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Abstract Introduction: Not only repolarization, but also depolarization ECG indexes reflect the progression
of ischemic injury. The aim was to assess the QRS duration and morphology dynamics during the
prolonged coronary occlusion and their association with the myocardial area at risk (MaR) and final
infarct size (IS).

Methods: In pigs, myocardial infarction was induced by inflation of an angioplasty balloon in the
left descending artery (LAD), and ECG was continuously recorded. QRS duration was calculated on
a beat-to-beat basis during the occlusion period. Single photon emission computed tomography
(SPECT) was performed for the assessment of MaR, and IS was assessed by magnetic resonance
imaging (MRI).

Results: All animals developed an anteroseptal infarction with MaR 40 + 9% and IS 23 + 7%. Two
peaks of QRS widening were found in all animals: the early peak immediately after LAD occlusion
and the late one 17.7 £+ 4.1 min later. No association was found between MaR and IS and either QRS
width or the degree of QRS widening at the early peak. QRS duration on the late peak correlated
with both MaR (r = 0.61; p = 0.007) and IS (r = 0.55; p = 0.018).

Conclusion: The QRS widening at the late peak, but not at the early peak, is associated with the size
of myocardial injury, suggesting different underlying mechanisms.

© 2016 Elsevier Inc. All rights reserved.
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Introduction the QRS complex [2]. It is hypothesized that the presence of
terminal distortion is associated with either longer ischemia
time or faster ischemia progression [3] due to poor collateral
flow or absence of preconditioning [4].

Patients with terminal QRS distortion before reperfusion
were shown to have larger infarct size [5,6], more prominent
wall motion abnormalities and lower ejection fraction after
reperfusion [7], as well as lower myocardial salvage [8,9].
The myocardial segments corresponded to ECG leads
showing the QRS distortion had the maximum late
gadolinium enchantment score, suggesting that QRS distortion
shows severe and prolonged transmural infarction in the area
corresponding to these ECG leads [6].

However, the data on the association between the terminal
msponding author at: Department of Cardiology, Lund University, distortion and myocardial area at risk (MaR) before
22185, Lund, Sweden. reperfusion are controversial. In some studies MaR was

E-mail address: marina.demidova@med.lu.se higher in patients with terminal distortion [4,10,11], while in

ST-segment deviation is well known to reflect ischemia.
However, during the progression of ischemic injury, not only
ventricular repolarization ECG indices, but also depolariza-
tion ones are involved, and changes in QRS complex are
believed to be associated with severe ischemia [1].

Sclarowsky-Birmbaum classification has been suggested
for grading the severity of acute ischemia, even though its use
in clinical practice remains limited. The most severe, grade 3
ischemia is characterized not only by T-wave and ST-segment
abnormalities, but also by the presence of terminal distortion of
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several other pretreatment MaR in patients with Grade 3 and
Grade 2 was comparable [12—14].

In an experimental model of myocardial infarction we
previously demonstrated the dynamic nature of changes in
QRS duration and morphology and their association with
ventricular fibrillation during coronary artery occlusion [15].
The aim of the present work was to assess the association
between the degree of dynamic QRS widening during the
prolonged coronary occlusion and the size of myocardial
injury in porcine model.

Methods
Experimental protocol

The study was performed on a close-chest porcine model
of myocardial infarction. The experimental preparation,
study protocol and imaging technique were previously
described in detail [16]. In brief, ischemia was induced in
pigs by inflation of the angioplasty balloon in the left anterior
descending coronary artery (LAD), immediately distal to the
first diagonal branch. Occlusion was verified by repeated
coronary angiography, and the duration of occlusion was
40 min. 99mTc-tetrofosmin was administered intravenously
at the 20th minute of occlusion for subsequent single photon
emission computed tomography (SPECT). After 40 min of
occlusion the balloon was deflated. TIMI-3 flow upon
balloon deflation was achieved in all animals. The
experiment was terminated after 4 h of reperfusion.
Gadolinium-based contrast agent was administered intrave-
nously 30 min prior to removal of the heart for subsequent
magnetic resonance imaging (MRI). After 4 h of reperfusion
the hearts were explanted and ex-vivo SPECT for assessment
of area at risk (MaR) and MRI for assessment of infarct size
(IS) were performed.

The study conforms to the Guide for the Care and Use of
Laboratory Animals, US National Institute of Health (NIH
Publication No. 85-23, revised 1996) and was approved by
the local animal research ethics committee.

ECG analysis

Continuous 12-lead ECG monitoring (“Kardiotechnica-04-8”,
INCART, St. Petersburg, Russia) with a sampling rate of
1024 Hz and an amplitude resolution of 1.4 pV was initiated
before the occlusion and lasted throughout all the period
of occlusion.

QRS complexes were automatically detected [17] and
then visually and manually checked. After applying an
automatic wavelet-based ECG delineator [17] to each of the
precordial leads, beat-to-beat multilead QRS boundaries
were computed. The delineator was set to automatically
include the final slurring or notching of QRS, if present in
any lead, as a part of the QRS complex.

The multilead boundaries of the QRS complex were then
defined as the earliest QRS onset and latest QRS end in the 6
precordial leads. To minimize the effect of noise or
delineation errors, a rule-based approach was used, setting
the multilead QRS onset annotations at the earliest
single-lead annotation in the 6 precordial leads, whose 3

nearest neighbors were within a 50 ms interval. Similarly,
the QRS end was set at the latest single-lead annotation with
the 3 nearest marks in a 60 ms interval.

This multilead approach, based on the post-processing of
single-lead annotations, allows to obtain a robust measure-
ment of the global QRS duration, considering the electrical
activity projected in different leads. A more detailed
description of the algorithm can be found elsewhere [18].

For each pig, QRS duration was computed on a beat-to-beat
basis as the difference between the QRS onset and QRS end
multilead marks along the 40-min occlusion period for each
experimental animal. These series were then resampled by
averaging QRS duration every 10 s. We assessed both the
absolute value of QRS duration during the coronary occlusion
and the difference between baseline QRS duration and QRS
duration at the different time points during occlusion.

Imaging

Ex vivo imaging of the heart was undertaken according to a
previously described protocol [19]. Cardiac MRI and SPECT
images were analyzed using freely available software (Segment
v1.700, Medviso, Lund, Sweden, http://segment.heiberg.se) [20].

SPECT was used to assess the MaR as percent of left
ventricular myocardium. 1000 MBq of **™Tc-tetrofosmin
was administered intravenously at the 20th minute of
occlusion. Ex vivo imaging was performed with a dual
head camera (Skylight, Philips, Best, the Netherlands) at 32
projections (40 s per projection) with a 64 X 64 matrix
yielding a digital resolution of 5 X 5 X 5 mm. Iterative
reconstruction using maximum likelihood-expectation max-
imization (MLEM) was performed with a low-resolution
Butterworth filter with a cut-off frequency set to 0.6 of
Nyquist and order 5.0. No attenuation or scatter correction
was applied. Finally short and long-axis images were
reconstructed. The endocardial and epicardial borders of
the left ventricle that were manually delineated in the MR
images were copied to the co-registered SPECT images (Fig. 1).
A SPECT defect was defined as a region within the
MRI-determined myocardium with counts lower than 55% of
the maximum counts in the myocardium and expressed as a
percentage of left ventricle as previously described [21].

The method used to assess IS by MRI has previously been
described in detail [19,22,23]. In brief, a gadolinium-based
contrast agent (Dotarem, gadoteric acid, Gothia Medical
AB, Billdal, Sweden) was administered intravenously
(0.4 mmol/kg) 30 min prior to removal of the heart. After
removal, the heart was immediately rinsed in cold saline and
the ventricles were filled with balloons containing deuterated
water. MRI was performed using a 1.5 T MR scanner
(Intera, Philips, Best, the Netherlands). T1-weighted images
(repetition time = 20 ms, echo time = 3.2 ms, flip angle =70°
and 2 averages) with an isotropic resolution of 0.5 mm
covering the entire heart were then acquired using a quadrature
head coil.

The endocardial and epicardial borders of the left ventricular
myocardium were manually delineated in short-axis ex vivo
images. This defined the left ventricular myocardium. The
infarcted myocardium was defined as the myocardium with a
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Fig. 1. Imaging of myocardium at risk and final infarct size after experimentally induced ischemia by occluding the left anterior descending coronary artery. Left
column: Magnetic resonance imaging (MRI) performed for visualization of the anteroseptal infarction (solid arrows). Dark gray myocardium indicates viable
myocardium and white indicates infarction. Middle column: Single photon emission computed tomography (SPECT) used to assess the myocardium at risk by
visualization of the anteroseptal perfusion defect (dashed arrows). Warm colors indicate adequate perfusion and cold/absent colors indicate decreased/lack of
perfusion. Right column: Fusion of MRI and SPECT images. The upper panel shows a mid-ventricular short-axis slice and the lower two panels show two
long-axis slices. Endocardial and epicardial borders of the left ventricle were manually delineated in the MR images and fused with the co-registered SPECT
images. LV = left ventricle, RV = right ventricle (from Demidova et al. J Electrocardiol 2011; 44 (1):74-81).

signal intensity >8SD above the average intensity of the
non-affected remote myocardium [23]. The infarcted myocar-
dium was then quantified as the product of the slice thickness
and the area of hyperenhanced myocardium. The IS was
expressed as percent of left ventricular myocardium.

Statistical methods

Data are presented as mean values + standard deviations if
normally distributed or as median with interquartile range
otherwise. Pearson’s correlation was used for assessment of
relationships between indices of QRS duration and MaR as
well as IS. Statistical analyses were performed using SPSS
22.0 (SPSS Inc., Chicago, Illinois, USA).

Results

Twenty-three experimental animals comprised the study
group, 19 of them completed the study protocol. One pig was
lost due to unsuccessful resuscitation for ventricular
fibrillation during the occlusion period, three more from
resistant VF or electromechanical dissociation during the
reperfusion period. QRS data was available only for 18 out

of 19 pigs, because of the poor-quality signal. QRS dynamics
during coronary occlusion was characterized by two peaks
of QRS widening: immediately after LAD occlusion: 4.4 +
1.8 min and 17 + 4.1 min after occlusion start (Fig. 2). The
QRS duration at baseline was 76 = 11 ms, at the early peak
of QRS widening 155 + 31 ms, and at the late peak 123 +
16 ms (P < 0.001). Significant interindividual differences
were observed with regard to the magnitude of changes in
QRS duration. The median difference between maximal
QRS duration and QRS duration at baseline was 27 ms
(interquartile rangel6 ms).

In all experimental animals an anteroseptal infarction was
developed as aresult of LAD occlusion. The MaR was 40 + 9%
(range 28—57%), and the IS was 23 + 7% (range 10—-40%) of
the left ventricle.

No association was found between the indexes of
myocardial injury and either QRS duration or the degree of
QRS broadening at the early peak (Table 1). The absolute
value of QRS duration on the late peak correlated with
both MaR (r = 0.61; R* = 0.37; p = 0.007) and IS (r =0.55;
R? = 0.30; p = 0.018). The degree of QRS broadening at the
late peak was associated with MaR (r = 0.55; R? = 0.31;
p =0.017) (Table 1, Fig. 3). We found no correlation
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Fig. 2. Example of QRS duration dynamics during 40-min coronary occlusion.

between QRS duration and myocardial salvage index (IS/
MaR).

Discussion

The main findings of this study are that QRS duration
dynamically changed during progression of myocardial
ischemia and necrosis with two peaks of QRS-broadening,
and that the degree of QRS broadening at the late peak was
associated with the size of myocardial injury.

In available literature we could not find any reports on the
consecutive QRS duration dynamics during the course of
STEML. In clinical settings, the early QRS-widening might
occur before the first contact with health-care professionals.
However, the transient QRS broadening associated with
alterations in QRS complex was described during short-time
coronary occlusions during percutaneous transluminal
coronary angioplasty (PTCA) [24-27].

Since the progression of MI in pigs is approximately 7
times faster than that in humans [28], 20 min of coronary
artery occlusion in the porcine model corresponds to
approximately 2-2.5 h evolving MI in clinical settings,
and the analysis of QRS morphology and duration in this
time period could correspond to prereperfusional ECG
assessment in clinical settings. The presence of QRS
prolongation on ECG before reperfusion was shown to be
associated with increased mortality in the clinical settings
[29,30]. The terminal distortion on ECG before reperfusion,
which is usually classified as Sclarowsky-Birnbaum
Grade 3 ischemia, was also shown to be associated with
worse prognosis [5,31].

Whether QRS broadening recorded in our study reflects
the same processes, as those described by Grade 3 ischemia,
is discussible. Some representative examples of QRS

Table 1
The correlation between indexes of QRS duration during coronary occlusion
and indexes of myocardial injury.

MaR IS

r p r p

Max QRS duration early peak 0.48 0.058 0.38 0.147
Difterence QRS duration baseline -early peak 0.50 0.051 0.34 0.197
Max QRS duration late peak 0.61 0.007 0.55 0.018

Difference QRS duration baseline- late peak  0.55 0.017 0.41 0.088

Abbreviations: MaR — myocardial area at risk; IS — infarct size.

complexes at the different time points of coronary occlusion
are shown in Fig. 4. The terminal part of QRS mostly
contributed to QRS broadening, and in most cases QRS
broadening was accompanied by the appearance of the
slurring or notches at the terminal portion of QRS. The
recently published consensus paper noticed that the
measurement of the QRS duration from the 12-lead ECG
should ideally be done from the leads without slurring and
notching [32], however it was impossible in our study
because of the automated measurement of QRS duration,
which was based on multilead approach. It has to be taken
into account that significant ST-elevation during acute
myocardial ischemia makes delineation of QRS end a
challenging task, since it appears as a gradual transition
between QRS and ST, which leads to development of
alternative methods of QRS measurements [33]. Because of
that, the wavelet-based delineator had to be adapted to this
model of acute ischemia and automatic delineation was set to
include final slurring or notching, if present, into the QRS
complex. However, from our study based on the closed-chest
porcine model of myocardial infarction, the contribution of
repolarization and depolarization abnormalities into QRS
broadening could not be elucidated.

The mechanisms of the terminal QRS distortion is
believed to be explained by a prolongation of the electrical
conduction in Purkinje fibers in the ischemic region [34].
Purkinje fibers are less sensitive to ischemia than the
contracting myocytes [35]. The terminal QRS distortion is
thought to reflect the conduction delay caused by severe
regional ischemia.

Our model of myocardial infarction did not presume
preconditioning, and the localization of coronary occlusion
and the time since occlusion start was similar in all
experimental animals. It is known that QRS prolongation
is more typical for left circumflex artery (LCx) occlusions.
LCx perfuses the posteriolateral area of the left ventricle,
which is one of the last areas to be activated [36]. LAD
perfuses ventricular septum, which was shown to be the first
area to be depolarized, and thus conduction delay due to
LAD occlusion may not be recognizable on the surface ECG
if ischemia extent is limited [36—38]. A plausible explana-
tion of marked QRS prolongation in our study is that the
great extent of ischemia due to proximal LAD occlusion and,
possible, due to differences between species as heart
geometry and its position in the chest differs between
humans and pigs.
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Fig. 3. Association between myocardial area at risk and the degree of QRS-widening at the late peak. Abbreviations: MaR — myocardial area at risk.

The dynamic nature of changes in QRS duration in our
study and the absence of association between the indexes of
myocardial injury and QRS-broadening in the very early
minutes after coronary occlusion allows us to suppose
plausible different underlying mechanisms responsible for
the early and late peaks of QRS broadening.

The anaerobic glycolytic process would have produced
sufficient ATP for survival of the “stunned” myocardial cells
during a 15 to 20 min period of coronary occlusion [39].
Therefore, QRS-broadening in the very early minutes after
coronary occlusion occurred in the presence of acute
ischemia but not due to development of necrotic substrate.
It could have been caused by slow “intra-ischemic”
conduction in the sub-endocardial layer during the time of
maximally severe ischemia. The transience of the first
episode of early QRS widening could have been caused by
the emergence of collateral blood flow.

The collateral flow has been previously reported to play a
crucial role in preventing terminal QRS distortion [40,41].
Unfortunately, the collateral flow, which could influence the
ischemia progression, was not assessed during coronary
angiography, and therefore has to be considered as study

baseline 3

limitation. On the other hand, collateral flow in pigs
comparing to that in dogs is known to be limited [42].

The mechanisms underlying the appearance of the late
period of QRS widening are also obscure. It occurred when
the onset of myocardial necrosis would be expected. We can
speculate that QRS widening at this stage may be directly
related to slow peri-infarction conduction, when this layer
becomes the very first to infarct. The transience of the 2nd
episode could have been caused by spread of the infarction
into the deeper myocardial layers.

Conclusion

In the porcine model of myocardial infarction, QRS
duration undergoes dynamic changes during the progression
of acute myocardial ischemia and necrosis with two distinct
peaks of QRS broadening occurring immediately after
coronary artery occlusion and around 20th minute of
occlusion. The late QRS broadening, but not the early one,
is associated with the size of myocardial injury and
myocardium at risk, supposing plausible different mecha-
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ig. 4. Some representative examples of QRS complexes at the different time-points of coronary occlusion.
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nisms underlying QRS widening at different stages of
ischemic injury progression.
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