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Abstract

Background

Sudden cardiac death (SCD) and pump failure death (PFD) are common endpoints in

chronic heart failure (CHF) patients, but prevention strategies are different. Currently used

tools to specifically predict these endpoints are limited. We developed risk models to specifi-

cally assess SCD and PFD risk in CHF by combining ECG markers and clinical variables.

Methods

The relation of clinical and ECG markers with SCD and PFD risk was assessed in 597

patients enrolled in the MUSIC (MUerte Súbita en Insuficiencia Cardiaca) study. ECG indi-

ces included: turbulence slope (TS), reflecting autonomic dysfunction; T-wave alternans

(TWA), reflecting ventricular repolarization instability; and T-peak-to-end restitution (ΔαTpe)

and T-wave morphology restitution (TMR), both reflecting changes in dispersion of repolari-

zation due to heart rate changes. Standard clinical indices were also included.

Results

The indices with the greatest SCD prognostic impact were gender, New York Heart Associa-

tion (NYHA) class, left ventricular ejection fraction, TWA, ΔαTpe and TMR. For PFD, the indi-

ces were diabetes, NYHA class, ΔαTpe and TS. Using a model with only clinical variables,

the hazard ratios (HRs) for SCD and PFD for patients in the high-risk group (fifth quintile of
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risk score) with respect to patients in the low-risk group (first and second quintiles of risk

score) were both greater than 4. HRs for SCD and PFD increased to 9 and 11 when using a

model including only ECG markers, and to 14 and 13, when combining clinical and ECG

markers.

Conclusion

The inclusion of ECG markers capturing complementary pro-arrhythmic and pump failure

mechanisms into risk models based only on standard clinical variables substantially

improves prediction of SCD and PFD in CHF patients.

Introduction

Sudden cardiac death (SCD) and pump failure death (PFD) are both common endpoints in

patients with chronic heart failure (CHF) [1]. Prevention of these two different modes of death

requires different treatment, including implantable cardioverter defibrillators (ICDs) to reduce

SCD mortality [2] and cardiac resynchronization therapy to decrease PFD rate [3]. Effective

techniques for risk stratification, able to specifically target functional (PFD) or arrhythmic

(SCD) risk are needed.

Chronic heart failure is a complex clinical syndrome that can result from a number of func-

tional or structural cardiac disorders, impairing the ventricle’s ability to fill with or eject blood

[4]. A common finding in CHF patients is chronic sympathetic over-activity [5], a risk factor

for both SCD and PFD [6, 7]. Initial sustained sympathetic activation increases the vulnerabil-

ity to ventricular arrhythmias by enhancing the spatio-temporal heterogeneity of repolariza-

tion [8] and the ventricular response to heart rate changes [9]. Enduring sympathetic

activation facilitates withdrawal of vagal activity [10] and a weakened ventricular response

[11]. Considering the interaction of multiple factors in SCD and PFD, the combination of indi-

ces reflecting complementary mechanisms rather than the use of individual markers may

improve SCD and PFD risk stratification.

Risk models based on clinical variables have been proposed for risk stratifying CHF patients

at risk of SCD or PFD [12, 13, 14] and can be utilized as a first step to identify SCD or PFD

risk subgroups [15]. In this study, we hypothesized that integrated models combining standard

clinical variables with ECG markers assessing autonomic nervous system (ANS) imbalance

and cardiac electrophysiological abnormalities would improve both SCD and PFD risk stratifi-

cation, thus providing a tool to better discriminate between SCD and PFD risk. On top of the

analysis on the general study population, separate analyses were performed in subpopulations

of patients with reduced left ventricular ejection fraction (LVEF)�35% (HFrEF group) and

with preserved LVEF>35% (HFpEF group).

Methods

Study population

The original study population consisted of 992 consecutive patients with symptomatic CHF

corresponding to NYHA classes II and III enrolled in the MUSIC (MUerte Súbita en Insufi-

ciencia Cardiaca) study, a prospective, multicenter study designed to assess risk predictors for

cardiovascular mortality in ambulatory CHF patients [13]. Patients were enrolled from the

specialized CHF clinics of eight University Hospitals between April 2003 and December 2004.

Clinical and ECG risk models for SCD and PFD prediction
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A two- (3%) or three-lead (97%) 24-h Holter ECG sampled at 200 Hz was recorded in each

patient at enrolment using ELA Medical equipment (Sorin Group, Paris, France). The original

cohort included patients in atrial fibrillation, in sinus rhythm, in flutter and in pacemaker

rhythm. In this work, only data from patients in sinus rhythm (n = 651) were analyzed. The

MUSIC study included patients with both reduced and preserved LVEF. Patients with pre-

served LVEF were included if they had CHF symptoms, a prior hospitalization for CHF or

objective CHF signs confirmed by chest X-ray and/or echocardiography. Patients were

excluded if they had recent acute coronary syndrome or severe valvular disease amenable for

surgical repair. Patients with atrial fibrillation, flutter, paced rhythm and absence of ventricular

ectopic beats were excluded due to restrictions for reliable calculation of ECG markers [16,

17]. Then, the final sample where all ECG indices could be calculated was composed of 597

patients. All patients signed informed consent and the study protocol was approved by all the

institutional investigation committees from the following participant hospitals: Valme Hospi-

tal (Dr Juan Leal del Ojo, Dr Antonio Fernández, and Dr Dolores Garcı́a-Medina), Santiago

de Compostela Hospital (Dr Pilar Mazón), Son Dureta Hospital (Dr Miquel Fiol and Dr Carlos

Fernández), Arrixaca Hospital (Dr Mariano Valdés), Gregorio Marañon Hospital (Dr Roberto

Muñoz, Dr Jesús Almendral and Dr Marta Dominguez), Joan XXIII Hospital (Dr Alfredo Bar-

dajı́ and Dr Pilar Valdovinos), Insular Las Palmas Hospital (Dr Vicente Nieto, Dr Ricardo

Huerta), Sant pau Hospital (Dr Agustina Castellvı́-Grisó, Dr Maite Domingo, and Dr Mariana

Noguero) [13].

Follow-up visits were conducted on an outpatient basis every 6 months, for a median of 44

months. Primary endpoints were SCD and PFD. Cardiac death (CD) was divided into SCD

and PFD. Death was defined as SCD if it was: (i) a witnessed death occurring within 60 min

from the onset of new symptoms, unless a cause other than cardiac was obvious; (ii) an unwit-

nessed death (<24h) in the absence of preexisting progressive circulatory failure or other

causes of death; or (iii) a death during attempted resuscitation. Deaths occurring in hospitals

as a result of refractory progressive end-stage CHF, or CHF patients undergoing heart trans-

plantation, were defined as PFD. Endpoints were reviewed and classified by the MUSIC Study

Endpoint Committee [13].

Clinical and ECG markers

The clinical variables used in this study are listed in Table 1. ECG markers reflecting spatio-

temporal dispersion of repolarization (IAA), repolarization restitution (ΔαQT, ΔαTpe, TMR)

and sympathovagal balance (TS) were computed and used to develop the risk models, together

with other commonly used ECG variables (see Table 1). Detailed descriptions of IAA, ΔαQT,

ΔαTpe, TMR and TS are presented in Table 2. Previous studies on this dataset have shown that

IAA is associated with SCD when dichotomized at 3.7μV [16] and TS predicts SCD and PFD

when dichotomized at 2.5 ms/RR [17]. ΔαQT and ΔαTpe have been shown to be associated with

SCD when dichotomized at 0.228 and 0.028, respectively [18, 19], while ΔαTpe has been shown

to predict PFD when dichotomized at 0.022 [19]. TMR, a novel index of T-wave morphology

restitution, was calculated by time-warping the morphology of the T-waves [20] at different

RR interval values and was found to predict SCD when dichotomized at TMR = 0.040 [21].

Statistical analyses

The primary outcomes of interest were time to SCD and time to PFD, calculated from the time

of enrollment in the MUSIC study. Patients who died from causes not included in the end-

points or from competing risks were censored at the time of death.

Clinical and ECG risk models for SCD and PFD prediction
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As a first step in the development of the risk models, univariable analyses using Cox regres-

sion were performed in the sample population in order to determine the relationship between

each potential risk marker and SCD or PFD. Multivariable Cox regression analyses were sub-

sequently performed, with risk markers significantly associated with outcomes in the univari-

able analysis being selected and placed into backward stepwise elimination models and risk

markers associated with p>0.05 being eliminated from the models. Three different models

were fit for SCD and PFD separately: a clinical model (including clinical variables only), an

ECG-based model (including ECG markers only) and a combined model (combining clinical

and ECG markers). Finally, a point scoring system was constructed in which points were

assigned to each marker using beta-coefficients from each of the final multivariable Cox

regression models [22, 23, 24]. A risk score was calculated for each patient by adding the points

associated with each marker (see S1 Appendix). For each risk model, three risk groups were

identified based on the distribution of the scores: low-risk (first and second quintiles), middle-

Table 1. Characteristics of patients according to their outcome. Data are represented as median (interquartile range) for continuous variables and as

number (percentage) for dichotomized variables.

Variable Survivors and non-CD victims

(n = 486)

SCD

(n = 49)

PFD

(n = 62)

Clinical variables

Age [years] 63 (18) † 67 (13) 69 (15) †

Male gender 323 (70%) 41 (84%) † 46 (74%)

Diabetes 163 (35%) † 20 (41%) 33 (53%) †

NYHA class III 62 (13%) † 14 (29%) † 21 (34%) †

Ischemic etiology 220 (48%) † 28 (57%) 37 (60%)

ARB or ACE inhibitors 419 (91%) 40 (82%) 51 (82%)

Beta-blockers 337 (73%) † 36 (74%) 35 (57%) †

Amiodarone 32 (7%) † 6 (12%) 8 (13%)

LVEF�35% 238 (51%) † 36 (74%) † 42 (68%) †

LVEF [%] 35 (16) † 30 (16) † 30 (15) †

ECG variables

Median RR [s] 0.86 (0.18) 0.85 (0.21) 0.84 (0.21)

RR range [s] 0.43 (0.19) † 0.37 (0.27) 0.35 (0.16)†

QRS>120 ms 184 (40%) 23 (47%) 28 (45%)

CIA 105 (23%) † 18 (37%) 24 (39%) †

ΔαTpe�0.036 142 (31%) 27 (55%) † 14 (23%)

ΔαTpe�0.022 206 (45%) 14 (29%) † 39 (63%) †

ΔαTpe [adim.] 0.024 (0.03) 0.039 (0.04) † 0.019 (0.03)

ΔαQT�0.228 152 (33%) 24 (49%) † 21 (34%)

ΔαQT [adim.] 0.197 (0.09) † 0.216 (0.10) 0.205 (0.11)

IAA�3.7μV 100 (22%) † 20 (41%) † 15 (24%)

IAA [μV] 2.921 (1.18) 3.207 (2.21) 2.758 (1.31)

TS�2.5 ms/RR 186 (40%) † 33 (67%) † 49 (79%) †

TS [ms/RR] 3.250 (4.53)† 1.597 (4.28) † 1.245 (1.61) †

TMR�0.040 208 (45%) † 35 (71%) † 26 (42%)

TMR [adim.] 0.038 (0.02)† 0.046 (0.03) † 0.037 (0.03)

ACE: Angiotensin-Converting Enzyme; ARB: Angiotensin Receptor Blocker; CIA = complex index of arrhythmia; IAA = Index of Average Alternans;

LVEF = Left Ventricular Ejection Fraction; NYHA = New York Heart Association; PFD = Pump Failure Death; SCD = Sudden Cardiac Death; TMR = T-wave

Morphology Restitution; TS = Turbulence Slope;
† p<0.05 for comparison against the group formed by the other outcomes.

https://doi.org/10.1371/journal.pone.0186152.t001
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risk (third and fourth quintiles) and high-risk (fifth quintile). Association between SCD risk

groups and the SCD outcome was evaluated using the survival probability estimated by the

Kaplan-Meier method using the log-rank test. Association between PFD risk groups and the

PFD outcome was evaluated in the same way. Hazard ratios (HRs) were calculated using the

low-risk group as a reference. A p-value<0.05 was considered as statistically significant. Statis-

tical analysis was performed using SPSS version 22.0 (SPSS, Inc. Chicago IL).

The area under the receiver operating curve (ROC), denoted by AUC, was calculated by

considering the Sensitivity and Specificity of the three risk models (clinical, ECG and com-

bined) in identifying patients associated with a specific outcome (SCD or PFD) at any time

during the follow-up.

Results

Clinical characteristics and cardiac events

There were 425 men and 172 women in the sample population (aged 18–89, 63 ± 12 years).

The majority of patients (83%) were in NYHA class II, while the remaining 17% were in

NYHA class III and LVEF was 37% ± 14%. The detailed characteristics of the study population

are shown in Table 1. During follow-up, there were 134 deaths (22%), including 111 CD (19%)

and 23 non-CD (4%). Among the 111 CDs, 49 were SCD and 62 were PFD.

Associations with SCD and PFD

SCD victims were more frequently men (p = 0.048), were in NYHA class III (p = 0.047) and

had LVEF�35% (p = 0.010), while PFD victims were more likely older than the rest of patients

(p = 0.013), were more frequently diabetic (p = 0.009), in NYHA class III (p = 0.001), were not

treated with beta-blockers (p = 0.012) and also had low LVEF (p = 0.044). Ischemic etiology

was not associated with SCD or PFD (Table 1).

ECG analysis showed that SCD victims were associated with higher ΔαTpe (p = 0.002),

ΔαQT (p = 0.041), IAA (p = 0.008) and TMR (p = 0.001) and lower TS (p = 0.004). PFD victims

Table 2. ECG variables used for SCD or PFD risk prediction.

ECG

marker

Short methodological description Mechanism References

IAA First, selection of signal segments suitable for automatic analysis (128 beats with a 50%

overlap between adjacent segments). Then, estimation of T-wave alternans amplitude in

those segments with a multi-lead scheme that combines periodic component analysis with

the Laplacian likelihood ratio method. Finally, computation of the average of all segment’s

T-wave alternans amplitudes.

Average T-wave alternans activity in

24-h

[16]

TS Maximum positive slope of a regression line assessed over any of 5 consecutive RR

intervals within the first 20 sinus RR intervals after a VPB.

Initial phase of sinus rhythm

deceleration

[17]

ΔαQT Derivative of the QT interval with respect to a surrogate of the RR interval that accounts

for the QT memory dependence on RR.

Ventricular depolarization and

repolarization restitution

[18]

ΔαTpe Derivative of the Tpe interval with respect to a surrogate of the RR interval that accounts

for the Tpe memory dependence on RR.

Dispersion of repolarization

restitution

[19]

TMR First, calculation of the histogram of the RR series and division of the histogram into 10

ms wide pairs of bins distributed symmetrically around the median, and exclusion of those

bins with less than 50 values. Next, calculation of a mean warped T-wave for the two bins

in the pair with the highest separation in RR from the remaining ones. Then, quantification

of the morphological variability between both signal-averaged T-waves [20]. Finally, TMR

was defined as the morphological variability, normalized by the difference between the

longest and shortest RR.

T-wave morphological change per

RR range increment.

[21]

IAA = Index of Average Alternans; TMR = T-wave Morphology Restitution; TS = Turbulence Slope; VPB = Ventricular Premature Beat.

https://doi.org/10.1371/journal.pone.0186152.t002
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were associated with lower RR range (p<0.001), ΔαTpe (p = 0.003), TS (p<0.001) and a higher

rate of a complex index of arrhythmia (CIA) composed of non-sustained ventricular tachycar-

dia (NSVT) and more than 240 ventricular premature beats (VPBs) in 24 h (p = 0.014). QRS

duration was not associated with SCD or PFD.

Predictors of SCD and PFD

The definition of the dichotomized variables introduced in the Cox analysis is presented in S1

Table. In the univariable analysis, SCD was associated with male gender, NYHA class III,

LVEF�35%, ΔαTpe�0.028, ΔαQT�0.228, IAA�3.7μV, TS�2.5 ms/RR and TMR�0.04

(Table 3), while PFD was associated with age, diabetes, NYHA class III, absence of treatment

with beta-blockers, LVEF�35%, reduced RR range, low rate of CIA, ΔαTpe�0.022 and TS�2.5

ms/RR (Table 4).

Multivariable models

For SCD prediction, all the clinical variables with significant association in the univariable

analysis remained significant in the multivariable clinical model. ΔαQT�0.228 was no longer

significant in the multivariable ECG model. The multivariable model combining clinical and

ECG markers included male gender, NYHA class III, LVEF�35%, ΔαTpe>0.036, IAA>3.7μV

and TMR>0.04. Then, TS�2.5 ms/RR was eliminated after adjusting for clinical variables

(Table 5). The equations of the three SCD risk models are described in S2 Appendix.

For PFD risk prediction, the multivariable clinical model included all clinical variables

except for age (Table 6). The variable CIA (NSVT and >240 VPBs in 24 h) was eliminated

from the multivariable ECG model. The multivariable model combining clinical and ECG

markers included diabetes, NYHA class III, ΔαTpe�0.022 and TS�2.5ms/RR. Then, absence

of treatment with beta-blockers, LVEF�35% and reduced RR range were eliminated when

adjusting for both clinical and ECG variables (Table 6). The equations of the three PFD risk

models are described in S2 Appendix.

Table 3. Univariable predictors of SCD.

Risk markers Univariable

HR (95% CI) p

Male gender (xg = 1) 2.159 (1.012–4.606) 0.046

NYHA class III (xNYHA = 1) 2.189 (1.177–4.071) 0.013

LVEF�35% (xLVEF = 1) 2.335 (1.238–4.403) 0.009

LVEF [per 1 SD increment] 0.576 (0.402–0.824) 0.003

ΔαTpe�0.028 (xDaSCD
Tpe
¼ 1) 2.676 (1.524–4.700) 0.001

ΔαQT�0.228 (xDaQT
¼ 1) 1.921 (1.097–3.364) 0.022

IAA�3.7μV (xIAA = 1) 2.335 (1.321–4.128) 0.004

TS�2.5ms/RR (xTS = 1) 2.641 (1.453–4.802) 0.001

TMR�0.04 (xTMR = 1) 2.929 (1.576–5.445) 0.001

ΔαTpe [per 1SD increment] 1.501 (1.223–1.844) <0.001

TS [per 1 SD increment] 0.505 (0.297–0.857) 0.011

TMR [per 1 SD increment] 1.466 (1.235–1.741) <0.001

HR = Hazard ratio; NYHA = New York Heart Association; LVEF = Left Ventricular Ejection Fraction;

IAA = Index of Average Alternans; TS = Turbulence Slope; TMR = T-wave Morphology Restitution.

https://doi.org/10.1371/journal.pone.0186152.t003
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SCD and PFD prediction

According to ROC analysis, ECG markers provided a more accurate prediction of both SCD

and PFD with respect to clinical markers (Fig 1). Accuracy further increased for SCD predic-

tion when combining clinical and ECG markers.

Kaplan-Meier analysis showed that SCD probability for the high-risk group was higher in

the ECG model than in the clinical model and it further increased in the combined model (Fig

2(a)–2(c)). Moreover, in the combined model, SCD probability for the low-risk group was

lower than in the ECG and clinical models, therefore further increasing the distance between

low and high-risk curves. Regarding PFD, the distance between low- and high-risk groups was

significant for all three models, but larger for the combined one (Fig 2(d)–2(f)).

Both SCD and PFD prediction improved when clinical and ECG markers where integrated

into the combined model. HRs for SCD was equal to 4.0, 8.9 and 13.8 for clinical, ECG and

combined models, respectively (Fig 3(a)), and HRs for PFD equal to 4.1, 11.4 and 13.1 for

clinical, ECG and combined models, respectively (Fig 3(d)). Importantly, models designed to

predict SCD did not predict PFD and models designed to predict PFD did not predict SCD

Table 4. Univariable predictors of PFD.

Risk marker Univariable

HR (95% CI) p

Age [per 1 SD increment] 1.378 (1.047–1.813) 0.022

Diabetes (xDiab = 1) 2.011 (1.221–3.312) 0.006

NYHA class III (xNYHA = 1) 2.892 (1.709–4.896) <0.001

Beta-blockers (xβ = 1) 0.498 (0.302–0.823) 0.007

LVEF�35% (xLVEF = 1) 1.792 (1.052–3.053) 0.032

RR range [per 1 SD increment] 0.587 (0.451–0.764) <0.001

CIA (xCIA = 1) 2.034 (1.220–3.391) 0.006

ΔαTpe�0.022 (xDaPFD
Tpe
¼ 1) 2.068 (1.235–3.462) 0.006

TS�2.5ms/RR (xTS = 1) 4.975 (2.698–9.172) <0.001

TS [per 1 SD increment] 0.410 (0.242–0.696) 0.001

CIA = complex index of arrhythmia; HR = Hazard ratio; SD = Standard Deviation; NYHA = New York Heart

Association; LVEF = Left Ventricular Ejection Fraction; TS = Turbulence Slope.

https://doi.org/10.1371/journal.pone.0186152.t004

Table 5. Multivariable predictors of SCD.

Risk markers Clinical Multivariable ECG Multivariable Combined Multivariable

HR (95% CI) β p HR (95% CI) β p HR (95% CI) β p

Male gender (xg = 1) 2.248 (1.050–4.814) 0.810 0.037 - - - 2.750 (1.276–5.927) 1.012 0.010

NYHA class III (xNYHA = 1) 2.221 (1.189–4.150) 0.798 0.012 - - - 2.499 (1.328–4.702) 0.916 0.005

LVEF�35% (xLVEF = 1) 2.165 (1.146–4.092) 0.772 0.017 - - - 1.997 (1.052–3.792) 0.692 0.035

ΔαTpe�0.028 (xDaSCD
Tpe
¼ 1) - - - 2.365 (1.329–4.210) 0.861 0.003 2.550 (1.440–4.515) 0.936 0.001

ΔαQT�0.228 (xDaQT
¼ 1) - - - N.S. N.S. N.S. N.S. N.S. N.S.

IAA�3.7μV (xIAA = 1) - - - 2.377 (1.339–4.221) 0.866 0.003 2.271 (1.278–4.035) 0.820 0.005

TS�2.5ms/RR (xTS = 1) - - - 2.180 (1.193–3.986) 0.780 0.011 N.S. N.S. N.S.

TMR�0.04 (xTMR = 1) - - - 2.193 (1.162–4.140) 0.785 0.015 2.883 (1.531–5.429) 1.059 0.001

HR = Hazard ratio; NYHA = New York Heart Association; LVEF = Left Ventricular Ejection Fraction; NSVT = Non-Sustained Ventricular Tachycardia;

VPB = Ventricular Premature Beat; IAA = Index of Average Alternans; TS = Turbulence Slope; TMR = T-wave Morphology Restitution; N.S. = Not

Significant, N.A. = Not Applicable.

https://doi.org/10.1371/journal.pone.0186152.t005
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(Fig 3(b) and 3(c)), therefore demonstrating specificity, on top of sensitivity, in the prediction

of the designated mode of death.

Analyses in reduced and preserved LVEF populations

The number of SCD victims was significantly higher in the HFrEF group than in the HFpEF

group (11% vs 5%, p = 0.010). In the HFrEF group, the number of PFD victims was also signif-

icantly higher than in the HFpEF group (13% vs 8%, p = 0.044).

Table 6. Multivariable predictors of PFD.

Risk markers Clinical multivariable ECG multivariable Combined multivariable

HR (95% CI) β p HR (95% CI) β p HR (95% CI) β p

Age [per 1 SD increment] N.S. N.S. N.S. - - - N.S. N.S. N.S.

Diabetes (xDiab = 1) 1.842 (1.112–3.049) 0.611 0.018 - - - 1.697 (1.022–2.818) 0.529 0.041

NYHA class III (xNYHA = 1) 2.305 (1.342–3.959) 0.835 0.002 - - - 1.972 (1.154–3.370) 0.679 0.013

Beta-blockers (xβ = 1) 1.859 (1.118–3.091) 0.620 0.017 - - - N.S. N.S. N.S.

LVEF�35% (xLVEF = 1) 1.768 (1.034–3.026) 0.570 0.037 - - - N.S. N.S. N.S.

RR range [per 1 SD increment] - - - 0.753 (0.566–1.000) -0.284 0.050 N.S. N.S. N.S.

CIA (xCIA = 1) - - - N.S. N.S. N.S. N.S. N.S. N.S.

ΔαTpe�0.022 (xDaPFD
Tpe
¼ 1) - - - 2.174 (1.298–3.642) 0.777 0.003 2.219 (1.320–3.730) 0.797 0.003

TS�2.5ms/RR (xTS = 1) - - - 4.132 (2.165–7.884) 1.419 <0.001 4.160 (2.225–7.779) 1.425 <0.001

CIA = complex index of arrhythmia; HR = Hazard ratio; SD = Standard Deviation; NYHA = New York Heart Association; ARB: Angiotensin Receptor

Blocker; ACE: Angiotensin-Converting Enzyme; LVEF = Left Ventricular Ejection Fraction; TS = Turbulence Slope; N.S. = Not Significant; N.A. = Not

Applicable.

https://doi.org/10.1371/journal.pone.0186152.t006

Fig 1. ROC curves of the clinical, ECG and combined specific risk models for SCD and PFD classification. ROC curves and AUCs for the clinical

(solid blue), ECG (dashed red), and combined (dotted black) prediction models in the classification of SCD (a) and PFD (b) victims.

https://doi.org/10.1371/journal.pone.0186152.g001
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In the HFrEF group, SCD victims were less frequently under ARB or ACE inhibitors

(p = 0.027) and were associated with higher ΔαTpe (p = 0.008) and TMR (p = 0.001) but lower

TS (p = 0.025), while PFD victims were more frequently diabetic (p = 0.001), in NYHA class

III (p = 0.001) and showed lower RR range (p = 0.003), ΔαTpe (p = 0.005) and TS values

(p<0.001) but a higher rate of CIA (p = 0.030). Univariable Cox analyses showed that the only

clinical variable significantly associated with SCD in the HFrEF group was administration of

ARB or ACE inhibitors (S2 Table). Hence, the clinical model included just this single variable.

Univariable results for clinical and ECG variables for PFD prediction are shown in S3 Table.

The ECG variables that remained significantly associated with SCD in a multivariable Cox

analysis and were included in the ECG model were ΔαTpe�0.028, IAA�3.7μV, TS�2.5 ms/RR

and TMR�0.04 (S4 Table), as in the general population analysis. The AUC of the ECG model

was 0.72 (0.63–0.81), p<0.001. The combined model for SCD included the four above-men-

tioned ECG-derived variables and administration of ARB or ACE inhibitors (S4 Table) (AUC

of 0.73 (0.64–0.81), p<0.001). Based on multivariable Cox regression analysis for PFD in the

HFrEF group, the clinical model included diabetes, NYHA class III and administration of

ARB or ACE inhibitors (AUC of 0.69 (0.60–0.78), p<0.001), the ECG model included reduced

RR range, ΔαTpe�0.022 and TS�2.5 ms/RR (S5 Table) (AUC of 0.76 (0.68–0.83), p<0.001),

while the combined model included the three variables from the clinical model, ΔαTpe�0.022

and TS�2.5 ms/RR (S5 Table) (AUC of 0.79 (0.71–0.86), p<0.001).

When dividing the HFrEF group into three risk groups according to the models, SCD pre-

diction improved when clinical and ECG markers where integrated into the combined model.

However, the combined model for PFD showed lower predictive power than the ECG model.

Additionally, the combined model designed to predict SCD also predicted PFD and vice versa.

Fig 2. SCD and PFD probability curves of the clinical, ECG and combined specific risk models. Probability curves of the three risk groups, low (solid

blue), middle (dotted green) and high (dashed red) defined in the clinical (left), ECG (middle) and combined (right) specific risk models for SCD (top) and PFD

(bottom).

https://doi.org/10.1371/journal.pone.0186152.g002
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In the HFpEF group, SCD victims were associated with a higher rate of CIA (p = 0.024)

and higher values of ΔαQT (p = 0.028), while PFD victims were characterized by higher age

(p = 0.012) and lower values of TS (p = 0.005). Univariable Cox analyses showed that no clini-

cal variable was significantly associated with SCD or PFD (S2 and S3 Tables). Consequently,

no clinical models for either SCD or PFD were obtained in this population (S4 Table). The

multivariable ECG model for SCD consisted of the variable CIA and ΔαQT�0.228 (AUC of

0.72 (0.55–0.89), p = 0.008). The ECG model for PFD included only TS�2.5 ms/RR, as this

was the only variable significantly associated with PFD along follow-up. For SCD, no multivar-

iable combined model could be calculated. The multivariable combined model for PFD

included age and TS (S4 and S5 Tables) (AUC of 0.64 (0.51–0.78), p = 0.033).

When dividing the HFpEF group into three risk groups, the high SCD risk group in the

ECG-derived model was significantly associated with SCD (HAR 2.219 (1.217–4.045),

p = 0.009), with no significant association with PFD. Also, the high PFD risk group in the

Fig 3. SCD and PFD hazard ratios of the clinical, ECG and combined specific risk models. Hazard

ratios of SCD ((a) and (b)) and PFD ((c) and (d)) for the three risk groups, low (blue square), middle (green

circle) and high (red diamond) defined in the clinical, ECG and combined specific models. * and **indicate

p<0.05 and p<0.005 with respect to the low risk group, respectively.

https://doi.org/10.1371/journal.pone.0186152.g003
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combined model was significantly associated with PFD (HAR 2.578 (1.453–4.573), p = 0.001),

with no significant association with SCD.

Discussion

The main result of this study is that in mild-to-moderate CHF patients the combination of

clinical and ECG markers significantly improves prediction of both SCD and PFD, as com-

pared to the use of clinical variables only. This indicates a possible new strategy to identify

CHF patients specifically at risk of SCD or PFD.

In a combined model, the clinical variables that predicted SCD were male gender, NYHA

class III and LVEF�35%. Previous studies have also shown that men have higher SCD risk

than women [25, 26], while the contribution of NYHA class to SCD risk is still unclear [27,

28]. Impaired LVEF is at present the only risk factor considered for ICD implantation in high

SCD risk patients, but its specificity is insufficient [29].

Diabetes, NYHA class III, absence of treatment with beta-blockers and LVEF�35% pre-

dicted PFD in a multivariable clinical model. These results confirm previous findings reporting

the relation between end-stage CHF and low cardiac output and LVEF, diabetes due to

increased congestion as well as advanced stages of NYHA class [30]. Also, treatment with beta-

blockers or limiting neuro-hormonal activation has been shown to be especially important in

delaying CHF progression [31].

The ECG variables that independently predicted SCD in the ECG model were ΔαTpe, IAA,

TS and TMR. Our results confirm that SCD risk is associated with increased dispersion of

repolarization restitution [32, 33], increased variability of temporal dispersion of repolariza-

tion [34] and baroreceptor-heart rate reflex sensitivity [17, 35]. More importantly, our results

confirm the hypothesis that a combination of ECG markers capturing complementary infor-

mation about arrhythmic substrates could improve SCD prediction. Future studies could

include additional risk indices into the proposed models.

The ECG markers that independently predicted PFD in the ECG model were ΔαTpe, TS and

the range of RR. This indicates that PFD is also characterized by baroreceptor-heart rate reflex

sensitivity [17, 35]. However, lower values of ΔαTpe indicative of higher PFD risk suggest that

PFD victims experience a reduction in the ability of the ventricles to adapt to changes in heart

rate, as opposed to SCD victims [36].

The ECG models for SCD and PFD showed better prognostic value than the clinical mod-

els. The combination of clinical and ECG markers synergistically improved the prognostic

value for both SCD and PFD. For PFD prediction the improvement achieved by combining

clinical and ECG markers was only marginal with respect to the results of the ECG model.

This suggests that clinical variables do not add complementary information to ECG markers

for PFD risk prediction. More importantly, the ECG and combined risk models demonstrated

high sensitivity (association with the designated mode of death) and specificity (no association

with the alternative mode of death) for SCD and PFD prediction, while the clinical risk model

for SCD prediction lacked specificity and predicted PFD in addition to SCD.

Separately considering HFrEF and HFpEF subpopulations, the number of SCD and PFD

victims was significantly higher in the HFrEF group than in the HFpEF group, supporting pre-

vious studies [37]. A larger number of ECG-derived markers were predictive of SCD or PFD

in HFrEF patients as compared to HFpEF patients. Still, in this work we found that an ECG-

derived model including a higher rate of non-sustained ventricular arrhythmia and enhanced

spatio-temporal inhomogeneity of ventricular repolarization (higher ΔαQT) demonstrated spe-

cific SCD predictive value in the HFpEF group. These results support previous studies where

ECG-derived arrhythmic markers were found to be predictive of SCD in patients with
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preserved LVEF [38]. For PFD prediction, a multivariable combined model including age and

TS predicted PFD in this group, supporting previous results in the literature where autonomic

markers have shown capacity to predict PFD in patients with preserved LVEF [39, 40]. Overall,

our results in the HFrEF group were very similar to those in the general study population, with

the exception of the individual association of the clinical variables with SCD, since only admin-

istration of ARB or ACE inhibitors showed predictive value in the HFrEF group. In a com-

bined model including clinical variables and ECG-derived markers for PFD risk prediction,

the autonomic index TS was included as well when analyzing the HFrEF subpopulation, in

agreement with previous studies in the literature investigating mortality due to pump failure

in patients with reduced LVEF [41].

Limitations

Due to the low number of SCD and PFD victims, a division of the sample population into

training and test groups for validation of the results was not performed. Moreover, the pro-

posed risk scores were calculated in patients in sinus rhythm, which limits its applicability,

especially in patients with reduced LVEF, where the incidence of AF is significant. Further

studies may consider modifications of ECG markers to assess the proposed models in CHF

patients with other rhythms. The assessment of clinical and combined models integrating

additional variables deserves further investigation. The results obtained in this work are not

directly comparable with those of a previous publication reporting clinical scores on the

MUSIC study [13], because the sample population analyzed in the present paper is limited to

CHF patients in sinus rhythm. Also, since only a Holter ECG recording per patient was avail-

able, reproducibility was not studied in the present work. In addition, we found more SCD

and PFD victims with NYHA class III, as compared to NYHA class II, supporting previously

published results [42]. However, it should be noted that the evaluation of the relationship

between NYHA class and SCD or PFD was limited in this study since only CHF patients in

NYHA classes II and III were available in the population. Finally, the prognostic discriminative

power of the clinical models may be reduced because the clinical indices available for this

study did not include information about neuro-hormonal activation, natriuretic peptides, dia-

stolic function or peak oxygen consumption. The inclusion of these other indices may to some

extent impact the prediction of SCD and, most likely, PFD.

Conclusion

This study demonstrates that two risk prediction models combining clinical and ECG markers

of electrophysiological and autonomic abnormalities specifically predict SCD and PFD. For

SCD, the combination of clinical and ECG markers substantially improved risk prediction as

compared to the use of only clinical or ECG markers. For PFD, the use of only ECG markers

demonstrated its superiority over the use of clinical markers. The combination of clinical and

ECG variables only marginally improved the PFD predictive value of the ECG model.
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Laguna, Esther Pueyo.

Project administration: Julia Ramı́rez, Pablo Laguna, Esther Pueyo.
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