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Abstract
Methods for characterization of atrial fibrillation (AF) episode patterns have been introduced without establishing clinical 
significance. This study investigates, for the first time, whether post-ablation recurrence of AF can be predicted by evaluating 
episode patterns. The dataset comprises of 54 patients (age 56 ± 11 years; 67% men), with an implantable cardiac moni-
tor, before undergoing the first AF catheter ablation. Two parameters of the alternating bivariate Hawkes model were used 
to characterize the pattern: AF dominance during the monitoring period (log(mu)) and temporal aggregation of episodes 
(beta1). Moreover, AF burden and AF density, a parameter characterizing aggregation of AF burden, were studied. The 
four parameters were computed from an average of 29 AF episodes before ablation. The risk of AF recurrence after catheter 
ablation using the Hawkes parameters log(mu) and beta1, AF burden, and AF density was evaluated. While the combination 
of AF burden and AF density is related to a non-significant hazard ratio, the combination of log(mu) and beta1 is related to 
a hazard ratio of 1.95 (1.03–3.70; p < 0.05). The Hawkes parameters showed increased risk of AF recurrence within 1 year 
after the procedure for patients with high AF dominance and high episode aggregation and may be used for pre-ablation 
risk assessment.
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1 Introduction

Atrial fibrillation (AF) is a progressive disease often initially 
manifested by intermittent episodes terminating spontane-
ously and eventually leading to sustained forms of AF for a 
subset of patients [1]. Over the decades, catheter ablation, 

and more specifically, pulmonary vein isolation (PVI), has 
become a common treatment of AF patients, especially for 
those whose antiarrhythmic drug therapy was inefficient (or 
not tolerated) for rhythm stabilization [2, 3] or those who 
were highly symptomatic [4]. However, long-term efficacy 
of catheter ablation reported in AF single-procedures does 
not exceed 70% [5]. Studies investigating risk factors asso-
ciated with AF such as well-established scoring systems, 
including thromboembolic risk predictors like  CHADS2 or 
 CHA2DS2-VASc [6], and specific rhythm outcome predic-
tors such as APPLE [7], SUCCESS [8], or MB-LATER [9], 
have focused on whether AF is present or absent. With the 
development of long-term monitoring devices, the binary 
approach is slowly being replaced by an approach involving 
features such as AF burden, i.e., the percentage of time in 
AF [10] which has been found to be a significant predictor 
of patients at risk of ischemic stroke [11]. Nonetheless, this 
measure does not describe whether AF episodes are clus-
tered or distributed evenly throughout the monitoring period 
despite that characterization of the episode pattern may be 
relevant for better understanding of AF progression and risk 
assessment of AF recurrence post-ablation.
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Implantable cardiac monitors (ICMs) offer the advantage of 
continuous long-term monitoring and can therefore be used to 
characterize episode patterns spanning long monitoring times. 
Such characterization has mainly focused on statistical analy-
sis of either interepisode intervals, i.e., the interval between 
consecutive AF episodes [12–14] or inter-detection intervals, 
i.e., the interval between the onset of consecutive AF episodes 
[15], without accounting for episode history in the analysis. 
While these descriptive studies speculated that the information 
on episode patterns could be useful to predict AF recurrence 
[16], the clinical significance has not yet been established.

Recently, the alternating bivariate Hawkes model, a novel 
statistical approach to characterizing AF episode patterns, was 
proposed where episodes are assumed to be history-depend-
ent [17]. In the present work, the performance of a subset of 
the model parameters is evaluated to predict the risk of AF 
recurrence. In addition, the performance of AF burden and 
AF density, being one of the very few parameters proposed 
for characterizing the temporal aggregation of the daily AF 
burden in patients using an ICM [18], is evaluated. To the 
best of our knowledge, there have been no studies using this 
or any other episode pattern characterization method as AF 
recurrence risk predictor.

2  Methods

2.1  Alternating bivariate Hawkes model

A statistical approach to characterizing episode patterns in 
paroxysmal AF (PAF) is based on history-dependent point 
process modelling of the transition times from sinus rhythm 
(SR) to AF and vice versa [17]. With the bivariate Hawkes 
model, the episode pattern is modelled by two alternating point 
processes{N1(t),N2(t), t > 0 } which describe the number of 
transitions that have occurred up to t .: one accounting for tran-
sitions from SR to AF occurring at times (points) t1,1, t1,2,… , 
and another for transitions from AF to SR occurring at times 
t2,1, t2,2,… ; the first subscript describes the type of transition 
(SR-to-AF AF-to-SR are denoted 1 and 2, respectively) and the 
second, the transition number. For simplicity in this study, SR 
and AF are assumed to be the alternating rhythms with only 
AF interrupting a SR rhythm and vice versa, while, in practice, 
a non-AF rhythm may very well replace SR.

The counting processes N1(t) and N2(t) are defined by two 
conditional intensity functions of the form [19]:

where 𝜇m > 0 , �m,n ≥ 0 and �m,n ≥ 0 for m, n = 1, 2 . The 
main characteristic of the model is that the conditional 
intensity function �1(t) increases by �1,1 immediately after 

λm(t) = μm +

2
∑

n=1

∑

{k∶t>tn,k}

αm,ne
−βm,n(t−tn,k)

an SR-to-AF transition (self-excitation) and then decreases 
exponentially, defined by the decay parameter �1,1 , to the 
base intensity �1 reflecting the mean rate of SR-to-AF transi-
tions. The conditional intensity function �2(t) characterizes 
AF-to-SR transitions and behaves similarly to �1(t) , defined 
by the excitation parameter �2,2 , the decay parameter �2,2 , 
and the base intensity �2 . As the probability of additional 
transitions increases immediately after a transition, the pro-
cess can account for aggregation behaviour. In addition to 
the self-excitation, both �1(t) and �2(t) contain additional 
terms, defined by �1,2 and �1,2 in the case of �1(t) , and by �2,1 
and �2,1 in the case of �2(t) , which lets the counting processes 
influence each other (cross-excitation).

The bivariate Hawkes model in its original formulation 
does not impose alternating transitions; i.e., an SR-to-AF 
transition is not necessarily followed by an AF-to-SR tran-
sition, while from the physiological point of view, this is 
required. This disadvantage is eliminated by multiplying 
�1(t) and �2(t) with a binary “occurrence” function

and

which ensures that AF occurs after SR, and that SR occurs 
after AF, respectively.

The parameters d1 and d2 define the minimum duration of 
AF and SR, respectively.

Finally, the conditional intensity functions for the alter-
nating, bivariate Hawkes process are given by:

The structure of �̃m(t) is identical to that of the bivariate 
Hawkes process �m(t) , except that a SR-to-AF transition can, 
once a certain time d1 has elapsed, only be followed by an 
AF-to-SR transition, and so on.

Figure 1 shows an AF episode pattern, the transition times 
corresponding to the two alternating point processes and 
the conditional intensity functions associated to those point 
processes.

The model parameters, defining the conditional intensity 
functions, can be estimated using the maximum likelihood 
(ML) method. For a bivariate process, the likelihood func-
tion is given by [20]:

o1(t) =

{

1, N1(t) = N2

(

t − d2

)

,

0, otherwise,

o2(t) =

{

1, N2(t) ≠ N1

(

t − d1

)

,

0, otherwise.

λ̃m(t) = λm(t)om(t),m = 1, 2.

lnL(�;t) =

2
∑

m=1

Nm(T)
∑
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ln�m(tm,k;�) −

2
∑

m=1
∫

T

0

�m(t;�)dt
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where the vector t contains the transition times in the observa-
tion interval [0, T] and the vector � collects all the model param-
eters, i.e., � = [�1,�2, �1,1, �1,1, �1,2, �1,2, �2,1, �2,1, �2,2, �2,2] . 
The ML estimator is given by:

see [17] for details of the ML estimator.
It is then assumed that �1,1 = �1,2 = �1 and �2,1 = �2,2 = �2 . 

Hence, the conditional intensity functions are defined by a 
relatively small number of parameters and therefore suit-
able for statistical inference. The onset of the first AF epi-
sode and the end of the last AF episode are assumed to be 
entirely contained in the observation interval. Thus, the first 
transition for analysis is from SR-to-AF and the last from 
AF-to-SR.

The base intensity ratio is defined as:

and provides information on the dominating rhythm of 
the analysed segment: 𝜇 > 1 indicates dominance of AF 
(Fig. 2A and D) and 𝜇 < 1 dominance of SR (Fig. 2B and 
C). In the present study, the natural logarithm of � ( log(�) ) 
is used instead of � as � is a ratio, and, therefore, log(�) 
exhibits a more linear behaviour.

�̂ = argmax
�

(lnL(�;t))

� =
�1

�2

The decay parameter �1 , empirically restricted to a range 
between 0 and 0.3 [17], describes the degree of episode 
aggregation, where a value of �1 close to 0.3 reflects few 
clusters. This is illustrated in Fig. 2A and B where the 
episodes are spread out throughout the monitoring period, 
although the time span differs considerably (A in minutes 
and B in days). Conversely, a value of �1 close to 0 reflects 
high episode aggregation as illustrated in Fig. 2Cand D. 
In this study, �2 is not considered for prediction as �1 is 
deemed to play the main role with regard to AF episode 
aggregation.

The Hawkes model requires a minimum number of epi-
sodes to produce adequate parameter estimates, here set to 
10, i.e., 20 transitions, as suggested in [17].

For further details on the alternating bivariate Hawkes 
model and the estimation of �1 , �2 and �1 , the reader is 
referred to [17].

2.2  AF density

AF density is defined as the ratio of the cumulative deviation 
of the patient’s actual AF burden level from a hypothetical 
uniform burden level, to that of the hypothetical maximum 
burden aggregation [18].

Fig. 1  A Example of real AF episode pattern. B Transition times for 
the episode pattern in A. The marks “o” and “x” indicate SR-to-AF 
and AF-to-SR transitions, respectively. C–D The conditional inten-

sity function of SR-to-AF transitions and of AF-to-SR transitions. For 
reasons of clarity, �1(t) and �2(t) are displayed rather than �̃1(t) and 
�̃2(t)
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For a patient with a total AF burden b (expressed as the 
proportion of the observed time T in which a patient is in AF), 
the patient’s AF burden level corresponds to:

with T(p;b) denoted as the minimum continuous period 
required for the development of a proportion p of the 
patient’s total observed burden (b).

The cumulative deviation of the patient’s actual burden 
from a hypothetical uniform burden level can be evaluated as:

where F’(p;b) is the patient’s actual burden, and F(p;b) = p 
corresponds to the hypothetical uniform burden level defined 
by the burden evenly distributed throughout the monitoring 
period.

Conversely, the hypothetical maximum burden aggregation 
is defined by the total burden comprised in one continuous 
episode and simplified to:

Finally, the AF density is defined as:

F(p;b) =
T(p;b)

T

∫

1

0

|

|

|

F
�

(p;b) − p
|

|

|

dp

(1 − b)

2

AF density = 2
∫

1

0
|F(p;b) − p|dp

1 − b

and assumes values on the interval [0,1], where a value 
close to 0 indicates a homogeneous distribution of AF bur-
den, whereas a value close to 1 indicates that AF burden 
is confined to an interval much shorter than the monitored 
period. Figure 3 shows examples of temporal aggrega-
tion for two patients with similar levels of AF burden and 
monitoring time, with low and high temporal aggregation.

2.3  Cohort

The Reveal LINQ USABILITY study (ClinicalTrials.
gov Identifier: NCT01965899), a multi-centre single-arm 
clinical study [21], was merged with a database from the 
National Institute of Cardiovascular Diseases in Bratislava, 
Slovakia [22]. The patients of both cohorts, with docu-
mented history of AF and ablation candidates, provided 
written informed consent, and the study protocols were 
reviewed and approved by the Human Research Ethics 
Committee of each participating institution.

Out of the 226 enrolled patients, 99 had pre-ablation 
data, out of which 19 were excluded due to previously 
failed ablation and 26 had less than 10 episodes before 
catheter ablation (the minimum number of episodes 
required by the model). Therefore, the analysis included 54 
patients (age 56 ± 11 years; 67% men) with a documented 
history of AF (74% PAF, the remaining being persistent 
AF), and ablation candidates.

The baseline and clinical characteristics of the study 
cohort are shown in Table 1.

Fig. 2  Episode patterns and the estimated Hawkes model parameters 
μ and β1. A and C are short segments around 800 min with A episode 
pattern dominated by AF with a lower degree of aggregation (β1≈0.3) 
and C episode pattern dominated by SR with a higher degree of 

aggregation (β1≈0). B and D are long segments up to 100 days with 
B episode pattern dominated by SR and a lower degree of aggrega-
tion and D episode pattern dominated by AF and a higher degree of 
aggregation
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2.4  Data collection

The ICM was implanted 2.7 (1–15) months, median 
(min–max), before the ablation procedure, and the patients 
had 10.9 (3–4) months follow-up for AF recurrence detec-
tion. AF recurrence was defined as an AF episode detected by 
the ICM after a 3-month blanking period following catheter 
ablation. The blanking period is based on reports on the effi-
cacy of catheter ablation describing how early recurrences 
could be caused by post-ablation inflammation or short-term 
autonomic imbalance rather than ablation failure [23].

The devices used in the usability and the Slovakia stud-
ies were the Reveal LINQ and Reveal XT (Medtronic Inc, 
Minneapolis, MN), respectively, implanted within the fourth 
intercostal space (V2–V3 electrode orientation). Both 
devices sense and detect the rhythm and store the onset and 
duration of the AF episodes. The AF detection algorithm 
is based on an R-R interval pattern-based algorithm and 
a P-wave evidence score which reduces false positive AF 

detections and leverages the evidence of a single P-wave 
between two R waves using morphologic processing of the 
ECG signal. The algorithm makes a rhythm classification 
every 2 min [24]. This provides us the values for d1 and d2 , 
the minimum duration of AF and SR, respectively. The data 
stored in the device is downloaded each time the patient has 
a clinical appointment. However, due to memory restric-
tions, the device can store up to 30 episodes of data, with 
the new episode overwriting the oldest one. Therefore, only 
data from the last 30 episodes before each data download 
were available. Nonetheless, several downloads could be 
grouped together if temporal continuity existed between 
them, increasing the number of episodes available for 
characterization.

In addition to the onset and duration of each AF episode, 
the device stored the daily AF burden in minutes for the 
entire monitoring period. An example of data extracted from 
the device is presented in Fig. 4 with the ablation date and 
the end of the 3-month blanking period marked by dashed 
lines. It also shows the rhythm condition (either SR or AF) 
of the patient extracted from each session (color-coded) 
where the onset and duration of the episodes can be derived, 
and the daily AF burden stored for the entire monitoring 
period highlighting AF burden during the stored sessions, 
as well as the rhythm condition of the last session before 
catheter ablation and its corresponding daily AF burden.

2.5  Statistical analysis

The four parameters log(μ), β1, AF burden, and AF density 
were computed using the episode information of the last avail-
able session before catheter ablation. Continuous data are pre-
sented as mean ± standard deviation if the null hypothesis  H0 
of the Kolmogorov–Smirnov test  (H0: data is normally dis-
tributed) was not rejected. Otherwise, continuous data are pre-
sented as median (min–max). Categorical data are presented as 
absolute frequency (relative frequency in percentage).

The primary endpoint (time to AF recurrence) was analysed 
using the Kaplan–Meier method, and the null hypothesis was 
tested by means of the log-rank test. The hazard ratio (HR) 
and its confidence intervals were computed using Cox’s pro-
portional hazards models. For the one-parameter prediction, 
the patients were dichotomized into high- and low-risk groups 
based on the optimal cut-off value chosen to maximize the sep-
aration between groups. This was accomplished by evaluating 
the Cox proportional hazard regression in the different groups 
of patients divided by a threshold that varied from quantile 
25–75% with 5% increments. The regression with the lowest 
p-value was selected as the optimum separation cut-off. In case 
of β1, the parameter was found to be bimodal so the cut-off 
was selected as the average between the lower limit (β1 = 0) 
and the upper limit (β1 = 0.3) In the two-parameter predic-
tion, a linear combination of the selected parameters and the 

Fig. 3  Patients with different types of temporal aggregation but 
with similar AF burden (≈ 0.12) with A low aggregation (AF den-
sity = 0.17) and B high aggregation (AF density = 0.76)

Table 1  Baseline and clinical data of the study population (n = 54). 
PAF, paroxysmal atrial fibrillation; CAD, coronary artery disease

Patient characteristic
  Age (years) 56 ± 11
  Male gender (%) 36 (67%)
Coronary risk profile
  PAF 40 (74%)
  Hypertension 21 (39%)
  Diabetes 7 (13%)
  CAD 3 (5%)
  Stroke 3 (6%)
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corresponding regression coefficients in the Cox model was 
computed and high- and low-risk groups were defined, based 
on the median of the combination. The Hawkes combination, 
defined by log(µ) and β1, provides information on dominating 
rhythm (AF or SR) and episode aggregation. Similarly, the 
combination of AF burden and AF density provides informa-
tion on dominating rhythm and episode aggregation. The null 
hypothesis was rejected when p < 0.05, then set as the level 
of significance. The statistical analysis was performed using 
Matlab R2019b (The Mathworks Inc., Natick, Massachusetts).

3  Results

During the monitoring period before ablation, the patients 
had between 1 and 4 data downloads with 96 (20–188) days 
between scheduled appointments. For the present analysis, 

the focus was set on the last data download before ablation 
which in 43 (80%) patients occurred 1 month before abla-
tion (75% during the last week) and contained 29 (10–37) 
AF episodes within a monitoring period of 9.8 (23.3) days, 
ranging from 2.6 h to 7 months.

The relationship between the parameters was explored, 
and out of the considered variables, only AF burden showed 
high correlation with log(μ) (r = 0.78; p < 0.001). Even 
though both β1 and AF density reflect different aspects of 
episode aggregation, they were found to be weakly cor-
related (r =  − 0.07; p = 0.63), and, therefore, may provide 
complementary information. When studying the distribu-
tion of β1, it was found to be bimodal showing that AF epi-
sodes were either highly clustered or uniformly distributed 
throughout the monitoring period.

In the analysed cohort, 41 patients (76%) had AF recur-
rence within 15 months following catheter ablation and the 

Fig. 4  Example of data extracted from Reveal LINQ/XT presented as 
a function of days of monitoring; the leftmost dashed line marks the 
catheter ablation, and the following dashed line marks the end of the 
3-month blanking period. A Episodes with onset and duration down-
loaded in five sessions (blue, orange, yellow, purple, and green). B 
Episodes with onset and duration downloaded from the last session 

before catheter ablation (second session in A). C Daily AF burden 
detected in minutes (grey) with highlights on the days where the epi-
sodes have onset and duration information (color-coded as in A). D 
Daily AF burden detected in minutes during the last session before 
catheter ablation
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overall estimated event-free rate at 1 month after the blank-
ing period (4 months after catheter ablation) was 39%. The 
statistical analysis of the parameters extracted from the last 
data download shows that there are no statistical differences 
between patients having had AF recurrence and those not 
having (p > 0.05 for all parameters).

The one-parameter analysis showed no significant differ-
ences (log-rank p > 0.05) between high- and low-risk groups 
for the selected parameters (Fig. 5).

In two-parameter Cox analysis, AF burden and AF den-
sity were linearly combined and weighted with their respec-
tive Cox coefficient (0.03 for AF burden and −0.02 for AF 
density). The positive coefficient indicates a positive effect 
of the covariate AF burden to the risk of AF recurrence, 
meaning that more AF would increase the risk of AF recur-
rence. Conversely, a negative coefficient for AF density indi-
cates that a higher AF density, i.e., a higher episode aggrega-
tion, reduces the risk of AF recurrence.

The combination of AF burden and AF density (Fig. 6A) 
is related to a 1.09 (95% CI, 0.60–2.01; p = 0.77) higher risk 
of early recurrence between the high- and low-risk groups 
(defined by the median value of the combination); however, 
the results are non-significant for this combination.

The parameters log(μ) and β1 were also linearly combined 
and weighted with their respective Cox coefficient (0.23 for 
log(μ) and –0.36 for β1). The positive effect of the covariate 
log(μ) to the AF recurrence risk indicates that a higher AF 
dominance would increase the risk of AF recurrence, while 
a negative coefficient for β1 indicates that a higher β1,, i.e., 
less episode aggregation, reduces the risk of AF recurrence.

In this case, the combination of log(μ) and β1 is asso-
ciated with a higher risk of early AF recurrence with an 
HR of 1.95 (95% CI, 1.03–3.70; p < 0.05) (Fig. 6B). The 
estimated event-free rates at 1 month after the blanking 
period were 31% for high-risk patients and 49% for low-
risk patients. In addition, 21 (78%) patients at high risk had 

Fig. 5  Kaplan–Meier curves for AF freedom after catheter ablation 
using each parameter as a risk predictor: A log(�) , B �1 C AF burden, 
and D AF density. The legend of each panel shows the threshold used 

and the number of patients in each group, and the panels show the 
hazard ratio (HR) and the 95% confidence intervals with their signifi-
cance levels. Plus signs symbolize the censored patients
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AF recurrence, while 20 (74%) patients at low risk had AF 
recurrence (chi-squared p = 0.31). Even though both groups 
had similar proportions of AF recurrence, the survival times 
for the patients at high risk which had AF recurrence was 
less than 10 months while for those in the low-risk group 
was 14 months.

4  Discussion

ICMs with high AF detection accuracy offer the unique 
advantage of long-term monitoring periods spanning several 
months which can lead to a more detailed characterization 
of AF behaviour. With the rapidly increasing use of these 
continuous monitoring devices for patients diagnosed with 
AF [25] and the relatively high recurrence rates post-catheter 
ablation [23], the need for a method to characterize AF epi-
sode patterns to evaluate the risk of recurrence is increasingly 
important. To the best of our knowledge, there have been no 
studies using episode pattern characterization method as AF 
recurrence risk predictor. Our approach is also the first one 
comparing different parameters to determine the risk of AF 
recurrence in a cohort of continuously monitored AF patients 
outside of the restrictions 24-h Holter devices entail.

In recent years, the problem of how to characterize epi-
sode patterns has received certain attention. However, it 
has been mainly focused on statistical analysis of either 
interepisode intervals, i.e., the interval between consecu-
tive AF episodes [12–14] or inter-detection intervals, i.e., 
the intervals between onset of consecutive AF episodes 
[15]. The main drawback of this type of analysis is that 
it resides on the assumption that episodes are statistically 
independent, which may be questioned since AF episodes 

tend to cluster [13]. The alternating, bivariate Hawkes 
model was developed to provide a model-based, statisti-
cal approach to characterizing the dynamics of episode 
patterns [17]. While that work conjectured that the episode 
pattern could offer insight into AF and the degree of atrial 
electrical and structural remodelling, the clinical signifi-
cance of log(μ) and β1 has not been established previously.

Numerous risk factors have been linked to recurrent AF 
after ablation, including thromboembolic risk predictors 
like  CHADS2 or  CHA2DS2-VASc [6] and other specific 
rhythm outcome predictors such as APPLE [7], SUCCESS 
[8], and MB-LATER [9]. These scores have shown limited 
risk evaluation capability and have the drawback of rely-
ing on the detection of AF recurrence in patients using 
conventional Holter devices and the need of image-based 
parameters such as ejection fraction or left atrial diameter. 
In particular, MB-LATER uses early recurrence of AF as 
a feature and therefore cannot be used to evaluate the risk 
of AF recurrence before attempting the catheter ablation 
procedure. Conversely, the proposed method uses a sub-
set of parameters estimated from a model-based approach 
which characterizes AF episode patterns in a continuously 
monitored cohort of patients.

In the analysis of the recurrence predictors, no statisti-
cal differences were found between the recurrence and no 
recurrence groups. However, when studying β1, we found 
that a higher proportion of patients with AF recurrence had 
more clustered episodes, i.e., β1 close to 0 (90% vs 69%, 
chi-squared p = 0.724). Although this gives us a first indica-
tion that patients with more episode aggregation may have 
a higher risk of AF recurrence, the overall proportion of 
patients with more aggregation is also high (85%) and the 
population is biased towards patients with AF recurrence.

Fig. 6  Kaplan–Meier and 95% confidence intervals curves for AF 
freedom after catheter ablation combining A AF burden and AF den-
sity, and B the Hawkes parameters. The panels show the hazard ratio 

(HR) and the 95% confidence intervals with their significance levels. 
Plus signs symbolize the censored patients
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Unsurprisingly, when evaluating the relationships 
between covariates, log(μ) and AF burden had significant 
correlation (r = 0.78; p < 0.001) as both parameters pro-
vide information on AF dominance (log(μ) > 0 and AF 
burden > 0.5). However, β1 was weakly correlated with AF 
density, and, while both features describe the degree of 
episode aggregation, β1 extracted from a statistical model, 
and AF density being an ad hoc parameter, these param-
eters may provide complementary information.

The parameters studied were estimated from the 
episodes stored from the last session available before 
catheter ablation containing episodes with durations 
from 2.6 h to 7 months. To produce a more homogene-
ous results and taking advantage of the long monitoring 
periods of the Reveal, the multivariate analysis was also 
computed for the last 4 weeks before the ablation. A 
monitoring period of 4 weeks was chosen as it was the 
minimum pre-ablation period common for the cohort. 
In this case, only AF burden and AF density were com-
puted due to that while the Reveal stores the daily AF 
suffered by the patient, the onset and duration of the 
individual episodes were unavailable. The combina-
tion of AF burden and AF density showed a non-sig-
nificant HR of 1.00 (95% CI 0.55–1.84; p = 0.99). This 
result, combined with the non-significant result of the 
Cox analysis for AF burden and AF density estimated 
over the last session, suggests that both AF burden and 
AF density do not convey significant information for 
assessing the risk of AF recurrence in this cohort. While 
AF density has not been used to assess risk of AF recur-
rence before, AF burden levels were shown to be able to 
predict the risk of AF recurrence [26]. The study found 
a lower risk of AF recurrence with a lower pre-ablation 
AF burden in AF patients. However, a significant dif-
ference in risk was found between those patients lower 
than 1% AF burden and those with higher levels of AF 
burden. Our patient population has relatively higher AF 
burden levels as our cut-off threshold between groups 
was defined as 30%.

The risk of AF recurrence for the Hawkes parameters 
was found to have an HR of 1.95 (95% CI, 1.03–3.70; 
p < 0.05). The combination showed that the risk was sig-
nificantly higher for patients with a higher AF prevalence 
during their monitoring period and with higher degree of 
episode aggregation.

The log(μ) and β1 parameters of episode aggregation 
may represent an early sign of transition from paroxysmal 
to persistent AF. The observed increased risk of arrhyth-
mia recurrence once the novel criteria are present would 
be well in line with lower catheter ablation efficacy in 
patients with persistent forms of AF. If confirmed, this 
could be used as an early triaging mechanism pointing 
towards the need of accelerated referral for ablation.

To assess the possible link between our novel variables 
and established AF recurrence risk factors, the clinical 
parameters age, hypertension, and AF type were consid-
ered. The link between classical AF risk factors and suc-
cess of ablation was systematically evaluated previously 
by Balk et al. [27]. The multivariate analysis showed that 
neither age, AF type, nor hypertension showed a signifi-
cant association to ablation success. This association was 
further explored in our study where we analysed the risk 
of the clinical risk factors and found non-significant haz-
ard ratios. Some of the reasons behind this result, however, 
could be the relatively young population included in the 
study (56 ± 11 years) or the under-representation of non-
paroxysmal AF patients (26%).

The retrospective analysis carries certain limitations as, 
for example, it was based on a limited patient population 
from 2 different cohorts implanted with the Reveal LINQ 
ICM, which automatically detects AF episodes longer than 
2 min. Therefore, episodes longer than 30 s, defined as 
AF episodes by the guidelines [3], but shorter than 2 min 
were undetected by the ICM. Furthermore, due to mem-
ory restrictions, only the onset and duration of the last 30 
episodes detected by the ICM before each data download 
are stored. The 96 (41) days between scheduled appoint-
ments (and therefore between data downloads) potentially 
resulted in a loss of AF episodes that could have been used 
to better characterize the episode patterns. In addition, due 
to the retrospective nature of the study, the medication 
administered to each patient during the monitoring period 
was not available. Despite these drawbacks, the advantage 
of having continuous monitoring of the patients before and 
after ablation greatly outweighs the disadvantages of pos-
sible information loss due the device resolution or memory 
restrictions. Using the Hawkes model, at least 10 episodes, 
i.e., 20 transitions, should be available to produce adequate 
results [17]; hence, with 30 stored episodes, the require-
ment is fulfilled.

5  Conclusion

The clinical relevance of AF episode pattern characterization 
using the alternating, bivariate Hawkes model is evidenced 
by its capability to predict AF recurrence post-catheter 
ablation. The proposed parameter combination is related to 
increased risk of AF recurrence within 1 year of the proce-
dure for patients with more dominant AF and more episode 
aggregation. This approach represents a preliminary step to 
demonstrate the clinical significance of AF episode pattern 
characterization as well as to popularize pre-ablation risk 
assessment which could be used in a more effective patient 
triage and reduce the economic and personal burden associ-
ated with the procedure.
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