in few studies and then usually in
combination with time–frequency analysis.

Numerous technical reviews and surveys have been pub-
lished covering aspects of HRV analysis with different empha-
sis: historical perspective [19], [20], mainstream analysis [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], spectral and
time–frequency analysis [1], [14], [15], and nonlinear dynamics
analysis [16], [17]. The main motivation behind the present
survey is to provide an account of methods developed for spectral
HRV analysis in time-varying conditions, often characterized as
nonstationary, and how the above-mentioned confounding fac-
tors are handled largely by model-based approaches—a survey

which so far is missing. To substantiate the presentation, the
main principles of the different models and methods particularly
developed for HRV analysis are briefly described. Significant
inspiration is drawn from the block diagram in Fig. 1 con-
sisting of two main blocks: a simple, conceptual model for
RR interval generation and the main signal processing methods
which together form HRV analysis. The sinoatrial node model is
assumed to have a mathematical structure well suited to propel
the design of signal processing methods. The other blocks of the
conceptual model are treated as black boxes whose output are
to be inferred from the RR intervals. Respiratory information
is either measured by a dedicated sensor or derived from the
ECG, e.g., [31], [32], [33], [34], [35], [36], [37], [38]. This type
of modeling has helped provide significant knowledge on the
nature of HRV, conveyed by a variety of indices characterizing
ANS activity. However, as knowledge on the interaction be-
tween the ANS and the cardiovascular system becomes more
advanced, the modeling may turn out too simplistic, calling for
further development to agree with the well-known aphorism that
“models should be made as simple as possible, but not simpler”.

Mathematical modeling of the sinoatrial node can take place
at the cellular level, then accounting for ionic propagation mech-
anisms in cardiac tissue [39], [40]; however, such low-level
modeling is ill-suited as a springboard for developing signal
processing methods and therefore not considered here. Neither
are the many techniques for time–frequency analysis considered
here, the interested reader is referred to, e.g., [14], [15], [41], for
further information.

The survey is organized as follows. Section II describes sino-
atrial node models suitable for simulation as well as for develop-
ing heart rhythm representations (Section III) and methods for
correction of occasional ectopic beats (Section IV). Section V
deals with spectral analysis in time-varying conditions, notably
redefinition of the HF band using respiratory information and
handling of spurious spectral components observed during exer-
cise stress testing. Sections VI and VII deal with time–frequency
based parameter estimation and signal decomposition, respec-
tively, where both techniques are guided by respiration. Finally,
Section VIII discusses different approaches to improving HRV
spectral analysis.

II. MODELING OF THE SINOATRIAL NODE

Different models have been proposed for generating variabil-
ity in heart rate, either by accounting for certain characteristics
of physiological relevance or using a statistical law whose rel-
evance is assessed by how well the model output fits real data.
Depending on model flexibility, various time-varying conditions
can be handled, including changes in mean heart rate, HRV
spectrum, and short- and long-term behavior. The output of a
sinoatrial node model is a series of event times at which the
node fires off an electrical impulse,

t0, t1, . . . , tM ,

or, alternatively, a series of interevent intervals, i.e., a series of
modeled RR intervals,

rk = tk − tk−1, k = 1, 2, . . . ,M. (1)
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Fig. 1. A simple, conceptual model for RR interval generation and the main signal processing blocks of HRV analysis. RR interval generation is
here synonymous to a mathematical model of the sinoatrial node which outputs a series of the event times. The activities of the shaded blocks play
an important role in HRV analysis and interpretation, though they are not subject to mathematical modeling. QRS detection and beat classification
are here considered part of heart rhythm representation, information which is used for ECG-derived respiration (dashed arrow); their description is
beyond the scope of the present survey.

Fig. 2. The integral pulse frequency modulation (IPFM) model, with
the input function m0 +m(t) that modulates the variability of interevent
intervals, resulting in the event series t0, t1, . . ..

The first event is assumed to occur at time t0 = 0, which also
defines the onset of the observation interval.

In this section, three models are described with a counterpart
in signal processing in the sense that the parameters can be esti-
mated using either statistical or deterministic inference. Clearly,
the models can be used for simulating RR interval series, of
particular value when testing and evaluating performance. In
such cases, the model parameters are either chosen based on
a priori information or inferred from real data.

A. IPFM Modeling

The time-invariant integral pulse frequency modulation
(IPFM) model is by far the most popular model for generating
an event series, probably explained by its simplicity and yet
physiological relevance, see, e.g., [42], [43], [44], [45], [46],
[47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58],
[59], [60], [61], [62], [63], [64]. The model input is composed
of a DC level m0, defining the repetition rate of events, and a
modulating, zero-centered signal m(t), defining the variability
of interevent intervals. An event is generated at tk when the
integral of the input reaches the threshold R,∫ tk

tk−1

(m0 +m(τ))dτ = R, k = 1, . . . ,M. (2)

The integrator is then reset to zero, the integration is repeated, a
new event is generated, and so on, see Fig. 2.

In physiological terms, m(t) determines the variability in
heart rate as modulated by autonomic activity on the sinoatrial
node, the integrator output y(t) corresponds to charging of the
membrane potential of a sinoatrial pacemaker cell. By setting
m0 = 1, the expression in (2) becomes

∫ tk

t0=0

1 +m(τ)

T
dτ = k, k = 1, . . . ,M, (3)

where R has been renamed to T as it now represents the mean
interevent interval. Since the variability is much smaller relative
to the mean heart rate, m(t) is assumed to satisfy |m(t)| � 1.

The modulating signal m(t) has been defined as a weighted
sum of two sinusoids, representing the sympathetic and
parasympathetic respiratory oscillators. The two weights are
either set to fixed values [50], [55], or given a time-varying struc-
ture [63]. The sinusoidal definition of m(t) has been employed
for testing different rhythm representations and spectral analysis
techniques [44], [45], [50], [52], [55], [59]. A more realistic ap-
proach is to estimate m(t), e.g., using the heart timing represen-
tation of RR intervals described in Section III-A, accompanied
by estimation of the parameters of a linear, stochastic model like
the autoregressive (AR) model. By feeding the identified model
with white, Gaussian noise, its output exhibits the same spectral
characteristics as the estimate m̂(t) and therefore can serve as
m(t) [50], [61], [62].

When the input 1 +m(t) is defined by white, Gaussian noise,
the IPFM model loses some of its physiological relevance.
Nonetheless, this case deserves attention as it constitutes the
basis of history-dependent point process modeling, see Sec-
tion II-C. The integrator output is given by

y(t) = t+ w(t), (4)

where w(t) is integrated white noise with variance σ2
m. The

output y(t) is known as a Wiener process with positive drift. The
time required for y(t) to reach T for the first time is a random
variable r described by the inverse Gaussian probability density
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function (PDF) [65],

p(r;μ, λ) =

√
λ

2πr3
exp

[
−λ(r − μ)2

2μ2r

]
, (5)

whose mean μ and shape λ > 0 can be expressed in terms of the
parameters defining m(t) and T ,

μ = T, λ =
T 2

σ2
m

. (6)

The resulting event series is a renewal process where the
inter-event intervals are statistically independent and identically
distributed. Such a process is history-independent and cannot
account for the effect of sympathetic and parasympathetic input
to the sinoatrial node which is known to last for several RR in-
tervals.

A major limitation of the time-invariant IPFM model is that
a fixed T implies a constant heart rate. Since this is unrealistic
in HRV applications where the heart rate changes over time,
e.g., during exercise stress testing, the time-varying IPFM model
should be considered [66], [67], meaning that

T → T (t).

B. Filtered-Noise Modeling

Another approach to modeling RR intervals is to filter white,
Gaussian noise using a linear, time-invariant system, so that
the spectral characteristics of the output series of interevent
intervals resemble those of real data. Thus, in contrast to the
IPFM model, this approach does not pretend to mimic sinoatrial
node physiology. While the filtered-noise model has been much
less considered for simulation purposes [68], even so, its rele-
vance is demonstrated by the many studies in which this model
represents the basis of HRV spectral analysis. The time-invariant
AR model, introduced for HRV analysis in [69], is the most
popular, defined by

rk = −a1rk−1 − · · · − aprk−p + vk, (7)

where vk is white noise with variance σ2
v . Since white noise by

definition is zero-mean, the mean interevent interval T needs to
be added to rk to produce realistic data and become the interevent
interval defined in (1). The variance σ2

v must be chosen such
that the variance of rk is much smaller than T . The coefficients
a1, . . . , ap, the model order p, and T is either predetermined or
estimated from data.

A bimodal, Gaussian power spectrum has been proposed to
model RR intervals, where one Gaussian accounts for respiratory
sinus arrhythmia and another for baroreflex regulation [70].
This model may indeed be approximated by (7) since the two
Gaussians can largely be modeled by a fourth-order AR model,
where the proximity of the poles to the unit circle determines
the width of the Gaussian-like bells.

In the time-varying version of the AR model, a1, . . . , ap, and
T are replaced by their time-varying counterparts a1,k, . . . , ap,k,
and Tk. By analogy with the time-invariant AR model, the time-
varying model has mainly served as the basis for time–frequency
analysis [13], [14], [71], [72], [73], [74], [75]. An exception is the
time-varying autoregressive, moving average (ARMA) model

proposed for simulation [76]: the dominant frequencies and the
powers defining the LF and HF components are controlled by
varying the locations of the poles and the zeros according to some
predefined pattern. For example, piecewise linear functions were
used to model changes observed during exercise stress testing
and music-induced emotions. It should be noted that filtered-
noise modeling can be used to simulate RR intervals as well as
heart rate.

C. History-Dependent Point Process Modeling

A point process is a stochastic model of the next event
time tk+1 given that the history, i.e., the previous event times
t0, . . . , tk, is known. This process can be defined in several ways
of which one straightforward is to specify the PDF of the next
interevent interval. In the pioneering study [77], a point process
model was proposed for HRV analysis, where the choice of
PDF was inspired by the IPFM model and the associated inverse
Gaussian PDF. History-dependence is introduced by modeling
the mean as an autoregression of the p previous interevent
intervals, cf. (7),

μRR = μ(Hk,a) = a0 +

p∑
i=1

airk−i+1, (8)

whereHk = (rk−p+1, . . . , rk) is the event history and the vector
a contains the p+ 1 regression parameters. Thus, the PDF of the
next interevent interval t− tk is given by

p(t− tk;μ(Hk,a), λ)

=

√
λ

2π(t− tk)3
exp

[
−λ(t− tk − μ(Hk,a))

2

2μ2(Hk,a)(t− tk)

]
, (9)

where t > tk. The related standard deviation is given by

σRR =

√
μ3(Hk,a)

λ
. (10)

Note that the scalar p denotes model order whereas the function
p(·) denotes a PDF.

Although the model parameters (a, λ) do not depend explic-
itly on time, suggesting that the interevent intervals represent
a stationary process, parameter estimation can be performed
locally to produce time-varying estimates which account for
nonstationarity [77]. Consequently, when simulating RR inter-
vals using (8) and (9), (a, λ) can be held fixed or made to vary
over time according to some predefined pattern. The model order
p has been treated as fixed over time, determined from real data
using the Akaike information criterion in combination with a
statistical goodness-of-fit test.

In contrast to the IPFM and filtered-noise models, the PDF in
(9), modeling RR intervals, is easily modified to model heart rate
using the random variable s and the following transformation
of t [77],

s =
c

t− tk
, (11)
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where c = 60 s/min converts interval to rate, expressed in events
per minute. The resulting PDF is given by

p(s;μ(Hk,a), λ) =

√
c−1λ

2πs
exp

[
−λ(1− c−1μ(Hk,a)s)

2

2c−1μ2(Hk,a)s

]
(12)

and the related mean and standard deviation by

μHR = c

(
1

μ (Hk,a)
+

1

λ

)
, (13)

σHR =

√
2μ(Hk,a) + λ

μ(Hk,a)c−2λ2
, (14)

respectively.
Just because the inverse Gaussian model originates from the

IPFM model (when fed with white, Gaussian noise) does not
necessarily make it physiologically relevant for simulation of
RR intervals and heart rate. To shed light on its relevance, the
inverse Gaussian model was therefore compared to the Gaussian,
lognormal, and gamma models, all four models defined by time-
varying parameters [78]. Using the Kolmogorov–Smirnov test,
the inverse Gaussian model was found to provide the overall
best goodness-of-fit to data recorded during a pharmacological
autonomic blockade protocol.

III. MODEL-BASED HEART RHYTHM REPRESENTATIONS

The interval tachogramdIT(k), i.e., rk, and the inverse interval
tachogram dIIT(k), i.e., the instantaneous heart rate, are classical
representations of heart rhythm. While these HRV signals have
been used extensively in time domain analysis of HRV, they
suffer from the disadvantage of being functions of k, not of t,
and therefore ill-suited for spectral analysis. To allow the results
to be expressed in hertz, as well as to facilitate joint analysis
of heart rate and other physiological signals, dIT(k) and dIIT(k)
are transformed into their continuous-time counterparts known
as the interval function dIF(t) and the inverse interval function
dIIF(t), respectively. Using interpolation between the samples
positioned at the event times tk, an evenly sampled signal is
obtained at the desired rate [24]. Other useful representations
include the event series dE(t), defined as a sum of delta functions
positioned at the event times, and its lowpass filtered version
dLE(t).

While these six heart rhythm representations are intuitive,
none is derived from a sinoatrial node model. In this section,
two time-varying representations are described, both based on
the IPFM model, namely the heart timing signal and a set of
signals derived from the history-dependent point process model.
The former signal is derived by deterministic reasoning, whereas
the latter set of signals by statistical inference.

A. The Heart Timing Signal

The modulating signal m(t) of the IPFM model can be
retrieved from the beat event times t0, . . . , tM [50], using the
following reformulation of (3) as the basis:∫ tk

0

m(τ)dτ = kT − tk, k = 1, . . . ,M. (15)

Clearly, the integral of m(t) equals the deviation between the
expected beat event time kT (“metronome time”) and the beat
event time tk. This deviation serves as the definition of the
irregularly sampled heart timing signal dHT(tk),

dHT(tk) � kT − tk, (16)

which can be generalized to any time t by

dHT(t) = κ(t)T − t =

∫ t

0

m(τ)dτ, (17)

where the function κ(t) is defined by

κ(t) =
1

T

∫ t

0

(1 +m(τ))dτ, (18)

and κ(tk) = k. Since m(t) and dHT(t) are linearly related by an
integral, an estimator of m(t) is obtained by

m̂(t) =
∂dHT(t)

∂t
, (19)

where ‘estimator’ bears no relation to statistical inference.
The computation of dHT(tk) in (16) requires that the

mean RR interval is estimated by T̂ = (tM − t0)/M . More-
over, to facilitate the differentiation in (19), the samples
dHT(t0), . . . , dHT(tM ) are interpolated and resampled to a fixed
rate. While dHT(t) depends on the location of the observation
interval [t0, tM ] because dHT(0) = dHT(tM ) = 0 is always sat-
isfied, m̂(t) does not since this dependence is eliminated by
differentiation.

For a time-varying threshold T (t), the estimator m̂(t) is de-
rived based on the observation that the integrand of (3) describes
the instantaneous heart rate,

dHR(t) =
1 +m(t)

T (t)
. (20)

Since dHR(t) is not observable, it can be approximated either by
an estimate of κ(t) in (18) obtained by interpolation of data pairs
[tk, k] followed by differentiation of κ(t) [24]. The expression
in (20) can be decomposed into mean heart rate dmHR(t) and
heart rate variability dHRV(t),

dmHR(t) =
1

T (t)
, dHRV(t) =

m(t)

T (t)
, (21)

where dmHR(t) is characterized by much lower frequencies than
dHRV(t). Hence, dmHR(t) can be retrieved by lowpass filtering
of dHR(t). Since T (t) is inversely related to dmHR(t), the time-
varying version of dHT(tk) in (16) becomes

dHT(tk) =
k

dmHR(tk)
− tk. (22)

Finally, estimation ofm(t) is accomplished by either performing
the differentiation in (19) or using the following expression
which results from reorganizing (20) [79]:

m̂(t) = d̃HR(t)T̃ (t)− 1

=
d̃HR(t)− d̃mHR(t)

d̃mHR(t)
=

d̃HRV(t)

d̃mHR(t)
, (23)

where ∼ indicates that the signal is obtained from the approxi-
mated dHR(t). Thus, m̂(t) is simply given by the ratio of a signal
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Fig. 3. Estimation of m(t) under time-varying conditions. The
smoothed pseudo Wigner–Ville distribution computed for (a) a sim-
ulated, two-component modulation function m(t) with a constant LF
component and a time-varying HF component; m̂(t) is obtained by
equations (b) (19) and (c) (23). (d) The percentage spectral power error
of the HF component obtained by (19) (grey line) and (23) (black line).
The estimated signals were obtained by interpolation and resampling to
4 Hz. Reprinted from [79] with permission.

reflecting heart rate variability to a signal reflecting mean heart
rate, obtained by lowpass filtering of dIIF(t).

The importance of using (23) in time-varying conditions is
illustrated by the simulation example in Fig. 3, with changes
typically observed during exercise stress testing [79]. Using the
smoothed pseudo Wigner–Ville distribution (SPWVD) [80] for
time–frequency analysis, Fig. 3(a) displays the SPWVD ofm(t)
dominated by an LF component held constant at 0.1 Hz and
an HF component varying between 0.35 Hz and 0.5 Hz; both
components have powers mimicking the variation in real data.
Fig. 3(b)–(c) display the SPWVDs of m̂(t) obtained with (19)
and (23), respectively. Comparing Fig. 3(a) and (b), it is obvious
that the intensities of both components differ considerably,
particularly at the onset, about 600 s, and the end of the ob-
servation interval. On the other hand, the SPWVDs displayed in
Fig. 3(a) and (c) are in close agreement, thus highlighting the
importance of assuming the time-varying IPFM model when
analyzing time-varying data. The error made when estimating

the power of the HF component is displayed in Fig. 3(d) for the
two estimators: the error is essentially zero for the time-varying
estimator.

Considering instead the pulse frequency modulation model,
also related to the IPFM model, it can be shown that the modu-
lating part of the interval tachogram dIT(k) is influenced by the
mean interevent intervalT (t) in a way similar to the heart timing
signal [71].

B. The History-Dependent Point Process Signals

The meaning of heart rhythm representation in point process
modeling is not as unequivocal as in IPFM modeling since four
indices, μRR, σRR, μHR, and σHR, rather than one, m(t), convey
rhythm information. Of these four indices, the time-varying
variant of μHR is often used for spectral analysis [77], and,
therefore, it may be viewed as an equivalent to (1 +m(t))/T .
To compute these indices, estimates of the model parameters a
and λ first need to be obtained from the observed RR intervals
and then substituted into the respective defining equations.

Maximum likelihood estimation is the standard technique for
finding the parameter values of a statistical model. The estimator
is given by

[â, λ̂] = argmax
a,λ

log p(t0, . . . , tM ;a, λ), (24)

where the joint PDF log p(t0, . . . , tM ;a, λ) becomes the log-
likelihood function when evaluated for the event times ob-
served in the interval [t0, tM ]. Assuming that the RR intervals
rk = tk − tk−1 are statistically independent, i.e., rk is a renewal
process, the joint PDF simplifies to

p(t0, . . . , tM ;a, λ) =

M∏
k=1

p(rk;a, λ), (25)

where p(rk;a, λ) is the inverse Gaussian PDF in (9). Due to the
introduction of history dependence, cf. (8), the maximization
of the log-likelihood function in (24) has to be performed
numerically using, e.g., the Newton–Raphson method.

Since this approach yields a description of the entire obser-
vation interval by four scalar estimates, i.e., μ̂RR, σ̂RR, μ̂HR,
and σ̂HR, a sliding window approach was introduced to pro-
duce time-varying (local) estimates μ̂RR(t), σ̂RR(t), μ̂HR(t), and
σ̂HR(t) based on the RR intervals in the fixed-length window
[t−Δt, t] [77]. The structure of the local log-likelihood func-
tion is essentially the same as that of the global one in (24), with
the difference that the function accounts for an observation in-
terval whose boundaries are not defined by event times. Another
difference is that an exponentially decaying weighting function,
defined by the parameter α, is introduced to assign more weight
to the more recent RR intervals.

The goodness-of-fit of the point process model to the RR in-
tervals can be evaluated by analyzing the conditional intensity
function, specifying how the present depends on the past in a
point process [81], together with a statistical test such as the
Kolmogorov–Smirnov test [82]. The goodness-of-fit informa-
tion is useful when trying to improve the structure of the model,
but also for determining the model order p, the window length
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Fig. 4. Autoregressive spectral analysis of μ̂HR(t) (solid line) during
rest and upright posture, compared to the spectrum of dIIF(t) (dashed
line) resampled at a rate of 3 Hz. The upper/lower left diagrams display
the power spectra for 0–0.5 Hz, whereas the upper/lower right diagrams
display the power spectra for 0.5–1.5 Hz, referred to as the very high
frequency (VHF) band. Reprinted from [77] with permission.

Δt, and the exponential decayα—parameters which are not part
of the above-mentioned maximum likelihood estimation [77].

Adaptive filtering has also been proposed for estimating
the parameters in continuous time. The filter, having a re-
cursive structure, is defined by a set of equations resembling
those defining the well-known Kalman filter [83]. It remains to
be shown which of the estimation techniques is to be preferred.

Figure 4 displays the autoregressive power spectra obtained
during rest and upright postures when μ̂HR(t) and the inverse
interval function dIIF(t) is used. Clearly, the spectra are expected
to differ since they are based on different rhythm representations:
dIIF(t) accounts for HRV as a whole, whereas μ̂HR(t) and
σ̂HR(t) account for distinctly different aspects. However, the
differences can to some extent be explained by considerations
of bandwidth and model order selection. Before computing the
power spectrum, dIIF(t) needs to be lowpass filtered, using a
cutoff frequency well below half the mean heart rate, so that
aliasing is avoided in the interpolated and resampled signal [24].
On the other hand, no such filtering was done before the power
spectrum of μ̂HR(t)was computed, and, therefore, the frequency
components exceeding half the mean heart rate are aliased.
Concerning model order selection, it is well-known that a larger
bandwidth implies a higher model order to model the spectral
peaks adequately [24]. Therefore, considering that the band-
width of μ̂HR(t) is much larger than that of dIIF(t), the same
model order implies lower spectral peaks using μ̂HR(t) than for
dIIF(t).

IV. MODEL-BASED ECTOPIC BEAT CORRECTION

The presence of ectopic beats perturbs the impulse pattern ini-
tiated by the sinoatrial node, thus disqualifying the RR intervals

adjacent to an ectopic beat for HRV analysis. In such cases, the
autonomic modulation of the sinoatrial node is temporarily lost
and instead an ectopic focus initiates the next beat prematurely.
The location of the ectopic focus gives rise to different types of
perturbation: a beat of ventricular origin inhibits the next sinus
beat so that a compensatory pause is introduced after the ectopic
beat, whereas a beat of supraventricular origin or a retrograde
beat discharges the sinoatrial node ahead of schedule (“resetting
beat”) and causes the following sinus beat to also occur ahead
of schedule.

Ectopic beats must be dealt with before spectral analysis can
be performed; if not, spurious frequencies will appear. Different
techniques have been proposed to correct for occasional ectopic
beats, whereas frequent ectopic beats perturb the rhythm to
such an extent that the entire series has to be excluded from
further analysis. While the majority of correction techniques
do not rely on a model, but rather perform either deletion,
interpolation, or filtering, see, e.g. [84], [85], [86], [87], [88],
[89], [90], [91], a number of model-based techniques have been
proposed, described in the following, which all originate from
the IPFM model though their respective structures differ quite
considerably.

Beat classification involving morphologic information is as-
sumed to be performed before HRV analysis, providing infor-
mation on whether a detected event is a normal beat, an ectopic
beat, or false, e.g., a T-wave, noise, or motion artifacts; if false,
the event is removed from the RR interval series.

A. Correction Based on the Lowpass Filtered Event
Series

An early work on model-based correction explored the idea
of replacing an ectopic beat with an imaginary normal beat
whose event time deviates the least from the rhythm implied
by the IPFM model [92]. Beat replacement operates under the
constraint that the ectopic beat must be followed by a complete
compensatory pause. Other types of ectopic beats cannot be
handled, e.g., those which reset the SA node.

The lowpass filtered event series, defined by

dLE(t) = h(t) ∗
M∑
k=0

δ(t− tk), (26)

plays an important role since it has been shown that dLE(t)
approximates 1 +m(t), i.e., the integrand in (2), provided that
|m(t)| � 1 [24], [93]; h(t) is the impulse response of an ideal
lowpass filter with a cutoff frequency of 1/2T Hz. Consequently,
as long as the event series is accounted for by the IPFM model,
i.e., without any ectopic beat, the integral of dLE(t) is approxi-
mately constant for all k since

T =

∫ tk

tk−1

(1 +m(t))dt ≈
∫ tk

tk−1

dLE(t)dt = T (tk). (27)

Since this integral does not hold for an event series with an
ectopic beat at tke

, the replacement strategy is to find that tke

which deviates the least from the rhythm implied by the IPFM
model. Accordingly, tke

relates to an imaginary normal beat
instead of an ectopic beat. The replacement strategy is defined
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by minimization of the variance:

t̂ke
= arg min

tke−1<tke<tke+1

M∑
k=1

(
T (tke

)− T̄
)2

, (28)

where T̄ is the mean of Tk. It should be noted that dLE(t)
has to be recomputed for different values of tke

, cf. (26), and,
consequently, the integral in (27) that defines T (tk).

Since this approach is constrained to only handle a premature
ectopic beat followed by a complete compensatory pause, sub-
sequent work has dealt with how to handle other types of ectopic
beats.

B. Correction Based on the Heart Timing Signal

Another approach is to modify dHT(tk) in (16) so that normal
beats following an ectopic beat at te (tke

< te < tke+1) are
related to a compensated time basis (k + s)T instead of kT [94];
in contrast to the methods described in Sections IV-A and IV-D,
tke

here represents a normal beat. As a result, correction applies
also to an ectopic beat not followed by a complete compensatory
pause. In this approach, the ectopic beat is not indexed by k as
it is not replaced by a normal beat. Thus, the modified dHT(tk)
is defined by

dHT(tk) =

{
kT − tk, k = 1, . . . , ke;

(k + s)T − tk, k = ke + 1, . . . ,M,
(29)

where the unknown parameter s represents a jump in the reset-
ting of the IPFM model.

A key step to facilitate the estimation of s is to generalize
the IPFM model so that the index k is replaced by the indexing
function κ(t), which when sampled at tk equals

κ(tk) =

{
k, k = 1, . . . , ke;

k + s, k = ke + 1, . . . ,M.
(30)

Then, s can be estimated by extending κ(t) forward in
time using the event times preceding the ectopic beat, i.e.,
(t0, 0), . . . , (tke

, ke) and extending κ(t) + s backward in time
using the event times following the ectopic beat (tke+1, ke + 1),
. . . , (tM ,M) so that the two extended functions overlap. The
forward extension introduces a new event time t̂fke+1 under
the assumption that the sinus rhythm continues after tke

, and,
similarly, the backward extension introduces a new time t̂bke

(< t̂fke+1) under the assumption that the sinus rhythm precedes
tke+1; for details on extension by extrapolation, see [94]. Using
the least squares criterion, the estimator of s is

ŝ =
1

t̂fke+1 − t̂bke

∫ t̂fke+1

t̂bke

(
κ̂f (t)− κ̂b(t)

)
dt, (31)

i.e., the area enclosed by the forward and backward extended
functions κ̂f (t) and κ̂b(t) within the overlap, normalized by the
duration of the overlap, see Fig. 5. A value of s close to one
indicates that the event at te is likely a premature ectopic beat
followed by a compensatory pause, whereas a value close to zero
indicates that the event is likely an artifact.

Fig. 5. Ectopic beat correction based on dHT(tk). Forward extension
of the indexing function κ̂f (t) using the event times (t0, 0), . . . , (tke , ke)

and backward extension of κ̂b(t) using the event times (tke+1, ke +

1), . . . , (tM ,M); κ̂f (t) and κ̂b(t) are extended until they overlap in time.
The least squares estimator of s computes the shaded area, normalized
by the duration of the overlap, cf. (31).

Before the modified heart timing signal can be computed, the
estimator of T has to be modified so that it accounts for ŝ,

T̂ =
tM − t0
M + ŝ

. (32)

C. Simplified Correction Based on the Heart Timing
Signal

Because of the extrapolation required to compute (31), the
correction based on dHT(tk) is computationally rather demand-
ing. Therefore, a simplified correction was developed building
on the observation that an ectopic beat shifts the event times of
the following normal beats by a certain time δ [95]. Then, an
alternative formulation of dHT(tk) is given by

dHT(tk) =

{
kT − tk, k = 1, . . . , ke;

kT − tk + δ, k = ke + 1, . . . ,M.
(33)

The time shift δ can be derived by studying the interval from
tke

to tke+1 − δ, where the latter event time relates to a normal
beat had an ectopic beat not occurred. Then, the integral defining
the IPFM model for the normal beats at tke

and tke+1 can be
decomposed as follows:∫ tke+1

tke

(1 +m(τ))dτ

=

∫ tfke+1=tke+1−δ

tke

(1 +m(τ))dτ︸ ︷︷ ︸
=T

+

∫ tke+1

tke+1−δ

(1 +m(τ))dτ,

where evaluation of the first integral yields the following expres-
sion of δ:

δ = tke+1 − tke
− T +

∫ tke+1−δ

tke

m(τ)dτ. (34)

To make this expression practicable, m(t) can be approximated
by a constant during the ectopic beat (defining the first-order
estimator of δ), by a linear change during the ectopic beat
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(defining the second-order estimator of δ), and so on. The general
N -th order estimator of δ is given by [95]

δ̂N =

N+1∑
l=0

(−1)l
(
N + 1

l

)
tke+1−l, N = 1, 2, . . . (35)

In analogy with (32), the estimator of T is modified to account
for δ̂N , given by

T̂ =
tM − t0 − δ̂N

M
. (36)

By comparing the results obtained by spectral analysis, the
power of the LF and HF bands were found to be almost identical
for the corrections based on (29) and (33) using δ̂1, with the
difference that the latter type of correction is computationally
much more efficient [95].

D. Correction Based on Point Process Modeling

The history-dependent point process model has been suc-
cessfully adopted for ectopic beat correction by exploring the
assumption that RR intervals in sinus rhythm can be modeled
by a time-varying inverse Gaussian PDF [96]. Similar to the
correction method described in Sec. IV-A, an ectopic beat is
replaced by an imaginary normal beat, but with the difference
that the event time is determined by assessing to what extent
the event time fits the model. Again, beat replacement operates
under the constraint that the ectopic beat must be followed by a
complete compensatory pause.

The starting point of the correction is the two PDFs describing
the RR intervals adjacent to the ectopic beat at tke

. By maximiz-
ing the product of these two PDFs,

t̂ke
= arg max

tke−1<τ<tke+1

p(τ−tke−1; μ̂(Hke−1,ake−1), λke−1)

· p(tke+1 − τ ; μ̂(Hke
(τ),ake

), λke
), (37)

the most probable event time t̂ke
of an imaginary normal beat

is determined, thus replacing tke
in the corrected series of event

times. The mean of the PDF of the RR interval preceding the
ectopic beat is given by

μ̂(Hke−1,ake−1) = â0,ke−1 +

p∑
i=1

âi,ke−1(tke−i − tke−1−i),

(38)

where the regression parameters ai,ke−1 are estimated using the
p event times preceding the ectopic beat, i.e., tke−p, . . . , tke−1.
The mean of the PDF of the RR interval following the ectopic
beat accounts for that the event time τ is shifted and given by

μ̂(Hke
(τ),ake

) = â0,ke
+ â1,ke

(τ − tke−1)

+

p∑
i=2

âi,ke
(tke−i+1 − tke−i). (39)

The regression parameters ai,ke
are estimated from a slightly

different series of event times which includes the event time
τ subject to estimation, i.e., tke−p+1, . . . , tke−1, τ . The shape
parameters λke−1 and λke

in (37) can be estimated using the
event time series Hke−1 and Hke

(τ), respectively. Another,

simpler approach is to first estimate λke−1 and then setting
λ̂ke

= λ̂ke−1 [96]. The maximization in (37) is performed nu-
merically using, e.g., the Newton–Raphson algorithm.

Before the corrected series can be accepted, the probability
describing how well the model fits several RR intervals preced-
ing and following the ectopic beat at tke

has to be evaluated. The
corrected series is accepted only if the probability exceeds, with
a certain margin, the probability associated with the original,
uncorrected series.

V. TIME–FREQUENCY ANALYSIS OF HRV IN TIME-VARYING

CONDITIONS

The standard, fixed definitions of the HRV frequency bands
are inappropriate in conditions when the respiratory frequency
varies considerably over time, e.g., during exercise stress testing.
This issue may be addressed by redefining the HF band on the
basis of respiratory frequency and mean heart rate. Another issue
arising in time-varying conditions relates to spurious, aliased
spectral components sometimes observed during exercise stress
testing. While time–frequency analysis serves as the backbone
to handle these issues, additional methods are needed to ensure
adequate interpretation, most of them heuristic in nature and
therefore without relation to the previously described models.

A. Respiration and HF Band Redefinition

The power of the HF band (0.15–0.4 Hz) is considered a
measure of efferent vagal activity mainly due to respiratory
activity, a consideration that builds on the assumption that the
respiratory frequency is contained in this band. However, the
use of a fixed HF band is inadequate, e.g., in situations of
physical activity and autonomic provocation and in children
and pregnant women, when the respiratory frequency very well
can exceed 0.4 Hz. Conversely, the respiratory frequency may
subceed 0.15 Hz during sleep and relaxation, clearly leading to
inadequate measurements when using fixed LF and HF bands.
This problem may be addressed using the signal decomposition
techniques described in Section VII.

Several approaches have been proposed to handle the draw-
backs of a fixed HF band, all having in common that a respi-
ratory signal r(t), whether measured from a dedicated sensor
or ECG-derived, is used to redefine the HF band. Irrespective
of approach, the HF band must be upper bounded by half the
mean heart rate due to the sampling theorem. In those extreme
occasions when the respiratory frequency exceeds half the mean
heart rate, aliasing components will appear at frequencies below
half the mean heart rate [8]; Section V-B provides insight into
how to mitigate this problem.

An early approach to redefining the standard HF band was
to simply increase the upper limit to 0.60 Hz to ensure that the
respiratory frequency always remained within the band [97].
However, a broadened HF band increases the risk of includ-
ing spurious spectral peaks which in turn leads to HF power
measurements suggesting increased parasympathetic activity.
Another early approach was to center the HF band to a fixed
respiratory frequency, determined either by a metronome [98]
or derived from the power spectrum Sd(F ) of d(t) [99], [100].
Once determined, the HF band was held fixed throughout the
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Fig. 6. The SPWVD of an HRV signal obtained during exercise stress
testing (lasting until 600 s) and recovery, highlighting how the HF band is
redefined based on the respiratory frequency. Half the mean heart rate is
plotted with a solid black line, the respiratory-related, time-varying limits
of the HF band with dashed lines, and the standard, fixed limits of the
LF and HF bands with dotted lines.

recording. However, deriving the respiratory frequency from
Sd(F ) is highly susceptible to errors due to phantom peaks [32],
broadband respiration, and reduced respiratory sinus arrhyth-
mia. Therefore, modern methods for ECG-derived respiration
explore beat morphology which is much more robust.

In more recent studies, the HF bandΩHF(t) is redefined on the
basis of a time-varying respiratory frequency Fr(t) and related
limits defined by Δl(t) and Δu(t),

ΩHF(t) ≡ [Fr(t)−Δl(t), Fr(t) + Δu(t)] . (40)

Based on the time–frequency distribution of an airflow signal,
Fr(t) was determined by finding the location of the largest peak
of each time slice, which, together with the assumption of a fixed
bandwidth, i.e., Δl(t) = Δu(t) = Δ, defined ΩHF(t) [101],
[102]. Based on the scalogram of a plethysmographic signal,
Fr(t) was also determined by finding the location of the largest
peak of each time slice, whereas Δl(t) and Δu(t) were deter-
mined by finding the locations of the two minima immediately
surrounding the largest peak [103]. Unfortunately, such a def-
inition tends to produce an ΩHF(t) which varies considerably
from slice to slice, thus warranting a more robust method. This
may be achieved by computing the sample Pearson correlation
coefficient between Sr(F ) and Sd(F ) in a small interval around
Fr(t) (determined from the location of the largest peak in
Sr(F )), then increasing the interval limits until the correlation
coefficient falls below a certain threshold when the limits are
designated as ΩHF(t) [104]. While the method was originally
developed for stationary conditions, it can be easily extended to
nonstationary conditions.

Preventive measures must be taken to avoid that the redefined
HF band overlaps with the LF band, e.g., by requiring that
Fr(t)−Δl(t) > 0.15 Hz [79], [105], or by simply setting the
upper limit of the LF band to Fr(t)−Δl(t) [104]. The preven-
tive measures refer to situations when the respiratory frequency
Fr(t) is low, then resulting in a lower limit of the HF band which
is below 0.15 Hz.

Figure 6 illustrates how the spectral content of an HRV signal,
obtained during exercise stress testing and recovery, varies over
time. The respiratory frequency exceeds the upper limit of the
standard, fixed HF band from about 400 s to 700 s, and, conse-
quently, tracking the power of this HF band yields an inaccurate
description of parasympathetic activity. By redefining the HF
band based on respiratory frequency [101], [102], the power
of the redefined HF band is found to decrease during exercise,
thus reflecting parasympathetic withdrawal, accompanied by an
increase during recovery.

Rather than explicitly relating the HF band limits to Fr(t) as
in (40), ΩHF(t) may be based on the local coupling between d(t)
and r(t). While Fr(t) may still be used, it plays a subordinate
role in indicating the region of interest for subsequent spectral
analysis. One statistical approach to determiningΩHF(t) is based
on time–frequency coherence which measures the strength of the
local coupling between d(t) and r(t), defined by [106]

γdr(t, F ) =
|Sdr(t, F )|√

Sd(t, F )Sr(t, F )
, (41)

where Sdr(t, F ) denotes the time-dependent cross-spectrum
between d(t) and r(t), and Sd(t, F ) and Sr(t, F ) denote the
time-dependent power spectra of d(t) and r(t), respectively.
Since this measure is well suited for finding regions in the
time–frequency domain where d(t) and r(t) exhibit similar
instantaneous frequencies, it has been proposed for redefining
the HF band [107]. The computation of Sdr(t, F ), Sd(t, F ),
and Sr(t, F ) needs to be made with caution to ensure that
γdr(t, F ) is bounded between 0 and 1. This applies particularly
to the kernel function chosen to weight the ambiguity function
(reflecting the uncertainty in time and frequency) to suppress
undesired cross-terms [15], [107]. To find regions of coherence
in γdr(t, F ), hypothesis testing is performed on a point-by-point
basis by comparing γdr(t, F ) to a threshold γTH(t, F ;α),

ΩHF(t) ≡ {γdr(r, F ) > γTH(t, F ;α)}. (42)

The null hypothesis H0, stating that d(t) and r(t) are uncorre-
lated at a certain point in the time–frequency domain, is rejected
at the significance level α whenever the inequality in (42) is
fulfilled. For this particular significance level, the threshold
γTH(t, F ;α) is determined by computing γdr(t, F ) for several
realizations of surrogate signals without local coupling; the
surrogate signals can be white noise or have properties similar
to the original signals [108]. Using this approach, the resulting
HF band may contain discontinuities (“gaps”) in time as well as
in frequency.

B. Spurious Spectral Components During Exercise

During exercise stress testing, performed either by pedaling
a bicycle ergometer or running on a treadmill, the interpretation
of the HRV spectrum is complicated by the appearance of a
spurious locomotor-related component centered at the pedaling
or running stride frequency Fl(t). This component is observed
during a maximal graded bicycle ergometer stress test, partic-
ularly at higher workloads when the locomotor–heart rate cou-
pling (synchronization) is accentuated [109]. The coupling may
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Fig. 7. The SPWVD of an HRV signal obtained during exercise stress
testing (lasting until just after 1000 s) and recovery, highlighting the com-
ponent due to pedaling at 60 revolutions per minute, i.e., Fl(t) = 1 Hz,
visible from about 600 to 1000 s when below half the mean heart rate
FmHR(t) (solid line). The respiratory-related, time-varying limits of the
HF band are indicated with dashed lines, and the standard, fixed limits of
the LF and HF bands with dotted lines. No aliased component is present
when Fl(t) is below FmHR(t)/2.

Fig. 8. Schematic illustration of the aliasing introduced by the pedal-
ing/stride frequency Fl and its harmonic at 2Fl; the aliased components
appear at FAC1 and FAC2. For clarity, time-dependence is omitted.

be explained as a consequence of heart rate entrainment by lo-
comotor rhythms due to interaction [110]. Another explanation
is related to the projection of the cardiac electrical vector onto
different leads: at higher workloads, the direction of the vector
is increasingly coupled to Fl(t) causing the QRS morphology to
change in a rhythmical fashion [111]. As a result, the event times
produced by the QRS detector exhibit slight jittering which in
the HRV spectrum is manifested as a component at Fl(t). The
presence of this component is illustrated by Fig. 7 where the
time–frequency distribution of an HRV signal, obtained during
exercise stress testing and recovery, is displayed.

When the spurious component at Fl(t) exceeds half the
mean heart rate FmHR(t), an aliased component is introduced
in the HRV spectrum that may overlap with the LF or the HF
band [112]. When the pedaling/stride frequency varies during
exercise stress testing, additional aliased components may be
introduced which, together with the autonomic HRV compo-
nents of interest, form a pattern difficult to disentangle.

Figure 8 illustrates schematically how aliasing is introduced
by Fl(t) and its harmonic at 2Fl(t) when Fl(t) > FmHR(t)/2;
the two aliased components appear at the frequencies FAC1(t)
and FAC2(t). Figure 9 shows the time–frequency distribution
of an HRV signal of a subject running on a treadmill at fixed
frequency. The HF band ΩHF(t) and the bands related to the

Fig. 9. The SPWVD of an HRV signal obtained during exercise stress
testing when pedaling is performed (a) with increasing workload and
(b) without workload during recovery, illustrating how the frequency
bands, whether related to autonomic function or aliasing, change over
time. During certain periods, ΩHF(t) (solid lines) overlap with ΩAC1(t)
(dashed lines) and/or ΩAC2(t) (dotted lines).

aliased components, denoted ΩAC1(t) and ΩAC2(t), are super-
imposed on the time–frequency distribution. The aliasing bands
are centered atFmHR(t)− Fl(t) and−FmHR(t) + 2Fl(t), in both
cases assumed to have a bandwidth of 0.125 Hz.

When Fl(t) subceeds FmHR(t)/2, no aliased component is
present. While Fl(t) itself may cause problems, it is typically
much higher than Fr(t), and, therefore, its influence on the HF
band is negligible unless an extended HF band is used.

When information on pedaling/stride frequency and mean
heart rate indicates the presence of one or several aliased com-
ponents, a correction technique can be applied when computing
the HF power [111]. The correction is activated as soon asΩA(t),
A ∈ {AC1,AC2, . . .}, overlaps with ΩHF(t), where ‘ACn’
stands for the n:th aliased component. The degree of overlap
is defined by

oHF,A(t) =
ΩHF,A(t)

ΩA(t)
, 0 ≤ oHF,A(t) ≤ 1, (43)

where ΩHF,A(t) is the bandwidth of the overlap; thus, oHF,A(t) =
0 indicates no overlap. The correction depends on the relative
power of ΩHF(t) and ΩA(t), meaning that more correction is
applied when the aliased components become more dominant.
The relative power is defined by

αHF,A(t) =
PA(t)

PHF(t) + PA(t)
, 0 ≤ αHF,A(t) < 1. (44)

To ensure that αHF,A(t) is a smooth function, a running average
ᾱHF,A(t) is used, updated as long as oHF,A(t) = 0, but extrapo-
lated by holding fixed the most recent update of ᾱHF,A(t) when-
ever oHF,A(t) > 0. The corrected HF power P̃HF(t) is obtained
by subtracting PA(t), scaled by oHF,A(t) and ᾱHF,A(t), from
the original HF power PHF(t). For the case with two aliased
components, P̃HF(t) is given by

P̃HF(t) = PHF(t)− oHF,AC1(t)ᾱHF,AC1(t)PAC1(t)
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Fig. 10. Illustration of HF power correction using (45). (a) The uncor-
rected HF power PHF(t) (dashed line), the power of the aliased com-
ponent PAC2(t) (solid line), and the corrected HF power P̃HF(t) (dotted
line), (b) the relative power αHF,AC2(t), and (c) the degree of overlap
oHF,AC2(t) (dashed line) and the running average ᾱHF,AC2(t) (solid line).
The vertical dashed lines indicate onset and end of the overlap during
which ᾱHF,AC2(t) is held fixed.

− oHF,AC2(t)ᾱHF,AC2(t)PAC2(t). (45)

By holding fixed the most recent update of ᾱHF,A(t) whenever
oHF,A(t) > 0, the HRV signal is implicitly assumed to be short-
term stationary during the overlap period.

Figure 10 illustrates the correction technique for a situation
in which aliasing caused by Fl(t) appears during a limited
time period, leading to overestimation of PHF(t). Following the
correction in (45), P̃HF(t) decreases to values similar to those
observed before and after the aliasing period.

VI. TIME–FREQUENCY BASED PARAMETER ESTIMATION

GUIDED BY RESPIRATION

Rather than redefining the standard HF band to account for
respiration, a model-based approach to inferring information on
the LF and HF components may constitute a better alternative,
especially when respiration is considered. Such an approach
could then output time-varying estimates of the frequency and
the power of each component. A signal-plus-noise model has
been proposed with a structure particularly suitable for anal-
ysis of data recorded during exercise stress testing [102]. The
model is based on the assumption that the analytic HRV signal
dA(n) of the general, discrete-time HRV signal d(n), obtained
after interpolation and resampling at rate Fs, is composed of
two complex exponentials, i.e., sinusoids, accounting for the
dominant frequencies of the LF and HF bands [102], [113],

dA(n) = ALFe
jωLFn +AHFe

jωHF(n)n + vA(n), (46)

where ALF and AHF are amplitudes and ωLF = 2πfLF

and ωHF(n) = 2πfHF(n) are discrete-time frequencies. The
exercise-induced changes in respiratory frequency are modeled
by fHF(n) = 2αn+ β, i.e., increasing linearly with workload
until peak exercise and then decreasing linearly during recovery;
the variation in respiratory frequency is defined by 2α [114],

[115]. The analytic noise vA(n) is assumed to be white, ac-
counting for QRS jitter and modeling inaccuracies.

Reformulating the model in terms of autocorrelation condi-
tions the model for nonparametric time–frequency analysis, with
windowing as an important ingredient. Assuming a rectangular
window for time smoothing, defined by the width 2N − 1, and
an exponential window for frequency smoothing, defined by the
decay γ, the instantaneous autocorrelation function of dA(n) is
given by [102]

rd(n, k) = e−γ|k|
(
|ALF|2ejωLF2k + |AHF|2u(k)ejωHF(n)2k

)
+ cross-term + rv(n, k), (47)

where

u(k) =
1

2N − 1

sin(2π2α(2N − 1)k)

sin(2π2αk)
.

Thus, due to time smoothing, the amplitude and bandwidth of
the HF component become dependent on α and N . By proper
selection of N , however, the cross-term can be reduced.

Then, based on (47), a general model is given by

rd(n, k) =

I(n)∑
i=1

Ci(n)e
ξi(n)k+jωi(n)k + w(n, k), (48)

where Ci(n) is an amplitude, ξi(n) a damping factor, and
w(n, k) accounts for rv(n, k) and the cross-term. The number
of components I(n) can change over time to reflect the presence
of multiple HRV-related components in the LF and HF bands as
well as the pedaling component.

In the absence of noise, Ci(n), ξi(n), and ωi(n) can be
estimated using a suboptimal least squares technique in which
the zeros of the L-th order prediction error filter

Bn(z) = 1 + b(n, 1)z−1 + · · ·+ b(n,L)z−L

are located at zi(n) = e(ξi(n)+jωi(n))k, i = 1, . . . , L, where L
can simply be set to the rank of Rd(n) [102]. The coefficients
b(n, i), forming the column vector b(n), are obtained by the
linear prediction equation Rd(n)b(n) = rd(n), where Rd(n)
is the sample autocorrelation matrix and rd(n) the sample au-
tocorrelation vector, both computed from the observed signal
dA(n). Then, for each zi(n), the related frequency and damp-
ing factor are obtained by ω̂i(n) = Im(ln zi(n)) and ξ̂i(n) =
Re(ln zi(n)), respectively, whereas Ĉi(n) is obtained using a
least squares approach to solving the linear system of equations
that results from inserting ξ̂i(n) and ω̂i(n) in (48). The power
and frequency of a component are given by

P̂i(n) =
|Ĉi(n)|√

2
, F̂i(n) =

1

2

ω̂i(n)

2π
Fs, (49)

where Fs is the sampling rate of the HRV signal.
Respiratory information is introduced by forcing the HF com-

ponent zHF(n) to ω̂HF(n) = 2πfr(n) and ξ̂HF(n) to a function of
the rate of variation in fr(n), given by the time-varying estimator
2α̂(n) = fr(n)− fr(n− 1) [102]; d(n) and fr(n) are assumed
to be sampled at the same rate. To account for the assumption
that zHF(n) is known and the presence of noise, the following
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Fig. 11. The frequencies f̂LF(n) and f̂HF(n) (top row, plotted after
multiplication with Fs to produce natural frequencies) and P̂HF(n) (bot-
tom row) computed for zHF(n) determined (a) without and (b) with use
of fr(n). An extended HF band from 0.15 Hz to half the mean heart rate
is assumed. Peak exercise is marked with a dashed line.

constrained least squares criterion should be minimized with
respect to b(n):

J(n) = ‖Rd(n)b(n)− rd(n)‖2 + λ(bT (n)zHF(n) + 1),
(50)

where zHF(n) = [z−1
HF (n), z

−2
HF (n), . . . , z

−P
HF (n)]T and λ is a La-

grangian multiplier. The LF component zLF(n) is identified as
the frequency ω̂i with the largest power in the LF band.

Nonparametric time–frequency analysis suffers from a time-
varying frequency resolution and an unwanted time-varying
amplitude term that influence the HF power estimate. However,
using the time-variant rectangular window length 2N(n)− 1 =
κ/2α̂(n), where κ is a constant, the frequency resolution be-
comes time-invariant. Moreover, the unwanted influence on the
HF power estimate can be avoided using the following time-
varying window:

g(n, l) =
2ρ(n)

ρ2(n) + (2πl)2
,

where ρ(n) = η/(4|α̂(n)|) and η is a constant.
Fig. 11 displays the dominant frequencies f̂LF(n) and f̂HF(n)

and the power of the HF component P̂HF(n) for an HRV signal
obtained during exercise stress testing. The parameters were
estimated both without and with inclusion offr(n), using uncon-
strained and constrained least squares estimation, respectively.
Clearly, the inclusion of fr(n), defined at all times, results in
lower variability in f̂HF(n) and, as a result, P̂HF(n) becomes
smoother.

Even if this approach accounts for respiration, it can still
be influenced by spurious components when the spectral bands
overlap. If so, the correction in (45) should be considered.

VII. SIGNAL DECOMPOSITION GUIDED BY RESPIRATION

In certain situations, decomposition of the HRV signal is war-
ranted so that the respiration-related fluctuations are removed
from the HRV signal so that, in turn, the signals both related and
unrelated to respiration can be analyzed. For example, it has been
shown that the effects of mental stress are better reflected in HRV
indices derived from the decomposed HRV signal than from

the original signal [116], [117]. Another situation calling for
decomposition is when the LF and HF bands overlap, ultimately
leading to entrainment when the two components merge into
one. Such overlapping occurs during, e.g., rosary prayer and
yoga [118] and wakefulness, slow-wave and REM sleep [119].
If not handled properly through decomposition, the power of the
LF band will be significantly overestimated [105].

The methods described in this section focus on the following
decomposition of the general, discrete-time HRV signal d(n):

d(n) = dr(n) + dur(n), n = 0, . . . , N − 1, (51)

where dr(n) accounts for respiratory influence on the heart
rate and dur(n) is the residual signal. The decomposition is
usually done in two steps: first the signal with respiration-related
fluctuations d̂r(n; r(n)) is estimated and then the residual signal
is computed,

d̂ur(n) = d(n)− d̂r(n; r(n)), (52)

where the respiratory signal r(n) is needed to find d̂r(n; r(n))
as indicated by the functional dependence. Neither dr(n) nor
dur(n) have to be described by a mathematical model to be
useful for decomposition.

In the following, d(n) and r(n) are assumed to be mean-
corrected and r(n) bandpass filtered so that frequencies outside
the interval defined by the lower limit of the LF band and the
upper limit of the HF band are suppressed.

A. Linear Filtering

A popular approach to decomposition builds on the assump-
tion that dr(n) is related to r(n) through a p-th order, linear,
time-invariant filter with impulse response h(n) [116], [117],
[120]. With matrix representation, the decomposition can be
expressed as

d = R1h+ dur, (53)

where

R1 =

⎡
⎢⎢⎢⎢⎢⎣

r(p) r(p− 1) · · · r(0)

r(p+ 1) r(p) · · · r(1)

...
...

. . .
...

r(N − 1) r(N − 2) · · · r(N − 1− p)

⎤
⎥⎥⎥⎥⎥⎦ (54)

is a convolution matrix and

h =
[
h(0) h(1) · · · h(p)

]T
,

dur =
[
dur(p) dur(p+ 1) · · · dur(N − 1)

]T
,

d =
[
d(p) d(p+ 1) · · · d(N − 1)

]T
.

The filter order p may be chosen using an information criterion
such as Akaike’s, however, the filter order should also account
for a sufficiently low respiratory frequency [121].
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The optimal least squares filter coefficients h are obtained
by minimizing ‖dur‖2 = ‖d−R1h‖2, resulting in the well-
known estimator [122]

ĥ = (RT
1 R1)

−1RT
1 d. (55)

The respiration-related HRV signal is obtained by the orthogonal
projection

d̂r = R1ĥ = R1(R
T
1 R1)

−1RT
1 d, (56)

where P1 = R1(R
T
1 R1)

−1RT
1 is a projection matrix. Thus, the

residual signal is obtained by

d̂ur = d− d̂r. (57)

Least mean squares adaptive filtering for estimating dur(n)
falls within the realm of linear filtering, though time-varying,
with r(n) serving as the reference signal [123], [124]. The order
of the finite impulse response filter and the adaptation constant
constitute the crucial design parameters. In a later study, it was
demonstrated that initial smoothing of d(n) and r(n) is crucial
to make this technique work [117].

A potential disadvantage with the linear filtering approach
is that it operates independently of whether the cardiorespira-
tory coupling is significant or not. By conditioning filtering on
the presence of cardiorespiratory coupling, this disadvantage
may be addressed [120]. The coupling can be assessed using
Granger’s causality test, determining whether knowledge about
past samples of r(n) improves the prediction of d(n), supported
by a statistical significance test [120], [125]. Alternatively, as-
sessment can build on the assumption that a bivariate AR model
describes the interaction betweend(n) and r(n) [62]; coupling is
then assessed using cross entropy which involves the variance of
d(n) and the variance of the residuals of the regression between
d(n) and the history of r(n) [126]. Other approaches to assessing
cardiorespiratory coupling include phase synchronization [127],
[128], [129] and causality-related decomposition using transfer
entropy techniques [130], [131].

B. Orthogonal Subspace Projection

Orthogonal projection of d(n) onto the subspace spanned
by r(n) can also be considered without explicitly referring
to filtering and least squares estimation [121], see also [62].
Although the matrix defining the subspace in these two studies
differs from R1 as the order of the columns is reverted,

R2 =

⎡
⎢⎢⎢⎢⎢⎣

r(0) r(1) · · · r(p)

r(1) r(2) · · · r(p+ 1)

...
...

. . .
...

r(N − p− 1) r(N − p) · · · r(N − 1)

⎤
⎥⎥⎥⎥⎥⎦ , (58)

the projection matrix P2 associated with R2 is identical to P1

since R2 = R1J, where J is the reversal matrix. Thus, although
not previously noted in the literature, the decomposition based
on R2, described in [62], [121], is identical to the decomposi-
tion based on R1, described in [116], [117], [120]. Figure 12
illustrates the signal decomposition resulting in d̂ur(n) which
largely lacks the oscillations due to respiration.

Fig. 12. Signal decomposition using orthogonal subspace projection.
(a) d(n) (here given by a sampled version of m̂(t) in (19)), (b) r(n),
(c) d̂r(n; r(n)) and (d) d̂ur(n). The ECG was recorded during relaxing
audio listening [105]. The vertical scales have arbitrary units.

Rather than constructing R2 directly from r(n), a multiscale
approach has been proposed in whichR2 is constructed from the
detail coefficients of wavelet analysis, using the Daubechies-4
wavelet at five different scales [117], see also [132]. The wavelet-
based matrix is then given by

R3 =
[
w1,p · · · w1,1 w2,p · · · w2,1 · · · w5,1

]
, (59)

where

wl,n =
[
wl(n) wl(n+ 1) · · · wl(n+N − 1)

]T
,

and wl(n) is the l-th detail scale of r(n).

C. Smoothed Extended Kalman Filtering

A more advanced approach to decomposing d(n) is based
on a model which resembles the time-varying autoregressive,
moving average model with exogenous input, involving d(n),
r(n), and dur(n) [68]. The approach differs from those leading
up to orthogonal subspace projection as it is statistical in nature.
The HRV signal d(n) is modeled by a sum of a respiration-
related component dr(n; r(n)), a respiration-unrelated compo-
nent dur(n), and observation noise v(n),

d(n) = dr(n; r(n)) + dur(n) + v(n), (60)

where dr(n; r(n)) is a filtered version of the exogenous in-
put rs(n),

dr(n; r(n)) =

p∑
k=0

b(k, n)rs(n− k), (61)
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and dur(n) is described by a time-varying AR model driven by
white noise e(n),

dur(n) =

q∑
k=1

a(k, n)dur(n− k) + e(n). (62)

The dominant respiratory component rs(n) is modeled by
a sinusoidal with amplitude a2r(n), fundamental frequency
θr(n; fr(n)), and phase ϕr(n),

rs(n) = a2r(n) sin(θr(n; fr(n)) + ϕr(n)). (63)

The observed respiration signal is modeled by

r(n) = rs(n) + rns(n) + vr(n), (64)

where rns(n) represents the non-sinusoidal components of r(n)
and vr(n) is white noise.

The model equations (60)–(64) can be assembled in the
following state-space representation:

x(n+ 1) = f(x(n)) +w(n),

y(n) = g(x(n)) + v(n),

where f(·) and g(·) are nonlinear functions. The state vec-
tor x(n) contains the following elements: b(0, n), . . . , b(p, n),
a(1, n), . . . , a(q, n), dur(n), ar(n), θr(n; fr(n)), fr(n),ϕr(n),
and rns(n). The observation vector y(n) contains d(n) and
r(n). A simple random walk model accounts for the variation
of each element in x(n). The vectors w(n) and v(n) represent
the system and observation noise, respectively.

Once the state-space equations have been defined, the model
orders p and q are estimated and the initial values of the state
vector and noise variances determined, the smoothed extended
Kalman filter can be used to estimate x(n) [68]. Clearly, to run
the filter, numerous values need first to be determined, most of
them based on experiential knowledge.

Using the smoothed extended Kalman filter, operating
both forward and backward in time, the decomposed spec-
tra of d̂r(n; r(n)) and d̂ur(n) can be computed directly from
â(k, n) and b̂(k, n), respectively, see Fig. 13. The two de-
composed spectra essentially coincide with the original spec-
tra in the LF and HF bands, except for some overlap around
0.2 Hz.

D. Empirical Mode Decomposition

Empirical mode decomposition was originally used to de-
compose d(n) without any involvement of r(n), see, e.g., [133].
However, respiration-guided decomposition has later been pro-
posed in which d(n) is decomposed into a sum of intrinsic mode
functions ci(n) plus a residual cr(n) [134],

d(n) =

I∑
i=1

ci(n) + cr(n), (65)

where I is the number of intrinsic mode functions. To determine
whether d(n) and r(n) are coupled, each ci(n) is crosscorre-
lated to a respiratory-derived signal rs(n) reflecting the average
slope of r(n) in each heartbeat. The signal rs(n) is obtained
by differencing r(n) at the time of successive R-wave peaks,

Fig. 13. Decomposition of the power spectrum of d(n) (black line)
into the spectra of d̂ur(n) and d̂r(n; r(n)) (purple and green line, re-
spectively), using the smoothed extended Kalman filter. The ECG was
recorded from a healthy subject during normal respiration. Reprinted
from [68] with permission.

followed by equidistant resampling to the same rate as that
of d(n). Due to the differencing, rs(n) emphasizes short-term
variation in respiration, while low-frequency drift unrelated to
HRV is essentially filtered out.

The desired respiration-related signal dr(n) is obtained by
summing those ci(n) whose crosscorrelation with rs(n) is sta-
tistically significant; conversely, dur(n) is obtained by summing
those ci(n) not associated with statistically significance.

E. Decomposition-Based HRV Indices

The decomposition of d into d̂r and d̂ur opens up for the
definition of HRV indices which address limitations of existing
spectral indices. The normalized power of d̂r and d̂ur are two
simple but useful indices [121], defined by

P ′
r =

d̂T
r d̂r

d̂T d̂
, P ′

ur =
d̂T
urd̂ur

d̂T d̂
, (66)

where P ′
r mainly reflects respiratory sinus arrhythmia and

parasympathetic activity, whereas P ′
ur reflects respiration-

unrelated fluctuations.
To partially address the criticism against the standard LF/HF

ratio, here denoted Rs, when used to assess sympathovagal
balance [135], [136], a decomposition-based version of this
index has been proposed [121], defined by

R =
Pur,LF

Pr,LF+HF
, (67)

wherePur,LF is the power of dur(n) in the LF band andPr,LF+HF

is the power of dr(n) in the combined LF and HF bands. The
performance ofR has been evaluated in a study where one of the
aims was to discriminate between a relax stage and five different
stress stages, defined by the modified Trier Social Stress Test
including memory tasks and emotional stress [121]. For a data
set of 46 volunteers, Fig. 14 presents the distributions of R and
Rs for the different stages. The results show that R differs with
statistical significance between the relax stage and four of the
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Fig. 14. Characterization of sympathovagal balance using the stan-
dard LF/HF ratio Rs and the decomposition-based R, defined in (67),
during a modified Trier Social Stress Test, including a baseline relax
stage (BL), followed by stages of story telling (ST), memory task (MT),
stress anticipation (SA), video exposition (VE), and arithmetic task (AT).
The asterisk indicates p < 0.003. Reprinted from [121] with permission.

five stress stages, while Rs does not differ for any of the stress
stages due to that respiration overlaps with the LF band in the
relax stage [105].

The index R may assume unreasonably large values when
the cardiorespiratory coupling is weak, a limitation which can
be mitigated by normalizing R to become [134]

R′ =
Pur,LF

Pr,LF+HF + Pur,LF
. (68)

Thus, R′ resembles the standard normalized ratio where the
spectral power in the LF band is normalized with the spectral
power of the bands combined.

VIII. DISCUSSION

The present survey aims at highlighting the progress made
with regard to methods which by design can handle time-varying
conditions and the presence of confounding factors—aspects
which undermine the interpretation of classical spectral analysis.
Clearly, time–frequency analysis addresses the often unrealistic
assumption of stationarity implied by classical spectral analysis.
However, of central importance is also the emergence of time-
varying, nonlinear signal processing techniques to represent
heart rhythm with a time-varying mean heart rate, to correct
ectopic beats, to redefine the frequency bands, to decompose
the HRV signal by making use of a respiration signal, and more.
Indeed, this development suggests that the spectral approach
is not yet down for the count, but significant information can
be extracted in the presence of rapid and transient changes or
spectrally overlapping coactivation of the two ANS branches.
Hence, the ongoing development of methods for time-varying
processing is most likely bound to continue.

A major challenge in developing methods for HRV analysis is
that the ground truth is rarely available, complicating evaluation
and comparison of performance. For example, in ectopic beat
correction, the accuracy of the estimated event time of the

replaced beat cannot be established since the true event time by
definition is unknown. In respiration-guided signal decomposi-
tion the accuracy of d̂r(n; r(n)) and d̂ur(n) cannot be evaluated
since the ground truth is unknown. Historically, this challenge
has been addressed by evaluating performance indirectly, e.g.,
by judging to what extent the behavior of the LF and/or HF
bands agree with the expected results. With regard to signal
decomposition, performance has been evaluated indirectly in
terms of statistical significance of indices which characterize
different stages of a stress test.

A complementary approach to evaluating performance is to
make use of simulated signals which exhibit characteristics
of particular relevance to the problem addressed. As noted in
Section II-A, the IPFM model has been used extensively for sim-
ulation purposes as well as for the development of model-based
signal processing. The former aspect is exemplified by a recent
study which compares the performance of different methods
quantifying respiratory sinus arrhythmia [62]. In that study, the
modulation function m(t) was composed of two components:
one taken as a real respiration signal and another produced by
filtered white noise unrelated to respiration. To use simulated
data is valuable as various statistical performance measures can
be determined, however, simulated data is an idealization—
something which is particularly true when the simulation model
represents the point of departure for developing the method to
be evaluated. Therefore, it is essential that results based on
simulated data are paired with results based on real data to
demonstrate the physiological or clinical significance.

The search for better heart rhythm representations has essen-
tially come to an end as most recent efforts date back to some
10–15 years [77], [79]. Interestingly, both these studies pro-
posed time-varying representations based on the IPFM model,
one developed within a deterministic framework and another
within a statistical, with both representations offering signif-
icant advantages over the classical representations. The heart
timing representation provides an expression of the modulation
function in terms of a time-varying mean heart rate, cf. (23),
requiring only a modest amount of computations which is of
the same order as the commonly used dIIF(t), i.e., interpolation,
resampling, and, possibly, linear, time-invariant filtering. The
point process representation provides instantaneous estimates of
both the mean RR interval and the mean heart rate (and related
standard deviations) as well as an assessment of how well the
model fits the observed data using a statistical test; to gain this
information, a considerably larger amount of computations is
required due to multi-parameter optimization and model order
selection. It remains to be demonstrated which of the two frame-
works is to be preferred, thus leaving room for future research
which should investigate performance in engineering terms as
well as in clinical terms.

While the analysis of rapid and transient HRV changes calls
for proper tools [1], the classical representations, not accounting
for mean heart rate, nonetheless continue to dominate in the
literature. The model-based heart rhythm representations, much
better suited to handle transient conditions, have yet to find their
way into clinical HRV studies.

Of the processing steps described in this survey, ectopic beat
correction is likely the least critical to embrace a time-varying
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formulation, the main reason being that occasional ectopic beats
are to be corrected, whereas longer segments with frequent
ectopic beats are excluded from further analysis. This obser-
vation may explain why the model-based techniques described
in Sections IV-A to IV-C have not been extended to handle
time-varying conditions. On the other hand, such handling is
inherent to the point process method. Using artificially corrupted
RR interval series, the performance of the point process method
was compared to that of the simplified correction based on the
heart timing signal (Section IV-C): the median of the root mean
square error between the estimated and the true event time of a
missing beat was found to be quite similar (12.1 ms and 15.7 ms,
respectively) [96].

The influence of respiration, being a major confounder in
HRV analysis, can be dealt with in various ways by, e.g.,
redefining the HF band by means of the respiratory frequency
(Section V-A), performing model-based estimation of the LF and
HF components using respiratory frequency (Section VI), and
performing spectral analysis of signals obtained by respiration-
guided decomposition (Section VII). Redefinition of the HF
band based on the respiratory frequency offers a viable solution
in certain situations, while not so when the respiration-related
spectral content overlaps with the LF band. Of the three just men-
tioned approaches, signal decomposition is probably the more
controversial to perform, one reason being that “adjusting HRV
measurements for confounders that are also under autonomic
control might affect their predictive value” [137]. However, this
statement should be counterbalanced by the results presented
in some of the studies referred to in Section VII. For example,
the results in Fig. 14 show that the desired decomposed signal
actually contains information which, when used to form the
index R, can distinguish the relax stage from most of the stress
stages.

It should be noted that while non-adjusted HRV indices may
have predictive value, their interpretation can be completely mis-
leading. For example, a high normalized LF power due to a very
low respiratory rate can certainly discriminate between different
groups of subjects but lead to the erroneous interpretation of
sympathetic dominance.

Respiration-guided decomposition has a place in the HRV
analysis toolbox, however, various aspects deserve further in-
vestigation, for example, the relation between respiratory sig-
nal quality and decomposition performance. In the context
of assessing ANS response to pharmacological blockade and
stress, recent results suggest that similar performance can be
achieved irrespective of whether real or ECG-derived signals
are used [37]. Regarding the quality of ECG-derived signals, it
is important to select among those lead(s) which better reflect
the respiration-modulated changes in the ECG.

Most methods proposed for respiration-guided decomposition
rest on the assumption that the cardiorespiratory coupling is al-
ways present. Since this assumption is not always valid, it would
be valuable to either establish how such methods perform when
coupling is weak, and, if warranted, modify the method so that
weak coupling is handled properly, for example, by considering
the approaches proposed in [62], [120]. Using simulated data, a
recent study investigated cardiorespiratory coupling with regard

to, e.g., the filter order p and the phase delay between the HRV
and respiratory signals [138].

Another aspect on respiration-guided decomposition relates
to the handling of time-varying conditions. While the smoothed
Kalman filter by design can handle such conditions, orthog-
onal subspace projection is derived from the assumption that
respiration-related HRV signal dr(n; r(n)) is related to the
respiration signal r(n) through time-invariant filtering, cf. (53),
suggesting that the projection in (56) is also time-invariant.
However, it is important to realize that estimation of dr(n; r(n))
by orthogonal projection also results in time-varying filtering
of d(n) [24]. Even so, the projection matrix may require to be
recomputed in successive windows to deal with that the coupling
between respiration and HRV can vary over time. With the grow-
ing number of techniques developed for estimating dr(n; r(n))
and the residual signal dur(n), performance benchmarking is
highly warranted. The techniques used for respiration-guided
decomposition may be modified for the purpose of eliminating
the HRV component due to pedaling or running, provided that
external signal information is available on pedaling or running.
Whether this idea is feasible remains to be investigated.

Algorithmic complexity plays a role when long-term ECG
recordings are of interest to analyze, especially in light of that
certain methods tend to be computationally demanding—an
aspect which only recently has received some attention. For ex-
ample, a 50 times difference in execution time between methods
for estimating respiratory sinus arrhythmia has been reported,
where orthogonal subspace projection was found to be one of the
fastest methods [62]. Another algorithmic aspect is the number
of design parameters that need to be set before operation: while
orthogonal subspace projection involves just one parameter,
i.e., the filter order, the smoothed Kalman filter involves a
large number of parameters [68]. As the number of parameters
grows, it becomes increasingly important to investigate to what
extent performance is influenced when using slightly different
parameter settings.

While the clinical implications of time-varying HRV analysis
have yet to be demonstrated in clinical trials, the significance
of such analysis is well-established by several experimental
studies. Time-varying analysis is essential when characteriz-
ing the dynamics of the autonomic response, especially in the
presence of time-varying mean heart and respiratory rates ob-
served in experiments with Valsalva maneuver and cold pressure
testing [139], normal and pathological sleep screening [140],
induced emotions [141], exercise testing [79], pharmacological
interventions [142], and driver drowsiness detection [143]. In-
deed, it has been shown that not only are most signals recorded
during a tilt table test nonstationary, but so are many recorded
during resting supine and standing positions [10].

IX. CONCLUSION

Spectral analysis of HRV has advanced considerably from its
inception to become a smorgasbord of methods which makes it
possible to handle time-varying conditions as well as several
confounding factors and spurious components. Nonetheless,
before performing spectral analysis, the conditions under which
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the HRV signal is acquired must be carefully scrutinized to
ensure that adequate methods are employed. It is equally critical
to account for a mean heart rate which varies markedly over
time as it is restrict the analysis to frequencies below half the
mean heart rate; if not, the comparison of HRV spectra may
turn out meaningless. Despite the recent advancements, further
research is needed on methods which make use of information on
respiration as well as to benchmark the performance of different
decomposition techniques.
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