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(Received 31 March 2014; accepted 16 July 2014; published online 14 August 2014)

Associate Editor Anastasios G. Bezerianos oversaw the review of this article.

Abstract—A method for estimating respiratory rate from
electrocardiogram (ECG) signals is presented. It is based on
QRS slopes and R-wave angle, which reflect respiration-
induced beat morphology variations. The 12 standard leads, 3
leads from vectorcardiogram (VCG), and 2 additional non-
standard leads derived from VCG loops were analyzed. The
following series were studied as ECG derived respiration
(EDR) signals: slope between the peak of Q and R waves,
slope between the peak of R and S waves, and the R-wave
angle. Information from several EDR signals was combined
in order to increase the robustness of estimation. Evaluation
is performed over two databases containing ECG and
respiratory signals simultaneously recorded during two clin-
ical tests with different characteristics: tilt test, representing
abrupt cardiovascular changes, and stress test representing a
highly non-stationary and noisy environment. A combination
of QRS slopes and R-wave angle series derived from VCG
leads obtained a respiratory rate estimation relative error of
0.50 ± 4.11% (measuring 99.84% of the time) for tilt test and
0.52 ± 8.99% (measuring 96.09% of the time) for stress test.
These results outperform those obtained by other reported
methods, both in tilt and stress testing.

Keywords—ECG-derived respiration (EDR), Exercise, Tilt

test, Respiratory frequency, Robustness, QRS slopes,

R-wave angle, Stress testing.

INTRODUCTION

Respiratory rate observation remains the first and
often the most sensitive marker of acute respiratory
dysfunction,8 and it is a sensitive indicator of critical
illness.19 Respiration is also very relevant in sports

training, since the anaerobic point (the point when the
exercise shifts from aerobic to anaerobic) is determined
from respiratory rate and other breathing-related
parameters among others.10 Respiration is usually
recorded by techniques such as spirometry, pneumog-
raphy or plethysmography. These techniques require
cumbersome devices which may interfere with natural
breathing and which are unmanageable in certain situa-
tions such as stress test or sleep studies.2 Therefore,
obtaining accurate respiratory information from non-
invasive devices is very useful.

Several algorithms for deriving respiration from non-
invasive devices such as pulse oximeters5,13 or electro-
cardiographs2,18 have been developed. Electrocardio-
gram (ECG)-based methods are so-called ECG derived
respiration (EDR) methods. Known EDRmethods can
be divided by the information that they exploit. On one
hand, it is well known that respiration modulates the
heart rate making it higher during inspiration than
during expiration.9,28 On the other hand, respiration
also affects beat morphology through impedance
changes in the thorax and relative movements of the
electrodes with respect to the heart. Many methods
based on respiration-induced beat morphology varia-
tions have been developed. Some of them are based onR
wave amplitudes either with respect to the baseline or to
the S wave amplitude,16 obtaining respiratory infor-
mation from the ECG in a simple way. Other developed
beat-morphology-based methods are more complex,
such as those that exploit QRS area variations21 or
electrical axis rotation.22 In Bailón et al.,3 a method
based on least squares estimation of the rotation angles
of the heart electrical axis between successiveVCG loops
and a reference loop was evaluated in stress testing
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recordings. Some EDR methods that exploit both beat
occurrence and morphology have been also pro-
posed.14,27

A new beat-morphology-based method is presented
in this paper. It is based on QRS slopes and R-wave
angle variations. QRS slopes have been previously
studied as a marker of ischemia,23,24 as well as R-wave
angle.25A respiration-relatedmodulation inQRS slopes
was observed in Romero et al.,24 but it was not studied.
In this paper, the respiration-related modulation of
QRS slopes andR-wave angle is studied and exploited to
derive respiration from the ECG. The method based on
electrical axis rotation angles presented in Bailón et al.3

is chosen as reference for comparisonmethod, because it
is the EDR method that obtained the best results in
Bailón et al.3 and in Lázaro et al.13

Evaluationof the proposedmethods is performedover
two databases. One of them contains signals recorded
during a tilt table test, representing an environment with
abrupt cardiovascular changes. The other one is com-
posedof signals recordedduring stress test, representing a
highly non-stationary and noisy environment.

Note that preliminary stages of the study described
in this paper have been previously presented in two
short conference papers.11,12

MATERIALS AND METHODS

Tilt Test Data

This database contains 17 (11 men) recordings from
volunteers, aged 28.5 ± 2.5 years, during a tilt table
test. The tilt table test is used for testing the sympa-
thetic nervous system through the blood pressure
response to postural changes.7 In particular, the tilt
table test was performed according to the following
protocol: 4 min in early supine position, 5 min tilted
head-up to an angle of 70�, and 4 min to later supine
position. Transitions between stages last 18 s.

The standard 12-lead ECG were recorded by using
Biopac ECG100C with a sampling rate of Fs = 1000
Hz, and the respiratory signal was recorded with a
sampling rate of 125 Hz using Biopac RSP100C sensor
and TSD201 transducer, representing a plethysmog-
raphy-based technique. Further details of these data
are given in Mincholé et al.20

Stress Test Data

This database contains recordings from 14 volun-
teers (10 males) aged 28 ± 4 years and 20 patients (16
males) aged 58 ± 14 years, referred to the Department
of Clinical Physiology at the University Hospital of
Lund, Sweden, for stress testing. The stress test was
performed on a bicycle ergometer Siemens-Elema

Ergoline 900C. The initial workload (50 W for males
and 30 W for females) was increased at a rate of 15 W/
min for males and 10 W/min for females, until a rate of
perceived exertion (according to Borg scale) of 15 for
volunteers and of 17 for patients was reached, unless
other clinical stopping criteria (e.g., chest pain or
tachycardia) occurred first.

As in Bailón et al.,3 five subjects, all of them
patients, were excluded from the study for different
reasons including unattached electrodes, too low heart
rate to assure aliasing-free estimation of the respiratory
frequency, or the absence of a dominant peak at
respiratory signal spectrum in at least 50% of the total
duration of the exercise. Thus, a total of 14 volunteers
and 15 patients were included.

The standard 12-lead ECG was recorded by using
the Siemens-Elema Megacart front-end with a sam-
pling rate of Fs = 1000 Hz. The respiratory signal was
simultaneously recorded by an airflow thermistor
(Sleepmate), amplified by Biopac DA100C, and digi-
talized by using Biopac MA100 with a sampling rate of
50 Hz. Further details of these data are given in Bailón
et al.3

Preprocessing

Vectorcardiogram (VCG) was obtained by using the
inverse Dower matrix.6 QRS complexes in all ECG
leads were automatically detected by using a wavelet-
based detector,15 and ectopic/misdetected beats were
identified and removed using an algorithm described in
Mateo et al.17 Normal sinus beat locations are denoted
nNl;i

, where l represents ECG lead and i normal sinus
beat order. Baseline was removed by a cubic-spline
interpolation technique, which results in a linear fil-
tering with a time-variable cut-off frequency, better
tracking rapid baseline wander when compared to a
fixed cut-off frequency approach while maintaining
beat-to-beat variations.26 Then, for each lead l and
normal sinus beat i, wave delineation was performed
by using a wavelet-based technique,15 determining Q
(nQl;i

), R (nRl;i
), and S (nSl;i ) peaks (or QRS end when no

S wave is present), and QRS onset (nONl;i
).

Non-standard Leads

Two non-standard leads were derived: the loop
derived lead (LDL) and the N-loops derived lead
(NLDL). Both of them are based on VCG-QRS loops.

LDL was presented in Romero et al.24 It tries to
enhance the QRS magnitude by projecting VCG-QRS
loop onto its dominant direction ui, obtained as:

ui ¼ uXi
; uYi

; uZi
½ �T¼ lXðn0iÞ; lYðn0iÞ; lZðn0iÞ½ �T ð1Þ
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being lX(n), lY(n), and lZ(n) the 3 VCG leads, and:

n0i ¼ arg max
n2XQRSi

l2XðnÞ þ l2YðnÞ þ l2ZðnÞ
� �

ð2Þ

where XQRSi is a 140 ms interval starting 10 ms before
the earliest QRS onset in the 3 VCG leads, nONi

:

nONi
¼ min nONX;i

; nONY;i
; nONZ;i

� �
ð3Þ

XQRSi ¼ nONi
� 0:01Fs; nONi

þ 0:13Fs½ �: ð4Þ

Then, the LDL lLDL(n) is computed at each beat as:

lLDLðnÞ ¼
lXðnÞ; lYðnÞ; lZðnÞ½ �ui

uij jj j ; 8n 2 XQRSi ð5Þ

In this way, the beat-to-beat variations of the domi-
nant direction of VCG-QRS loop are followed by
lLDL(n). Following these variations may be counter-
productive in this application, since they are in part
due to respiration.3,21,22 For this reason, NLDL is
proposed as a slight modification of LDL. The NLDL
is similar to the LDL, but the dominant direction of
VCG-QRS loops is estimated with the first N beats and
it is not updated. In mathematical terms, the NLDL is
defined as:

�u ¼
XN

i¼1

ui
uij jj j

� �
ð6Þ

lNLDLðnÞ ¼
lXðnÞ; lYðnÞ; lZðnÞ½ ��u

�uj jj j ð7Þ

being N set to 5 beats in this work. This value was
chosen as the mininum value which attenuates the
effect of noise or artifacts in the estimation of the
dominant direction and reduces the respiratory
influence (approximately above 0.2 Hz) on it.

QRS Slopes Measurement

QRS slopes were measured by using the algorithm
presented in Pueyo et al.23 For each beat, two slopes
are measured: upward slope of the R wave (IUSl;i)
and downward slope of the R wave (IDSl;i).

First, time instants associated with the maximum
variation points of the ECG signal between nQl;i

and
nRl;i

, and between nRl;i
and nSl;i are computed as:

nUl;i
¼ max

n2 nQl;i
;nRl;i

� � l 0lðnÞ
�� ��� �

ð8Þ

nDl;i
¼ max

n2 nRl;i
;nSl;i

� � l 0lðnÞ
�� ��� �

ð9Þ

where l 0lðnÞ is the first derivative of lead l:

l 0lðnÞ ¼ llðnÞ � llðn� 1Þ: ð10Þ

Finally, a straight line is fitted to the ECG signal by
least squares in two 8 ms-length intervals, one of them
centred at nUl;i

and the other one at nDl;i
. The slopes of

these lines are denoted IUSl;i and IDSl;i , respectively.
Figure 1 illustrates relevant points taking part in this
measurement algorithm.

R-wave Angle Measurement

An R-wave angle is also used to derive respiratory
rate in this work. This angle corresponds to the
smallest one formed by the straight lines that define
IUSl;i and IDSl;i , and it was measured as in Romero
et al.25 Assuming a two-dimensional euclidean space
coordinate system, the general equation that defines
this angle is:

/ ¼ arctan
I1 � I 2
1þ I1I 2

����

����

	 

ð11Þ

where I1 and I2 denote the slopes of the straight lines
forming the angle.

The units of the horizontal axis (time) and vertical
axis (voltage) were rescaled to match the particular
case of conventional ECG tracings in clinical print-
outs, where a speed of 25 mm/s and a gain of 10 mm/
mV are used as in Romero et al.25:

/Rl;i
¼ arctan

IUSl;i � IDSl;i

0:4 6:25þ IUSl;iIDSl;i

� �

�����

�����

 !

: ð12Þ

Electrocardiogram Derived Respiration Signals

Based on QRS Slopes or R-Wave Angle

An EDR signal was generated for each one of the
QRS slopes series by assigning to each beat occurrence
nNl;i

, the value of its associated QRS slope:

dufUS;DSglðnÞ ¼
X

i

IfUS;DSgl;id n� nNl;i

� �
ð13Þ

where the superindex ‘‘u’’ denotes the signal is un-
evenly sampled. An EDR signal was generated for each
one of the R-wave angle series in a similar way:

duRl
ðnÞ ¼

X

i

/Rl;i
d n� nNl;i

� �
: ð14Þ
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Then, a median absolute deviation (MAD)-based
outlier rejection rule was applied as in Bailón et al.3,
and subsequently, a 4 Hz evenly sampled version of
each EDR signal was obtained by cubic-splines inter-
polation. Finally, a band-pass filter (0.075–1) Hz was
applied. These filtered signals are denoted with the
same nomenclature than the unevenly sampled ver-
sions, but without the superindex ‘‘u’’, e.g., dUSNLDL

ðnÞ
is the 4-Hz, outlier-rejected, evenly sampled, band-pass
filtered version of duUSNLDL

ðnÞ.
Figure 2 shows an example of some EDR signals

and the reference respiratory signal r(n) from stress test
dataset during resting, stress peak and recovery phases.
It can be observed that EDR signals and r(n) are
oscillating at very similar rates, which notably differ at
each phase of the protocol.

A total of 51 EDR signals were studied corre-
sponding to the 2 QRS slopes and 1 angle series (IUSl;i ,
IDSl;i and /Rl;i

) in the 17 studied leads.

Based on Electrical Axis Rotation Angles

Three additional EDR signals were also studied for
comparison purposes. These EDR signals were pre-
sented in Bailón et al.3 and they are based on heart-
electrical-axis-rotation angle variations induced by

respiration. They were processed in the same way than
QRS slopes EDR signals obtaining three EDR signals
denoted dUX

ðnÞ, dUY
ðnÞ and dUZ

ðnÞ in this paper.

Respiratory Rate Estimation Algorithm

Respiratory rate estimation is based on the algo-
rithm presented in Lázaro et al.13 It allows to combine
information from several EDR signals increasing the
robustness of the estimation. Let M be the number of
EDR signals used for estimating respiratory rate. The
algorithm can be divided into 3 phases: the power
spectrum (PS) estimation, the peak-conditioned aver-
age, and the respiratory rate estimation.

The PS estimation is performed by using the Welch
periodogram. For the jth EDR signal and kth running
interval of Ts-s length, the PS Sj;kðfÞ is generated by an
average of PS obtained from subintervals of Tm-s
length (Tm <Ts) using an overlap of Tm/2 s, after a
power normalization in [0, 1] Hz band. A spectrum is
generated every ts s.

The second phase is a peak-conditioned average.
First, for each Sj;kðfÞ, the location of largest peak
fIPðj; kÞ is detected. Subsequently, a reference interval
XRðkÞ where respiratory rate is estimated to be, is
defined as:

XRðkÞ ¼ fRðk� 1Þ � d; fRðk� 1Þ þ d½ � ð15Þ

where fRðk� 1Þ is a respiratory frequency reference
obtained from previous ðk� 1Þ steps.

Then, fIIp ðj; kÞ is chosen as the nearest peak to
fRðk� 1Þ, among all peaks larger than 85% of fIpðj; kÞ
inside XRðkÞ. Note that fIIp ðj; kÞ can be the same fIpðj; kÞ
if the largest peak is inside XRðkÞ and it is also the
nearest to fRðk� 1Þ. An example of selection of fIpðj; kÞ
and fIIp ðj; kÞ is shown in Fig. 3.

Afterwards, Ls spectra Sj;kðfÞ are ‘‘peak-condi-
tioned’’ averaged; only those Sj;kðfÞ which are suffi-
ciently peaked take part in the averaging. In this paper,
‘‘peaked’’ denotes that fIIp ðj; kÞ exists and a certain
percentage n of the spectral power must be contained
in an interval centred around it. In mathematical
terms, this averaging is defined as:

�SkðfÞ ¼
XLs�1

l¼0

X

j

vAj;k�lv
B
j;k�lSj;k�lðfÞ ð16Þ

where vAj;k�l and vBj;k�l represent two criteria aimed at
deciding whether power spectrum Sj;k�lðfÞ is peaked
enough or not, preventing those not peaked enough
spectra from taking part in the average. On one hand,
vA lets those spectra whose peakness is greater than a
fixed value take part in the average, as shown in Eq.
(17), and on the other hand, vB compares the spectra of
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FIGURE 1. Relevant points over an example of QRS from
lNLDL(n). Thick magenta lines represent the two straight lines
best suited to the QRS slopes by least square, and from which
the slope series are obtained. R-wave angle series are
obtained from the smallest angle formed by these two lines.
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different EDR signals, letting those spectra more
peaked in each time instant take part in the average,
although all them had passed the vA criterion, as
shown in Eq. (18). Note that vB has no effect if the
estimation is being accomplished from only one EDR
signal (M ¼ 1).

vAj;k ¼
1; Pj;k � n

0; otherwise

�
ð17Þ

vBj;k ¼
1; Pj;k � max

j
Pj;k

� �
� k

0; otherwise

(

ð18Þ

where Pj;k is defined by the percentage of power
around fIIp ðj; kÞ with respect to the total power in
XRðkÞ:
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FIGURE 2. Example of some EDR signals and the reference respiratory signal r(n) from stress test dataset during different phases
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oscillating at very similar rates, which notably differ at each phase of the protocol.
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FIGURE 3. Example of selection of f I
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p ðj ;k Þ for
an hypothetical Sj;k ðf Þ and for a given fRðk � 1Þ. Peak (a) is
selected as f I

pðj ;k Þ because it is the highest peak. Then, peaks
higher than 85% of the amplitude of peak (a) within XRðk Þ are
detected, finding peaks (b) and (c), and discarding peak (d). Peak
(b) is selected as f II

p ðj ; k Þ because it is the nearest to fRðk � 1Þ.
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Pj;k ¼

Z min fIIp ðj;kÞþ0:4d; fRðk�1Þþdf g

max fIIp ðj;kÞ�0:4d; fRðk�1Þ�df g
Sj;kðfÞdf

Z fRðk�1Þþd

fRðk�1Þ�d
Sj;kðfÞdf

: ð19Þ

Then, the algorithm searches the largest peak fIap ðkÞ in
�SkðfÞ, and subsequently fIIap ðkÞ defined as the nearest to
fRðk� 1Þ inside XRðkÞ which is at least larger than
85% of fIap ðkÞ. At this time the reference frequency
fRðkÞ is updated as:

fRðkÞ ¼ bfRðk� 1Þ þ 1� bð ÞfpðkÞ ð20Þ

where b denotes the forgetting factor and fpðkÞ is
defined by

fpðkÞ ¼
fIIap ðkÞ; 9fIIap ðkÞ
fIap ðkÞ; otherwise

(

: ð21Þ

Finally, estimated respiration rate f̂ðkÞ is defined as:

f̂ðkÞ ¼ af̂ðk� 1Þ þ 1� að ÞfpðkÞ ð22Þ

a ¼ a2; 9fIIap ðkÞ
a1; otherwise

�
ð23Þ

where a2 � a1, providing more memory when fIIap ðkÞ
could not be set.

Note that �SkðfÞ is the result of an average from zero
up to M 9 Ls power spectra. If no spectrum takes part
in the average, the algorithm increases the reference
interval by doubling the d value and repeat the process
from the search of fIIp ðj; kÞ in individual power spectra.
In the case that no spectrum is peaked enough after
this second iteration, respiratory rate is not estimated
at that time instant.

At initialization time, in order to reduce the risk of
spurious frequency selection, d is set to 0.125 Hz and
fRð0Þ is set to 0.275 Hz, allowing the algorithm to pick
peaks inside the normal range of spontaneous respi-
ratory rate ([0.15, 0.4] Hz). Occasionally, respiratory
rate can be outside this band so algorithm could not be
initialized as proposed. To deal with that issue, if fRðkÞ
is not set after 5 averages �SkðfÞ, then d is increased
allowing algorithm to pick peaks in full [0, 1] Hz
studied band.

Concatenation of all �SkðfÞ results in a time-fre-
quency map �Sðk; fÞ as shown in Fig. 4. The parameter
values for the Welch periodograms used in Lázaro
et al.13 are also used here: Ls = 5, Ts = 42 s,
Tm = 12 s and ts = 5 s. Parameter b, which controls
the change of location of XRðkÞ, was set to 0.7 as in
Bailón et al.2; d was set to 0.1 which is slightly higher
than 0.08 used in Lázaro et al.13 in order to allow faster

changes in respiratory rate, more adequate for stress
test recordings; a1 and a2 were set to 0.7 and 0.3
respectively as in Lázaro et al.,13 fixing the maximum
allowed changes in respiratory frequency inside (a2)
and outside (a1) XRðkÞ. k was set to 0.05 as in Lázaro
et al.13 because that value was observed to achieve a
good compromise for peak spectrum acceptance/
rejection. The minimum peakness to fulfill the vA cri-
terion, n, was set to 0.65 based on a study with a dif-
ferent dataset containing 3-leads ECG recordings
during stress testing,4 thus avoiding overfitting.

Four different combinations were studied: the QRS
slopes and R-wave angle from the standard 12 leads
(12ECG), from VCG, from LDL, and from NLDL. In
order to study whether respiratory information in QRS
slopes and R-wave angle is complementary or redun-
dant, respiratory rate was also estimated from combi-
nations of only QRS slopes (12ECGS, VCGS, LDLS,
NLDLS) and only R-wave angles (12ECGR, VCGR,
LDLR, NLDLR). For comparison purposes, a combi-
nation composed of the three rotation angle series3 (U)
was also studied.

Figure 5 illustrates a block diagram of this algo-
rithm.

Performance Measurements

In order to evaluate the proposed methods, two per-
formance measures were used: the relative and absolute
error of the respiratory rate estimations defined as:

eAðkÞ ¼ f̂ðkÞ � fRESðkÞ ð24Þ

eRðkÞ ¼
eAðkÞ
fRESðkÞ

ð25Þ

where fRESðkÞ is the respiratory rate estimated from the
reference respiratory signal. Note that the same abso-
lute differences can correspond to very different rela-
tive error due to the fRESðkÞ normalization.

RESULTS

The mean and standard deviation (SD) of absolute
and relative error signals were computed for each
subject. Then, the intersubject mean of those means
and SDs were also computed. Obtained results from
the studied combinations of EDR signals are shown in
Table 1 for the tilt test dataset, and in Table 2 for the
stress test dataset. For each studied combination, the
EDR signals that obtained the best and worst results in
terms of root mean square of eR (k) (less is better) are
also shown.

ECG Derived Respiratory Rate from QRS Slopes and R-Wave Angle 2077



Results obtained for combinations of only slopes
and only R-wave angles are shown in Table 3.

In order to study the performance of the methods at
different respiratory rates, they were evaluated sepa-
rately as a function of the rate of reference respiratory
signal. Furthermore, recordings from patients of stress
test dataset were observed to have more irregular
breathing patterns when compared with healthy vol-
unteers (see Fig. 6). This makes the task of deriving
respiratory rate more challenging with patients than
with volunteers. Table 4 shows results for different
ranges of respiratory rate, and for patients and vol-
unteers separately.

DISCUSSION

In this paper a new beat-morphology-based method
for deriving respiration rate from the ECG is pre-

sented. First, EDR signals are estimated based on the
beat-to-beat variations of QRS slopes and R-wave
angle, which have been obtained from different leads.
Then, respiratory rate is estimated using an algorithm
which includes peak-conditioned averaging to selec-
tively combine information from different EDR sig-
nals, and restricted interval peak search. The method
has been evaluated in two different challenging sce-
narios: tilt table test and stress test.

The performance of the methods is assessed in
terms of the respiration rate estimation error, as well
as of the percentage of the record duration where an
estimate is given (measuring time). In the tilt table test
scenario, combining information from different EDR
signals results in a reduction of estimation error and an
increase of the measuring time for all sets of analyzed
leads. In the stress test scenario, characterized by
noisier and more non stationary signals, combining
information from different EDR signals always results
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in an increase of the measuring time but, sometimes, at
the expense of a slight increase of the estimation error.
However, even in those cases (12ECG), the combina-
tion is advantageous since the slight increase in esti-
mation error (1.95 ± 9.26% [4.76 ± 28.63 mHz] vs.
–0.63 ± 7.38% [–3.46 ± 26.18 mHz]) is more afford-
able than the decrease in measuring time (37.26%).

Best performance as a compromise between esti-
mation error and measuring time is achieved by VCG

combination in both scenarios (estimation error of
0.50 ± 4.11%, measuring time of 99.84% in tilt table
test, estimation error of 0.52 ± 8.99%, measuring time
of 96.09% in stress test). VCG combination outper-
forms 12ECG combination in estimation error terms
(0.50 ± 4.11% vs. 0.46 ± 5.69% in tilt test, and
0.52 ± 8.99% vs. 1.95 ± 9.26% in stress test), sug-
gesting that inverse Dower transformation enhances
beat morphological variations induced by respiration.

TABLE 1. Inter-subject mean of means and SDs of eA (k) and eR (k) obtained for the tilt test dataset.

eR (k) (%) eA (k) (mHz)
Time measuring (%)

Mean SD Mean SD Mean

12ECG

Combination 0.46 5.69 –0.05 10.50 100

Best (dRV6
ðnÞ) –1.68 5.63 –5.18 13.94 89.42

Worst (dUSaVR
ðnÞ) 16.23 23.80 18.16 44.06 38.81

VCG

Combination 0.50 4.11 0.20 7.56 99.84

Best (dRX
ðnÞ) –0.49 7.27 –2.83 14.68 92.30

Worst (dDSY
ðnÞ) 0.35 12.03 –5.72 24.48 77.68

LDL

Combination 0.66 4.80 0.48 8.54 96.36

Best (dUSLDL
ðnÞ) 0.02 5.47 –0.72 10.30 94.19

Worst (dDSLDL
ðnÞ) 1.10 7.36 0.43 13.89 85.21

NLDL

Combination 0.71 4.61 0.52 8.58 95.37

Best (dUSNLDL
ðnÞ) –0.20 6.34 –3.14 13.26 73.62

Worst (dRNLDL
ðnÞ) 3.05 8.24 5.04 14.64 87.33

U
Combination 0.48 6.19 –0.81 12.18 96.26

Best (dUX
ðnÞ) 1.29 6.84 0.49 12.26 91.32

Worst (dUY
ðnÞ) 16.04 22.02 17.11 30.81 63.59

TABLE 2. Inter-subject mean of means and SDs of eA (k) and eR (k) obtained for the stress test dataset.

eR (k) (%) eA (k) (mHz)
Time measuring (%)

Mean SD Mean SD Mean

12ECG

Combination 1.95 9.26 4.76 28.63 99.81

Best (dRV4
ðnÞ) –0.63 7.38 –3.46 26.18 62.55

Worst (dRI
ðnÞ) 1.32 14.36 –19.66 53.65 38.96

VCG

Combination 0.52 8.99 0.46 30.36 96.09

Best (dUSZ
ðnÞ) –1.14 8.03 –11.05 29.75 73.05

Worst (dRY
ðnÞ) –5.32 13.17 –34.51 47.98 49.32

LDL

Combination 0.04 8.30 –2.10 28.15 85.17

Best (dDSLDL
ðnÞ) –0.65 8.48 –4.34 28.90 67.39

Worst (dRLDL
ðnÞ) –2.40 10.95 –12.61 38.53 66.66

NLDL

Combination 0.76 7.30 1.43 22.53 85.07

Best (dRNLDL
ðnÞ) –0.03 7.76 3.27 27.30 68.21

Worst (dUSNLDL
ðnÞ) –1.47 9.80 –14.66 30.76 67.18

U
Combination –1.62 9.65 –14.80 39.72 91.07

Best (dUZ
ðnÞ) –1.99 10.74 –17.45 38.50 70.38

Worst (dUY
ðnÞ) 3.38 16.39 4.64 52.45 72.93
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Although there is a clear advantage in combining
information from different EDR signals, it is prefera-
ble to use less EDR signals with higher signal to noise
ratio (SNR) than more EDR signals with lower SNR.
Leads LDL and NLDL also combine information
from VCG leads. However, in tilt table test EDR sig-
nals derived from LDL and NLDL do not achieve
better performance results than VCG combination.
On the contrary, in the stress test scenario, NLDL
combination obtains less estimation error, at the
expense of reducing measuring time (from 96.09 to
85.07%). There is a reduction in estimation error from
0.52 ± 8.99% (0.46 ± 30.36 mHz) to 0.76 ± 7.30%
(1.43 ± 22.53 mHz), which may be justified in appli-
cations where an accurate estimation of respiratory

frequency is needed.1 In applications where the interest
is in the evolution of respiratory frequency during
stress test, it may be more practical to have slightly less
accurate estimates but during more time. In the stress
test scenario, EDR signals derived from NLDL slightly
outperforms those from LDL in estimation error
terms. Moreover, NLDL does not require the update
of the dominant direction beat-to-beat, representing a
computational advantage.

For comparison purposes, a combination composed
of the three electrical axis rotation angle series has been
included, which yields an estimation error of
0.48 ± 6.19% with measuring time of 96.26% in tilt
table test, and an estimation error of –1.62 ± 9.65%
with measuring time 91.07% in stress test. These
results indicate that the proposed methodology out-
performs electrical axis rotation angles in terms of
estimation error and measuring time.

Apossible explanation for the improvement of results
for VCG combination with respect to U may be that,
although bothmethods use the same ECG signals (lX(n),
lY(n) and lZ(n)), QRS slopes andR-wave angles aremore
robust in those situations when there is so much noise in
one of the leads. Each one of the EDR signals combined
in U (rotation angle series) uses the three VCG leads.
Thus, if one lead is affected by noise or artifacts, the
three EDR signals are affected. In opposite, each one of
EDRsignals used inVCGcombination (QRS slopes and
R-wave angle fromeachone of theVCG leads) are based
on only one lead, so only those EDR signals based on
that lead are affected and their contribution to the
respiratory rate estimate can be attenuated by the
peaked-conditioned PS average.

In general, methods obtained similar results in
absolute error terms for rates below 0.7 Hz. Worse
performance is observed for respiratory rates above 0.7
Hz, either in absolute error terms or in percentage of
time measuring. This may be due to the fact that
respiratory rate is above 0.7 Hz only in 5 recordings
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FIGURE 6. Example of Welch periodograms obtained from
reference respiratory signal of a patient (a), and a volunteer
(b). Volunteer is breathing more regularly, so respiratory rate
is more marked in the associated spectrum.

TABLE 3. Inter-subject mean of means and SDs of eA (k) and eR (k), obtained for combinations of only QRS slopes and only
R-wave angles.

Tilt test dataset Stress test dataset

eR (k) (%) eA (k) (mHz)
Time measuring (%)

eR (k) (%) eA (k) (mHz)
Time measuring (%)

Mean SD Mean SD Mean Mean SD Mean SD Mean

12ECGS 0.55 6.89 –0.84 14.40 100.00 2.11 9.50 5.74 29.02 98.65

12ECGR –0.07 6.44 –1.90 12.82 100.00 –0.23 10.11 –2.82 36.74 96.44

VCGS 0.80 5.06 0.46 8.93 99.42 1.95 9.11 4.89 26.63 93.85

VCGR 0.31 4.61 –0.41 9.29 96.87 0.56 9.51 –0.35 26.18 87.17

LDLS 1.20 6.24 1.06 10.76 93.75 –0.60 7.53 –5.07 26.09 77.32

LDLR 0.53 6.33 –0.52 13.42 85.70 –2.40 10.95 –12.61 38.53 66.66

NLDLS 0.51 6.43 –0.52 11.75 88.39 0.47 7.19 –0.11 21.85 78.94

NLDLR 3.05 8.28 5.04 14.64 87.33 –0.03 7.76 –3.27 27.30 68.21
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belonging to patients, who present more irregular
breathing patterns (see Fig. 6).

Regarding the separation of patients and healthy
volunteers, a slight decrease in performance can be
observed in patients with respect to volunteers in
absolute error terms while relative error is slightly
lower for patients, due to the fact that respiratory rate
is higher for patients than for volunteers. The per-
centage of time offering estimates was also lower for
patients than for volunteers.

All proposed combinations use in some way the
12-lead ECG, but having that number of leads is
unmanageable in some situations, such as ambulatory
scenarios based on Holter devices. All the 220 possible
combinations of 3 leads from the 12-lead ECG were
studied. The best results in relative error terms were
obtained by the combination of V2, V5 and I leads
(–1.05 ± 8.61% during 95.52% of the time), and the
worst results were obtained by the combination of V4,
V5 and V6 (10.05 ± 15.85% during 89.90% of the
time). This suggests it is better to place electrodes in a
spatially-dispersed way than placing them proximately
to each other, and also that the area covered by the
posterior leads is the one less suited for EDR since

respiration induced changes at those ECG leads results
in the lower EDR performance.

Furthermore, to assess the incremental value of
QRS slopes and R-wave angle in estimating respiratory
rate, they have been evaluated separately. Combina-
tion of QRS slopes and R-wave angles reduces esti-
mation error and increases measuring time with respect
to QRS slopes or R-wave angles alone. Although
R-wave angles are computed from QRS slopes, their
relation is non-linear, which may exploit complemen-
tary respiratory information to that obtain by the
linear combination of QRS slopes.

The algorithm for respiratory rate estimation is
slightly different from that presented in Lázaro et al.,13

which has to be modified to adapt to the highly non-
stationary and noisy environment of stress test. The
main modifications include: (i) the reference interval
for estimating respiratory frequency is symmetric with
respect to the reference frequency fRðk� 1Þ, since
EDR signals in this study are not contaminated with
sympathetic-related low frequency components; (ii)
respiratory rate is not estimated when no spectrum is
peaked enough according to vA and vB, which prevents
from spurious estimates in very noisy signal segments.

TABLE 4. Inter-subject mean of means and SDs of eA (k) and eR (k) obtained for the stress test dataset for different respiratory rate
ranges for the stress test dataset, and from patients and volunteers separately.

eR (k) (%) eA (k) (mHz)
Time measuring (%)

Mean SD Mean SD Mean

12ECG

fRES<0:3 1.61 8.68 4.34 23.11 98.05

fRES 2 0:3;0:5½ Þ 0.28 8.63 –3.23 33.14 94.01

fRES 2 0:5;0:7½ Þ –1.92 5.73 –10.78 32.07 96.58

fRES � 0:7 –5.00 1.76 –35.92 12.99 100

Patients 1.86 8.88 5.90 32.45 99.63

Volunteers 2.04 9.68 3.55 24.95 100

VCG

fRES<0:3 1.74 8.46 4.80 21.62 90.13

fRES 2 0:3;0:5½ Þ 0.55 5.53 2.18 21.25 90.80

fRES 2 0:5;0:7½ Þ 0.39 3.48 2.60 19.16 96.05

fRES � 0:7 1.01 1.86 7.29 13.42 81.43

Patients 0.98 7.23 4.29 29.41 95.66

Volunteers 0.03 10.87 –3.65 31.38 96.55

LDL

fRES<0:3 3.19 7.06 8.64 18.23 76.50

fRES 2 0:3;0:5½ Þ –0.30 5.40 –1.05 21.30 76.66

fRES 2 0:5;0:7½ Þ –2.87 4.61 –16.26 26.90 73.56

fRES � 0:7 –5.57 4.19 –44.92 32.29 48.18

Patients –0.56 7.82 –4.56 34.11 81.54

Volunteers 0.68 8.81 0.53 21.76 89.03

NLDL

fRES<0:3 1.74 8.46 4.80 21.62 72.96

fRES 2 0:3;0:5½ Þ –0.45 4.37 –2.61 16.70 79.78

fRES 2 0:5;0:7½ Þ –2.66 3.16 –14.43 18.04 77.78

fRES � 0:7 –1.25 2.01 –9.04 14.39 42.11

Patients 1.34 6.75 3.46 24.19 80.35

Volunteers 0.15 7.90 –0.74 20.75 90.14
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Note that those periods of time when respiratory rate
is not estimated are not necessarily associated with
artifacts in the ECG signal. The exclusion criteria
discards spectra where the respiration is not clearly
marked in a specific EDR signal at a specific time
instant, either because QRS slopes or R-wave angles
are not oscillating at respiratory frequency or because
other sources are also modulating them (such as
movement oscillations) and the respiration peak can-
not be identified. For comparison purposes, Table 5
displays estimation errors achieved by the studied
EDR signals using the respiratory rate estimation
algorithm in Lázaro et al.13 Note that with this algo-
rithm an estimate is always given, so measuring time is
100%. As expected, results are similar to the ones
presented in this manuscript in tilt table test, but worse
in stress test scenario.

The two databases contains registers obtained dur-
ing specific clinical tests involving different cardiovas-
cular changes, so a measure of accuracy of the
proposed methods in normal rest conditions has not
been given. As a reference for this, respiratory rate
estimation during only the first part of tilt test protocol
(4 minutes in supine position) was evaluated for the
four proposed combinations. The obtained results in
eR (k) terms were 0.31 ± 4.22% (mean ± SD) during
100% of time for 12ECG, 0.88 ± 3.03% during 100%
of time for VCG, 0.87 ± 3.41% during 99.39% of time
for LDL, and 1.10 ± 2.92% during 100% of time for
NLDL. For the four combinations, obtained results
are better than those obtained when evaluating during
the complete three parts of tilt test. This was expected
since the first part of tilt test (rest) has no significant
cardiovascular changes, nor usually significant respi-
ratory rate changes.

Results suggest that the proposed methods based on
QRS slopes and R-wave angle series are the most
suitable for respiratory rate estimation from ECG

signals in tilt and stress test. In the stress test database,
combination of EDR signals from NLDL lead
achieved the lowest estimation error (0.76 ± 7.30%)
while 12ECG combination obtained the largest mea-
suring time (99.81%). Combination of EDR signals
from VCG leads displayed the best trade-off between
accuracy and measuring time (estimation error of
0.52 ± 8.99%, measuring time of 96.09%), outper-
forming existing methods in literature.
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