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Abstract 47 

Background: Atrial fibrillation (AF) prediction improves by combining clinical scores 48 

with a polygenic risk score (PRS) for AF (AF-PRS), but there are limited studies of 49 

PRS for ventricular arrhythmia (VA) prediction.  50 

Objective: We assessed the value of including multiple PRS for cardiovascular risk 51 

factors (CV-PRS) for incident AF and VA prediction. 52 

Methods: We used 158,733 individuals of European ancestry from UK Biobank to 53 

build three models for AF: CHARGE-AF (AF1), AF1 + AF-PRS (AF2), AF2 + CV-PRS 54 

(AF3). Models for VA included sex and age (VA1), VA1 + coronary artery disease 55 

(CAD) PRS (CAD-PRS, VA2), and VA2 + CV-PRS (VA3), conducting separate 56 

analyses in subjects with and without ischemic heart disease (IHD). Performance was 57 

evaluated in individuals of European (N=158,733), African (N=7,200), South Asian 58 

(N=9,241) and East Asian (N=2,076) ancestry from UK Biobank. 59 

Results: AF2 had a higher C-index than AF1 (0.762 versus 0.746, P<0.001), 60 

marginally improving to 0.765 for AF3 (P<0.001, including PRS for heart failure, 61 

electrocardiogram and cardiac magnetic resonance measures). In South Asians, AF2 62 

C-index was higher than AF1 (P<0.001). For VA, the C-index for VA2 was greater than 63 

VA1 (0.692 versus 0.681, P<0.001) in Europeans, which was also observed in South 64 

Asians (P<0.001). VA3 improved prediction of VA in individuals with IHD. 65 

Conclusion: CV-PRS improved AF prediction compared to CHARGE-AF and AF-66 

PRS. A CAD-PRS improved VA prediction, while CV-PRS contributed in IHD. AF- and 67 

CAD-PRS were transferable to individuals of South Asian ancestry. Our results inform 68 

of the use of CV-PRS for personalised screening. 69 
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Introduction 90 

Atrial and ventricular arrhythmia are a cause of substantial morbidity and 91 

mortality in the general population. Atrial fibrillation (AF) is the most common cardiac 92 

arrhythmia and associated with increased risk for cardioembolic stroke and heart 93 

failure1. Ventricular arrhythmia (VA) are the primary cause of sudden cardiac death, 94 

with ~50% of these deaths occurring in individuals considered low risk using current 95 

clinical criteria2. Therefore, AF and VA risk stratification tools need to improve the 96 

identification of high-risk individuals in low-risk populations who may benefit from early 97 

implementation of primary prevention strategies. 98 

The Cohorts for Heart and Aging Research in Genetic Epidemiology 99 

(CHARGE)-AF score was developed for primary screening of incident AF risk in the 100 

general population3. A polygenic risk score (PRS) combining an individual’s genetic 101 

predisposition for AF showed a strong association with AF risk independently from 102 

traditional risk factors4. When combined with the CHARGE-AF score, three-times 103 

more AF cases were identified compared to CHARGE-AF alone5. For VA, there is no 104 

established clinical score, but male sex and age are the main risk factors in the general 105 

population6. A recent study has reported a coronary artery disease (CAD) PRS is 106 

associated with sudden cardiac death in patients with CAD and cardiovascular 107 

comorbidities independently from sex and age, with a 70% improvement in 108 

discrimination when combined with clinical risk factors7.  109 

Most AF or VA risk factors, including electrocardiogram (ECG) or cardiac 110 

magnetic resonance images (MRI) markers, are heritable, with over 1,000 significant 111 

loci combined4, 8-25. Our recent work showed that the combination of a CAD PRS with 112 

PRS for several cardiovascular risk factors has a better performance in predicting 113 

incident CAD risk in the general population than a CAD PRS alone26. Nevertheless, 114 
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the AF and VA predictive value of PRS for these risk factors is still unknown, although 115 

this investigation would inform on their utility in risk stratifying individuals who are 116 

otherwise healthy, where there are potentially few confounding factors.  117 

We, thus, hypothesised that additional PRS for AF and VA cardiovascular risk 118 

factors, including ECG and MRI risk markers in combination with clinical scores, may 119 

capture additional electrophysiological mechanisms relevant for risk stratification. We 120 

have tested this in a middle-aged population of European ancestry without prevalent 121 

cardiovascular disease at recruitment (Figure 1), as well as in individuals with African, 122 

South and East Asian ancestry. We additionally performed sex-stratified analyses and 123 

repeated incident VA association analyses in individuals with and without prevalent 124 

ischaemic heart disease (IHD). 125 

 126 

Methods 127 

Study population 128 

UK Biobank is a prospective study of 502,505 individuals, aged 40 to 69 years 129 

old at recruitment (2006 - 2008). UK Biobank has approval from the North West Multi-130 

Centre Research Ethics Committee, and all participants provided informed consent. 131 

The research reported in this paper adhered to the Helsinki Declaration as revised in 132 

2013. For AF and VA, individuals with a diagnosis of CAD, VA, AF or heart failure at 133 

recruitment were excluded using international Classification of Diseases, Tenth 134 

Revision (ICD-10) codes (Supplementary Table 1). The main analysis included 135 

398,716 unrelated individuals of European-ancestry (Figure 2). A subset of 81,251 136 

individuals who participated in the UK Biobank exercise stress test or in the imaging 137 

study was used to obtain the list of variants and weights to build the optimal PRS for 138 

each cardiovascular risk factor trait. The remaining 317,465 independent individuals 139 



7 
 

were further split into training (50%) and test (50%) subsets. The training subset was 140 

used to derive specific models associated with incident AF and VA, and their 141 

performance was evaluated in the test subset (Figure 2). Models were additionally 142 

tested in unrelated individuals without prevalent CAD, VA, AF or HF of African (N = 143 

7,200), South Asian (N = 9,241) and East Asian (N = 2,076) ancestry from UK Biobank, 144 

given their different genetic background. 145 

 146 

AF and VA risk definition 147 

The primary endpoints of the study were incident AF and VA as recorded in 148 

hospital episode statistics using ICD10 codes I48, I480, I481, I482 and I489 for AF 149 

and I460, I461, I472 and I490 for VA. Follow-up was from the study inclusion date until 150 

November, 2022 (median of 13.6 years, interquartile range of 1.2 years). 151 

 152 

Calculation of polygenic risk scores 153 

Selection of each PRS was based on a prior electrophysiological hypothesis for 154 

their association with risk of AF or VA. In total, 36 PRS for clinical risk factors and ECG 155 

and MRI measures were derived (Supplementary Methods, Table 1). All PRS were 156 

standardised by subtracting the mean and dividing by their standard deviation so that 157 

their effect sizes in the models were comparable. 158 

 159 

Training of statistical models 160 

 In the training set, we fitted three models: CHARGE-AF (AF1), CHARGE-AF 161 

and the AF PRS (AF2)4, and AF2 and the other 35 PRS (AF3). The CHARGE-AF score 162 

was calculated using the original model originally described3. Models 2 and 3 were 163 
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also adjusted for the genetic array and the first 10 principal components26. PRS were 164 

included as continuous variables in the models. 165 

For each model, we performed univariable logistic regression analyses to 166 

determine the relationship between each risk factor and incident AF risk27. Then, we 167 

took forward into multivariable logistic regression models, clinical risk factors or PRS 168 

that were significantly associated with AF (P < 0.05) using backward stepwise 169 

elimination to remove markers with a non-significant association with the Akaike 170 

information criterion (“stepAIC” function from the “MASS” package in R).  171 

We followed a similar approach for the prediction of VA risk, also fitting three 172 

models: sex and age (VA1), sex, age and a CAD PRS4 (VA2), and sex, age, a CAD 173 

PRS and the other 35 PRS (VA3). 174 

 175 

Test of statistical models 176 

In the independent test subset (Figure 2), we calculated risk scores as the 177 

weighted sum of significant clinical risk factors and PRS in the respective multivariable 178 

models from the training set, weighted by the corresponding beta coefficients26, 27. 179 

Performance of the risk scores was evaluated by measuring the concordance 180 

index (C-index). We used bootstrapping to calculate a population of C-indices and to 181 

extract confidence intervals. Then, the likelihood ratio test (LRT, package “lmtest” in 182 

R) was used to compare nested models. Calibration of the models was evaluated 183 

using the integrated calibration index and the scaled Brier score (‘psfmi’ library in R); 184 

calibration plots were made using the ‘predtools’ library in R The net reclassification 185 

improvement (NRI) was computed using the package “PredictABEL” in R to quantify 186 

the added predictive value of each score beyond that from the corresponding 187 
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preceding one for both AF and VA risk. The risk categories used for the NRI analysis 188 

were equivalent to the event rate for each endpoint. 189 

Next, for each score and endpoint, we identified two risk groups based on their 190 

training-specific optimal cutoff, calculated as the value of the score that jointly 191 

maximized both sensitivity and specificity values using the “cutpointr” package in R. 192 

Thus, risk groups were defined as: low-risk (test score values < optimal cutoff) and 193 

high-risk (test score values > optimal cutoff). Odds ratios (ORs) were calculated using 194 

the low-risk group as a reference. To evaluate the dependency of the results on the 195 

choice of threshold, we repeated the low- and high-risk split using the cut-off value 196 

that marks the 90th percentile of the scores in the training set. 197 

Finally, we performed survival analyses; Kaplan‐Meier curves were derived 198 

using the optimal cutoff values, with a comparison of cumulative events performed by 199 

using log‐rank tests, and plotted using the “survminer” package in R. Hazard ratios 200 

(HRs) were derived taking the low-risk group as a reference using univariable Cox 201 

regression analyses. 202 

 203 

Sex-stratified analyses 204 

To investigate sex-specific contributions of the multiple PRS for incident AF and 205 

VA risk stratification, we performed sex-stratified analyses by repeating the training 206 

and testing of statistical models in men and women separately. 207 

 208 

Incident VA prediction in individuals with and without IHD 209 

Finally, we performed separate incident VA association analyses by repeating 210 

the training and testing of statistical models in individuals with and without prevalent 211 
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IHD to determine whether the underlying aetiology of VA affects PRS performance 212 

(Supplementary Methods, Supplementary Figures 1 and 2). 213 

 214 

Performance assessment in Non-European ancestries 215 

To assess the generalisability and performance of the statistical models trained 216 

in the European individuals for non-European ancestry individuals, we tested in 217 

individuals with African, South Asian and East Asian ancestry. To reduce the variation 218 

in the PRS distribution due to genetic ancestry, we used the residuals from a linear 219 

model after regressing each PRS on the first 4 genetic PCs, as previously described28. 220 

 221 

Results 222 

The study population consisted of 138,929 men, with a median (interquartile range) 223 

age of 58 (13) years old. The demographic characteristics of this population are shown 224 

in Table 2. 225 

Prediction of incident AF 226 

During the follow-up period, there were 10,411 AF cases (6.6%) in each of the 227 

training and test sets (Figure 2). The C-index for AF1 (CHARGE-AF) was 0.746 (0.742 228 

– 0.751) in the test set, which significantly increased to 0.762 (0.757 – 0.766, P < 2.2 229 

× 10-16) when using AF2 (CHARGE-AF + AF PRS, Figure 3). The C-index for AF3 was 230 

statistically significantly higher than that for AF2 (0.765 [0.760 - 0.769], P < 2.2 × 10-231 

16. The PRS for HF, TMR after exercise, BMI, QT dynamics during exercise, left 232 

ventricular ejection fraction (LVEF), Tpe interval, resting HR, left ventricular ejection 233 

systolic volume (LVESV), left atrial active minimum volume (LAmin), Brugada 234 

syndrome, QRS duration and QT interval (in decreasing order of magnitude and 235 

direction of effect) remained significantly associated with incident AF in AF3 (Figure 236 
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3). The overall mean NRI was 0.288 (0.268 – 0.308, P < 0.001) for AF2 versus AF1, 237 

and 0.110 (0.090 – 0.130, P < 0.001) for AF3 versus AF2 (Supplementary Tables 2 238 

and 3). Calibration metrics and overall performance of each model using the ‘optimal’ 239 

and the 90th percentile thresholds are shown in Supplementary Table 4 and 240 

Supplementary Figure 3). Finally, OR values and 95% CI for individuals in the high-241 

risk group versus those in the low-risk group progressively increased from 4.85 (4.63 242 

- 5.08) for AF1, to 5.24 (5.01 – 5.48) for AF2, and 5.56 (5.31 – 5.83) for AF3 (Figure 243 

3). Hazard ratio (HR) values increased from 4.83 for AF1, to 5.17 for AF2 and to 5.49 244 

for AF3 (Figure 4). 245 

In sex-specific analyses, AF2 had a significantly higher C-index than AF1 in 246 

both men (N = 69,432 in the test set, 6,151 AF cases) and women (N = 89,300 in the 247 

test set, N = 4,260 AF events). In men, AF2 showed an NRI of 0.287, and OR and HR 248 

values for AF1 and AF2 of 4.05 and 4.55, and 4.04 and 4.48, respectively. In women, 249 

NRI was 0.284, and OR and HR values were 5.36 for AF2 versus 4.86 for AF1, and 250 

5.30 for AF2 versus 4.85 for AF1 (Supplementary Figures 3, 4 and 5, Supplementary 251 

Tables 5, 6 and 7). However, CV-PRS (the same PRS from the main analysis, except 252 

for the PRS for TMR after exercise, QT dynamics during exercise, LVEF, Tpe interval 253 

and LAmin and the addition of CAD and the PR interval) only showed a significant 254 

contribution in men. These jointly increased the C-index to 0.772 (P = 4.6 x 10-4) and 255 

the OR to 4.51, with an NRI of 0.121 (0.094 – 0.147, P < 0.001, Supplementary Figure 256 

4, Supplementary Table 7). 257 

We tested the performance of each model trained in the main analysis in 258 

individuals with African (166 AF cases), South Asian (275 AF cases) and East Asian 259 

(42 AF cases) ancestry. In individuals of South Asian ancestry, AF2 had a significantly 260 

higher C-index than AF1 (0.787 [0.760 – 0.813] versus 0.774 [0.746 – 0.802], P = 2.9 261 
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x 10-5), which significantly increased to 0.791 (0.764 – 0.817), P =1.8 x 10-4, for model 262 

AF3 (Supplementary Table 4, Supplementary Figure 6). The ORs were 6.52 (4.87 – 263 

8.72) for AF1, 7.08 (5.31 – 9.45) for AF2, and 7.59 (5.64 - 10.22) for AF3, and the HR 264 

values were 6.61, 7.16 and 7.64, respectively. In individuals with African or East Asian 265 

ancestry, AF2 or AF3 did not significantly improve the predictive value already 266 

provided by CHARGE-AF in AF1 alone however there were a smaller number of cases 267 

in these ancestry groups. 268 

 269 

Prediction of incident VA risk 270 

For prediction of incident VA, there were 621 and 622 VA cases (0.4%) in the 271 

training and test sets, respectively (Figure 2). VA1 (sex and age) showed a C-index of 272 

0.681 (0.660 – 0.701), which significantly increased for VA2 (sex, age and a CAD PRS, 273 

0.692 [0.671 – 0.712], P = 4.1 x 10-11, Figure 4). NRI was 0.314 (0.236 – 0.392, P < 274 

0.001, Supplementary Table 8), calibration and performance metrics are shown in 275 

Supplementary Table 9 and Supplementary Figure 7). OR and HR values were 3.11 276 

(2.64 - 3.67) and 3.27 (2.76 - 3.88), and 3.20 and 3.36, respectively (Figures 5 and 6). 277 

After fitting model VA3, the PRS for HF, QT dynamics during exercise, HDL and QT 278 

interval remained significantly associated with incident VA, independently from sex, 279 

age and the CAD PRS. However in combination, they did not improve discrimination 280 

compared to VA2 (Figure 5). HR values were 3.20 for VA1, 3.36 for VA2 and 3.26 for 281 

VA3 (Figure 6). 282 

Sex-specific analyses (69,465 men in the training set, 441 VA cases, and 283 

69,464 men in the test set, 441 VA cases) showed similar findings, with VA2 having a 284 

significantly higher performance than VA1, but the contribution of CV-PRS not being 285 
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statistically significant (Supplementary Figures 8 and 9, Supplementary Tables 10 and 286 

11). 287 

There were 561 VA cases (5%) in both the training and test sets in individuals 288 

with prevalent IHD. Age was not significantly associated with incident VA, and sex 289 

alone had a C-index of 0.545 (0.528 – 0.563). The CAD PRS was not significantly 290 

associated with incident VA. Thus, VA3 included sex and the PRS for DBP and DCM 291 

(the two PRS that remained significantly associated in model VA3). There was a 292 

significant increase in the C-index to 0.592 (0.560 – 0.624, P = 8.5 x 10-3) with a mean 293 

NRI of 0.216 (0.0972 – 0.3352, P = 0.004, Supplementary Tables 9 and 12, 294 

Supplementary Figure 10). OR and HR values were 1.86 (1.44 - 2.42) and 1.84 295 

(Supplementary Figure 11). In individuals without IHD, there were 653 VA cases 296 

(0.2%) in both training and test subsets. The C-index was 0.654 (0.625 – 0.684) for 297 

VA1, and the OR was 3.01 (2.41 - 3.75). However, the addition of the CAD PRS (VA2), 298 

or VA3 (here the PRS for HF and the spatial QRST angle were the only two PRS that 299 

remained significantly associated with incident VA), did not significantly improve model 300 

performance (Supplementary Table 12).  301 

We finally tested the performance of each model trained in the main analysis in 302 

individuals of African, South and East-Asian ancestries. We observed that, in 303 

individuals with South Asian ancestry (46 VA cases), VA2 had a significantly higher C-304 

index than VA1 (0.722 [0.648 – 0.796] versus 0.640 [0.579 – 0.700], P = 3.2 x 10-4). 305 

However, the C-index of VA3 was not significantly higher than that of score 2 (P = 1.7 306 

x 10-1, Supplementary Table 9, Supplementary Figure 12). The OR and HR values 307 

were 3.56 (1.76 – 7.17) and 4.10 for VA1, 2.41 (1.30 - 4.47) and 4.3 for VA2, and 2.26 308 

(1.26 - 4.08) and 5.60 for VA3. In individuals with African (22 VA events) or East Asian 309 
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ancestry (3 VA events), VA2 or VA3 did not significantly improve the performance 310 

compared with VA1 alone. 311 

 312 

Discussion 313 

 In this work, we assessed the contribution of PRS for cardiovascular risk factors 314 

in the prediction of incident AF and VA in a large middle-aged population. We have 315 

validated the improvement in incident AF risk stratification provided by the combination 316 

of an AF PRS with the CHARGE-AF score, and observed that the inclusion of multiple 317 

CV-PRS further improved discrimination. For incident VA, we observed that a CAD 318 

PRS significantly improved risk stratification compared to sex and age alone, but the 319 

addition of the multiple CV-PRS only improved discrimination in individuals with 320 

prevalent IHD. We also demonstrated that our models using AF and CAD PRS for 321 

incident AF and VA risk prediction are potentially transferable in individuals of South 322 

Asian ancestry. 323 

It has been reported previously that the combination of polygenic risk for AF 324 

with the CHARGE-AF clinical score improves incident AF risk prediction over 325 

CHARGE-AF alone in patients with and without cardiovascular diseases and risk 326 

factors5. Our work builds on these findings demonstrating that inclusion of genetic 327 

predisposition for cardiovascular risk factors provides an incremental improvement in 328 

AF risk prediction in healthy middle-aged individuals of European ancestry. Results 329 

showed that genetically-predicted shorter ventricular depolarisation and repolarisation 330 

times were associated with increased AF risk, confirming previous observations 331 

having also now performed adjustment for additional CV risk factors14. Finally, the 332 

contribution of MRI markers like LVEF or left ventricular ejection systolic volume 333 
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highlights the role for genetically-determined differences in ventricular structure in AF 334 

risk, potentially through atrial mechanical and cardiac ion channel remodelling. 335 

Our sex-stratified analyses enabled the investigation of the potential 336 

contribution to risk prediction of CV-PRS in each sex separately, as well as the specific 337 

genetic architecture of AF and VA. The PRS for cardiovascular risk factors that 338 

significantly contributed to AF risk in men predominantly overlapped with those from 339 

the main analysis. However, the PRS for LVEF, Tpe interval and resting HR were no 340 

longer significant in model AF3, and were replaced by the PRS for CAD and the PR 341 

interval. In women, inclusion of PRS for cardiovascular risk factors did not significantly 342 

contribute to AF risk prediction. The addition of the CAD PRS in the model for men 343 

suggests genetic-predisposition to development of an ischemic substrate is an 344 

important contributor to AF risk compared to women, as previously reported29, as well 345 

as abnormalities in cardiac conduction, which have extensively been linked with AF13.  346 

Sandhu and colleagues recently demonstrated the added value of a CAD PRS 347 

to sex and age in stratifying patients with documented IHD on coronary angiography 348 

and cardiovascular comorbidities, according to SCD risk7. Our study is the first to 349 

report the added value of a CAD PRS to sex and age for prediction of incident VA in 350 

the general population, and this improvement held when analysing women and men 351 

separately. IHD is the most common risk factor for VA and SCD in middle-aged 352 

individuals6, and identification of individuals early in life with a higher genetic 353 

predisposition could improve SCD prevention strategies. Interestingly, our results did 354 

not show an added value for the CAD PRS to sex and age alone when performing the 355 

analysis separately in individuals with and without prevalent IHD. These findings 356 

suggest that while a CAD PRS associates with risk for developing IHD, it does not 357 
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offer improvements in VA risk stratification when considering the underlying aetiology 358 

for arrhythmia.  359 

Beyond the presence of ischemia, the causes of malignant VA are multifactorial 360 

including cardiomyopathies and inherited channelopathies, which might be reflected 361 

on ECG and MRI risk factors through the effects of structural changes, including 362 

fibrosis and post myocardial infarction remodeling6. In our work, we observed that the 363 

PRS for HF, QT dynamics during exercise, HDL and QT interval remained significantly 364 

associated with incident VA risk after adjusting for sex, age and the CAD PRS, but 365 

they did not provide an improvement in risk stratification value. This may be due to 366 

small individual effect sizes. In sex-stratified analyses there were similar observations. 367 

However, when analysing individuals with prevalent IHD, we observed that inclusion 368 

of the PRS for DBP and DCM significantly improved VA risk prediction. The 369 

incremental gain by including a DCM PRS could suggest an interaction of ischaemic 370 

and non-ischaemic aetiologies in genetically predisposed individuals that contributes 371 

to VA risk7. Thus, our results extend the observations of Sandhu et al.7, and warrant 372 

testing of these models in other cohorts including those considered clinically high risk.  373 

We also tested the performance of the models trained using individuals with 374 

European ancestry in non-European ancestry groups. We observed that the AF and 375 

CAD PRS significantly contribute to incident AF and VA prediction, respectively, in 376 

South Asian ancestry individuals, but not in individuals with African or East Asian 377 

ancestry. These findings suggest a good transferability of the AF PRS to a South Asian 378 

population, and confirms previous observations for the generalisability of the CAD 379 

PRS28. The absence of a significant improvement in African and East Asian individuals 380 

could be due to a smaller number of cases, however they may also reflect a need for 381 

ancestry-specific PRS for these two populations30. Including multiple CV-PRS in AF3 382 
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did not improve the performance of AF2 in South Asian ancestry individuals, however 383 

it is of interest that the predictive value of CHARGE-AF alone in these individuals was 384 

better than AF3 (CHARGE-AF, AF PRS and PRS for multiple cardiovascular risk 385 

factors) in European ancestry individuals. This may reflect a greater prevalence of 386 

advanced cardiovascular disease in these individuals, that could lessen the additive 387 

effect of PRS (Supplementary Table 13).  388 

Regarding the clinical implications of our findings, although the combined 389 

models are statistically significantly stronger than the clinical risk scores, the 390 

improvement is marginal. However, even a small improvement in predictive accuracy 391 

can be clinically relevant, particularly if it shifts an individual’s risk classification from a 392 

lower to a higher risk category, as shown in our NRI results. Our results could inform 393 

the design of clinical studies to investigate the utility of these PRSs in patient cohorts 394 

and higher risk populations, to identify individuals that would benefit most from more 395 

intensive screening for earlier AF detection that would facilitate prompt initiation of 396 

anticoagulation. 397 

A strength of this work is that we developed specific models for prediction of 398 

incident AF and VA, both in the overall population, and in men and women separately. 399 

Thus, the results are not biased by an ‘a priori’ specific selection of PRS for each 400 

outcome. Moreover, we used one of the largest cohorts available with detailed 401 

phenotypic and genetic data and relatively long follow-up. In addition, the inclusion of 402 

PRS for robust ECG and MRI risk markers allows an extended characterisation of the 403 

genetic architecture of AF and VA risk. There are also some limitations in our study. 404 

Firstly, the study is limited to the UK Biobank cohort, which is known to have a healthy 405 

volunteer selection bias. Calculation of optimal PRS was performed independently 406 

from the samples used to train and test the models, thus minimizing the risk of 407 
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overfitting. However, validation of these findings in other cohorts at different levels of 408 

risk and in other ethnicities will provide support for further generalizability. We used 409 

variants and effect sizes from multi-ancestry GWAS whenever possible to optimise 410 

transferability across ancestries, following findings from previous studies8. However, 411 

multi-ancestry GWAS on ECG and MRI traits are not currently available.  412 

In conclusion, in this large middle-aged population-based cohort, the inclusion 413 

of PRS for cardiovascular risk factors provides an incremental improvement in 414 

prediction of incident AF risk when combined with the CHARGE-AF clinical score and 415 

an AF PRS. Regarding VA risk, although they did not improve the risk stratification 416 

value of sex, age and a CAD PRS for incident VA prediction in the main analysis, they 417 

showed a significant contribution in individuals with IHD. Our results also indicate a 418 

good transferability of the European AF and CAD PRS for AF and VA risk prediction, 419 

respectively, in South Asian ancestry individuals. 420 
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Main Tables 539 

Table 1: List of polygenic risk scores included in the analysis. 540 

Trait N 
variants GWAS Paper Includes UK 

Biobank 
Derivation 

method 
AF 6,730,541 - No PGS Catalog 

(PGS000016) 

CAD 6,630,150 - No PGS Catalog 
(PGS000013) 

HF 909,256 Wang 2023 No PRScs 

Diabetes 6,917,436 - No PGS Catalog 
(PGS000014) 

BMI 2,100,302 - No PGS Catalog 
(PGS000027) 

SBP 1,108,568 Evangelou 2018 No PRScs 
DBP 1,110,407 Evangelou 2018 No PRScs 
PP 1,108,602 Evangelou 2018 No PRScs 

HDL 1,107,495 Hoffmann 2018 No PRScs 
LDL 1,107,494 Hoffmann 2018 No PRScs 

triglycerides 1,107,494 Hoffmann 2018 No PRScs 
Resting HR 1,108,747 van de Vegte 2023 No PRScs 

HR Response 
to exercise 14 Ramírez 2018 Yes Lead SNVs 

HR Response 
to recovery 16 Ramírez 2018 Yes Lead SNVs 

PR 583 Ntalla 2020 No Lead SNVs 
QRS 135 Young 2022 No Lead SNVs 
QT 227 Young 2022 No Lead SNVs 
JT 205 Young 2022 No Lead SNVs 

spQRSTa 53 Young 2022 No Lead SNVs 
QT dynamics 

during 
exercise 

19 van Duijvenboden 2020 Yes Lead SNVs 

QT dynamics 
during 

recovery 
3 van Duijvenboden 2022 Yes Lead SNVs 

Tpe interval 28 Ramírez 2020 Yes Lead SNVs 
TMRex 8 Ramírez 2019 Yes Lead SNVs 
TMRrec 8 Ramírez 2019 Yes Lead SNVs 
Brugada 

syndrome 21 Barc 2022 No Lead SNVs 

DCM 13 Tadros 2021 Yes (controls) Lead SNVs 

HCM 16 - Yes (controls) PGS Catalog 
(PGS000778) 

LAAEF 6 Ahlberg 2021 Yes Lead SNVs 
LAmin 3 Ahlberg 2021 Yes Lead SNVs 
LVEDV 22 Pirrucello 2020 Yes Lead SNVs 
LVESV 32 Pirrucello 2020 Yes Lead SNVs 
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LVEF 19 Pirrucello 2022 Yes Lead SNVs 

LVM 465 - Yes PGS Catalog 
(PGS003427) 

RVESV 21 Pirrucello 2022 Yes Lead SNVs 
RVEDV 14 Pirrucello 2022 Yes Lead SNVs 
RVEF 12 Pirrucello 2022 Yes Lead SNVs 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 
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Table 2: Characteristics of the cohort. 560 

Risk factor or endpoint 
All Training Test P N = 317,465 N = 158,733 N = 158,732 

Male sex, n (%) 138,929 (43.76) 69,362 (43.70) 69,567 (43.83) 0.462 
Age 58 (13) 58 (13) 58 (13) 0.350 

Diabetes mellitus, n (%) 13,847 (4.36) 6,836 (4.31) 7,011 (4.42) 0.128 
Hypertension, n (%) 207,715 (65.43) 103,995 (65.52) 103,720 (65.34) 0.303 

Median CHA2DS2-VA 
score31 (IQR) 1 (1) 1 (1) 1 (1) 0.394 

Median Height  (IQR), cm 168 (14) 168 (14) 168 (14) 0.213 
Median Weight (IQR), kg 76.2 (21.1) 76.2 (21.0) 76.2 (21.1) 0.724 

Previous or current 
smoker, n (%) 34,915 (11.00) 17,471 (11.01) 17,444 (10.99) 0.879 

Use of antihypertensive 
medications, n (%) 58,237 (18.34) 29,099 (18.33) 29,138 (18.36) 0.857 

Median CHARGE-AF score 
(IQR) 11.70 (1.45) 11.70 (1.45) 11.70 (1.45) 0.542 

Incident AF events, n (%) 20,822 (6.56) 10,411 (6.56) 10,411 (6.56) 1.000 
Incident VA events, n (%) 1,243 (0.39) 622 (0.39) 621 (0.39) 0.977 

IQR, interquartile range; SBP, systolic blood pressure; DBP, diastolic blood pressure; AF, 561 

atrial fibrillation; VA, ventricular arrhythmias 562 
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 570 
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Main figures 574 

 575 

Figure 1: Overview of the models and PRS evaluated in this study to predict incident 576 

atrial fibrillation and ventricular arrhythmic risk. 577 

 578 
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 579 

Figure 2. Flowchart indicating the number of individuals included in the study and the 580 

partition into training and test for incident atrial fibrillation (AF) and ventricular 581 

arrhythmias (VA) risk prediction. 582 

 583 
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 587 
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 591 

Figure 3: Prediction of incident AF risk. (A) Forest plot illustrating the odds ratio of 592 

CHARGE-AF score, the AF PRS and each PRS for cardiovascular risk factors and ECG or 593 

MRI risk markers that remained significant in the adjusted model. Concordance indices and 594 

odds ratios obtained for CHARGE-AF score (magenta), CHARGE-AF and the AF PRS (cyan) 595 

and CHARGE-AF, the AF PRS and the PRS depicted in panel (A) (green) for incident AF risk 596 

prediction are shown in panels (B) and (C). 597 

 598 

 599 
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 600 

Figure 4: Cumulative atrial fibrillation-free survival probability of individuals in the low- (red) 601 

and high-risk (blue) groups for models AF1 (A), AF2 (B), AF3 (C). 602 

HR, hazard ratio. 603 

 604 

 605 
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 606 

Figure 5: Prediction of incident VA risk. (A) Forest plot illustrating the odds ratio of sex, 607 

age, the CAD PRS and each PRS for cardiovascular risk factors and ECG or MRI risk markers 608 

that remained significant in the adjusted model. Concordance indices and odds ratios obtained 609 

for sex and age score (magenta), sex, age and the CAD PRS (cyan) and sex, age, the CAD 610 

PRS and the PRS depicted in panel (A) (green) for incident VA risk prediction are shown in 611 

panels (B) and (C). 612 

 613 

 614 

 615 
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 616 

Figure 6: Cumulative ventricular arrhythmia-free survival probability of individuals in the low- 617 

(red) and high-risk (blue) groups for models VA1 (A), VA2 (B) and VA3 (C). 618 

HR, hazard ratio. 619 

 620 


