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(nPB), CHF patients (both PB and nPB) versus healthy 
subjects, and nPB patients versus healthy subjects. Twenty-
six CHF patients (8/18 with PB/nPB) and 35 healthy sub-
jects are studied. The results show that the maximal expira-
tory flow interval is shorter and with lower dispersion in 
CHF patients than in healthy subjects. The flow slopes 
are much steeper in CHF patients, especially for PB. Both 
inspiration and expiration durations are reduced in CHF 
patients, mostly for PB. Using the classification and regres-
sion tree technique, the most discriminant parameters are 
selected. For signals shorter than 1 min, the time domain 
parameters produce better results than the spectral parame-
ters, with accuracies for each classification of 82/78, 89/85, 
and 91/89 %, respectively. It is concluded that morphologic 
analysis in the time domain is useful, especially when short 
signals are analyzed.

Keywords Chronic heart failure · Respiratory pattern · 
Periodic and non-periodic breathing · Ensemble average

1 Introduction

 Chronic heart failure (CHF) is a growing epidemic in West-
ern countries with increasing incidence and prevalence [5]. 
Despite important progress in recent decades, mortality 
remains high for patients with CHF. Moreover, established 
indexes such as New York Heart Association (NYHA) func-
tional class and the left ventricular ejection fraction (LVEF), 
associated with the laboratory values and medication use, do 
not fully explain the mortality risk of patients with CHF and 
do not estimate an individual’s prognosis [28, 18, 3]. CHF is 
associated with major abnormalities in the autonomic car-
diovascular control, characterized by enhanced sympathetic 
nerve activity and cardiorespiratory disorder.

Abstract Breathing pattern as periodic breathing (PB) in 
chronic heart failure (CHF) is associated with poor progno-
sis and high mortality risk. This work investigates the sig-
nificance of a number of time domain parameters for char-
acterizing respiratory flow cycle morphology in patients 
with CHF. Thus, our primary goal is to detect PB pattern 
and identify patients at higher risk. In addition, differ-
ences in respiratory flow cycle morphology between CHF 
patients (with and without PB) and healthy subjects are 
studied. Differences between these parameters are assessed 
by investigating the following three classification issues: 
CHF patients with PB versus with non-periodic breathing 
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Breathing disorders are very common in CHF patients, 
usually manifested as a centrally driven, rhythmic rise 
and fall in ventilation [25]. This type of breathing pattern, 
referred to as periodic breathing (PB), can be classified 
into ventilation with apnea, known as Cheyne–Stokes res-
piration, or without apnea [20, 17]. With a prevalence as 
high as 70 % in CHF patients [26], the PB pattern has been 
established as a powerful predictor of poor prognosis in 
these patients [7] and increased mortality [11], especially 
in patients with Cheyne–Stokes respiration [29, 4].

Various parameters have been suggested for the charac-
terization and identification of different breathing patterns 
[15, 30, 31, 34]. For example, the sleep-disordered breath-
ing index is associated with an accelerated decline in car-
diac function and increased morbidity and mortality [12, 
13]. Sympathetic activity was found to increase with faster 
breathing rates and to decrease with higher tidal volumes 
in CHF patients. Some reports have shown that the barore-
flex sensitivity in CHF patients under basal conditions was 
lower than that of healthy subjects [1]. Short-term analysis 
of HRV has independent prognostic value of CHF patients: 
reduced low-frequency power during controlled breathing 
is a predictor of sudden death [16].

Several studies have reported that central sleep apnea is 
highly prevalent among patients with CHF [33, 35]. The con-
tinuous positive airway pressure treatment of obstructive sleep 
apnea in CHF patients demonstrated significant improve-
ments in cardiac function and left ventricular systolic function, 
and attenuation of sympathetic nerve activity [14, 21]. We 
have previously characterized the respiratory pattern in CHF 
patients and healthy subjects using spectral parameters com-
puted from the envelope of the respiratory flow signal [9]. In a 
subsequent study, we used the correntropy function, extracting 
parameters based on the correntropy spectral density (CSD) to 
detect nonlinearities in the respiratory flow signal [10].

The aim of this work was to study the morphology of the 
respiratory flow cycle in CHF patients with PB and non-
periodic breathing (nPB). We analyze the evolution of mor-
phology over time using a novel template-based technique. 
In general, differences in the spectral domain between CHF 
and healthy subjects are related to the modulation of the 
respiratory signal. The modulation may be characterized 
in the time domain by quantifying morphologic changes in 
the respiratory cycle, potentially offering the advantage of 
requiring shorter signals for analysis than required for com-
puting the correntropy function.

2  Methods

The study of respiratory flow cycle morphology involves 
the following processing steps: segmentation and time 
alignment, computation of a respiratory cycle template 

from which a set of time domain parameters are extracted. 
On the other hand, CSD-based parameters are computed so 
that these results can be compared with those of the mor-
phologic parameters. Finally, statistical analysis and respir-
atory pattern classification are performed.

2.1  Dataset

Respiratory flow signals were recorded from 26 CHF 
patients (20 males; 65 ± 9 years) and 35 healthy volunteers 
(12 males; 27 ± 7 years) at Santa Creu i Sant Pau Hospital, 
Barcelona, Spain; see [9] for more details of the dataset. 
The study was approved by the local Ethics Committee. 
The signals were originally recorded at a sampling rate of 
250 Hz, for 15 min, but, given that the frequency content of 
interest is below 1 Hz, the signals were decimated to 10 Hz 
using zero-phase, antialiasing filtering. All signals were 
analyzed visually by an experienced physician. According 
to clinical criteria, the PB patterns were visually identified 
by analyzing the waxing and waning of the respiratory flow 
signal. The CHF patients were divided into two groups: 
8 patients with PB pattern (7 male; 71 ± 7 years) and 18 
patients with nPB pattern (13 male; 63 ± 9 years).

Figure 1 illustrates respiratory flow signals with patterns 
observed in CHF patients (PB and nPB) and in a healthy 
subject. For the entire dataset with 61 subjects, the respira-
tory rate was found to range from 11.5 to 29.0 breaths/min. 
The characteristics of the CHF patients and healthy sub-
jects, in terms of respiratory rate and the duration of inspir-
atory and expiratory cycles, are shown in Table 1.  

2.2  Segmentation and time alignment

The respiratory flow signal is analyzed using a sliding win-
dow of 30-s length (80 % overlap); this choice was based on 
the observation that the period length of PB ranges from 25 
to 100 s (i.e., 10–20 cycles) [27]. The alignment method was 
found to perform particularly well for small ensemble sizes.

The signal is normalized with respect to its largest abso-
lute amplitude, and all cycles within the window are extracted 
using an algorithm that finds the zero-crossings of the respira-
tory flow signal. The resulting ensemble of successive respir-
atory cycles is represented by an N × M data matrix X,

where each column Xi contains N samples of the ith cycle, 
and M is the total number of respiratory cycles.

To ensure that the signal ensemble is well-aligned, a 
novel eigenvalue-based method is employed which per-
forms joint alignment of all signals; for more information 
on the method and its performance, see [8]. The method is 
based on the eigenvalue decomposition of the N × N sam-
ple correlation matrix as

(1)X =
[

X1 X2 X3

]

,
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Interestingly, the ratio Λθ between the largest eigenvalue λ1 
of R̂x and the sum of the remaining N − 1 eigenvalues, i.e.,

can be interpreted as a signal-to-jitter-and-noise ratio 
[8]. Optimal alignment is obtained by finding those col-
umn shifts θ̂1, . . . , θ̂M which maximize the ratio Λθ. This 
is accomplished by shifting all columns symmetrically 
around their initial positions (corresponding to cycles 
aligned to the maximal inspiration), resulting in a combina-
torial optimization problem.

(2)R̂x =
1

M
XX

T
.

(3)Λθ =
�1

∑

N

i=2 �i

,

2.3  Respiratory flow cycle template

A respiratory flow cycle template is calculated from the 
sliding window by computing the ensemble average of 
time-aligned respiratory flow cycles. The template is then 
characterized by a set of time domain parameters reflect-
ing inspiratory and expiratory time intervals, maximal 
inspiratory and expiratory flow values, and down-/upward 
inspiratory and expiratory slopes, see Table 2 for a list of 
the parameters, and Fig. 2 for graphical representation. 

2.4  Spectral parameters

We showed that the CSD was particularly well-suited for the 
characterization of modulated breathing patterns [10]. In this 
study, the same characterization is applied but with signals 

Fig. 1  Respiratory flow signals 
from a a CHF-PB patient, b 
a CHF-nPB patient, and c a 
healthy subject (n.u. normalized 
units)
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Table 1  Respiratory rate 
(mean ± SD) in CHF patients 
and healthy subjects

Rf respiratory rate, DI duration of inspiration, DE duration of inspiration

CHF PB (n = 8) nPB (n = 18)

Rf (breaths/min) 22.5 ± 4.3 18.4 ± 2.2

DI (s) 0.97 ± 0.20 1.14 ± 0.18

DE (s) 1.79 ± 0.38 2.16 ± 0.32

CHF (n = 8) Healthy subjects (n = 18)

Rf (breaths/min) 19.6 ± 3.4 15.5 ± 3.7

DI (s) 1.09 ± 0.20 1.8 ± 0.35

DE (s) 2.05 ± 0.38 2.3 ± 0.64
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much shorter than the 15 min used in [10]; here, the signal 
length ranges from 1 to 5 min, incremented in steps of 30 s. 
The CSD can be viewed as a generalization of the conven-
tional power spectral density, but with better spectral resolu-
tion. The CSD-based parameters are derived from frequency 
bands centered around the peaks corresponding to the respir-
atory frequency and the modulation frequency, see Table 3.

2.5  Data analysis

In order to analyze the dynamics of the respiratory flow 
cycle morphology over different signal lengths, the mean 

and SD of each time domain parameter are computed. Sta-
tistical analysis is carried out using IBM SPSS software 
(v19). Differences between groups are tested by the Mann–
Whitney U test, and a p value <0.05 was considered sta-
tistically significant. The classification and regression tree 
technique is used to select the most discriminant param-
eters and classify, in a binary way, the different breathing 
patterns using leave-one-out cross-validation. To allow for 
comparison with previous studies, the same classification 
framework is employed: (1) PB versus nPB patients, (2) 
CHF patients versus healthy subjects, and (3) nPB patients 
versus healthy subjects. To avoid overfitting, we followed 
the ten events per parameter rule and consequently used 
only one parameter for each classification [24]. Parameters 
offering the best discriminatory power are presented in 
terms of accuracy, sensitivity, and specificity.

3  Results

3.1  Illustration of the method

Examples of respiratory flow signals, respiratory cycle tem-
plates, and parameter trends are presented in Figs. 3, 4, and 
5, for a patient with PB, a patient with nPB, and a healthy 
subject, respectively. It is noted from Fig. 3 that PB periodic-
ity is well reflected by the trends of maximal inspiratory (MI), 
expiratory (ME) flow value, and duration of expiration (DE).

Table 2  Time domain parameters extracted from the respiratory flow 
cycle template

n.u. normalized units

Parameter Description

DI (s) Inspiration duration

DE (s) Expiration duration

MI (n.u.) Maximal inspiratory flow

ME (n.u.) Maximal expiratory flow

II (s) Maximal inspiratory flow interval

IE (s) Maximal expiratory flow interval

SI1 (n.u.) Upward inspiratory slope

SI2 (n.u.) Downward inspiratory slope

SE1 (n.u.) Downward expiratory slope

SE2 (n.u.) Upward expiratory slope

Fig. 2  Time domain parameters 
extracted from the respiratory 
flow cycle template



249Med Biol Eng Comput (2017) 55:245–255 

1 3

The upward and downward slopes of inspiration and 
expiration are represented by their respective mean val-
ues for each of the four groups, i.e., PB, nPB, CHF, and 
healthy, see Fig. 6. The respiratory flow cycle in CHF 
patients is compressed, especially for those with PB who 
exhibit the steepest slopes. Conversely, healthy subjects 
exhibit the least steep slopes, especially with respect to the 
upward expiratory slope (SE2).

3.2  Performance of the time domain parameters

Table 4 presents median, interquartile range, and p value of 
the most statistically significant parameters when analyzing 
15-min signals. The parameters corresponding to mean and 
SD of characteristics are shown in Table 1.

3.2.1  PB versus nPB

The mean value of DE is lower in PB than in nPB patients 
(p = 0.009). All slopes (SI1, SI2, SE1, and SE2) are steeper in 
PB patients than in nPB patients.

3.2.2  CHF patients versus healthy subjects

The mean values of DI and DE are lower in CHF patients 
than in healthy subjects. The maximal expiratory flow 
interval IE is shorter and with a lower dispersion in CHF 
patients than in healthy subjects. CHF patients present 
much steeper slopes (SI2 and SE1) with a higher dispersion 
when compared to healthy subjects. All parameters are sig-
nificantly different with a p < 0.0005, except the SD of SE2 
with p = 0.02.

3.2.3  nPB patients versus healthy subjects

The results show that IE is shorter and with a lower dis-
persion in nPB patients than in healthy subjects (both 
p < 0.0005). Furthermore, it is shown that SI2 (p = 0.004) 
and SE1 (p < 0.0005) are steeper and with higher dispersion 
in nPB patients.

Table 3  Parameters based on the correntropy spectral density

Parameter Description

Pm Power of the modulation frequency band

Pr Power of the respiratory frequency band

R Pm/Pr

V Correntropy mean
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Fig. 3  Signals of a CHF patient with PB: a The respiratory flow sig-
nal and b related templates calculated in the four windows indicated 
in a. The following trends, resulting from sliding window analysis, 
are displayed: c duration of inspiration (DI) and expiration (DE), d 

maximal inspiratory (MI) and expiratory (ME) flow value, e down-
ward inspiratory (SI2) and expiratory (SE2) slope, and f upward inspir-
atory (SI1) and expiratory (SE2) slope
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3.3  Performance using different signal lengths

The performance of the most discriminatory parameters 
(p < 0.01) is studied with respect to signal length, for 
ranges from 1 to 5 min, being SD_SE2 and SD_IE in time 
domain and R and V̄  in the correntropy spectral domain. 
The accuracy, sensitivity, and specificity of these param-
eters are presented in Table 5 for 1-min signals (the mini-
mal signal length used to calculate CSD values). When 
classifying PB versus nPB patients, the SD of the upward 
expiratory slope (SD_SE2) has an accuracy of 82 %, and R 
an accuracy of 78 %. When comparing CHF patients versus 
healthy subjects, SD_IE has an accuracy of 89 %, whereas 
V̄  has an accuracy of 85 %. When classifying nPB patients 
and healthy subjects, the mean of the maximal expiratory 
flow interval (M_IE) correctly identifies the 91 % of the 
subjects and V̄  the 89 %.

The accuracy of the most discriminatory parameters 
is evaluated for different signal lengths, see Fig. 7. These 
results show that the time domain parameters perform 
slightly better than the CSD-based parameters for signals 
shorter than 1.5 min. This difference is maintained for 
5-min signals when classifying PB versus nPB patients 
with an accuracy of 96 % (SD_SE2) versus 93 % (R). The 
CSD-based parameters perform slightly better than the 

time domain parameters for most signal lengths, when 
comparing CHF patients versus healthy subjects and nPB 
patients versus healthy subjects. In these cases, the accura-
cies obtained with 5-min signals are 97 % (V̄) versus 94 % 
(SD_IE) in the first case and 98 % (V̄) versus 94 % (M_IE) 
in the second case.

4  Discussion

In this study, we have proposed a number of time domain 
parameters to characterize the respiratory flow cycle mor-
phology in CHF patients, a method that is advantageous as 
it provides clinically relevant information even when only 
short-length signals are available. We have successfully 
used respiratory flow cycle morphology to detect PB in 
CHF patients, information which represents a strong pre-
dictor of poor prognosis. A respiratory template cycle is 
calculated for every 30-s respiratory flow signal segment. 
The time domain parameters, extracted from the template, 
provide statistically significant differences when comparing 
CHF patients (PB and nPB) and healthy subjects.

Selecting the length of the sliding window was a trade-
off between providing a reliable respiratory flow cycle tem-
plate and the capability to track changes in the respiratory 
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Fig. 4  Signals of a CHF patient with nPB; see Fig. 3 for an explanation of a–f
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cycle morphology during PB. Longer windows provide 
larger ensemble sizes and permit the estimation of a more 
reliable respiratory flow cycle template. On the other 
hand, shorter window lengths provide better monitoring 
of changes in the respiratory cycle morphology. A sliding 
window of 30 s (80 % overlap) moving forward in steps 
of 6 s allowed us to extract a robust cycle template (with 
ensemble sizes ranging from 4 to 30 cycles) and monitor 

changes in its morphology over the PB period (ranging 
from 25 to 100 s).

The highest difference in the morphology of the res-
piratory flow cycle, among the different breathing patterns, 
is presented in the expiration through the upward expira-
tory slope and the maximal expiratory flow. The estimated 
maximal expiratory flow interval is shorter and with a 
lower dispersion in CHF patients than in healthy subjects. 
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Fig. 5  Signals of a healthy subject see Fig. 3 for an explanation of a–f

Fig. 6  Schematic representa-
tion of different slopes of the 
respiratory flow template cycle 
and their mean values
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CHF patients and foremost PB patients present a more 
compressed respiratory cycle. They show steeper slopes 
and lower inspiratory and expiratory times than healthy 
subjects. When classifying PB and nPB patients, all the 
slopes are steeper, and the SD of the maximal inspiratory 
and expiratory flow value is much higher in PB than in nPB 
patients. This could be related to the periodicity of the res-
piratory pattern.

Periodic breathing pattern, frequently observed in 
patients with CHF, has been associated with increased risk 
of mortality. This pattern has been analyzed, mostly in 
relation with the sleep disorders [34]; in healthy subjects, 
analyzing the relationship between the blood pressure and 

Table 4  Median and interquartile range of the most statistically significant parameters of the respiratory template cycle when comparing CHF 
patients, PB and nPB patients, and healthy subjects

MXX mean value of each parameter, of each patient, during 15 min of signal, SDXX standard deviation of each parameter, n.s. not significant (p 
value > 0.05)

CHF PB nPB Healthy p value CHF versus H p value PB versus nPB p value nPB versus H

M_DI 1.20 (0.30) 1.11 (0.28) 1.23 (0.30) 1.5 (0.36) 0.0002 n.s. 0.005

M_DE 2.04 (0.45) 1.74 (0.41) 2.12 (0.45) 2.56 (1.27) 0.0003 0.016 0.009

M_IE 0.54 (0.12) 0.54 (0.11) 0.54 (0.11) 0.87 (0.35) 0.0004 n.s. 0.0003

M_SI2 −0.68 (0.41) −0.83 (0.33) −0.66 (0.27) −0.36 (0.22) 0.0004 0.041 0.004

M_SE1 0.59 (0.37) 0.78 (0.23) 0.48 (0.35) 0.21 (0.16) 0.0005 0.009 0.0002

SD_DI 0.18 (0.07) 0.18 (0.04) 0.19 (0.07) 0.33 (0.22) 0.0004 n.s. 0.0005

SD_DE 0.27 (0.15) 0.21 (0.09) 0.30 (0.20) 0.47 (0.46) 0.0002 n.s. 0.008

SD_IE 0.10 (0.04) 0.10 (0.02) 0.09 (0.05) 0.21 (0.15) 0.0003 n.s. 0.0005

SD_SI2 −0.28 (0.23) −0.31 (0.22) −0.27 (0.24) −0.11 (0.11) 0.0005 0.026 0.006

SD_SE1 −0.16 (0.16) −0.26 (0.18) −0.14 (0.11) −0.08 (0.06) 0.0004 0.035 0.004

SD_SE2 0.06 (0.06) 0.11 (0.04) 0.05 (0.03) 0.04 (0.02) 0.02 0.001 n.s.

Table 5  Accuracy (Acc), sensitivity (SE), and specificity (Sp) 
obtained with the best parameter for each classification of 1-min sig-
nal length

Classification Parameter Acc (%) SE (%) Sp (%)

Morphology parameters

 PB versus nPB SD_SE2 82 75 94

 CHF versus H SD_IE 89 85 91

 nPB versus H M_IE 91 84 91

 CSD parameters

 PB versus nPB R 78 88 74

 CHF versus H V̄ 85 100 74

 nPB versus H V̄ 89 100 68

Fig. 7  Accuracy as a function 
of signal length, using the best 
parameters (see Table 5), when 
classifying a PB versus nPB 
patients, b CHF patients versus 
healthy subjects, and c nPB 
patients versus healthy subjects
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heart rate oscillations, through the tidal volume [19], and 
in the acclimatization to high altitude in healthy mountain-
eers [6, 23]. Despite advances in treatments of cardiovas-
cular disease, the incidence and prevalence of heart failure 
continues to increase, which can be directly related to an 
increase in life span. In clinical practice, the CHF patients’ 
evolution is treated assessing indicators such as NYHA 
classification, the percentage LVEF, and the level of natriu-
retic peptide (NT-proBNP) [2]. CHF patients normally 
have higher NYHA and ProBNP values and lower LVEF 
percentages. Their diagnosis is based on tests whose results 
sometimes take several days.

Introducing additional and more immediate informa-
tion about the condition of the patient through the analy-
sis of respiratory cycle morphology is expected to support 
clinical decision and to prompt earlier treatment. The res-
piratory flow signal is commonly recorded in patients with 
cardiac and respiratory diseases, facilitating the implemen-
tation of the proposed analysis in clinical practice. CHF 
patients are regularly assessed in clinical practice and their 
treatment is adjusted based on their condition. Changes in 
the respiratory flow cycle morphology can indicate decom-
pensation or poor prognosis for these patients, which can 
be useful to monitor and adjust their treatment.

In our previous studies, we characterized the respiratory 
pattern of CHF patients in the spectral domain using either 
the envelope of the respiratory flow signal [9] or the corren-
tropy of the respiratory flow signal [10]. Correntropy was 
found to be particularly well-suited to characterize different 
breathing patterns in CHF patients and identify patients’ 
condition. It was tested with 15 min of respiratory flow 
signals and provided an accuracy of 88.9 % classifying PB 
versus nPB patients and 95.2 % classifying CHF patients 
versus healthy subjects.

Although CSD-based parameters perform slightly bet-
ter with longer signals, shorter signals are needed for mor-
phologic characterization to get significant parameters that 
identify CHF (PB and nPB) patients and healthy subjects. 
According to these results, 1-min signals could provide rele-
vant information about patient’s condition (see Fig. 7). Thus, 
a promising advantage of the present morphologic character-
ization is its capability to provide clinically relevant informa-
tion even from short-length respiratory flow signals, which 
are much easier to acquire in clinical practice.

A better risk assessment, which includes breathing pat-
terns in heart failure, is clinically of great value as it more 
accurately identifies patients with CHF at increased risk of 
re-hospitalization and/or death who could then be targeted 
for more intensive monitoring and personalized treatment. 
Moreover, the characterization of the respiratory cycle 
morphology provides information that is easily interpret-
able by clinicians, which facilitates its introduction in clini-
cal practice.

4.1  Limitations and future research

A study limitation is that the proposed method was devel-
oped and tested with leave-one-out cross-validation using 
the same dataset. Thus, further validation of the method on 
a larger dataset is needed before it can be considered for 
clinical adoption. Despite the promising results obtained 
with simple statistical measures (median and interquartile 
range) of the morphologic parameters, it is of interest to 
pursue trend analysis and/or individual waveform analysis 
in the future studies. Another limitation of this study is that 
age is not matched between CHF patients and healthy sub-
jects. However, it has been reported that the respiratory rate 
does exhibit significant differences with respect to age [32, 
22].

5  Conclusions

Based on a respiratory template cycle, obtained with a 
novel time alignment method, various parameters such as 
inspiratory and expiratory durations, maximal expiratory 
flow interval and slopes are found to offer good discrimina-
tion between respiratory patterns in CHF patients (PB and 
nPB) and healthy subjects. Maximal expiratory flow inter-
val occurs earlier with higher slopes, and reduced inspira-
tory and expiratory duration, in CHF patients and foremost 
in PB patients than in healthy subjects. The results suggest 
that the analysis of the respiratory flow cycle morphology 
is a promising approach to study respiratory patterns and 
provide clinically relevant and interpretable information 
about CHF patients’ condition, especially when dealing 
with short-length signals.
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