
Real-Time Stress Detection Using Single-Lead ECG
Signal Analysis

Alvaro A. Jiménez-Ocaña
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Abstract—Stress detection is an active research field with
ongoing challenges, particularly in real-time data analysis. This
pilot study aims to implement a real-time stress detection algo-
rithm that utilizes cardiac and respiratory information extracted
from a single-lead ECG signal. Novel methods are combined to
extract physiological indices, which are then processed using the
XGBoost machine learning technique to provide per-second infer-
ences. ECG signal processing is conducted over a storage buffer to
ensure low processing time, with sliding-window analysis applied
to extract cardiac indices in the time domain, frequency indices
with the orthogonal subspace projection decomposition method,
and respiratory indices in both time and frequency domains from
ECG-derived respiration. A single-subject experiment, including
a relaxation stage, musical stimuli stage, and stressor stage,
is conducted to evaluate the algorithm’s performance. The
comparison between indices extracted via offline and real-time
processing yielded a Pearson correlation coefficient average of
0.98 for 21 indices, demonstrating the method’s effectiveness.
Additionally, the stress probabilities inferred by the model during
the experiment clearly distinguish between stages, as supported
by visual descriptive statistics and significant differences found
in ANOVA and post-hoc tests.

Index Terms—real time, stress detection, single-lead ECG,
EDR, XGBoost.

I. INTRODUCTION

In recent years, the study of stress has become increas-

ingly important in various scientific fields, as its treatment or

management are essential for promoting human well-being.

This purpose has led to the combined efforts of multiple

disciplines, including psychology, computer science, engineer-

ing, and medicine. However, combining multiple disciplines

often imply not only improvements or benefits in traditional

methods but also new challenges that must be addressed [1].

For instance, it is beneficial the transition from sporadic

to continuous monitoring of physiological data in a patient,

but it requires the development of appropriate sensors along

with adequate real-time processing. Consequently, real-time

processing of physiological signals is a widely studied topic,

as explored in [2]–[4].

A potential initial step in studying stress is its detection.

In this regard, the debate focuses on aspects such as the

physiological signals used, the methods for processing the

information, and the types of temporal processing employed.

Concerning physiological signals, a wide range can be utilized,

including electrocardiogram (ECG), blood pressure, elec-

trodermal activity, respiratory signal, electroencephalogram,

photoplethysmogram, electromyogram, skin temperature, and

impedance cardiogram [5]. While some methods rely on a

single physiological signal for stress detection, others use mul-

timodal signals [6], [7]. Although using multiple physiological

signals can enhance detection accuracy, it can also increase

the demands on hardware and processing. Consequently, an

alternative approach is to utilize a single signal and extract ad-

ditional information through novel methods. For example, [8]

demonstrated the extraction of ECG-derived respiration from

ECG signals.

Moreover, as an alternative to traditional statistical analysis

of indices, machine learning techniques such as SVM, random

forest, decision trees, XGBoost, neural networks, and CNNs

are increasingly applied in signal analysis for stress detec-

tion [9]–[11]. These techniques aim to identify patterns in data

to make accurate inferences. Furthermore, some studies have

demonstrated the feasibility of incorporating machine learning

into real-time processing not only for disease detection [12],

[13] but also for stress detection. Various signals have been
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utilized in this context, including electrodermal activity [14],

heart rate and galvanic skin response [15], ECG [16], and

multimodal approaches as seen in [17].

Despite the advances in the field, real-time stress detection

remains an area of active interest. There are still opportunities

to enhance detection systems by optimizing the physiological

signals used, refining the indices extracted from these signals,

or improving the processing tools employed for the data

obtained. Therefore, the purpose of this pilot study is to

implement an algorithm for real-time stress detection that

utilizes cardiac and respiratory information extracted from a

single-lead ECG. This algorithm employs rigorous methods

to extract the signal indices, which are then processed using

machine learning techniques to provide inferences on a per-

second basis.

The remainder of this paper is structured as follows: Section

II outlines the methods employed in this research. Section III

details the results, which are discussed in Section IV. Finally,

Section V presents the conclusions.

II. MATERIALS AND METHODS

A. Acquisition and Processing of the ECG Signal

We decided to use only one physiological signal for stress

detection to minimize resource and time requirements during

processing. Consequently, we measured a single-lead ECG

signal using the OpenBCI 8-channel Cyton Biosensing Board,

with the ECG signal acquired on one channel at a sampling

frequency of 250 Hz. Hydrogel snap electrodes with an

Ag/AgCl layer were placed in a Lead II configuration for

electrode placement.

Subsequently, the signal processing method included a fil-

tering stage, followed by a wavelet-based algorithm to detect

heartbeats [18] and the identification of ectopic beats as de-

scribed in [19] to obtain the instantaneous heart rate variability

(HRV) signal. Additionally, we extracted respiratory indices

from the ECG-Derived Respiration (EDR) signal according

to [20]. Using both HRV and EDR signals, we calculated

the frequency indices of HRV, estimating the respiratory

influence on the heart rate signal using decomposition based

on orthogonal subspace projections (OSP) [21]. The indices

extracted from the acquired ECG signal are shown in Table I.

Commonly, in offline processing, the complete signal is

processed first, and later, the indices are extracted using a

sliding-window method. In contrast, for real-time analysis,

there is an incremental signal that grows over time as data

is continuously acquired. In this context, the indices were

extracted by processing windows of 60 seconds with a 1

second slide. These parameters allowed us to obtain indices

in real time each second, while ensuring the minimum time

requirements for respiration and HRV frequency indices esti-

mation. Due to processing time limitations in real time, it is

not possible to store and process the entire incremental signal.

However, to provide a more robust analysis for the wavelet-

based algorithm and ectopic beat detection, 180 seconds of the

signal were saved in a storage buffer, updated every second.

Additionally, to avoid edge artifacts due to the limitations of

TABLE I
EXTRACTED INDICES

Type of indices Index Description

Cardiac time**

mHR Mean heart rate
SDNN Standard deviation of normal

to normal* intervals
SDSD Standard deviation of differ-

ences between adjacent NN in-
tervals

RMSSD Root mean square of succes-
sive NN interval differences

pNN20 Percentage of successive NN
intervals differing by more
than 20 milliseconds

pNN50 Percentage of successive NN
intervals differing by more
than 50 milliseconds

pNN100 Percentage of successive NN
intervals differing by more
than 100 milliseconds

SD1 Standard Deviation 1
SD2 Standard Deviation 2
S Area of ellipse
SD1/SD2 The ratio of SD1/SD2

HRV frequency***

LFres Power in low frequency of
residual component

LFresp Power in low frequency of res-
piration component

HFresp Power in high frequency of
respiration component

SBn Sympathovagal component
SBnprima Normalized sympathovagal

component
TP Total power
Px Relative power of respiratory

component

Respiratory
mBR Mean breathing rate
mBwr Mean of respiratory bandwidth
SDBwr Standard deviation of respira-

tory bandwidth

* Normal to normal (NN) intervals refer to the intervals between
consecutive heartbeats that are classified as normal, excluding
any ectopic or abnormal beats.
** Indices obtained from the NN interval series.
*** Indices derived from the HRV signal obtained through the
IPFM model.

the interpolation and filtering algorithms at the boundaries of

the signal, we defined an exclusion zone by omitting a small

margin of one second at the end of the signal segment. Fig. 1

shows the schematic of the ECG signal processing in real

time, where the last second marked in red corresponds to the

exclusion zone.

Fig. 1. ECG signal processing overview.
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All algorithms were implemented in Matlab (R2024a, Math-

Works, Natick, MA, USA). Although OpenBCI provides its

own software tool for managing the boards, we preferred using

the BrainFlow library to acquire data from the Cyton board

directly in Matlab. This approach allowed us to control the

execution time within a single software environment, which is

fundamental for real-time processing. The pseudocode of this

processing is shown in Algorithm 1.

Algorithm 1 Pseudocode for Real-Time Processing of the

ECG Signal, as Described in Section II-A.

REPEAT EVERY 1 SECOND:

Read Cyton board channel

Update storage buffer

Process complete buffer signal

Extract indices from 60s window before exclusion zone

Store extracted indices

To validate the performance of the real-time processing

algorithm, we tested it by acquiring and processing a 5-minute

ECG signal, storing the extracted indices, and recording the

raw ECG data. Subsequently, we processed the raw ECG

signal offline, extracting the indices for comparison with those

obtained through real-time processing.

B. Stress Detection Using Machine Learning

For the training of the machine learning model, we utilized

single-lead ECG signals from 40 participants provided by the

ES3 project database [22], focusing specifically on data from

the baseline and arithmetic task stages of the stress session.

After processing the signals and extracting the features, we

implemented a classifier using the Extreme Gradient Boosting

(XGBoost) algorithm through the DMLC XGBoost Python

Package [23]. The hyperparameters were tuned using a grid

search approach in combination with the Leave-One-Subject-

Out cross-validation (LOSO) technique. Finally, the best re-

sulting model was saved in JSON format.

For the inference stage, we used the pyrun function in

Matlab to execute a short Python script that loads the XGBoost

classifier model and predicts the probability every second.

Consequently, this script is run after the index extraction step,

as shown in Algorithm 2.

Algorithm 2 Pseudocode for Real-Time Stress Detection

REPEAT EVERY 1 SECOND:

Read Cyton board channel

Update storage buffer

Process complete buffer signal

Extract indices from 60s window before exclusion zone

Infer probabilities using predict proba
Store extracted indices and prediction

As mentioned above, the entire algorithm was implemented

using Matlab on a general-purpose laptop equipped with an

AMD Ryzen 7 5700U processor, 16GB of RAM, and a 64-bit

operating system.

C. Single-Subject Experiment for Real-Time Stress Detection

We evaluated the performance of the complete algorithm,

including ECG signal processing, index extraction, and stress

detection, by conducting a single-subject experiment. Accord-

ing to the self-diagnosis of the Institutional Review Board

(IRB) at the School of Engineering at Universidad de los

Andes, the minimal risk was mitigated because the subject

was one of the authors of this pilot study, who knew in detail

the experiment phases and their implications. Three electrodes

were connected to record the single-lead ECG signal during

the experiment. The experiment consisted of three stages, each

lasting 5 minutes, as follows:

• Relaxation stage: The subject was induced into a re-

laxed state using an audio guide based on the Schultz

method [24].

• Musical stimuli stage: The subject was further encour-

aged to relax by listening to a classical music piece.

The chosen piece was Pachelbel’s Canon in D major,

which has been shown to induce relaxation in previous

studies [25].

• Stressor stage: As a stressor, we used the arithmetic task

from the TSST [26] protocol. The subject was asked

to subtract 13 from 1022 repeatedly, as quickly and

accurately as possible. If a mistake was made, the subject

had to restart from 1022.

III. RESULTS

A. Performance of the Real-Time Algorithm

To assess the performance of the real-time algorithm in

comparison to the offline algorithm, we recorded and pro-

cessed a 5-minute single-lead ECG signal while the subject

listened to a classical musical piece. Simultaneously with

the real-time extraction of indices, the raw ECG signal was

recorded for subsequent offline processing and extraction of

indices. Fig 2 presents the results for several temporal indices

(mHR and pNN50), nonlinear indices (SD2 and SD1/SD2),

frequency indices (TP, LFresp, and Px), and respiratory indices

(mBR and mBwr). The red line represents the results from

offline processing, where the entire signal was processed and

indices were extracted using sliding windows. The blue line

represents the results from real-time processing, where a 180-

second buffer of the signal was processed, and indices were

extracted using sliding windows. In most of the graphs, the

results are identical, and in cases where they differ, the real-

time indices follow the same trend.

The similarity of the indices extracted using the two al-

gorithms was assessed by calculating the Pearson correlation

coefficient for each index. The results are presented in Fig. 3,

where the lowest correlation was observed for the Px index,

with a coefficient value of 0.9056.

Given the fundamental importance of ensuring correct real-

time processing, we measured the processing time for each

second during the execution of the algorithm. The results,
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Fig. 2. Comparison of indices extracted through offline processing (red),
real-time processing (blue), and the difference between them (green).

Fig. 3. Pearson correlation coefficient for 21 indices extracted using the offline
and real-time algorithms.

showing the processing time for each second over a total of

300 seconds of recording, are presented in Fig. 4. The highest

value recorded was 0.54 seconds, and the mean processing

time was 171.7± 55.4 ms.

B. Single-Subject Experiment Results

It is important to emphasize that the inference of the

classifier using the function predict proba, provide us with

a prediction of the probability of a class occurring, in this

case, stress. Consequently, the reader should not confuse

the probability results with the level of stress. With this in

mind, the predicted stress probabilities for the stages of the

experiment are depicted in Fig. 5.

Although obvious differences in the results are obtained,

descriptive statistics were computed and are presented in

Fig. 6. The statistics reveal a median value close to 0 for the

Fig. 4. Processing time per second for the real-time algorithm.

Fig. 5. Predicted stress probabilities for Relaxation Stage (a), Musical Stimuli
Stage (b), and Stressor Stage (c).

Relaxation and Musical Stimuli stages, whereas the Stressor

stage shows a median value of 0.77.

Due to time constraints inherent to real-time algorithms,

processing time is a critical parameter for analyzing the results.

Therefore, we measured the processing time throughout the

experiment to ensure that the condition of acquiring data every

second was met and that no data was missing. The results are

summarized through the calculation of descriptive statistics for

processing time at each stage, as shown in Fig. 7. The median

values were 231.41 ms for the Relaxation Stage, 226.9 ms
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Fig. 6. Descriptive statistics of predicted stress probabilities for the stages.

for the Musical Stimuli Stage, and 242.34 ms for the Stressor

Stage.

Fig. 7. Descriptive statistics of processing time per stage.

IV. DISCUSSION

This article presents an algorithm for real-time stress de-

tection using a single-lead ECG signal analysis. Various

novel methods were applied to extract respiratory indices

from the ECG signal, resulting in a comprehensive set of

indices from two organ systems. The performance of the

real-time algorithm, when compared to the offline processing

algorithm, was successful, as illustrated graphically in the

indices shown in Fig. 2 and mathematically in the Pearson

correlation coefficients presented in Fig. 3, with all coeffi-

cients exceeding 0.9. This measure suggests that the proposed

processing methodology is as effective as offline processing,

yielding reliable results. According to the indices, those in

the frequency domain, such as TP, LFresp, or Px shown in

Fig. 2, appear to be more susceptible to variations in algorithm

computations, resulting in higher error margins compared to

other indices. We believe this could be due to the extensive

processing involved in extracting these indices—first obtaining

the EDR and then applying the OSP method, combined with

the reduction of the signal for buffer storage.

Regarding the experiment results, the predicted stress proba-

bilities shown in Fig. 5 align well with the nature of the stages,

displaying a very low probability of stress for the Relaxation

and Music Stimuli stages, and a high probability of stress

for the Stressor stage of the arithmetic task. The descriptive

statistics of these results, as presented in Fig. 6, clearly

differentiate between the first two stages and the Stressor

stage. As expected, an Analysis of Variance (ANOVA) reveals

significant differences between the stages (p-value = 0). A

post-hoc test with paired t-tests was conducted for pairwise

comparisons. The results for Relaxation vs. Stressor (p-value

= 3.96 × 10−131) and Music Stimuli vs. Stressor (p-value =

4.51 × 10−133) indicate significant differences, as expected.

Interestingly, the result for Relaxation vs. Music Stimuli (p-

value = 5.09 × 10−8) also shows significant differences,

despite this not being visually apparent in the graphical results.

However, a closer inspection demonstrates that the results are

consistent. Although these stages have significant differences,

for practical purposes, both could be considered non-stress

stages.

Regarding the processing time, the outlier values throughout

the entire experiment did not exceed 0.7 s as depicted in Fig. 7,

with only two upper outliers observed for each stage. Consid-

ering that this experiment was conducted on a general-purpose

laptop, results demonstrate the feasibility of implementing this

real-time algorithm with a high level of reliability.

A limitation of this research, particularly in the single-

subject experiment, is the limited statistical representation due

to the small sample size. However, the primary objective of

this study was to validate the real-time algorithm. Future work

involving experiments with a larger population could further

confirm the results regarding the predicted stress probabilities

across different stages as presented in this article. Additionally,

optimizing the code and executing it on a specialized computer

could enhance processing time, allowing for the expansion of

tasks related to stress analysis.

V. CONCLUSIONS

An algorithm for real-time stress detection was imple-

mented and evaluated through a single-subject experiment.

This research demonstrated the feasibility of developing a

rigorous processing approach based on information from two

organ systems, meeting the time processing requirement of

less than one second. This processing included ECG signal

pre-processing, extraction of the respiratory signal from a

single-lead ECG, and the derivation of a comprehensive set

of indices using sliding window analysis. Additionally, the

results suggested that offline processing of the entire signal

is equivalent to using buffer storage, and that choosing the

XGBoost model was the right decision due to its performance
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in the inference process. An additional benefit was the ability

to obtain predicted stress probabilities as continuous values,

which can be useful for further applications in future work.
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