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Abstract—Objective: Enhanced spatiotemporal ventric-
ular repolarization variability has been associated with
ventricular arrhythmias and sudden cardiac death, but
the involved mechanisms remain elusive. In this paper,
a methodology for estimation of parameters and state
variables of stochastic human ventricular cell models from
input voltage data is proposed for investigation of repolar-
ization variability. Methods: The proposed methodology for-
mulates state-space representations based on developed
stochastic cell models and uses the unscented Kalman fil-
ter to perform joint parameter and state estimation. Eval-
uation over synthetic and experimental data is presented.
Results: Results on synthetically generated data show the
ability of the methodology to: first, filter out measurement
noise from action potential (AP) traces; second, identify
model parameters and state variables from each of those
individual AP traces, thus allowing robust characterization
of cell-to-cell variability; and, third, replicate statistical pop-
ulation’s distributions of input AP-based markers, including
dynamic markers quantifying beat-to-beat variability. Ap-
plication onto experimental data demonstrates the abil-
ity of the methodology to match input AP traces while
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concomitantly inferring the characteristics of underlying
stochastic cell models. Conclusion: A novel methodology is
presented for estimation of parameters and hidden vari-
ables of stochastic cardiac computational models, with the
advantage of providing a one-to-one match between each
individual AP trace and a corresponding set of model char-
acteristics. Significance: The proposed methodology can
greatly help in the characterization of temporal (beat-to-
beat) and spatial (cell-to-cell) variability in human ventric-
ular repolarization and in ascertaining the corresponding
underlying mechanisms, particularly in scenarios with lim-
ited available experimental data.

Index Terms—Cardiac electrophysiological models, beat-
to-beat variability, parameter estimation, joint estimation,
unscented Kalman filter.

|. INTRODUCTION

EAT-TO-BEAT and cell-to-cell variability in ventricular
B electrophysiology has been well documented, this being
an important contributor to cardiac electrical function [1]-[5].
Enhanced levels of spatiotemporal variability in ventricular re-
polarization have shown value to assess cardio-toxic drug ef-
fects and to identify individuals at high arrhythmic risk [6]-[9],
among others.

Temporal (beat-to-beat) variability in cellular ventricular
electrophysiology has been associated with randomness in ion
channel gating and variations in intracellular calcium handling
[10]-[16]. On the other hand, spatial (cell-to-cell) variability
has been suggested to be at least partly mediated by differ-
ential ionic contributions to the electrophysiology of individ-
ual cells [10], [11], [17], [18]. In this regard, the effect of
variations in ion channel numbers to differences across cells
has been well established, while that of variations in other
characteristics related to ionic activation or inactivation is less
clear [19], [20]. Computational modeling and simulation has
greatly helped to shed light on the mechanisms underlying car-
diac electrophysiological variability and its ability to predict
arrhythmic risk in different settings [10], [11], [19]. Specifi-
cally, computational approaches have been developed to inves-
tigate experimentally observed cell-to-cell electrophysiologi-
cal differences [11], [21]-[24] and/or beat-to-beat action po-
tential (AP) variations, the latter after including stochasticity
in modeled ionic currents [4], [11]-[13], [24]. Despite these
advances, there is still limited understanding of the causes
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and consequences of ventricular repolarization variability,
particularly in humans, where the less availability of data has
hampered its research.

The most commonly available experimental measurement
in ventricular cells is transmembrane potential. Identification
of individual characteristics of underlying AP models, includ-
ing estimation of model parameters and state variables, from
available voltage measurements would allow characterization
of temporal and spatial variability without the need of per-
forming additional unaffordable experiments, which would at
most provide partial descriptions of some model parameters/
variables. In the present work, similarly to other modeling works
[25], [26], the estimated model parameters are maximal ionic
current conductances, whose variations have been established
to have a major impact on both temporal and spatial variability.
This estimation problem has been addressed in the literature by
using a variety of methods, even if typically considering de-
terministic rather than stochastic cell models, thus only aiming
at tackling cell-to-cell variability while not targeting represen-
tation of beat-to-beat variability, which is an important focus
of the present work. As an example, approaches based on the
construction of populations of models calibrated according to
experimentally measured ranges [4], [23] or distributions [20],
[26] of AP-derived markers or based on emulation [27] have
been proposed. These approaches provide a set of model pa-
rameter estimates for a whole population of cells, but do not
provide robust identification of model parameters for each cell
individually. The method proposed in this study works on an
individual cell basis and uses the whole transmembrane voltage
recording, comprising several APs rather than a single AP from
a unique beat, as an input for the estimation, which is expected
to provide more accurate representations of experimental mea-
surement distributions even if at higher computational cost. In
ventricular electrophysiology research, and yet more notably in
humans, available experimental data is scarce, thus making this
individual cell-based identification a feasible approach. In [25],
[28], a Markov Chain Monte Carlo (MCMC) method was pro-
posed to estimate the ionic conductances of AP models directly
from voltage traces as well. Our methodology, which departs
from the hypothesis that model parameter and variable estima-
tion can benefit from taking into account beat-to-beat variations
in voltage signals, involves lower computational complexity
than the one in [25], [28] and additionally provides an estima-
tion of hidden states together with model parameters. Other ap-
proaches using optimization methods like Genetic Algorithms
[29] or Moment Matching [26] have also been considered for
estimation of model parameters, but not state variables, from
transmembrane voltage measurements. Importantly, none of the
above cited schemes deals with stochastic models to account for
beat-to-beat AP variability, as does the methodology proposed in
the present study. In the case of the optimization-based methods,
the sequential nature of the AP data is sometimes not even con-
sidered but all samples are pooled together when solving the op-
timization problem [29]. Furthermore, these optimization-based
methods do not always offer uncertainty measurements for the
estimations, as can be obtained with our proposed methodology
or with the method proposed in [25], [28]. As a conclusion, this
work is, to the best of our knowledge, the first one providing

individual cell-based identification of cardiac model parameters
and variables while accounting for temporal AP variability.

The methodology here proposed is based on formulating
the identification problem by means of a nonlinear state-space
representation [30] and using the Unscented Kalman Filter
(UKF) [31] to infer the parameters and non-measured dynamic
state variables of an underlying human ventricular AP model.
In this study a stochastic version of the O’Hara et al. (ORd)
AP model [32] was developed and used as a basis for our state-
space representations. The employed UKEF filter, framed within
the family of Sigma-Point filters [33], offers a probabilistic in-
ference method to estimate the hidden variables of a non-linear
system in a consistent and online manner. This constitutes a
very powerful tool to reproduce both steady-state and dynamic
characteristics of individual cells. Performance evaluation of
the proposed methodology is carried out using sets of synthetic
data generated from human ventricular AP models contaminated
with different levels of noise. The methodology is subsequently
tested on experimentally measured voltage traces. Preliminary
results of a more simple methodology developed based on a
human ventricular phenomenological AP model were presented
as a conference contribution [34].

Il. MATERIALS AND METHODS
A. Notation

Lowercase normal letters were used to denote scalar quan-
tities, lowercase boldface letters to denote column vectors and
uppercase boldface letters to denote matrices. Those quantities
that are time-varying are written as x(¢) for continuous time
and (k) for discrete time. The notation 7" denotes matrix and
vector transpose.

B. Human Ventricular Stochastic AP Models

Stochastic AP models were built based on the ORd hu-
man ventricular epicardial model [32]. The ordinary differen-
tial equations representing ion channel gating were converted
into reflected stochastic differential equations, following the
approach presented in [4], [35]. This allowed physiologically
realistic representation of stochastic ionic gating fluctuations
contributing to beat-to-beat AP variability. Let vector s(t) de-
note the proportion of ion channels of species ““s” in each state of
the corresponding Markov formulation for time ¢. The temporal

evolution of s(t) was simulated according to:

ds(t) = As(t) dt + JLNTED(S(@) dw k(). (1)
In the above equation, the first term represents the standard
deterministic model of ion channel dynamics, where matrix
A contains the transition rates. The second term accounts for
the stochastic fluctuations due to intrinsic noise, which was
formulated using Wiener increments [4], [36]. The magnitude
of this second term is inversely proportional to the square root
of the number of ion channels of species “s” in the cell denoted
by N, following the derivation of [4], [36]. The third term,
k(t), represents the projection that serves to ensure that s(t)
remains in the probability simplex [37], as described in [35].
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Stochasticity was included in the ionic gating of four differ-
ent currents, namely Ik, Ix,, I;, and I, 7, which are major
currents active during AP repolarization [4], [25], [38]. Follow-
ing the derivations of [4], [35], matrices A, E (stoichiometry)
and D (containing the rate of each transition as a function of
s) in equation (1) for the stochastic ORd model were calculated
as described in the following. For ionic currents defined by one
ionic gate r in the ORd model, the possible channel states are
open and closed. The vector s of the proportions of channels in
each state is s = [ry, rO}T

T =11

where the transition rates o, and 3, are defined by:

T'oo

a = )
T
1

B =L _a, 3)
0

with 7, and 7, defined as in the ORd model. Letting the pro-
portion of channels in the open and closed states be denoted by
r1 and 7y, respectively, the matrices D, E and A in the Markov
formulation are as follows:

D= [Vrar T,

o< [

_ _ﬂr Qp
A= |: /Br —Qy :| ’

This scheme with only one ionic gate, and thus two differ-
ent channel states, was used for each of the fast and slow
Iy, currents that are weighted averaged to obtain the Iy,
current.

For ionic currents defined by the product of two ionic gates
r and s in the ORd model, there are four possible channel
states. The vector of proportions of channels in those states
is s = [rlshrosl,rlso,roso]T, with transition rates ., 3.,
a and [, defined analogously to those reported in the above
paragraph:

Letting the proportion of channels in each of the four states
be denoted by:
® r45p: proportion of channels in the state with the two gates
r and s closed.
® r150: proportion of channels in the state with the r gate
open and the s gate closed.
® 1ys;: proportion of channels in the state with the r gate
closed and the s gate open.

TABLE |
NUMBER OF CHANNELS FOR I, Iy, Ito, AND Icq

Icar
20121

Iy Ito
3621 606

I
Ns 169

® 1 s;: proportion of channels in the state with the two gates
r and s open.
the matrices D, E and A in the Markov formulation are as
follows:

Jrost o + 1181 5y
Vroso ar + 110 By

D = diag Vrisoos +risi s | |
{Z/TOSO g + ToS1 63

[ 1 0 1 0

-1 0 0 1
B= 0 1 -1 0|

0 -1 0 -1

__(ﬁr +6s) Q. Qg 0
A — /87“ _(057’ + ﬂs) O g

/88 0 *(O‘s +ﬂr) (078
L 0 Bs By —(ar + )

This scheme with two ionic gates, and four channel states, was
used for I and I;, currents. In particular, in the case of ;,, the
total current was decomposed as a weighted average of four indi-
vidual currents, each of which represented by the product of two
ionic gates: @ ifast, @ islow> ACaMK 1CaMK fast and acamvk 1CaMK slow -

For I¢, 1, ordinary differential equations representing gating
variables were converted into stochastic differential equations
following the subunit-based approach used in [11]. For a gating
variable z, the evolution of the probability of this gate being
open was calculated as:

Ts, — Ts

s 1_25 s
da,(t) = 2= dt 4 Y+ N“)x
S 7—8 S

The number of channels N, of each ionic species “s” was
computed as follows. For Ik, I, and I;,, experimentally
measured unitary current values were available and were used
to calculate IV, as the maximum conductance of ion channel
“s” in the ORd model, denoted by Gy, divided by the uni-
tary conductance of ion channel “s”, denoted by g,. Values
for g; were taken from [11], [39], [40] and adjusted for tem-
perature and/or extracellular potassium concentration following
[41], [42]. For I¢, 1, the number of channels was computed by
dividing the maximum /¢, current by the single-channel cur-
rent i¢, 7, times the channel opening probability. Table I shows
the values used in the computations for the default ORd model.

dw. (4)

C. State-Space Formulation

State-space representations were formulated to describe non-
stationary stochastic processes with measured and hidden vari-
ables [30]. Specifically, the stochastic ORd model, described in
Section II-B, but with unknown ionic current conductances, was
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casted into a non-linear discrete-time state-space model, follow-
ing numerical integration with the Euler-Maruyama method. As
an example, equation (1) for vector s(¢) was written in the form:

s(k) =s(k—1)+As(k—1)A,

+J%ED(s(k—1))dw+k(k— 1) 5)
where k is a discrete index (k € N), A; is the integration time
step (constant in this study) and dw is a vector of independent
Wiener increments sampled from a Gaussian distribution with
zero mean and variance equal to A;. The overall state-space
representation was described by the following two equations:

x(k) = f(x(k = 1),q(k - 1),0) ()
y(k) = h(x(k)) + (k). ©)

Equation (6), called the process or transition equation, col-
lects the discretized set of differential equations that define the
state variables of the stochastic ORd model, stacked in vec-
tor x(k), thus including the equations that model the temporal
evolution of transmembrane voltage, intracellular ion concen-
trations and proportion of channels in each state for each ionic
species. The non-linear function f(-) in equation (6) has three
input vectors, namely the vector x(k) of model state variables,
the vector q(k) of non-additive process noises (related to the
Wiener increments) described in II-B and the vector 6 of model
parameters. The components of vector q(k) take values sam-
pled from independent Gaussian distributions with zero mean
and variance equal to A; for such components corresponding to
the stochastic gating variables and zero for all other components.

The ORd model was parametrized with factors multiplying
the conductances of the following ionic currents [26]: slow de-
layed rectifier potassium current, I ; rapid delayed rectifier
potassium current, /g, ; transient outward potassium current,
I,; L-type calcium current, I/, ; inward rectifier potassium
current, I 1; and sodium current, Iy ,. Hence, the vector of
static model parameters, @ = {0k, 0+, 0t0,0car,0k1,0Na }
represents variations in the ionic conductances of Iy, Ik,
Lo, Icar, 11 and Iy, relative to the default values in the
ORd model, I; = I; oga 0;. Note that the same factor ¢; ap-
plies to the number of ion channels of each species (Table I):
Nj = Nj orq 0, as the unitary conductance of each ionic
species was assumed to be constant based on previously re-
ported experimental findings [43]. The values of the parameters
in @ were inferred for each input AP trace.

In equation (7), called the measurement equation, y(k) is the
measured variable (transmembrane voltage), which is defined as
y(k) = v(k) + r(k), where v(k) represents the noiseless trans-
membrane potential and (k) is additive white Gaussian noise.
Hence, the function A(+) in equation (7) is linear, as it takes only
the component of x(k) corresponding to the transmembrane
voltage, v(k).

D. Augmented State-Space

A state augmentation approach [30] was used to jointly es-
timate the parameters and state variables of the stochastic ORd
model for a given input (synthetic or experimental) AP trace.

Following the notation introduced in II-C, the static parameters
in vector @ were replaced with a new vector of time-varying
variables 0(k) using a random walk model with drift:

6(k) =0(k—1)+ 6(k) (8)

where the components of the artificial noise d (k) introduced in
the definition of 0~(k) dynamics are i.i.d. zero-mean Gaussian
processes with very small variance. This artificial noise allows
adapting the parameter values in an online manner while the
input AP trace is being filtered and can be given an interpretation
similar to the small constant step size in adaptive filtering theory
[44]. In this work, this artificial noise had the same variance,
ag, for all six individual parameters.

In addition to the augmentation due to the inclusion of the
parameters as additional state variables, the noise process q(k)
was also incorporated as part of the augmented state space. This
is a standard approach for estimation when dealing with non-
additive noise processes (see e.g. [30, Chap. 5]). By stacking
the vector x(k) of model state variables, the new vector (k) of
model parameters and the vector q(k) of process noises, a new
“augmented” state vector z(k) was defined as:

a(k) = [x(k), a(k), 0(k)]| ©)
The resulting state-space model has the following formulation:
2(k) = fu(a(k — 1)) + e(k) (10)
y(k) = ha(a(k)) + (k) ()

where f, and h, are the augmented versions of f and A from
equations (6) and (7). The vector €(k) contains two types of
noises, those associated with the Wiener increments of the
stochastic model (accounted for by q(k)) and those associated
with the new parameter vector 6 (k) (accounted for by &(k)). The
components in vector €(k) corresponding to the original state
variables x (k) take a value of zero, while the rest of components
are zero-mean Gaussian noises with variance equal to the inte-
gration time step, A, for the components corresponding to q(k)
and variance equal to o for the components corresponding to

o(k).

E. UKF-Based Joint State and Parameter Estimation

As the state-space representation defined in equations (10)
and (11) is nonlinear, the Unscented Kalman Filter (UKF) [31]
was used for state and parameter inference. UKF is based on
approximating the posterior distribution p(z(k)|y1 .1 ), with y; .5
denoting all the samples up to time % of the measured variable
1y, by using a deterministic set of suitably chosen points called
Sigma Points. UKF has shown better performance than the Ex-
tended Kalman Filter (EKF) at a comparable computational cost
[45]. Also, UKF involves much lower computational cost than
Monte Carlo-based methods, like Particle Filters [30].

A scheme of the proposed methodology is shown in Fig. 1.
A noisy (synthetic or experimental) AP trace is provided as an
input for UKF to infer the evolution of a set of state variables
(transmembrane voltage, ionic concentrations and ion channel
states) and model parameters (ionic current conductance factors)
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Fig. 1. Scheme of the proposed methodology. A noisy AP trace is the
input to a model-based filtering algorithm. This AP may have been syn-
thetically generated using a computational AP model or experimentally
recorded. The filtering algorithm outputs a filtered (noiseless) AP and a
set of estimated hidden states and model parameters for a computational
AP model used as a basis for the study (ORd model in this study). New
AP traces can be computed from the estimated model under different
simulation conditions.

based on the state-space representation described in equations
(10) and (11).

Being L the dimension of this state-space representation,
2L + 1 Sigma Points were deterministically generated for each
time step. These Sigma Points were propagated through the
model transition function f,(-) and used to approximate the
posterior mean and covariance according to the so called Un-
scented Transform [31]. Since the dimension of z(k) was 95 (56
state variables, 33 process noises and 6 model parameters), 191
Sigma Points were computed.

For the estimation process, two free hyper-parameters re-
quired prior definition: the process noise variance o related
to model parameter estimation and the measurement noise vari-
ance o2, The practical selection of these parameters is not trivial
and its effects are explored for different scenarios in Section III.
In addition, the UKF algorithm has three parameters, namely «,
[ and k, which in this study were assigned the following values:
a=1,060=0,k=3— L,asin [34].

In the following the notation @ was used to denote the estimate
of a generic variable a. Analogously, a(k) was used for a time-
varying estimate. When in the following a unique estimated
value, e.g. for the parameter vector 0, is provided, the average of
the estimated values over the last N = 5 cycles was considered,
as using a larger number of cycles did not render improved
estimation performance.

F. Synthetic Data

A set of AP models was built based on the ORd human
ventricular epicardial model [32]. Each AP model in the dataset
was obtained by varying the conductances defined as parameters
of the model: Ik, Ik, Liv, Icur, Ix1, and I, . These models
aimed to represent inter-cellular variability and were used to
validate the presented methodology.

A total of 500 models were initially generated by sampling
the nominal conductance values of the ORd model in the range
+100% using the Latin Hypercube Sampling method [4], [23],

TABLE Il
CALIBRATION CRITERIA APPLIED ONTO HUMAN VENTRICULAR CELL MODELS
AP characteristic [ Min. acceptable value [ Max. acceptable value
Under baseline conditions ([32], [47], [48])

APDgp (ms) 178.1 4427
APDsg (ms) 106.6 349.4
RMP (mV) -94.4 -78.5
Vpeak (mV) 7.3 -

Under 90% I x5 block ([32])
AAPDgq (%) -54.4 [ 62

Under 70% I, block ([49])
AAPDgq (%) 34.25 91.94

Under 50% I, block ([50])
AAPDgq (%) [ -5.26 [ 14.86

[46]. Out of all generated models, only those satisfying the
calibration criteria shown in Table II were retained. Such crite-
ria were based on experimentally available human ventricular
measures of steady-state AP characteristics [32], [47]-[50].
These characteristics included: APDgg)sg, denoting 1 Hz steady-
state AP duration (APD) at 90%|50% repolarization (expressed
in ms); RMP, standing for resting membrane potential (in mV);
Vpeak, measuring peak membrane potential following stimula-
tion (in mV); and AAPDy,, which was calculated as the per-
centage of change in APDy, with respect to baseline when se-
lectively blocking I s, I, or Ix; currents (measured in ms).
For some of the above characteristics, only experimental values
of the mean and standard error of the mean, rather than mini-
mum and maximum limits, were available. In those cases, limits
were defined by mean = three calculated standard deviations, as
this would cover 99% of the measurements if the data followed
a normal distribution. After applying the described calibration
criteria, the initial set of 500 models was reduced to a set of 131
selected models.

In each model of this synthetic dataset, the variation in the
conductances of the four stochastic ionic currents with respect
to the default ORd model was correspondent with a proportional
variation in the number of ion channels (used in the stochastic
term of the differential equations).

In addition to this synthetic dataset generated with the
ORd model, additional AP traces were generated with a
stochastic version of the ten Tusscher-Panfilov (TP06) epi-
cardial AP model [51]. Those additional AP traces were
used to test the performance of our proposed methodology
over data obtained from a different human ventricular cell
model.

Trains of 550 beats paced at a frequency of 1 Hz were simu-
lated by using the Euler-Maruyama scheme with an integration
time step of dt = 0.02 ms. The stimulus current was a 1-ms
duration rectangular pulse of 52-pA/pF amplitude. Only the
last 50 simulated beats were used as input signals to the es-
timation methodology to guarantee that steady-state had been
reached. Gaussian noise, denoted by r(t), with zero mean and
noise variance o> was added to the simulated membrane po-
tential to account for noise present in experimental record-
ings. The effect on the estimation results of varying the values
of o, to represent different signal-to-noise ratios (SNRs) was
analyzed.
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G. Experimental Data

Two ten-second AP recordings acquired using conventional
microelectrode techniques in trabecular preparations from right
ventricles of undiseased human donor hearts, as described in
[32], were available for this study. The recordings were ob-
tained from previous studies, with tissue preparations having
been donated for research in compliance with the Declaration
of Helsinki and approved by the Scientific and Research Ethi-
cal Committee of the Medical Scientific Board of the Hungar-
ian Ministry of Health (ETT-TUKEB), under ethical approval
No04991-0/2010-1018EKU (339/P1/010). Pacing frequency was
1 Hz. Each AP trace was linearly interpolated to a sampling in-
terval of 0.02 ms and was replicated five times. The resulting
50-cycle trace was fed as an input to the estimation algorithm
to ensure convergence to stable values for the last analyzed
replication.

H. Methodology Assessment

The proposed methodology was assessed as follows:

1) Noisy AP Filtering Capability: For synthetic data, the root
mean square error &, between the original noiseless AP trace,
v(k), and the estimated AP trace, 0(k), was calculated over the
last N = 5 simulated cycles:

b=y S o)~ o)

where K is the number of samples contained within the last
N = 5 cycles.

2) State and Parameter Estimation: For the synthetic dataset
generated with the ORd model, estimates of model parame-
ters (i.e. factors multiplying maximal ionic conductances) and
hidden states (i.e. model state variables) computed using the
proposed methodology were compared with the original values
used to generate the synthetic input AP traces. The mean relative
error (7, ) between the actual and estimated values of each state
variable was calculated over the last NV = 5 simulated cycles:

1 R k) - 5(0)
””KNZ{ q@|}

k=0

Ky -1

k=0 (12)

13)

where z; is the actual value of the state variable j and 2; is
the estimated value, with 7 = 1,..., L, being L the length of
the augmented state vector z(k). The mean relative error 7),,
in the estimation of each model parameter z; was analogously
calculated.

A global accuracy measurement of model parameter esti-
mation was defined as the average of the mean relative errors
(adimensional by definition) for all estimated parameters:

_ 1
Ne = MZ%’
0'co

a4

where 7,/ is the mean relative error for model parameter 6 € 6
and M = 6 (the number of estimated model parameters).

3) Reproducibility of AP Markers: For both synthetic and
experimental data, the performance of the proposed methodol-
ogy was additionally assessed by comparing AP-derived mark-
ers from input and estimated AP traces. Specifically, given an

—Noiseless AP —Noiseless AP
50 —Input AP 50
= 0 T = 0
& &
[a M) A
= -50 = -50
-100 -100
0 200 400 0 200 400
time (ms) time (ms)
(a) o, = 0.25 mV (b) o, = 10 mV

Fig. 2. Last cycle of AP traces: In black, the synthetic noiseless AP
trace generated by the original ORd model; in blue line, the noisy version
of that AP, y(k), which is used as input to our proposed method with two
different values for the standard deviation of the measurement noise,
o, ; in red, the mean estimated voltage at each time instant, denoted by
Z; and in grey, the estimated uncertainty bands, i.e., z + 30, (with o,
denoting the estimated standard deviation of voltage).

input AP trace, estimates of the stochastic ORd model param-
eters were computed using the proposed methodology and that
estimated model was then simulated to generate new AP traces
from which AP-derived markers were computed.

The following steady-state and temporal variability measure-
ments of repolarization were calculated over those input and
simulated AP traces:

e Average of APD at 90% repolarization (APDy) over the
last N = 30 cycles:

.
1
mAPD, = 3 > APDy(n) (15)
n=1

and standard deviation of APDgq over the last N = 30
cycles:

1 N
SAPDyy = \/N—l Zn:l(APD% (n) — mappy, )?.
(16)
e Short-Term Variability (STV') of APDy, defined as the
average distance perpendicular to the identity line in the
Poincaré plot, computed for the last N = 30 cycles as:

o Nil [APDyy (n + 1) — APDyy (m)|

(N —1)Vv2 (a7

n=1

[ll. RESULTS
A. Noisy AP Filtering

The proposed methodology was able to filter out the measure-
ment noise in input AP signals even in cases of low SNR. Fig. 2
presents the last cycle of a synthetic noiseless AP trace generated
with the stochastic ORd model on top of two noisy APs obtained
by adding Gaussian noises with zero mean and standard devia-
tion values of o, = 0.25 mV and o, = 10 mV, respectively, and
the filtered APs output by our proposed methodology assuming
the level of measurement noise was known. In this figure, as
well as in all subsequent figures, & denotes the mean estimated
value of the represented variable and o, the estimated standard
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TABLE llI
&, RooT MEAN SQUARE ERROR (MV) IN AP FILTERING

or (mV) 0.25 10
&y (mV)  0.0160 0.1429
10°
=
Z0'E il
& -0 =0.25mV
o =10mV
2 L ‘ ‘ ‘ L
10
107 107! 10° 10! 10
o, (mV)
Fig. 3. Root mean square error &, in AP filtering for different actual

(o) and estimated (7, ) levels of measurement noise.

deviation. For both levels of noise, the methodology (with
0g = 107'?) was able to accurately estimate the synthetic noise-
less AP, thus rendering it useful to evaluate AP markers from
noisy AP traces as those obtained from experimental recordings.

In Table III, root mean square error values &, calculated ac-
cording to equation (12) for the two different SNR levels are
presented. As can be observed, our method was able to almost
entirely reduce the noise in the input AP traces even for a high
level of measurement noise.

B. Sensitivity of the Methodology With Respect to Its
Own Parameters

When the level of measurement noise is unknown, the value
of o, needs to be set according to some criteria. While under
homoscedastic conditions o, could be readily estimated during
the resting phase of the AP, such an estimation might be poor
under other conditions. In Fig. 3 assessment of the sensitivity of
our proposed methodology with respect to the estimated value of
o, is presented. Specifically, the effect of varying the estimated
measurement noise, o,, on the error &, is presented for two
different levels of noise added to input AP traces generated with
the stochastic ORd model, being these two levels correspondent
with o, = 0.25 mV and o, = 10 mV. As can be observed from
the figure, in both cases there was a broad range of 7, values
with similarly good performance in terms of AP filtering (note
the log-scale for the x-axis).

An apparently counter-intuitive result is that the optimal value
of 7, did not exactly match the value of o,., but it was slightly
higher. This may be explained because 7, accounts not only for
measurement noise but also for model misspecification. Under
high SNR (low ¢,.), this misspecification, which could be due to
small errors in model parameter estimation, can be comparable
to the input noise.

Regarding the sensitivity of the methodology with respect
to oy, Fig. 4(a) shows that varying oy did not significantly
affect the error in AP filtering. However, it more notably af-
fected the error in parameter estimation, particularly when
very small or very large oy values were used, as shown in
Fig 4(b).

In particular, the estimation error 1y was increased for very
small values of oy due to lack of convergence in the estimation

(a)
0.022F,
= 0.02F
&
0018}
107 1012 10710 10 10
op (adim.)
(b)
E10°f 1
<
&
B
S
10714 1012 10710 108 10
op (adim.)
Fig. 4. Root mean square error &, in AP filtering (a) and average of

mean relative parameter estimation errors 7jy (b) evaluated for different
levels of gy.

for 50 simulated APs. For very large o values (>1079), 1
was increased due to the algorithm being stuck in local minima
where its performance was not satisfactory and could not be
improved in any direction or due to notable oscillations around
the mean estimated value. Consequently, the selection of the
value for oy was deemed to be important to obtain an accurate
model parameter estimation.

According to the results shown in Fig. 3 and Fig. 4, oy =
107'2 was selected and all results presented in the following
Sections III-C and III-D correspond to that value, while the
measurement noise variance was taken as o, = o,..

C. Estimation of Model Parameters and Hidden States

The proposed methodology was able to additionally estimate
hidden states from a given input AP trace according to the
stochastic model described by f, (+) in equation (10). In particu-
lar, for the case of input AP traces being synthetically generated
using the stochastic ORd model, a comparison could be estab-
lished between actual and estimated values of model parameters
and hidden states.

Fig. 5 illustrates the input and estimated (mean =+ three stan-
dard deviations) proportions of open channels for I, and I
in the last two simulated cycles. The proposed methodology
was not only able to track the mean value of the state variables
describing the proportions of open channels at each time instant
but also provided uncertainty ranges, which were larger for I
than for Iy ,.

Fig. 6 illustrates the estimated (mean =+ three standard devi-
ations) model parameters along 50 simulated cycles. The mean
estimated values converged to the input value in less than 40
cycles. Uncertainty ranges in the estimation were provided as
well.

Results of model parameter estimation for the population of
131 stochastic AP models described in Section II-F are presented
in Fig. 7. As can be observed, the estimation accuracy was very
high for most parameters in the majority of tested models. The
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Fig. 5. Open probability X, s of I, (top panel) and open probability
X, of I (bottom panel). The value in the stochastic ORd model is
shown in blue, while estimated mean (z) and uncertainty bands (z + 30,)
are shown in red and grey, respectively.
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Fig. 6. Estimation of model parameters. Mean estimates (z) are shown
in red and uncertainty bands (z + 30, ), in grey.
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Fig. 7. Mean relative error 7, for each of the estimated model param-
eters over a population of 131 stochastic AP models.

maximum relative error 7,; was obtained for 0, due to the
almost negligible effect of its variations on the baseline AP.

D. Estimation of AP Markers

In this section the performance of the proposed methodology
is evaluated in terms of its ability to replicate input AP traces and
AP-derived markers. Fig. 8 shows the statistical distributions

x10°
0.3
6 —Input
- - ‘Estimated|
2 20.2
.a 4 .(,;3
= =
a a
2 0.1
= 0

0
0 200 400 600 20

M APDI0O (mS)

800
STV (ms)

Fig. 8. Statistical distributions over a population of 131 AP models of
(left) mappoo and (right) STV calculated from actual APs in blue and
estimated APs in red.
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Fig. 9. AP traces over 2 simulated cycles (top panel) and APD time se-
ries over 50 simulated cycles (bottom panel) generated with the stochas-
tic TPO6 model (in blue), estimated with the proposed methodology
(dashed red) and generated with the stochastic default ORd model
(black).

of myppgy and STV over the population of stochastic cell
models described in Section II-F, calculated from both actual
and estimated APs. A very good match was observed between
both distributions for each of the two AP markers.

Additionally, the accuracy of the proposed methodology to
reproduce AP markers measured from synthetic data was tested
over APs generated with a different human ventricular cell
model, namely a stochastic version of the TPO6 model [51].
Fig. 9 (top panel) shows input APs generated with the stochas-
tic TPO6 model, APs estimated with the proposed methodology
as well as APs generated with the default ORd model (used as a
basis for the proposed methodology) for comparison. Intrinsic
differences between the ORd and TP06 models (e.g. the TP06
model produces a much more square AP) may explain the lack
of complete match between input and estimated APs. In terms
of the root mean square error &, this took a value of 6.96 mV for
our proposed methodology versus 22.89 mV for the reference
ORd model.

In addition, Fig. 9 (bottom panel) presents correspond-
ing APD time series over 50 simulated cycles calculated for
APs computed from the stochastic TPO6 model, the proposed
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Fig. 10. Experimental AP traces (blue) and estimated AP traces ob-
tained with the proposed methodology based on stochastic versions
of epicardial (dotted yellow) and endocardial (dashed red) ORd mod-
els. Default stochastic epicardial (solid black) and endocardial (dashed
black) ORd models are shown as a reference. Top and bottom panels
correspond to two different experimental recordings.

methodology and the default stochastic ORd model. The match
between input and estimated APDs was very good, with a mean
absolute error of 0.16 ms between average APDs, while such an
error was of 71.68 ms for the default ORd model. Beat-to-beat
variability was, however, larger for the input data generated with
the TPO6 model than for the estimated data or the data generated
with the default ORd model (STV being 3.42 ms, 1.69 ms and
1.89 ms, respectively).

E. Application Onto Experimental Data

Application of the proposed methodology onto experimen-
tally recorded input AP signals is illustrated in Fig. 10. The
value for the algorithmic parameter oy was selected by search-
ing for in the range between 107 ° to 107%. The best results
were obtained for 107, which is the value used for the results
presented in the following. Also, the value o, = 1 mV was set.
Of note, when applying our proposed methodology onto exper-
imental data, which presents AP shapes different from the one
of the default ORd model, issues regarding the estimation algo-
rithm being stuck in local minima are more common. For that
reason, the choice of the value for oy is especially important, as
too large or too small values might lead to estimated models not
generating valid AP traces.

In this section, methodological performance is evaluated by
comparing experimental AP traces and AP traces build from the
parameterized ORd model with the parameter values estimated
by our proposed approach. Our methodology departed from
the default ORd model (for both epicardial and endocardial
cells) and refined it to best fit the input AP trace. A satisfactory
match was found between input and estimated APs, with some
differences in the plateau and resting phases, but with good
overall agreement and very close AP durations. APs generated
with the default epicardial and endocardial ORd models are
shown for comparison.

Table IV shows the root mean square errors &, obtained
in the estimation from experimental human AP traces, while

TABLE IV
&, RoOT MEAN SQUARE ERROR (mV) IN FITTING EXPERIMENTAL
AP TRACES

(mV) AP trace 1  (mV) AP trace 2

&y (This Method - Endo) ~ 8.2432 6.3393

&y (ORd - Endo) 11.5096 10.1043

& (This Method - Epi) 5.0071 10.3788

&y (ORd - Epi) 9.0270 14.8517
TABLE V

ESTIMATED PARAMETER VALUES FOR THE TWO EXPERIMENTAL AP TRACES
USING THE HUMAN VENTRICULAR ENDOCARDIAL ORd MODEL

OKs OKr Oto Ocar,  OK1 ONa
Exp. 1 1.9997 1.9996 1.9996 1.8027  0.0538 1.4840
Exp.2 0.5481 14217  0.7214 1.5032 1.2950 0.1368

Table V shows the estimated parameter values. As can be noted,
the estimation errors obtained by our methodology for the two
human AP traces were clearly lower than those obtained with
epicardial and endocardial ORd models.

The performance of the proposed methodology was in this
case not evaluated in terms of variability measurements, as sim-
ulated APs corresponded to single cells whereas experimental
AP traces were recorded in tissue, where electrotonic coupling
notably mitigates the effects of ionic current fluctuations con-
tributing to beat-to-beat variability.

IV. DISCUSSION

In this work, a novel approach based on formulation of state-
space representations and the use of the Unscented Kalman Fil-
ter has been proposed as a method to estimate the non-measured
state variables and parameters of ventricular nonlinear stochas-
tic computational models. The proposed methodology was able
to reproduce individual input AP traces and replicate statisti-
cal distributions of AP-derived markers like APD or STV. As
such, the methodology can be a powerful tool to investigate the
ionic mechanisms underlying human ventricular AP traces and
their associated beat-to-beat variability, particularly when ex-
perimental measurements are scarce, as is usually the case with
human data, and previously proposed methodologies are either
not applicable or present considerable limitations.

In the following, relevant characteristics of the proposed
methodology as well as major benefits and shortcomings as-
sociated with its use are discussed:

A. Methodology Calibration

According to the presented results, calibration of two param-
eters of the proposed methodology, o, and oy, turns out to be
important to obtain an accurate estimation. The first one, o,
accounts for both measurement noise and model-to-data mis-
match, hence its calibration is relatively easy in most cases.
Although, in principle, the definition of oy should not be so
straightforward, our results show that a wide range of values for
oy provide similarly good estimation performance. Specifically,
our analysis on the synthetic data described in Section II-F has
demonstrated that this feasible range spans several orders of
magnitude. In other cases where the model adjusts poorly to the
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input AP trace, the optimal value for oy can be found by sweep-
ing over a large range of values and selecting the one leading to
the best match to the input data.

B. Filtering Noisy Data

The proposed methodology is able to filter out the measure-
ment noise even for AP recordings with very low SNR levels.
This can be very useful to improve the accuracy in the evalua-
tion of AP markers from experimental noisy AP traces like, for
instance, those measured using optical mapping techniques.

C. Identification of Model Parameters and Hidden States

A state-augmentation approach was used for joint state and
parameter estimation, considering the compromise between per-
formance and computational cost. Other joint estimation tech-
niques like Expectation Maximization or Rao-Blackwellization
[30] introduce a large penalty in the computational cost, associ-
ated with the need to perform several passes over the hundreds of
thousands of samples of AP traces, and were thus discarded for
this problem. Importantly, the probabilistic methodology pre-
sented in this study provides estimation errors for each variable
along time, thus offering uncertainty measures associated with
the estimation process, which could be used as a basis for further
Uncertainty Quantification studies (see e.g. [52]).

Our results prove to be accurate for all estimated ionic factors
except for the factor related to the I s conductance (Fig. 7). This
lack of accuracy in the estimation of one of the model param-
eters is related to the issues of identifiability and observability,
the latter possibly being in practice more difficult to satisfy [53].
Previous studies targeting estimation of neuron model param-
eters from voltage time series have dealt with this [54]. For
the augmented state-space considered in this study, a formal
identifiability/observability analysis would be of high interest.

In our case, and in line with reported experimental and sim-
ulated evidences on the lack of effects of Iy, variations on
baseline AP [49], [55], [56], the cellular ORd model used as a
basis for this study led to similar AP traces for a relatively large
range of [ ¢ conductance values and, in such scenario, the es-
timation algorithm may fail to identify the corresponding con-
ductance value. Nevertheless, the intrinsic characteristics of our
proposed approach provide some advantages with respect other
works. Our methodology, by using stochastic models, leads to
a significant reduction in parameter uncertainty as compared to
other studies where a cell model is fit to only one (averaged or
not) AP [57] rather than to a whole AP trace comprising sev-
eral consecutive beats. The fact of including data across several
beats allows integrating temporal variability information into
the estimation process, thus making it more robust, as differ-
ent parameter combinations might lead to comparable APs but
dissimilar beat-to-beat AP variability measurements. In addi-
tion, our proposed methodology is also able to estimate model
hidden states, including ionic gating characteristics and intra-
cellular concentrations, thus facilitating assessment of whether
the model renders physiologically plausible outcomes. Further-
more, our Bayesian methodology explicitly delivers precision
measurements for each estimated variable. When a parameter
value is difficult to identify, our approach provides an associated

high estimation variance, as was for instance the case for 0y
(Fig. 6).

The above described uncertainty in the estimation of one of
the model parameters could be classified as ‘practical unidentifi-
ability’ according to the classification provided in [58], meaning
that, by using input data obtained with a different protocol, it
could be possible to increase the amount of available information
for the estimation. In our case, one option would be to consider
data measured at different pacing frequencies as in [25], [26],
[29] or to consider combined data measured under control and
following ionic inhibitions as in [26]. Future studies should ad-
dress the application of the methodology proposed in this work
onto AP data measured at different stimulation frequencies or
under ionic inhibitions.

D. Application Onto Data From Different Origins

Our presented methodology is able to adjust a developed
stochastic version of the ORd model to fit a population of in-
put AP data in such a way that a one-to-one correspondence is
established between each individual AP and a set of model pa-
rameters underlying it. This ability has been successfully tested
over a synthetic population of cellular AP data generated with
the ORd model, where the proposed methodology has addition-
ally shown to provide a robust way to approximate distributions
of AP markers of interest.

For data presenting AP shapes markedly different to that of
the ORd model used as a basis for the estimation, either being
recorded experimentally or generated by other human ventric-
ular computational models, our proposed methodology is still
able to reproduce the corresponding AP traces. Nevertheless,
in those cases, some differences exist between input and esti-
mated APs due to the fact that some specific characteristics of
the ORd model cannot be modified by just varying maximal
ionic conductances. In particular, APs generated with the TP06
model show higher beat-to-beat variability, for a comparable
mean APD, than those generated with the ORd model, as shown
in our results. Remarkable differences in several ionic currents
between the two models, including I ¢ characteristics, may ex-
plain such a divergence in terms of beat-to-beat variability. In
the case of the analyzed experimental AP traces, beat-to-beat
variability measurements could not be compared between input
and estimated APs, as variability observed in tissue is consid-
erably lower than in isolated cells due to electrotonic coupling
effects. Unfortunately, only human ventricular data recorded in
tissue, not in isolated cells, was available for this study. Nev-
ertheless, the proposed methodology was able to estimate the
experimental AP traces, rendering similar average APDs.

To the best of our knowledge this is the first study where
stochastic cell models are used as a basis for model parameter
and state variable estimation from ventricular AP data, thus aim-
ing at providing a method to reproduce variability measurements
and investigate the mechanisms behind it. In [25] a method is
presented to fit different types of AP data but not to reproduce
beat-to-beat variability. In [4], stochastic cell models are used
but model parameters representing ionic current conductances
are identified to replicate ranges of beat-to-beat variability mea-
sures only, while not necessarily the actual statistical distribution
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of such measures or the corresponding AP shapes. In other
works based on the population-of-models approach, such as
[20], [26], methods are developed to reproduce distributions of
AP markers, but in this case without targeting beat-to-beat vari-
ability. Our approach can approximate statistical distributions
of AP markers and has the additional advantage of producing a
one-to-one correspondence between individual AP traces (and
corresponding AP-based markers) and a set of parameter values
for an underlying cell model. This can be of significant help
to unravel ionic mechanisms involved in different investigated
electrophysiological behaviors, including temporal variability.

E. Robustness Analysis

Our proposed methodology is evaluated in a range of sce-
narios using both synthetically generated and experimentally
measured AP data. In the case of synthetic input data, the ability
of our approach for model parameter and state variable estima-
tion is assessed by considering different SNR and a wide range
of possible parameter values. The robustness of the method is
verified, with similar performance of the method achieved in
all tested cases. In the case of experimental input data, with
available AP signals contaminated by non-Gaussian noise and
artifacts, the method still provides reliable voltage estimation.
Importantly, our methodology provides uncertainty estimation
measures for all parameter and state variables, which is a useful
tool for performance evaluation.

F. Limitations and Future Works

Our methodology renders very good estimation performance
even in very noisy scenarios. Since only additive Gaussian noise
was considered in this study for synthetic AP data generation,
future works could include other types of noise, like impulsive
noise, and assess the filtering ability of our methodology. Also,
the variance of this noise could be estimated jointly with other
model parameters.

Further studies could also expand the investigation performed
in this study on the sensitivity of the proposed methodology to
algorithmic parameters. Efficient automatic approaches to select
optimal values for algorithmic parameters could be explored
to help detecting and avoiding local minima in the estimation
process.

Stochasticity was included in four ionic currents being ac-
tive during ventricular repolarization, namely I s, I, I;, and
I¢c 1. Future studies could address incorporation of stochastic-
ity in other ionic currents, like /7, which may have a relevant
contribution to beat-to-beat AP variability. In addition, other in-
vestigations could assess whether estimating the maximal value
of the sodium-potassium pump (I, i ) and the sodium-calcium
exchanger (I ,¢) currents could add to the estimation perfor-
mance. This would increase the computational complexity of
the proposed methodology, particularly if longer AP recordings
were considered for that purpose, but could in turn render more
accurate results. Also, estimation accuracy could be improved
by including more diverse input AP data, as those obtained after
pacing at different stimulation frequencies or following specific
ionic current inhibitions.

In this study limited experimental tissue data was used to pro-
vide a proof-of-concept on the ability of the proposed methodol-
ogy to reproduce individual experimentally-measured AP char-
acteristics. Provided human ventricular AP traces recorded in
isolated cells were available for future studies, the performance
of the proposed methodology to replicate beat-to-beat variability
and refine the match to cellular AP shapes could be additionally
tested. Also, other lines of research could build tissue models
based on the single cell models developed in the present study
to compare experimental and simulated tissue data.

V. CONCLUSIONS

A novel methodology based on state-space representations
and the Unscented Kalman Filter has been proposed and tested
over synthetic data and experimental human ventricular data.
The methodology has proven to successfully reproduce given
input AP traces and identify hidden states and parameters of
underlying computational models. Based on the provided one-
to-one match between AP traces and sets of model variables,
the proposed methodology is able to replicate statistical distri-
butions of AP-based markers and is suitable for investigation of
spatiotemporal variability in human ventricular repolarization.
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