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Abstract

Melatonin is a promising cardioprotective agent. Its increase during the night 
is associated with healthy cardiovascular function. On the other hand, reduced 
levels of melatonin are related to diseases. Aging and chronodisruptors reduce 
melatonin levels. Pharmacological supplementation reduces the deleterious effects 
of cardiovascular risk factors and improves the myocardial response to ischemia/
reperfusion injury and other proarrhythmic conditions. The protective mecha-
nisms of melatonin involve its antioxidant properties as well as receptor-mediated 
actions. Signaling pathways include membrane responses, cytoplasmic modula-
tion of kinases, nuclear receptor interactions, and improvement of mitochondrial 
functions. This chapter focuses on the electrophysiological and the antiarrhythmic 
properties of melatonin. The acute and chronic protective mechanisms of melatonin 
will be analyzed with an emphasis on transmembrane potentials and intercel-
lular communication. An outstanding antifibrillatory effect makes melatonin a 
novel antiarrhythmic agent worthy of further exploration in the path to clinical 
applications.

Keywords: melatonin, arrhythmias, ventricular fibrillation, action potential, 
connexin 43, melatonin receptors

1. Introduction

“Nothing to do to save his life…” says the Beatles song “Good morning, good 
morning.” Ironically, cardiovascular mortality and life-threatening arrhythmias 
show a circadian increase in the mornings, and chronoprotective agents are still 
missing [1, 2]. This chapter highlights the importance of melatonin as a potential 
life-saving agent for the darkest nights (of antiarrhythmics drugs) and a brightest 
tomorrow.

The cardioprotective properties of melatonin are remarkable. Most of the 
preclinical and clinical studies support the protective actions and the safety profile 
of this indolamine [3, 4]. In this chapter, we briefly introduce the multitarget and 
versatile properties of melatonin and general concepts of electrophysiology to 
appreciate its potential as a promising antiarrhythmic agent. The second and third 
sections of the chapters focus on acute and chronic melatonin’s antiarrhythmic 
effects.
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1.1 Melatonin properties relevant to heart rhythms

Endogenous and pharmacological increases of melatonin concentrations protect 
the cardiovascular system [3–11]. However, the relationships between the cardio-
vascular and circadian systems are highly complex and should not be interpreted in 
reductionist ways [5, 12–14]. Furthermore, our understanding of the pleiotropy of 
melatonin, a highly preserved molecule of protection, is continuously expanding 
[3–7, 10, 15–24]. Therefore, we will focus on melatonin effects on heart rhythms. 
Additional information regarding melatonin cardiovascular effects can be found 
elsewhere and include direct actions in the heart, blood vessels, kidney, and other 
regulatory mechanisms at the nervous, immune, and endocrine systems [11, 25, 
26]. Only the electrophysiological information will be extracted from its protective 
actions against risk factors like hypertension, metabolic syndrome, obesity, inflam-
mation, and pathologies like ischemia/reperfusion injury, infarction, drug-induced 
cardiotoxicity, diabetic cardiomyopathy, and heart failure [8, 11, 21, 27].

Melatonin is amphipathic and pleiotropic. Melatonin can act on several targets 
at cell membranes and at intracellular levels in almost any cell [28, 29]. For this 
electrophysiological analysis, we present the following division of melatonin 
mechanisms of action:

a. Antioxidant

b. Receptor activation

c. Improvement of mitochondrial functions

d. Ion channel modulation

1.1.1 Melatonin as an antioxidant

Melatonin protects against oxidants by several mechanisms. In fact, it has been 
suggested that one of the main functions of melatonin in all living organisms is 
to protect them from oxidative stress [30, 31]. Melatonin has a well-characterized 
and extensively documented antioxidant capacity [31–37]. Melatonin is a powerful 
antioxidant, with a potency of up to 10 times greater than vitamin E [38].

There are oxidants of different chemical nature. They can be free radicals or 
non-radical reactive species [39, 40]. Free radicals—molecules with an unpaired 
electron—are unstable, highly reactive, and often trigger chain reactions, which 
propagate nearby molecular modifications. The most studied oxidants are the 
reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur 
species. Under physiological conditions, ROS/RNS act as second intracellular 
messengers modulating signal transduction pathways [40, 41]. A delicate cellular 
balance between the production and the removal of free radicals maintains low/
moderate concentrations. Oxidative stress occurs when oxidants increase above 
healthy levels and represent a severe risk to the molecular integrity of lipids, pro-
teins, and DNA [39, 40]. Therefore, neutralization of reactive species by scavenger 
molecules like melatonin is a chemical way of counteracting oxidative stress.

The main agent involved in oxidative damage is superoxide anion, but hydrogen 
peroxide, hydroxyl radical, nitric oxide (NO), peroxynitrite, and nitroxyl also 
participate in oxidative stress. The mitochondria are the main source of oxidizing 
species during oxidative phosphorylation. Oxidants are also the product of the 
activation of non-mitochondrial enzyme systems such as NADPH oxidase, xanthine 
oxidase, and nitric oxide synthase [40–42].
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Cells have antioxidants that prevent damage. An antioxidant is any substance 
that significantly delays or prevents oxidation of lipids, proteins, or DNA [40]. 
Lipids are often used as target molecules because they are more reactive to oxidants 
than proteins or DNA. Nonenzymatic antioxidants include reduced glutathione 
(GSH), vitamins, and melatonin among others. Melatonin is five times more 
effective than GSH as scavenger of the highly toxic hydroxyl radical [34]. The main 
antioxidant enzymes are superoxide dismutase (SOD), catalase, thioredoxin, and 
glutathione peroxidase [40–44].

Melatonin efficiently prevents oxidative stress. The aromatic indole ring of 
melatonin reduces and repairs electrophilic radicals acting as generous electron 
donor. One molecule of melatonin can neutralize up to 10 toxic reagents, including 
ROS, RNS, and other free radicals [7, 39, 45–47]. In addition, several metabolites 
formed when melatonin neutralizes harmful reagents are also antioxidants suggest-
ing that a cascade of reactions increases the efficacy of melatonin [28, 35, 47–49]. 
Being a highly lipophilic and hydrophilic compound, melatonin crosses all mor-
phological barriers and acts not only in each cell but also within each subcellular 
compartment. Additionally, melatonin increases the efficacy of vitamin E, vitamin 
C, and GSH [33, 50]. Therefore, the elimination of free radicals can be carried out 
by intracellular interactions independent of any receptor [36, 45, 51].

Melatonin stimulates antioxidant enzymes by acting on membrane, cytoplas-
mic, and nuclear receptors [39, 43, 52]. Low melatonin concentrations increase the 
expression or activity of SOD, catalase, and glutathione peroxidase [43, 53].

Ion channels and many other proteins respond to oxidative stress [54–58]. Amino 
acid residues are the targets of ROS/RNS. Sulfur atoms like cysteine and methionine, 
hydroxyl groups from tyrosine, or aromatic rings of histidine, phenylalanine, and 
tryptophan are vulnerable to reactive species. Those that contain more cysteines are 
more sensitive to changes because thiol groups (–SH), which exist as thiolates (–S) 
at physiological pH, tend to react more quickly with ROS/RNS [59]. Many of these 
proteins are involved in important biological reactions such as oxidative phosphory-
lation, metabolic regulation, and signal transduction [60, 61]. Oxidative stress can 
increase late sodium currents through direct Na+ channel modification [62, 63] 
and result in a prolonged action potential duration and arrhythmogenic triggers 
known as early-after depolarizations (EAD) [64]. Several reviews describe the redox 
regulation of calcium channel in cardiac myocytes including the ryanodine receptor 
calcium, the IP3 receptor, and voltage-dependent L-type calcium channel [65–69]. 
ROS and RNS affect the L-type Ca2+ channel Cav1.2 by regulation of cysteine 
residues. However, calcium channel regulation by redox is controversial with reports 
of increase and decrease of channel functions [66]. Voltage-gated potassium (Kv) 
channel, mainly responsible for myocardial repolarization, is sensitive to oxidative 
stress [58, 70–72]. Sulfenic acid modification at a conserved cysteine residue of 
Kv1.5 under prolonged oxidative stress can induce arrhythmia [58, 72].

1.1.2 Melatonin receptors

Melatonin has receptors in the cellular membranes, in the cytoplasm, and in the 
nucleus. Melatonin membrane receptors express in several regions of the nervous 
system and in almost all the organs including the heart, arteries, kidneys, liver, gas-
trointestinal tract, prostate gland, uterus, skin, and eyes [73]. Melatonin activates 
two subtypes of G-protein-coupled receptors in the plasma membrane, named MT1 
and MT2, according to the official IUPHAR nomenclature (previously called Mel1a 
and Mel1b) [74]. Both receptors have high affinity to melatonin (Kd ~ 0.1 pM). In 
2019, Stauch and Johansson reported the crystal structures of the human MT1 and 
MT2 and set a solid base concerning ligand recognition for both receptors [75, 76].
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Melatonin membrane receptors can exist as monomers, as well as dimers. The 
MT1 homodimer forms 3- to 4-fold higher proportion than the MT2 homodimer 
and the MT1/MT2 heterodimer. Nonmammalian vertebrates present a third low-
affinity receptor termed Mel1c, and a proposed mammalian homologous is the 
orphan receptor GPR50 [74, 77–79]. This orphan lost its properties to directly 
interact with melatonin but shows an inhibitory interaction with MT1 receptors by 
forming heterodimers. More recently, other orphans unable to bind melatonin like 
GPR61, GPR62, and GPR135 showed a similar indirect inhibitory interaction with 
MT2 receptors [80]. Other G-protein-coupled receptors like the serotonin receptor 
5HT2c can interact with melatonin membrane receptors [79]. These interesting 
interactions of membrane receptors are not further discussed in this chapter but 
should be considered in future electrophysiological studies with melatonin.

The MT1 and MT2 inhibit adenylate cyclase-protein kinase A-CREB signaling 
in target cells by pertussis toxin-sensitive Gαi, β, and γ and toxin-insensitive Gq, 
β, and γ proteins [74, 79]. The MT1 also increases phosphorylation of mitogen-
activated protein kinase 1/2 (MAPK) and extracellular signal-regulated kinase 1/2 
(ERK), as well as increasing potassium conductance through inwardly rectifying 
(Kir3.x) channels. The later effect on potassium channels could be relevant to heart 
electrophysiology since Kir3.x channels are highly expressed in cardiomyocytes 
and usually coupled to acetylcholine and adenosine membrane receptors [81]. MT2 
melatonin receptor activation inhibits both forskolin-stimulated cAMP production 
and cGMP formation, activates protein kinase C (PKC) in the nervous system, and 
decreases calcium-dependent dopamine release in the retina. Native functional 
MT1/MT2 heterodimers in mouse rod photoreceptors mediate melatonin’s enhance-
ment of scotopic light sensitivity through phospholipase C and PKC pathways [82].

Several compounds interact with MT1 and MT2 receptors, but blocker luzindole 
is the only with proven myocardial electrophysiological effects [83]. Luzindole and 
4P-PDOT competitively block MT1 melatonin receptors at concentrations higher 
than 300 nM, and both are inverse agonists in systems with constitutively active 
MT1 receptors [74, 79].

Melatonin interacts with several enzymes and intracellular proteins. The MT3 
receptors is a quinone reductase 2 with an affinity in the nanomolar ranges [84]. 
This enzyme is possibly involved in the regulation of cellular oxidative status, 
although the exact regulatory action of melatonin remains unclear [84–87]. 
Furthermore, the electrophysiological effects of MT3 have not been reported yet.

Melatonin interacts with intracellular proteins such as calmodulin, calreticulin, 
or tubulin [88]. The low-affinity interaction between melatonin and calmodulin 
antagonizes the binding of Ca2+ and may be involved in its antioxidant action as 
well as other electrophysiological signaling processes [89–96].

Melatonin increases the cytoplasmic levels of the heat shock protein 70 in several 
tissues including the heart [97–102]. Further interaction with this chaperon will be 
described in Section 3 of the chapter.

Melatonin is a ligand for the retinoid-related orphan nuclear hormone receptor 
family (RZR/ROR) [74, 79]. RZR/RORα is expressed in a variety of organs, whereas 
RZRβ is specific for the brain and retina [33]. ROR/RZR has been proposed to work 
in coordination with the plasma membrane receptors MT1/MT2 to regulate gene 
expression. We suggest a potential interaction with Vitamin D receptor (VDR), 
which was elegantly confirmed in recent experiments [97, 103].

1.1.3 Melatonin improves mitochondrial functions

Mitochondria are critical for cellular metabolism and energy production. 
They maintain life but also are gatekeepers of cell death [31, 104]. Mitochondria 



5

Melatonin for a Healthy Heart Rhythm
DOI: http://dx.doi.org/10.5772/intechopen.91447

produce up to 95% of the cellular energy in the form of ATP in aerobic cells 
[105]. Mitochondrial oxidative phosphorylation uses a system of oxidoreductase 
protein complexes (complexes I, II, III, and IV) to transfer electrons during ATP 
production. Deficiencies in the electron transport chain can result in the leakage 
of electrons and generate ROS/RNS [40, 41, 106, 107]. Oxidative stress decreases 
respiratory complex activity, impairs electron transport system, and opens the 
mitochondrial permeability transition pores leading to cell death [104, 106, 108].

Mitochondria are essentials for the protective actions of melatonin [51, 97, 106, 
107, 109–111]. The mechanisms involved include its antioxidant properties and 
the preservation of complex I and III functions, inhibition of the opening of the 
permeability transition pores, and the release of cytochrome c. Petrosillo et al. 
demonstrate that melatonin prevents the opening of the mitochondrial permeabil-
ity transition pores and its deleterious consequences [51, 110, 112, 113]. We recently 
reported that melatonin prevents mitochondrial edema, dilation of the ridges, high 
activity of NADPH oxidase, and apoptosis [97]. Melatonin improves mitofusin-2, 
which preserves the mitochondrial functional network and prevents apoptosis 
[114]. The reduction of mitochondrial damage in the heart could be related to the 
negative regulation of angiotensin II type 1 receptor (AT1) by melatonin [97]. The 
induction of Hsp70 through melatonin is compatible with an additional mechanism 
related to Tom 70, a translocase of the outer mitochondrial membrane [97, 115, 
116]. The interaction of Hsp70 with Tom 70 initiates mitochondrial import pro-
cesses [116]. Tom 70 regulates melatonin-induced cardioprotection by preventing 
mitochondrial deterioration and oxidative stress [97, 115].

Melatonin’s cardioprotection associates with an increase in the number of mito-
chondria and positive regulation of survival genes such as nicotinamide phosphori-
bosyl transferase and nicotinamide adenine dinucleotide-dependent deacetylases, 
called sirtuins [117]. Particularly sirtuin-1 and sirtuin-3 are downstream mediators 
of the cardioprotective actions of melatonin. Sirtuin-1can modulate fatty acid 
oxidation, apoptosis, oxidative stress, and autophagy through deacetylation of 
transduction factors like NF-κB, forkhead box class O, p53, peroxisome proliferator-
activated receptor alpha, thioredoxin-1, and Bcl-xL [117–121]. Sirtuin-3 is a family 
member that is primarily located in the mitochondria and protects against inflam-
mation and diseases related to oxidative stress. Melatonin elevates sirtuin-3, stimu-
lates superoxide dismutase activity, and suppresses mitochondrial oxidative stress 
[31, 117, 122, 123]. Additionally, melatonin protects nuclear and mitochondrial 
DNA [122, 124, 125]. The multiple actions of melatonin provide potent protection 
against mitochondrial-mediated lesions.

1.1.4 Melatonin modulates ion channels

Melatonin exerts its electrophysiological effects by multiple mechanisms. One 
of the ways for melatonin to interact is through the modulation of ion channels. 
Whether we consider its role as a drug or as a biological molecule, it should be taken 
into account how melatonin has been considered an electrophysiological modulator 
for many physiological and clinical conditions such as control of circadian rhythms, 
regulation of arterial blood pressure and heart rate in mammals, sleep processes, 
and antiaging, among others. Its role in the modulation of several ion channels is 
crucial to understand the molecular mechanism underlying the electrophysiological 
properties as an antiarrhythmic.

Melatonin regulates anionic and cationic selective channels by multiple 
pathways, at different doses and time-dependent responses. It is important to 
remember the wide spectrum of action this molecule has. For example, results 
regarding the pathophysiology of lung fibrosis show that volume-regulated anion 
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currents do not respond to acute exposure of cells to melatonin in hypotonic solu-
tions [126]. However, when cells are pre-incubated with melatonin concentrations 
from 1 to 100 μM for 30–60 min, the anionic currents in response to hypotonic-
ity are blunted in a dose-dependent manner. These time- and dose-dependent 
responses could support the electrophysiological effect during regional ischemia 
after 20–30 minutes of melatonin exposure in isolated rat hearts, because during 
ischemia cardiomyocyte swelling activates anionic currents, and melatonin down-
regulation of these currents is a potential explanation [127, 128]. Additionally, 
these MT receptor interactions described in fibroblast deserve further evaluation 
in myocardial tissue.

From the perspective of the interaction between melatonin and its target, it will 
be crucial to increase the knowledge about the allosteric contact between melatonin 
and an ion channel. For example, melatonin blocks the potassium channels (Kv1.3) 
in a reversible manner through the interaction with different binding sites on the 
human peripheral blood T lymphocytes [129]. However, the inhibitory effects 
require high extracellular melatonin in the mM range [129]. Cardiomyocytes do not 
express this specific potassium channel, but a homologous mechanism can exist for 
other channels waiting to be reported.

Most of the information regarding the role and effect of melatonin in the 
organisms has been described in the nervous system. One of the most popular 
is melatonin-related circadian rhythm. In particular, how melatonin influences 
circadian phase and electrical activity thanks to the interaction with Kir3.x channels 
presents them as a therapeutic target for diseases related to circadian disruption 
and melatonin signaling features [130]. In addition, the effects of melatonin in this 
pacemaker of circadian rhythm could be due also to its modulation of inwardly 
rectifying potassium channels (Kir3.1/Kir3.2) via MT1 receptors [131]. Moreover, 
melatonin is also necessary for circadian regulation of sleep. This effect was 
described to be driven by the suppression of GABAergic neurons by melatonin in 
the lateral hypothalamus (crucial function for wakefulness), via interaction with 
MT1 receptor in order to inactivate hyperpolarization-activated cyclic nucleotide-
gated channels [132].

Melatonin is a potential neuroprotective molecule thanks to its interaction in a 
mitochondrial pathway involving the closing of permeability transition pore and 
opening of ATP sensitive potassium channels (KATP) [133]. The opening of KATP 
contributes to melatonin antiseizure effect [134]. The preventive actions on the 
permeability transition pore have been reported in myocardial tissue as well [51, 
112, 113]. However, opening of KATP channels with high concentrations of melato-
nin could be proarrhythmic [135, 136].

Melatonin modulates most of the voltage-activated calcium channel subtypes 
(L, P, Q , N, and R) with different effects [137–141]. Melatonin inhibits voltage-
dependent calcium entry in cultured rat dorsal root ganglia neurons, regulates 
calcium entry into pineal cells, and has dose-dependent inhibitory effects on free 
[Ca2+]i in mouse brain cells [137]. Melatonin has no effect on voltage-activated 
calcium channels in cultured human aortic smooth muscle cells [141]. Melatonin 
accutelly increase L type calcium currents in chick cardiac membranes [140, 141]. 
An early study shows that melatonin downregulates voltage-sensitive calcium chan-
nels in the heart [142]. These results indicate that melatonin may have differnt acute 
and chronic implications for normal cardiac physiology and for the pharmacological 
manipulation of the heart [142].

Melatonin mediates vasodilation of cerebral arteries through the activation of 
large-conductance Ca2+-activated K+ (BKCa) channels via both melatonin receptor-
dependent and melatonin receptor-independent modes, increasing BKCa channel 
current density but not the KV channel current density [143]. Small-conductance 
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Ca2+-activated K (SK) channels are also modulated by the action of melatonin 
[144]. Upregulation of SK channels plays a role in memory loss and indicates that 
melatonin reverses memory deficits in rats by downregulation of SK1, SK2, and SK3 
channels in their hippocampi [144].

Additional information was brought about KCNQ from the aorta and related 
with vascular tone, and KCNH2 in the left ventricle was associated with QT dura-
tion in rats where melatonin was able to prevent the increase in blood pressure and 
change KCNQ and KCNH2 gene expression profiles [145].

Melatonin effects on connexin proteins will be extensively analyzed in the 
second and third sections of the chapters for its proven relationship with both acute 
and chronic antiarrhythmic effects of melatonin.

1.2 Electrophysiology and arrhythmias

The heart pumps blood under a synchronized electrical control. Arrhythmias 
are the electrical problems in the rhythm of the heart. The heartbeats may be faster 
in the case of tachyarrhythmia and slower in bradyarrhythmia.

Fatal arrhythmic events follow a circadian pattern [2]. Arrhythmogenesis 
decreases during nighttime when the melatonin levels increase 30 to 70 folds. Life-
threatening cardiac arrhythmias (ventricular tachycardia, ventricular fibrillation, 
and sudden cardiac death) are more likely to occur in the morning after waking. 
Arrhythmias also increase with age and heart diseases [146–148].

Disturbances in membrane excitability or conduction cause arrhythmias. 
Excitability manifests as action potentials and involves coordinated ion movements 
across the cell membrane through ion channels, exchangers, and ATPases [149]. 
Conduction is the propagation of bioelectrical signal throughout the heart. Action 
potentials automatically originate at the sinoatrial node, spread to the atria, and, 
after a small delay in the atrioventricular node, rapidly and synchronously activate 
the ventricles via the His-Purkinje system. Action potentials propagate from cell 
to cell using low-resistance pathways known as gap junctions. Connexin proteins 
assemble into intercellular channels at gap junctions. Connexin 43 (Cx43) is the most 
abundant connexin in the heart [150]. Gap junctions couple the cells and allow the 
flow of electrical current and small molecules. The largest accumulation of connex-
ins occurs in a specialized structure at the ends of cardiomyocytes called intercalated 
discs. Cardiac propagation is anisotropic, particularly more rapid in the longitudinal 
direction of the cell than in the transverse direction. The lateral borders of the 
myocytes usually show variable amount gap junctions depending on age or disease.

Cardiovascular diseases are the leading cause of death in the world [151]. 
Most deaths occur suddenly [152]. Catastrophic sudden death events motivate 
us to search for causes and possible solutions [153]. This is a great scientific and 
social health challenge. The approaches of recent years have reduced the burden 
of cardiovascular disease, but there is still much to improve [154]. A case occurs 
with arrhythmias. The rhythm disorders motivated emergency interventions, 
especially during the first hour of the manifestation of coronary heart disease. 
Cardiopulmonary resuscitation, ambulances, and cardiodefibrillation were 
response strategies to unexpected events. Unfortunately, they are still unexpected 
due to the limited understanding of the causes at a level that would allow us to pre-
dict, avoid, or control the occurrence of an event [155]. In that sense, the strategies 
that attempt to determine risks grew in order to establish a more efficient direction 
of interventions [156, 157]. Today they allow us to expect more lethal events in 
severely ill people. However, risk factors are still far from being effective and much 
less efficient. The changes that occur in physiology as a result of exposure to differ-
ent risk factors would be one of the explanations [158].
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2. Acute antiarrhythmic mechanisms of melatonin

Melatonin acts at multiple electrophysiological levels due to its receptor-
dependent and receptor-independent mechanisms. In 1998, the seminal work of 
Tan et al. highlighted the antiarrhythmic properties of melatonin [159]. During 
the past two decades, our understanding of the pleiotropic action of melatonin 
increased significantly.

The antiarrhythmic effect of melatonin was first attributed to its notable antiox-
idant properties, mainly because melatonin results were better than those obtained 
with an ascorbic acid at concentration 10–500 times higher [159]. Numerous studies 
confirmed antiarrhythmic protection and related it to its remarkable antioxidant 
properties [160–167].

Our research group corroborated the antiarrhythmic effect of melatonin in 
isolated hearts of female rats, when administered continuously from the stage prior 
to the onset of myocardial ischemia [127]. Notably, the antiarrhythmic protection 
had a dose-dependent response, while the antioxidant capacity was the same for all 
the doses studied. The preventive effect on the shortening of the action potential that 
occurs between the 7th and 10th minute of the ischemia was another dose-dependent 
variable found in our study. This led us to think that the antiarrhythmic mechanism 
could be due to a lower heterogeneity in the repolarization of myocardial tissue that 
diminishes the possibility of reentry circuits being formed and maintained. As previ-
ously mentioned, the time- and dose-dependent responses could be due to melatonin 
inhibitory effect against swell-activated anionic currents [126–128].

We recently showed that melatonin reduces arrhythmias when administered 
during reperfusion, a useful timing for the clinical context of acute coronary syn-
dromes, because most therapies can only start close to the reperfusion period [168]. 
Melatonin showed protective mechanisms when administered to isolated hearts of 
rats fed with fructose and spontaneously hypertensive rats. These animals show 
greater activity of the enzyme NADPH oxidase, which is one of the main systems 
for generating free radicals, and, therefore, higher levels of oxidative stress. The 
antiarrhythmic effect was not affected in the models with greater oxidative stress, 
and in all groups, it was accompanied by a temporary shortening of the duration 
of the action potential during the first 3–5 minutes of reperfusion. This result was 
interpreted as a reduction in the ability to generate early and late postdepolariza-
tions. Self-limited arrhythmic events, such as ventricular extrasystoles, salvos, and 
even non-sustained ventricular tachycardia, occurred in all experimental groups. 
The main difference was that the hearts treated with melatonin did not show sus-
tained forms of arrhythmias, either sustained ventricular tachycardia or ventricular 
fibrillation. These results (potential shortening and absence of sustained arrhyth-
mia) are difficult to reconcile with the mechanisms postulated for reentry circuits.

The same year of our publication of the antiarrhythmic protection of melatonin 
administered in reperfusion, another group published that melatonin protects 
against arrhythmias, by increasing the threshold to electrically induce sustained 
ventricular fibrillation, by increasing the myocardial Cx43 by PKC in hyperten-
sive rats [169]. Melatonin prevented myocardial abnormalities of connexin and 
improved cardiac conduction.

Based in these interesting results, we tested if melatonin could prevent 
hypokalemia-induced ventricular fibrillation by Cx43 preservation [83]. The acute 
administration of melatonin during low potassium perfusion reduced the incidence 
of ventricular fibrillation and improved the recovery of sinus rhythm in those 
hearts that, despite being treated with melatonin, developed sustained fibrilla-
tion. Protection was mediated by the activation of melatonin receptors and by the 
prevention of dephosphorylation and lateralization of Cx43.
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A brief explanation of the electrophysiological changes induced by hypokale-
mia will help to appreciate the relevance as antiarrhythmic. Severe hypokalemia 
induces changes in ventricular repolarization, such as lengthening the QT interval, 
prominent U waves, fusion of T and U waves associated with and increases risk of 
arrhythmic death [83, 170, 171]. Our experimental model confirmed the lengthen-
ing of the QT interval and correlated with an increase in the duration of the action 
potential [83]. Melatonin did not prevent the prolongation of the action potential 
induced by hypokalemia when measured at 90% of repolarization but maintained 
action potential duration at 50% of repolarization and made the membrane poten-
tial more stable, showing less after depolarization. Luzindole blunted both effects 
of melatonin, suggesting the involvement of melatonin receptor activation in the 
preservation of membrane potential.

Hypokalemia decreases NaK-ATPase activity and causes an intracellular Ca2+ 
overload that facilitates the development of delayed postdepolarizations through the 
transient inward currents [172–174]. Delayed postdepolarizations are considered 
triggers of arrhythmias because they can initiate an action potential in isolated cells. 
However, it is unlikely that an extra action potential can be initiated from a single 
cell in the tissue due to a mismatch between the current source from the cell and the 
current sink produced by the surrounding cells [175]. To overcome the source-sink 
mismatch, there must be a reduced sink through intercellular decoupling or an 
increase in the source through the synchronization of delayed postdepolarizations 
between several adjacent cells. Both situations could be assumed based on the 
results of anisotropic conduction studies and immunofluorescence imaging [83].

In fact, hypokalemia induces conduction abnormalities, increased amplitude 
and duration of the P wave, a slight prolongation of the PR interval, atrioventricular 
block, increased QRS duration, and cardiac arrest [173, 176]. We found all these 
electrocardiographic disorders during our experimental model of hypokalemia [83]. 
Melatonin prevented the widening of the QRS and delayed activation of the poten-
tial for epicardial action. The latter could be considered as a substitute for conduc-
tion velocity in complex tissues such as ventricles, assuming unknown routes from 
endocardial activation points that indicate the onset of QRS to epicardial myocytes 
recorded with microelectrodes. These improvements in ventricular conduction were 
related to Cx43 lateralization and dephosphorylation.

The lateralization of connexins has been detected in chronic atrial fibrillation, 
cardiac hypertrophy, heart failure, and after myocardial infarction [21, 177–179]. An 
increase in the fraction of lateral connexins that form functional channels improves 
transverse conduction velocity and contributes to the spread of the arrhythmogenic 
impulse. High side-by-side lateralization can favor conduction blockage due to mis-
matches between the source and the sink [175, 180]. A unidirectional block can lead 
to reentry circles that result in tachycardia or ventricular fibrillation [181]. Therefore, 
the acute lateralization induced by hypokalemia is an important arrhythmogenic 
factor [83]. It is noteworthy that melatonin prevented acute lateralization of Cx43.

Connexin 43 phosphorylation could lead to better coupling or uncoupling 
depending on the target amino acid, but dephosphorylation is clearly associated 
with uncoupling [21, 177, 182]. It is not yet known whether the dephosphorylation of 
Cx43 during low potassium is the result of increased phosphatase activity and/or an 
increase in phosphokinase or what are the intracellular mechanisms that prevented 
dephosphorylation when treated with melatonin. Dramatic reductions in intercellular 
communication due to the loss of phosphorylated Cx43 and the accumulation of non-
phosphorylated Cx43 were previously reported in other experimental models [177].

Our results could be relevant mainly in those situations in which acute hypo-
kalemia can be anticipated as in dialysis [183, 184]. Both QT interval and the QT 
dispersion increase after dialysis. We propose that melatonin could make the heart 
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more resistant to arrhythmic events triggered by rapid changes in plasma electro-
lyte concentrations, regardless of a lack of effects on the ECG. In addition, those 
dialysis patients also suffer from disorders in the circadian rhythms and low levels 
of melatonin [185]. However, clinical translations of our results should be done with 
caution, mainly because we use a high dose of melatonin administered directly to 
the heart. Based on melatonin’s pharmacokinetics in humans, to achieve a similar 
concentration in plasma to the one tested ex vivo, a dose 10 times higher the highest 
intravenous dose tested until now should be administered [186, 187].

Melatonin has a remarkable antiarrhythmic activity that is carried out based 
on actions dependent on and independent of receptor activation. To summarize 
we propose that the antiarrhythmic effect of melatonin is mediated by receptor 
activation beyond its outstanding antioxidant actions (Figure 1). The shortening 
of the action potential could be associated with the activation of MT1 melatonin 
receptors, since they can regulate specific ion channels such as Kir3.1 channel. MT1 
and MT2 receptors could indirectly modulate other electrophysiological effects 
through intracellular signaling such as decreased cyclic adenosine monophosphate, 
increased phospholipase C, and PKC activation.

3. Chronic antiarrhythmic mechanisms of melatonin

Endogenous melatonin would be an intrinsically protective factor with thera-
peutic potential [188, 189]. Melatonin is a promising treatment for cardiovascular 
diseases such as myocardial ischemia/reperfusion injury, hypertension, and heart 
failure. It has been shown that melatonin levels were reduced in patients with acute 
myocardial infarction and in patients undergoing primary coronary angioplasty 
[190]. These findings suggest that melatonin could play an important role in 
preventing ischemia/reperfusion heart injury. Indeed, reperfusion arrhythmias 
increase in pinealectomized animals, suggesting a protective role of endogenous 
physiological melatonin levels [163, 189].

Chronic melatonin supplementation, either in physiological or pharmacologi-
cal ranges, protects against arrhythmias [8, 21, 97, 163, 169, 189, 191, 192]. Beyond 
the reported antioxidant properties of melatonin, it reduces severe ventricular 

Figure 1. 
Acute antiarrhythmic mechanisms of melatonin. The red arrows indicate stimulation, and the interrupted blue 
lines indicate blockage.
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arrhythmias by antifibrotic mechanisms, electrical remodeling, direct mitochon-
drial protection, myocardial Cx43 preservation via PKC signaling, and vitamin 
D-HSP70/AT1 counterbalance (Figure 2). Its cardioprotective properties persist in 
relevant cardiovascular risk factor models like hypertensive, obese, and nephro-
pathic rats. The latter is interesting because most of the therapeutic interventions 
postulated so far fail to be reproduced under risk factor conditions.

A preventive approach would be of great value in the face of unpredictable acute 
arrhythmic events, especially if the intervention manages to avoid the most severe 
and potentially lethal arrhythmias such as ventricular tachycardia and fibrillation. 
Numerous efforts have been made in that direction. In the last quarter of the twentieth 
century, several antiarrhythmic drugs were tried, but most of them showed a proar-
rhythmogenic profile or failed to reduce mortality [193–196]. A time of great progress 
was appreciated with the introduction of implantable cardiodefibrillators. However, 
surgical intervention and high cost limit its population efficiency. A strategy to improve 
the availability of preventive interventions is to select potential beneficiaries based 
on their risk of serious events. This would compensate for potential side effects and 
optimize the investment of resources. Other strategies, such as vaccines, are based on 
achieving the greatest possible scope with the least number of interventions that attenu-
ate the severity of diseases. In the case of arrhythmias, we still have no clear “antiar-
rhythmic vaccine.” Therefore, risk-oriented strategies would be an acceptable approach.

From a preventive point of view, the pleiotropic protection mechanisms of 
melatonin could effectively limit the arrhythmic complications associated with 
hypertension [21, 169]. Arterial hypertension causes vascular deterioration, over-
loads the heart, and predisposes to a greater number of arrhythmic events. More 
than five decades ago, it was reported that surgical removal of the pineal gland, 
a procedure that essentially eliminates circulating levels of melatonin, was followed 
by a slow but persistent increase in blood pressure in rats [197]. This finding has 
been confirmed in several subsequent studies [11]. In addition, daily treatment of 
pinealectomized rats with melatonin attenuated the elevation in blood pressure 

Figure 2. 
Antiarrhythmic mechanisms of chronic melatonin administration. Extracellular lines represent reduced fibrosis 
after melatonin treatment. The red arrows indicate stimulation and blue ones show blockage. The green arrow 
marks direct mitochondrial protection.
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that accompanies pinealectomy [198, 199]. Potentially related to these experimental 
findings are those observational studies in humans that document an age-related 
gradual increase in blood pressure [7]. Of special interest is that the ability of the 
pineal gland to produce melatonin is compromised during aging so that the levels of 
melatonin in the blood at night gradually decrease [28, 30, 110]. An implication of 
these findings is that the loss of melatonin during aging can contribute to gradual 
hypertension and arrhythmias.

The structural remodeling of the myocardium that follows hypertension (mainly 
cardiomyocyte hypertrophy and fibrosis) is accompanied by changes in the expres-
sion, distribution and function of the ionic channels of the cell membrane and the 
intercellular channels constituted by Cx43 [21, 191, 200]. Remodeling predisposes 
to life-threatening ventricular tachycardia and ventricular fibrillation by early or 
late postdepolarization and reentry. Melatonin prevents changes in ventricular 
redistribution of Cx43 and reduces arrhythmia inducibility [8, 21, 147, 191].

Another chronodisruptor that increases arrhythmic risk are kidney diseases. 
Chronic kidney diseases (CKD) alter the nocturnal secretion of melatonin [185, 
201]. Melatonin levels correlate negatively with the intrarenal activity of renin-
angiotensin II-aldosterone system (RAAS) [202]. Melatonin improves intrarenal 
RAAS in the 5/6 nephrectomy rat model and reduces blood pressure, oxidative 
stress, and interstitial fibrosis in the remaining kidneys [203].

Renal diseases cause cardiovascular and electrolytic remodeling that increases 
the risk of arrhythmias [204–206]. Cardiovascular events occur more frequently 
in patients with chronic kidney disease. Ventricular arrhythmias are particularly 
prevalent among patients with CKD, even when those patients do not suffer from 
any electrolyte imbalance [207]. The risk of mortality also increases in patients with 
CKD who suffer from an acute coronary syndrome [208]. We demonstrated that 
unilateral ureteral obstruction caused a cardiac remodeling that was accompanied 
by an increase in reperfusion arrhythmias [209].

The electrophysiological properties of chronic melatonin deserve attention, due 
to their relevance for cardiorenal situations with high arrhythmic risk and lack of 
treatments. We recently confirmed the antifibrotic, antiapoptotic, and antioxidant 
effects of melatonin and linked them to an HSP 70-VDR/AT1 counterbalance which 
prevents kidney damage and arrhythmogenic remodeling of the heart [97].

In renal and myocardial tissue, melatonin increased HSP 70 and VDR and 
decreased AT1 and fibrosis. Melatonin increases HSP 70 and protects the liver of 
rats exposed to toluene from cytotoxicity induced by oxidative stress [100]. HSP 70 
regulates antioxidant responses to cellular oxidative stress and reduces NADPH oxi-
dase activity and expression [210]. We demonstrated a myocardial increase in HSP 
70 in rats treated with melatonin. HSP 70 induces VDR and facilitates intracellular 
localization of active vitamin D metabolites and transactive VDRs [209, 211, 212]. 
Nuclear melatonin receptors, as members of retinoid-related orphan receptors, 
may interact and prevent degradation of VDR [97, 103]. Expression of myocardial 
VDR links chronic kidney disease with cardiovascular disease due to the reduction 
in VDR that amplifies the effects of angiotensin [212]. Melatonin decreases renal 
and myocardial overexpression of AT1 [97]. It is well documented that the AT1 
pathway leads to myocardial fibrosis during CKD [97]. As previously suggested, 
the low expression of AT1 through VDR induction could be a consequence of HSP 
70-mediated cellular protection [213]. Angiotensin II exerts a tonic modulation of 
melatonin synthesis by influencing the activity of tryptophan hydroxylase through 
AT1 supporting the postulated feedback (or reciprocal regulation) between AT1 
and melatonin [97, 202].

Additionally, the mitochondrial dynamics relates to the RAAS. We show that 
melatonin prevents mitochondrial edema, high activity of NADPH oxidase, and 
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apoptosis. In this sense, the reduction of mitochondrial damage melatonin could be 
related to the negative regulation of AT1. The induction of HSP 70 through melato-
nin is compatible with an additional mechanism related to Tom 70. Furthermore, 
Tom 70 regulates melatonin-induced protection against myocardial infarction 
[115, 116]. All these data allow us to assume that the induction of HSP 70 by melato-
nin and the reduction of AT1 are critical components of the cellular stress response.

We attribute the higher vulnerability to ventricular fibrillation during reperfu-
sion in the kidney disease rat model to the prooxidative and profibrotic changes that 
accompanied the increase in AT1 and the decrease in HSP 70 [97, 209]. Myocardial 
oxidative stress—particularly in the mitochondria—and fibrosis are well-known 
proarrhythmic substrates [55, 71]. Free radicals act as triggers for the beginning of 
arrhythmic events. The persistence of high-frequency rhythms requires reentry 
circuits [214]. Altered conduction and shortening of the action potential contribute 
to the complex reentry mechanisms involved in ventricular fibrillation.

Melatonin protection against myocardial remodeling induced by kidney disease 
is one of the factors that protect against ventricular fibrillation. Chronic melatonin 
prolongs the action potential duration and hyperpolarizes the cardiomyocytes. These 
changes are the first report of myocardial action potential modifications by chronic 
administration of melatonin. Opening of Kir3.x channels by melatonin receptor 
activation could explain hyperpolarization [131]. The action potential lengthening 
is harder to explain because melatonin activates currents involved in the action 
potential repolarization and the only inhibitory effect of melatonin against outward 
potassium currents was described in neurons [90, 129, 130, 215–217]. As previously 
mentioned, the downregulation of volume-activated anionic currents can explain 
attenuated response to action potential shortening induced by ischemia [126].

A synthesis of the mechanisms of protection of chronic treatment of melatonin 
cardiovascular complications is outlined in Figure 2. We focus our attention on 
the preventive effects of melatonin against the alteration of Cx43, mitochondrial 
oxidant capacity, and membrane potentials. In addition, modulation of the AT1 and 
VDR receptors related to the increase of HSP 70 contributes to the cardioprotective 
effects of melatonin.

4. Conclusions

Melatonin is the rhythmic protector of healthy heart rhythm and a promising 
preventive agent against ventricular fibrillation, the most lethal and disorganized 
heart rhythm. Pleotropic effects of melatonin make it an exceptional acute and 
chronic antiarrhythmic.

Acknowledgements

This work was supported by grant by ESC research grant funded by the 
European Society of Cardiology, by ERC-2014-StG 638284 funded by the European 
Research Council, by project DPI2016-75458-R funded by MINECO (Spain) and 
FEDER, and by Reference Group BSICoS T39-17R and project LMP124-18 funded 
by Gobierno de Aragón and FEDER 2014-2020 “Building Europe from Aragón.”

Conflict of interest

The authors declare no conflict of interest.



Melatonin

14

Author details

Natalia Jorgelina Prado1,2, Margarita Segovia-Roldan2, Emiliano Raúl Diez1,2* 
and Esther Pueyo1,2

1 Medical Faculty, CONICET, IMBECU, National University of Cuyo, Mendoza, 
Argentina

2 I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Zaragoza, Spain

*Address all correspondence to: diez.emiliano@fcm.uncu.edu.ar

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



15

Melatonin for a Healthy Heart Rhythm
DOI: http://dx.doi.org/10.5772/intechopen.91447

References

[1] Priori SG, Blomström-Lundqvist C, 
Mazzanti A, Blom N, Borggrefe M, 
Camm J, et al. 2015 ESC guidelines 
for the management of patients 
with ventricular arrhythmias and 
the prevention of sudden cardiac 
death. European Heart Journal. 
2015;36:2793-2867

[2] Black N, D’Souza A, Wang Y, 
Piggins H, Dobrzynski H, Morris G, 
et al. Circadian rhythm of cardiac 
electrophysiology, arrhythmogenesis, 
and the underlying mechanisms. Heart 
Rhythm. 2019;16:298-307

[3] Baltatu OC, Senar S, Campos LA, 
Cipolla-Neto J. Cardioprotective 
melatonin: Translating from proof-
of-concept studies to therapeutic use. 
International Journal of Molecular 
Sciences. 2019;20:4342

[4] Zhou H, Ma Q , Zhu P, Ren J, 
Reiter RJ, Chen Y. Protective role 
of melatonin in cardiac ischemia-
reperfusion injury: From pathogenesis 
to targeted therapy. Journal of Pineal 
Research. 2018;64:e12471

[5] Pliss MG, Kuzmenko NV, Rubanova NS, 
Tsyrlin VA. Dose-dependent mechanisms 
of melatonin on the functioning of 
the cardiovascular system and on 
the behavior of normotensive rats of 
different ages. Advances in Gerontology. 
2019;9:327-335

[6] Jiki Z, Lecour S, Nduhirabandi F. 
Cardiovascular benefits of dietary 
melatonin: A myth or a reality? 
Frontiers in Physiology. 2018;9:528

[7] Favero G, Franceschetti L, Buffoli B, 
Moghadasian MH, Reiter RJ, Rodella LF, 
et al. Melatonin: Protection against 
age-related cardiac pathology. Ageing 
Research Reviews. 2017;35:336-349

[8] Egan Benova T, Viczenczova C, 
Szeiffova Bacova B, Knezl V, Dosenko V, 

Rauchova H, et al. Obesity-associated 
alterations in cardiac connexin-43 
and PKC signaling are attenuated by 
melatonin and omega-3 fatty acids in 
female rats. Molecular and Cellular 
Biochemistry. 2019;454:191-202

[9] Singhanat K, Apaijai N, Chattipakorn 
SC, Chattipakorn N. Roles of melatonin 
and its receptors in cardiac ischemia–
reperfusion injury. Cellular and Molecular 
Life Sciences. 2018;75:4125-4149

[10] Pandi-Perumal SR, BaHammam AS, 
Ojike NI, Akinseye OA, Kendzerska T, 
Buttoo K, et al. Melatonin and human 
cardiovascular disease. Journal of 
Cardiovascular Pharmacology and 
Therapeutics. 2017;22:122-132

[11] Prado NJ, Ferder L, Manucha W, 
Diez ER. Anti-inflammatory effects of 
melatonin in obesity and hypertension. 
Current Hypertension Reports. 
2018;20:45

[12] Crnko S, Du Pré BC, Sluijter JPG, 
Van Laake LW. Circadian rhythms and 
the molecular clock in cardiovascular 
biology and disease. Nature Reviews. 
Cardiology. 2019;16:437-447

[13] Rana S, Prabhu SD, Young ME. 
Chronobiological influence over 
cardiovascular function. Circulation 
Research. 2020;126:258-279

[14] Martino TA, Young ME. Influence 
of the cardiomyocyte circadian clock on 
cardiac physiology and pathophysiology. 
Journal of Biological Rhythms. 2015;30: 
183-205

[15] Zhou H, Yue Y, Wang J, Ma Q , 
Chen Y. Melatonin therapy for diabetic 
cardiomyopathy: A mechanism 
involving Syk-mitochondrial complex 
I-SERCA pathway. Cellular Signalling. 
2018;47:88-100

[16] Yang Y, Sun Y, Yi W, Li Y, Fan C, 
Xin Z, et al. A review of melatonin as a 



Melatonin

16

suitable antioxidant against myocardial 
ischemia-reperfusion injury and 
clinical heart diseases. Journal of Pineal 
Research. 2014;57:357-366

[17] Sun H, Gusdon AM, Qu S. Effects of 
melatonin on cardiovascular diseases. 
Current Opinion in Lipidology. 
2016;27:408-413

[18] Han D, Wang Y, Chen J, Zhang J, 
Yu P, Zhang R, et al. Activation of 
melatonin receptor 2 but not melatonin 
receptor 1 mediates melatonin-conferred 
cardioprotection against myocardial 
ischemia/reperfusion injury. Journal of 
Pineal Research. 2019;67:e12571

[19] Hsu C-N, Huang L-T, Tain Y-L. 
Perinatal use of melatonin for offspring 
health: Focus on cardiovascular and 
neurological diseases. International 
Journal of Molecular Sciences. 
2019;20:5681

[20] Li K, Hu F, Xiong W, Wei Q , Liu FF. 
Network-based transcriptomic analysis 
reveals novel melatonin-sensitive genes 
in cardiovascular system. Endocrine. 
2019;64:414-419

[21] Egan Benova T, Szeiffova 
Bacova B, Viczenczova C, Diez E, 
Barancik M, Tribulova N. Protection 
of cardiac cell-to-cell coupling 
attenuate myocardial remodeling 
and proarrhythmia induced by 
hypertension. Physiological Research. 
2016;65(Suppl 1):S29-S42

[22] Zhai M, Li B, Duan W, Jing L, 
Zhang B, Zhang M, et al. Melatonin 
ameliorates myocardial ischemia 
reperfusion injury through SIRT3-
dependent regulation of oxidative 
stress and apoptosis. Journal of Pineal 
Research. 2017;63:e12419

[23] Nduhirabandi F, Maarman G, 
Nduhirabandi F, Maarman GJ. Melatonin 
in heart failure: A promising therapeutic 
strategy? Molecules. 2018;23:1819

[24] Reiter RJ, Tan DX, Paredes SD, 
Fuentes-Broto L. Beneficial effects of 
melatonin in cardiovascular disease. 
Annals of Medicine. 2010;42:279-285

[25] Pechanova O, Paulis L, Simko F. 
Peripheral and central effects of 
melatonin on blood pressure regulation. 
International Journal of Molecular 
Sciences. 2014;15:1792017937

[26] Baltatu OC, Amaral FG, 
Campos LA, Cipolla-Neto J. Melatonin, 
mitochondria and hypertension. 
Cellular and Molecular Life Sciences. 
2017;74:3955-3964

[27] Lahera V, de Las HN, López-
Farré A, Manucha W, Ferder L. Role 
of mitochondrial dysfunction in 
hypertension and obesity. Current 
Hypertension Reports. 2017;19:11

[28] Pandi-Perumal SR. Melatonin: 
Biological Basis of its Function in Health 
and Disease. CRC Press; 2005. ISBN 
1-58706-244-5

[29] Hardeland R, Cardinali DP, 
Srinivasan V, Spence DW, Brown GM, 
Pandi-Perumal SR. Melatonin-a pleiotropic, 
orchestrating regulator molecule. Progress 
in Neurobiology. 2011;93:350-384

[30] Poeggeler B, Reiter RJ, Tan D-X, 
Chen L-D, Manchester LC. Melatonin, 
hydroxyl radical-mediated oxidative 
damage, and aging: A hypothesis. Journal 
of Pineal Research. 1993;14:151-168

[31] Reiter RJ, Rosales-Corral S, Tan DX, 
Jou MJ, Galano A, Xu B. Melatonin as 
a mitochondria-targeted antioxidant: 
One of evolution’s best ideas. 
Cellular and Molecular Life Sciences. 
2017;74:3863-3881

[32] Galano A, Tan DX, Reiter RJ. 
Melatonin as a natural ally against 
oxidative stress: A physicochemical 
examination. Journal of Pineal 
Research. 2011;51:1-16



17

Melatonin for a Healthy Heart Rhythm
DOI: http://dx.doi.org/10.5772/intechopen.91447

[33] Galano A, Reiter RJ. Melatonin 
and its metabolites vs oxidative stress: 
From individual actions to collective 
protection. Journal of Pineal Research. 
2018;65:e12514

[34] Galano A. On the direct scavenging 
activity of melatonin towards hydroxyl 
and a series of peroxyl radicals. Physical 
Chemistry Chemical Physics (PCCP). 
2011;13:7178-7188

[35] Galano A, Tan DX, Reiter RJ. On 
the free radical scavenging activities 
of melatonin’s metabolites, AFMK 
and AMK. Journal of Pineal Research. 
2013;54:245-257

[36] Manchester LC, Coto-Montes A, 
Boga JA, Andersen LPH, Zhou Z, 
Galano A, et al. Melatonin: An ancient 
molecule that makes oxygen 
metabolically tolerable. Journal of 
Pineal Research. 2015;59:403-419

[37] Reiter RJ, Tan DX, Galano A. 
Melatonin: Exceeding expectations. 
Physiology. 2014;9:325-333

[38] Reiter RJ, Tan DX. Melatonin: A 
novel protective agent against oxidative 
injury of the ischemic/reperfused heart. 
Cardiovascular Research. 2003;58:10-19

[39] Reiter RJ, Mayo JC, Tan D-X, 
Sainz RM, Alatorre-Jimenez M, Qin L. 
Melatonin as an antioxidant: Under 
promises but over delivers. Journal of 
Pineal Research. 2016;61:253-278

[40] Forman HJ. Redox signaling: An 
evolution from free radicals to aging. 
Free Radical Biology & Medicine. 
2016;97:398-407

[41] Dröge W. Free radicals in the 
physiological control of cell function. 
Physiological Reviews. 2002;82:47-95

[42] Radi R. Oxygen radicals, nitric 
oxide, and peroxynitrite: Redox 
pathways in molecular medicine. 

Proceedings of the National Academy 
of Sciences of the United States of 
America. 2018;115:5839-5848

[43] Rodriguez C, Mayo JC, Sainz RM, 
Antolin I, Herrera F, Martin V, et al. 
Regulation of antioxidant enzymes: A 
significant role for melatonin. Journal of 
Pineal Research. 2004;36:1-9

[44] Afanas’Ev I. ROS and RNS signaling 
in heart disorders: Could antioxidant 
treatment be successful? Oxidative 
Medicine and Cellular Longevity. 
2011;2011:1-13

[45] Yang Y, Sun Y, Yi W, Li Y, Fan C, 
Xin Z, et al. A review of melatonin as a 
suitable antioxidant against myocardial 
ischemia-reperfusion injury and 
clinical heart diseases. Journal of Pineal 
Research. 2014;57:357-366

[46] Brazão V, Santello FH, Colato RP, 
Mazotti TT, Tazinafo LF, MPA T, 
et al. Melatonin: Antioxidant and 
modulatory properties in age-related 
changes during Trypanosoma cruzi 
infection. Journal of Pineal Research. 
2017;63:e12409

[47] Tan D-X, Manchester LC, 
Terron MP, Flores LJ, Reiter RJ. One 
molecule, many derivatives: A never-
ending interaction of melatonin 
with reactive oxygen and nitrogen 
species? Journal of Pineal Research. 
2007;42:28-42

[48] Tan DX, Hardeland R, 
Manchester LC, Paredes SD, Korkmaz A, 
Sainz RM, et al. The changing biological 
roles of melatonin during evolution: 
From an antioxidant to signals of 
darkness, sexual selection and fitness. 
Biological Reviews. 2010;85:607-623

[49] Tengattini S, Reiter RJ, Tan DX, 
Terron MP, Rodella LF, Rezzani R. 
Cardiovascular diseases: Protective 
effects of melatonin. Journal of Pineal 
Research. 2008;44:16-25



Melatonin

18

[50] Dominguez-Rodriguez A, 
Abreu-Gonzalez P, Garcia-Saiz MM, 
Aldea-Perona A, de la Torre JM, 
Garcia-Camarero T, et al. Cardio-
protection with melatonin in the acute 
myocardial infarction: Awaiting results 
of MARIA trial? International Journal of 
Cardiology. 2015;182:54-55

[51] Petrosillo G, Colantuono G, Moro N, 
Ruggiero FM, Tiravanti E, Di Venosa N, 
et al. Melatonin protects against heart 
ischemia-reperfusion injury by inhibiting 
mitochondrial permeability transition 
pore opening. The American Journal 
of Physiology-Heart and Circulatory 
Physiology. 2009;297:H1487-H1493

[52] Yeung HM, Hung MW, Lau CF, 
Fung ML. Cardioprotective effects of 
melatonin against myocardial injuries 
induced by chronic intermittent hypoxia 
in rats. Journal of Pineal Research 
2015;58:12-25

[53] Yanar K, Simsek B, Çakatay U. 
Integration of melatonin related redox 
homeostasis, aging, and circadian 
rhythm. Rejuvenation Research. 
2019;22:409-419

[54] Sovari AA. Cellular and molecular 
mechanisms of arrhythmia by oxidative 
stress. Cardiology Research and 
Practice. 2016;2016:1-7

[55] Yang KC, Kyle JW, Makielski JC, 
Dudley SC. Mechanisms of sudden 
cardiac death: Oxidants and 
metabolism. Circulation Research. 
2015;116:1937-1955

[56] Zhou L, Cortassa S, Wei AC, Aon MA, 
Winslow RL, O’Rourke B. Modeling 
cardiac action potential shortening 
driven by oxidative stress-induced 
mitochondrial oscillations in guinea pig 
cardiomyocytes. Biophysical Journal. 
2009;97:1843-1852

[57] Akbarali HI. Oxidative stress 
and ion channels. In Systems Biology 
of Free Radicals and Antioxidants; 

Springer-Verlag Berlin Heidelberg, 2012; 
pp. 355-373; ISBN 9783642300189

[58] Bhuyan R, Chakraborti S. Oxidative 
stress and modulation of cardiac Kv1.5 
channel. In: Oxidative Stress in Heart 
Diseases. Singapore: Springer; 2019. 
pp. 191-203

[59] Poole LB. The basics of thiols 
and cysteines in redox biology and 
chemistry. Free Radical Biology & 
Medicine. 2015;80:148-157

[60] Chouchani ET, James AM, 
Methner C, Pell VR, Prime TA, 
Erickson BK, et al. Identification and 
quantification of protein S -nitrosation 
by nitrite in the mouse heart during 
ischemia. The Journal of Biological 
Chemistry. 2017;292:14486-14495

[61] Smith BC, Marletta MA. Mechanisms 
of S-nitrosothiol formation and 
selectivity in nitric oxide signaling. 
Current Opinion in Chemical Biology. 
2012;16:498-506

[62] Ward CA, Giles WR. Ionic 
mechanism of the effects of 
hydrogen peroxide in rat ventricular 
myocytes. The Journal of Physiology. 
1997;500:631-642

[63] Ma JH, Luo AT, Zhang PH. Effect of 
hydrogen peroxide on persistent sodium 
current in Guinea pig ventricular 
myocytes. Acta Pharmacologica Sinica. 
2005;26:828-834

[64] Light PE, Wallace CHR, Dyck JRB. 
Constitutively active adenosine 
monophosphate-activated protein 
kinase regulates voltage-gated sodium 
channels in ventricular myocytes. 
Circulation. 2003;107:1962-1965

[65] Mazzocchi G, Sommese L, 
Palomeque J, Felice JI, Di Carlo MN, 
Fainstein D, et al. Phospholamban 
ablation rescues the enhanced 
propensity to arrhythmias of mice with 
CaMKII-constitutive phosphorylation 



19

Melatonin for a Healthy Heart Rhythm
DOI: http://dx.doi.org/10.5772/intechopen.91447

of RyR2 at site S2814. The Journal of 
Physiology. 2016;594:3005-3030

[66] Bogeski I, Kappl R, Kummerow C, 
Gulaboski R, Hoth M, Niemeyer BA. 
Redox regulation of calcium ion 
channels: Chemical and physiological 
aspects. Cell Calcium. 2011;50:407-423

[67] Bogeski I, Niemeyer BA. Redox 
regulation of ion channels. Antioxidants 
& Redox Signaling. 2014;21:859-862

[68] Zima AV, Blatter LA. Redox 
regulation of cardiac calcium channels 
and transporters. Cardiovascular 
Research. 2006;71:310-321

[69] Sag CM, Wagner S, Maier LS. Role 
of oxidants on calcium and sodium 
movement in healthy and diseased 
cardiac myocytes. Free Radical Biology 
& Medicine. 2013;63:338-349

[70] Yang K-C, Kyle JW, Makielski JC, 
Dudley SC. Mechanisms of sudden 
cardiac death. Circulation Research. 
2015;116:1937-1955

[71] Jeong E-M, Liu M, Sturdy M, Gao G, 
Varghese ST, Sovari AA, et al. Metabolic 
stress, reactive oxygen species, and 
arrhythmia. Journal of Molecular and 
Cellular Cardiology. 2012;52:454-463

[72] Svoboda LK, Reddie KG, 
Zhang L, Vesely ED, Williams ES, 
Schumacher SM, et al. Redox-sensitive 
sulfenic acid modification regulates 
surface expression of the cardiovascular 
voltage-gated potassium channel Kv1.5. 
Circulation Research. 2012;111:842-853

[73] Slominski RM, Reiter RJ, 
Schlabritz-Loutsevitch N, Ostrom RS, 
Slominski AT. Melatonin membrane 
receptors in peripheral tissues: 
Distribution and functions. Molecular 
and Cellular Endocrinology. 
2012;351:152-166

[74] Jockers R, Delagrange P, 
Dubocovich ML, Markus RP, Renault N, 

Tosini G, et al. Update on melatonin 
receptors: IUPHAR review 20. 
British Journal of Pharmacology. 
2016;173:2702-2725

[75] Stauch B, Johansson LC, 
McCorvy JD, Patel N, Han GW, 
Huang XP, et al. Structural basis 
of ligand recognition at the human 
MT1 melatonin receptor. Nature. 
2019;569:284-288

[76] Johansson LC, Stauch B, 
McCorvy JD, Han GW, Patel N, 
Huang XP, et al. XFEL structures of the 
human MT2 melatonin receptor reveal 
the basis of subtype selectivity. Nature. 
2019;569:289-292

[77] Benleulmi-Chaachoua A, 
Chen L, Sokolina K, Wong V, Jurisica I, 
Emerit MB, et al. Protein interactome 
mining defines melatonin MT1 
receptors as integral component of 
presynaptic protein complexes of 
neurons. Journal of Pineal Research. 
2016;60:95-108

[78] Jockers R, Maurice P, Boutin JA, 
Delagrange P. Melatonin receptors, 
heterodimerization, signal transduction 
and binding sites: What’s new? 
British Journal of Pharmacology. 
2008;154:1182-1195

[79] Cecon E, Oishi A, Jockers R. 
Melatonin receptors: Molecular 
pharmacology and signalling in the 
context of system bias. British Journal of 
Pharmacology. 2018;175:3263-3280

[80] Oishi A, Karamitri A, Gerbier R, 
Lahuna O, Ahmad R, Jockers R. Orphan 
GPR61, GPR62 and GPR135 receptors 
and the melatonin MT 2 receptor 
reciprocally modulate their signaling 
functions. Scientific Reports. 
2017;7:8990

[81] Hibino H, Inanobe A, Furutani K, 
Murakami S, Findlay I, Kurachi Y. 
Inwardly rectifying potassium channels: 
Their structure, function, and 



Melatonin

20

physiological roles. Physiological 
Reviews. 2010;90:291-366

[82] Baba K, Benleulmi-Chaachoua A, 
Journé AS, Kamal M, Guillaume JL, 
Dussaud S, et al. Heteromeric MT1/
MT2 melatonin receptors modulate 
photoreceptor function. Science 
Signaling. 2013;6:ra89-ra89

[83] Prado NJ, Egan Beňová T, Diez ER, 
Knezl V, Lipták B, Ponce Zumino AZ, 
et al. Melatonin receptor activation 
protects against low potassium-induced 
ventricular fibrillation by preserving 
action potentials and connexin-43 
topology in isolated rat hearts. Journal 
of Pineal Research. 2019;67:e12605

[84] Boutin JA, Ferry G. Is there 
sufficient evidence that the melatonin 
binding site MT3 is quinone reductase 
2? The Journal of Pharmacology 
and Experimental Therapeutics. 
2019;368:59-65

[85] Zhang HM, Zhang Y. Melatonin: 
A well-documented antioxidant with 
conditional pro-oxidant actions. Journal 
of Pineal Research. 2014;57:131-146

[86] Boutin JA, Marcheteau E, Hennig P, 
Moulharat N, Berger S, Delagrange P, 
et al. MT3/QR2 melatonin binding site 
does not use melatonin as a substrate 
or a co-substrate. Journal of Pineal 
Research. 2008;45:524-531

[87] Mailliet F, Ferry G, Vella F, 
Berger S, Cogé F, Chomarat P, et al. 
Characterization of the melatoninergic 
MT3 binding site on the NRH:Quinone 
oxidoreductase 2 enzyme. Biochemical 
Pharmacology. 2005;71:74-88

[88] Pandi-Perumal SR, Trakht I, 
Srinivasan V, Spence DW, 
Maestroni GJMM, Zisapel N, et al. 
Physiological effects of melatonin: 
Role of melatonin receptors and signal 
transduction pathways. Progress in 
Neurobiology. 2008;85:335-353

[89] Gonano LA, Sepúlveda M, Rico Y, 
Kaetzel M, Valverde CA, Dedman J, 
et al. Calcium-calmodulin kinase II 
mediates digitalis-induced arrhythmias. 
Circulation: Arrhythmia and 
Electrophysiology. 2011;4:947-957

[90] Squecco R, Tani A, Zecchi-Orlandini 
S, Formigli L, Francini F. Melatonin 
affects voltage-dependent calcium 
and potassium currents in MCF-7 
cell line cultured either in growth or 
differentiation medium. European 
Journal of Pharmacology. 2015;758:40-52

[91] Wong R, Steenbergen C, Murphy E. 
Mitochondrial permeability transition 
pore and calcium handling. In: 
Mitochondrial Bioenergetics. Methods 
in Molecular Biology (Methods and 
Protocols). Humana Press. 2012;810. 
ISBN 978-1-61779-381-3

[92] Valverde CA, Kornyeyev D, 
Mattiazzi AR, Escobar AL. Reperfusion 
after ichemia causes cytosolic calcium 
overload due to rapid calcium release 
from the sarcoplasmic reticulum. 
Biophysical Journal. 2009;96:550a

[93] Yeung HM, Hung MW, 
Fung ML. Melatonin ameliorates 
calcium homeostasis in myocardial 
and ischemia-reperfusion injury in 
chronically hypoxic rats. Journal of 
Pineal Research. 2008;45:373-382

[94] Valverde CA, Mattiazzi A, 
Escobar AL. Camkii exacerbates calcium 
waves during reperfusion of 
ischemic heart. Biophysical Journal. 
2014;106:322a

[95] Baumeister P, Quinn TA. Altered 
calcium handling and ventricular 
arrhythmias in acute ischemia. 
Clinical Medicine Insights: Cardiology. 
2016;10s1:CMC.S39706

[96] ter Keurs HEDJ, Boyden PA. Calcium 
and Arrhythmogenesis. Physiological 
Reviews. 2007;87:457-506



21

Melatonin for a Healthy Heart Rhythm
DOI: http://dx.doi.org/10.5772/intechopen.91447

[97] Prado NJ, Casarotto M, Calvo JP, 
Mazzei L, Ponce Zumino AZ, García IM, 
et al. Antiarrhythmic effect linked 
to melatonin cardiorenal protection 
involves AT 1 reduction and Hsp70-VDR 
increase. Journal of Pineal Research. 
2018;65:e12513

[98] Xu W, Cai S-YY, Zhang Y, Wang Y, 
Ahammed GJ, Xia X-JJ, et al. Melatonin 
enhances thermotolerance by promoting 
cellular protein protection in tomato 
plants. Journal of Pineal Research. 
2016;61:457-469

[99] Rezzani R, Rodella LF, Bonomini F, 
Tengattini S, Bianchi R, Reiter RJ. 
Beneficial effects of melatonin in 
protecting against cyclosporine 
A-induced cardiotoxicity are receptor 
mediated. Journal of Pineal Research. 
2006;41:288-295

[100] Tas U, Ogeturk M, Kuloglu T, 
Sapmaz HI, Kocaman N, Zararsiz I, et al. 
HSP70 immune reactivity and TUNEL 
positivity in the liver of toluene-inhaled 
and melatonin-treated rats. Toxicology 
and Industrial Health. 2013;29:514-522

[101] Yoon YM, Kim HJ, Lee JH, 
Lee SH. Melatonin enhances mitophagy 
by upregulating expression of heat 
shock 70 kDa protein 1 L in human 
mesenchymal stem cells under oxidative 
stress. International Journal of 
Molecular Sciences. 2019;20:4545

[102] Motawi TK, Ahmed SA, A 
Hamed M, El-Maraghy SA, M Aziz W. 
Melatonin and/or rowatinex attenuate 
streptozotocin-induced diabetic renal 
injury in rats. Journal of Biomedical 
Research. 2019;33:113-121

[103] Fang N, Hu C, Sun W, Xu Y, Gu Y, 
Wu L, et al. Identification of a novel 
melatonin-binding nuclear receptor: 
Vitamin D receptor. Journal of Pineal 
Research. 2020;68:e12618

[104] Morciano G, Giorgi C, 
Bonora M, Punzetti S, Pavasini R, 

Wieckowski MR, et al. Molecular identity 
of the mitochondrial permeability 
transition pore and its role in ischemia-
reperfusion injury. Journal of Molecular 
and Cellular Cardiology. 2015;78:142-153

[105] Hacışevki A, Baba B. An overview 
of melatonin as an antioxidant 
molecule: a biochemical approach. In: 
Melatonin—Molecular Biology, Clinical 
and Pharmaceutical Approaches. Rijeka: 
IntechOpen; 2018

[106] Ganie SA, Dar TA, Bhat AH, 
Dar KB, Anees S, Zargar MA, et al. 
Melatonin: A potential anti-oxidant 
therapeutic agent for mitochondrial 
dysfunctions and related disorders. 
Rejuvenation Research. 2016;19:21-40

[107] Das N, Mandala A, Naaz S, 
Giri S, Jain M, Bandyopadhyay D, et al. 
Melatonin protects against lipid-
induced mitochondrial dysfunction 
in hepatocytes and inhibits stellate 
cell activation during hepatic fibrosis 
in mice. Journal of Pineal Research. 
2017;62:e12404

[108] Donato AJ, Morgan RG, 
Walker AE, Lesniewski LA. Cellular and 
molecular biology of aging endothelial 
cells. Journal of Molecular and Cellular 
Cardiology. 2015;89:122-135

[109] Xu S, Pi H, Zhang L, Zhang N, 
Li YM, Zhang H, et al. Melatonin prevents 
abnormal mitochondrial dynamics 
resulting from the neurotoxicity 
of cadmium by blocking calcium-
dependent translocation of Drp1 to 
the mitochondria. Journal of Pineal 
Research. 2016;60:291-302

[110] Paradies G, Paradies V, Ruggiero 
FM, Petrosillo G. Mitochondrial 
bioenergetics decay in aging: 
Beneficial effect of melatonin. 
Cellular and Molecular Life Sciences. 
2017;74:3897-3911

[111] Ma Z, Xin Z, Di W, Yan X, 
Li X, Reiter RJ, et al. Melatonin and 



Melatonin

22

mitochondrial function during 
ischemia/reperfusion injury. 
Cellular and Molecular Life Sciences. 
2017;74:3989-3998

[112] Petrosillo G, Di Venosa N, 
Pistolese M, Casanova G, Tiravanti E, 
Colantuono G, et al. Protective effect 
of melatonin against mitochondrial 
dysfunction associated with cardiac 
ischemia- reperfusion: Role of 
cardiolipin. The FASEB Journal. 
2006;20:269-276

[113] Petrosillo G, Moro N, Paradies V, 
Ruggiero FM, Paradies G. Increased 
susceptibility to Ca2+-induced 
permeability transition and to 
cytochrome c release in rat heart 
mitochondria with aging: Effect of 
melatonin. Journal of Pineal Research. 
2010;45:340-346

[114] Kang JW, Hong JM, Lee SM. 
Melatonin enhances mitophagy and 
mitochondrial biogenesis in rats with 
carbon tetrachloride-induced liver 
fibrosis. Journal of Pineal Research. 
2016;60:383-393

[115] Pei HF, Hou JN, Wei FP, Xue Q , 
Zhang F, Peng CF, et al. Melatonin 
attenuates postmyocardial infarction 
injury via increasing Tom70 
expression. Journal of Pineal Research. 
2017;62:e12371

[116] Fan ACY, Young JC. Function 
of cytosolic chaperones in Tom70-
mediated mitochondrial import. Protein 
and Peptide Letters. 2011;18:122-131

[117] Lochner A, Marais E, Huisamen B. 
Melatonin and cardioprotection against 
ischaemia/reperfusion injury: What’s 
new? A review. Journal of Pineal 
Research. 2018;65:e12490

[118] Matsushima S, Sadoshima J. The 
role of sirtuins in cardiac disease. 
The American Journal of Physiology-
Heart and Circulatory Physiology. 
2015;309:H1375-H1389

[119] D’Onofrio N, Servillo L, 
Balestrieri ML. SIRT1 and SIRT6 
signaling pathways in cardiovascular 
disease protection. Antioxidants & 
Redox Signaling. 2018;28:711-732

[120] Yu L, Sun Y, Cheng L, 
Jin Z, Yang Y, Zhai M, et al. Melatonin 
receptor-mediated protection against 
myocardial ischemia/reperfusion 
injury: Role of SIRT1. Journal of Pineal 
Research. 2014;57:228-238

[121] Yu L, Liang H, Dong X, Zhao G, 
Jin Z, Zhai M, et al. Reduced silent 
information regulator 1 signaling 
exacerbates myocardial ischemia-
reperfusion injury in type 2 diabetic 
rats and the protective effect of 
melatonin. Journal of Pineal Research. 
2015;59:376-390

[122] Mayo JC, Sainz RM, González 
Menéndez P, Cepas V, Tan DX, 
Reiter RJ. Melatonin and sirtuins: A 
“not-so unexpected” relationship. 
Journal of Pineal Research. 
2017;62:e12391

[123] Yu L, Gong B, Duan W, 
Fan C, Zhang J, Li Z, et al. Melatonin 
ameliorates myocardial ischemia/
reperfusion injury in type 1 diabetic rats 
by preserving mitochondrial function: 
Role of AMPK-PGC-1α-SIRT3 signaling. 
Scientific Reports. 2017;7:41337

[124] Chua S, Lee F-YY, Chiang H-JJ, Chen 
K-HH, Lu H-II, Chen Y-TTY-LL, et al. The 
cardioprotective effect of melatonin and 
exendin-4 treatment in a rat model of 
cardiorenal syndrome. Journal of Pineal 
Research. 2016;61:438-456

[125] Majidinia M, Sadeghpour A, 
Mehrzadi S, Reiter RJ, Khatami N, 
Yousefi B. Melatonin: A pleiotropic 
molecule that modulates DNA damage 
response and repair pathways. Journal 
of Pineal Research. 2017;63:e12416

[126] Ben SI, Mies F, Naeije R,  
Shlyonsky V. Melatonin 



23

Melatonin for a Healthy Heart Rhythm
DOI: http://dx.doi.org/10.5772/intechopen.91447

down-regulates volume-sensitive 
chloride channels in fibroblasts. 
Pflügers Archiv: European Journal of 
Physiology. 2012;464:273-285

[127] Diez ER, Prados LV, Carrión A, 
Ponce ZAZ, Miatello RM. A novel 
electrophysiologic effect of 
melatonin on ischemia/reperfusion-
induced arrhythmias in isolated rat 
hearts. Journal of Pineal Research. 
2009;46:155-160

[128] Diez ER, Prado NJ, Carrión AM, 
Petrich ER, Ponce Zumino AZ, 
Miatello RM. Electrophysiological 
effects of tamoxifen: Mechanism 
of protection against reperfusion 
arrhythmias in isolated rat 
hearts. Journal of Cardiovascular 
Pharmacology. 2013;62:184-191

[129] Varga Z, Panyi G, Péter M, 
Pieri C, Csécsei G, Damjanovich S, et al. 
Multiple binding sites for melatonin 
on Kv1.3. Biophysical Journal. 
2001;80:1280-1297

[130] Hablitz LM, Molzof HE, 
Abrahamsson KE, Cooper JM, 
Prosser RA, Gamble KL. GIRK channels 
mediate the nonphotic effects of 
exogenous melatonin. The Journal of 
Neuroscience. 2015;35:14957-14965

[131] Nelson CS, Marino JL, Allen CN. 
Melatonin receptors activate heteromeric 
G-protein coupled Kir3 channels. 
Neuroreport. 1996;7:717-720

[132] Huang Y, Li Y, Leng Z. Melatonin 
inhibits GABAergic neurons in the 
hypothalamus consistent with a 
reduction in wakefulness. Neuroreport. 
2020;31:92-98

[133] Waseem M, Tabassum H, 
Parvez S. Melatonin modulates 
permeability transition pore and 
5-hydroxydecanoate induced KATP 
channel inhibition in isolated brain 
mitochondria. Mitochondrion. 
2016;31:1-8

[134] Mohammadi F, Shakiba S, 
Mehrzadi S, Afshari K, Rahimnia AH, 
Dehpour AR. Anticonvulsant effect 
of melatonin through ATP-sensitive 
channels in mice. Fundamental & 
Clinical Pharmacology. 2020;34:148-155

[135] Brown DA, Aon MA, Frasier CR, 
Sloan RC, Maloney AH, Anderson EJ, 
et al. Cardiac arrhythmias induced 
by glutathione oxidation can be 
inhibited by preventing mitochondrial 
depolarization. Journal of Molecular and 
Cellular Cardiology. 2010;48:673-679

[136] Nakaya H. Role of ATP-
sensitive K+ channels in cardiac 
arrhythmias. Journal of Cardiovascular 
Pharmacology and Therapeutics. 
2014;19:237-243

[137] Ayar A, Martin DJ, Ozcan M, 
Kelestimur H. Melatonin inhibits high 
voltage activated calcium currents 
in cultured rat dorsal root ganglion 
neurones. Neuroscience Letters. 
2001;313:73-77

[138] Choi TY, Kwon JE, Durrance ES, 
Jo SH, Choi SY, Kim KT. Melatonin 
inhibits voltage-sensitive Ca2+ channel-
mediated neurotransmitter release. 
Brain Research. 2014;1557:34-42

[139] Escames G, Macías M, León J, 
García J, Khaldy H, Martín M, et al. 
Calcium-dependent effects of 
melatonin inhibition of glutamatergic 
response in rat striatum. Journal of 
Neuroendocrinology. 2001;13:459-466

[140] Mei YA, Lee PPN, Wei H, 
Zhang ZH, Pang SF. Melatonin and 
its analogs potentiate the nifedipine-
sensitive high-voltage-activated calcium 
current in the chick embryonic heart 
cells. Journal of Pineal Research. 
2001;30:13-21

[141] Mück AO, Seeger H, Bartsch C, 
Lippert TH. Does melatonin affect 
calcium influx in human aortic smooth 
muscle cells and estradiol-mediated 



Melatonin

24

calcium antagonism? Journal of Pineal 
Research. 1996;20:145-147

[142] Chen LD, Kumar P, Reiter RJ, 
Tan DX, Chamber JP, Manchester LC, 
et al. Melatonin reduces 3H-nitrendipine 
binding in the heart. Proceedings of the 
Society for Experimental Biology and 
Medicine. 1994;207:34-37

[143] Xu Z, Wu Y, Zhang Y, Zhang H,  
Shi L. Melatonin activates BKCa 
channels in cerebral artery myocytes 
via both direct and MT receptor/PKC-
mediated pathway. European Journal of 
Pharmacology. 2019;842:177-188

[144] Al Dera H, Alassiri M, Eleawa SM, 
AlKhateeb MA, Hussein AM, Dallak M, 
et al. Melatonin improves memory 
deficits in rats with cerebral 
hypoperfusion, possibly, through 
decreasing the expression of small-
conductance Ca2+-activated K+ 
channels. Neurochemical Research. 
2019;44:1851-1868

[145] Ovali MA, Uzun M. The effects 
of melatonin administration on 
KCNQ and KCNH2 gene expressions 
and QTc interval in pinealectomised 
rats. Cellular and Molecular Biology. 
2017;63:45-50

[146] Arntz HR, Willich SN, Oeff M, 
Brüggemann T, Stern R, Heinzmann A, 
et al. Circadian variation of sudden 
cardiac death reflects age-related 
variability in ventricular fibrillation. 
Circulation. 1993;88:2284-2289

[147] Tribulova N, Szeiffova Bacova B, 
Benova T, Viczenczova C. Can we 
protect from malignant arrhythmias 
by modulation of cardiac cell-to-cell 
coupling? Journal of Electrocardiology. 
2015;48:434-440

[148] Babiker F, Al-Jarallah A, 
Al-Awadi M. Effects of cardiac 
hypertrophy, diabetes, aging, and 
pregnancy on the Cardioprotective 
effects of Postconditioning in male and 

female rats. Cardiology Research and 
Practice. 2019;2019:3403959

[149] Carro J, Pueyo E, Rodríguez 
Matas JF. A response surface 
optimization approach to adjust ionic 
current conductances of cardiac 
electrophysiological models. Application 
to the study of potassium level changes. 
PLoS One. 2018;13:e0204411

[150] Johnson R, Camelliti P. Role of  
non-Myocyte gap junctions 
and Connexin Hemichannels in 
cardiovascular health and disease:  
Novel therapeutic targets? International 
Journal of Molecular Sciences. 
2018;19:866

[151] Pk W, Whelton PK, Carey RM, 
Aronow WS, Ovbiagele B, Casey DE, 
et al. Guideline for the prevention, 
detection, evaluation, and management 
of high blood pressure in adults. Journal 
of American College of Cardiology. 
2017;283

[152] Steinberg C, Laksman ZWM, 
Krahn AD. Sudden cardiac death: A 
reappraisal. Trends in Cardiovascular 
Medicine. 2016;26:709-719

[153] Ibanez B, James S, Agewall S, 
Antunes MJ, Bucciarelli-Ducci C, 
Bueno H, et al. 2017 ESC guidelines for 
the management of acute myocardial 
infarction in patients presenting with 
ST-segment elevation. European Heart 
Journal. 2018;39:119-177

[154] Roth GA, Huffman MD,  
Moran AE, Feigin V, Mensah GA, 
Naghavi M, et al. Global and regional 
patterns in cardiovascular mortality 
from 1990 to 2013. Circulation. 
2015;132:1667-1678

[155] Ambale-Venkatesh B, Yang X, 
Wu CO, Liu K, Hundley WG, 
McClelland R, et al. Cardiovascular 
event prediction by machine 
learning. Circulation Research. 
2017;121:1092-1101



25

Melatonin for a Healthy Heart Rhythm
DOI: http://dx.doi.org/10.5772/intechopen.91447

[156] Adabag AS, Luepker RV, 
Roger VL, Gersh BJ. Sudden cardiac 
death: Epidemiology and risk 
factors. Nature Reviews. Cardiology. 
2010;7:216-225

[157] Li Y, Nantsupawat T, 
Tholakanahalli V, Adabag S, Wang Z, 
Benditt DG, et al. Characteristics and 
periodicity of sustained ventricular 
tachyarrhythmia events in a population 
of military veterans with implantable 
cardioverter defibrillator. Journal of 
Interventional Cardiac Electrophysiology. 
2019. DOI: 10.1007/s10840-019-00569-0. 
[Epub ahead of print]

[158] Tang PT, Shenasa M, Boyle NG. 
Ventricular arrhythmias and sudden 
cardiac death. Cardiac Electrophysiology 
Clinics. 2017;9:693-708

[159] Tan D-X, Manchester LC, Reiter RJ, 
Qi W, Kim SJ, El-Sokkary GH. Ischemia/
reperfusion-induced arrhythmias in 
the isolated rat heart: Prevention by 
melatonin. Journal of Pineal Research. 
1998;25:184-191

[160] Lagneux C, Joyeux M, Demenge P, 
Ribuot C, Godin-Ribuot D. Protective 
effects of melatonin against ischemia-
reperfusion injury in the isolated rat 
heart. Life Sciences. 2000;66:503-509

[161] Szárszoi O, Asemu G, Vaněček J, 
Ošt’ádal B, Kolář F. Effects of melatonin 
on ischemia and reperfusion injury of 
the rat heart. Cardiovascular Drugs and 
Therapy. 2001;15:251-257

[162] Kaneko S, Okumura K, 
Numaguchi Y, Matsui H, Murase K, 
Mokuno S, et al. Melatonin scavenges 
hydroxyl radical and protects isolated 
rat hearts from ischemic reperfusion 
injury. Life Sciences. 2000;67:101-112

[163] Lee YM, Chen HR, Hsiao G, 
Sheu JR, Wang JJ, Yen MH. Protective 
effects of melatonin on myocardial 
ischemia/reperfusion injury 

in vivo. Journal of Pineal Research. 
2002;33:72-80

[164] Bertuglia S, Reiter RJ. Melatonin 
reduces ventricular arrhythmias and 
preserves capillary perfusion during 
ischemia-reperfusion events in 
cardiomyopathic hamsters. Journal of 
Pineal Research. 2007;42:55-63

[165] Važan R, Pancza D, Béder I, 
Styk J. Ischemia-reperfusion injury—
Antiarrhythmic effect of melatonin 
associated with reduced recovering of 
contractility. General Physiology and 
Biophysics. 2005;24:355-359

[166] Vazan R, Ravingerova T. Protective 
effect of melatonin against myocardial 
injury induced by epinephrine. Journal 
of Physiology and Biochemistry. 
2015;71:43-49

[167] Dobsak P, Siegelova J, Eicher JC, 
Jancik J, Svacinova H, Vasku J, et al. 
Melatonin protects against ischemia-
reperfusion injury and inhibits 
apoptosis in isolated working rat heart. 
Pathophysiology. 2003;9:179-187

[168] Diez ER, Renna NF, Prado NJ, 
Lembo C, Ponce Zumino AZ, 
Vazquez-Prieto M, et al. Melatonin, 
given at the time of reperfusion, 
prevents ventricular arrhythmias 
in isolated hearts from fructose-fed 
rats and spontaneously hypertensive 
rats. Journal of Pineal Research. 
2013;55:166-173

[169] Benova T, Viczenczova C, 
Radosinska J, Bacova B, Knezl V, 
Dosenko V, et al. Melatonin attenuates 
hypertension-related proarrhythmic 
myocardial maladaptation of 
connexin-43 and propensity of the heart 
to lethal arrhythmias. Canadian Journal 
of Physiology and Pharmacology. 
2013;91:633-639

[170] Lee S, Kang E, Yoo KD, Choi Y, 
Kim DK, Joo KW, et al. Lower serum 
potassium associated with increased 



Melatonin

26

mortality in dialysis patients: A 
nationwide prospective observational 
cohort study in Korea. PLoS One. 
2017;12:e0171842

[171] Pun PH, Goldstein BA, 
Gallis JA, Middleton JP, Svetkey LP. 
Serum potassium levels and risk of 
sudden cardiac death among patients 
with chronic kidney disease and 
significant coronary artery disease. 
Kidney International Reports. 
2017;2:1122-1131

[172] Osadchii OE. Electrophysiological 
determinants of arrhythmic 
susceptibility upon endocardial and 
epicardial pacing in Guinea-pig heart. 
Acta Physiologica. 2012;205:494-506

[173] Osadchii OE. Impact of 
hypokalemia on electromechanical 
window, excitation wavelength and 
repolarization gradients in guinea-
pig and rabbit hearts. PLoS One. 
2014;9:e105599

[174] Osadchii OE. Effects of 
antiarrhythmics and hypokalemia 
on the rate adaptation of cardiac 
repolarization. Scandinavian 
Cardiovascular Journal. 
2018;52:218-226

[175] Xie Y, Sato D, Garfinkel A, Qu Z, 
Weiss JN. So little source, so much sink: 
Requirements for after depolarizations 
to propagate in tissue. Biophysical 
Journal. 2010;99:1408-1415

[176] Osadchii OE. Mechanisms of 
hypokalemia-induced ventricular 
arrhythmogenicity. Fundamental 
& Clinical Pharmacology. 
2010;24:547-559

[177] Ek-Vitorín J, Pontifex T, 
Burt J, Ek-Vitorín JF, Pontifex TK, 
Burt JM. Cx43 channel gating and 
permeation: Multiple phosphorylation-
dependent roles of the carboxyl 
terminus. International Journal of 
Molecular Sciences. 2018;19:1659

[178] Palatinus JA, O’Quinn MP, 
Barker RJ, Harris BS, Jourdan J, 
Gourdie RG. ZO-1 determines adherens 
and gap junction localization at 
intercalated disks. The American Journal 
of Physiology: Heart and Circulatory 
Physiology. 2011;300:H583-H594

[179] Iyyathurai J, Himpens B, 
Bultynck G, D’hondt C. Calcium wave 
propagation triggered by local 
mechanical stimulation as a method 
for studying gap junctions and 
hemichannels. Methods in Molecular 
Biology (Clifton, NJ). 2016;1437:203-211

[180] Dhein S, Seidel T, Salameh A, 
Jozwiak J, Hagen A, Kostelka M, et al. 
Remodeling of cardiac passive electrical 
properties and susceptibility to 
ventricular and atrial arrhythmias. 
Frontiers in Physiology. 2014;5:424

[181] Xie Y, Garfinkel A, Camelliti P, 
Kohl P, Weiss JN, Qu Z. Effects of 
fibroblast-myocyte coupling on cardiac 
conduction and vulnerability to reentry: 
A computational study. Heart Rhythm. 
2009;6:1641-1649

[182] Remo BF, Qu J, Volpicelli FM, 
Giovannone S, Shin D, Lader J, et al. 
Phosphatase-resistant gap junctions 
inhibit pathological remodeling and 
prevent arrhythmias. Circulation 
Research. 2011;108:1459-1466

[183] Hoppe LK, Muhlack DC, 
Koenig W, Carr PR, Brenner H, 
Schöttker B. Association of abnormal 
serum potassium levels with 
arrhythmias and cardiovascular 
mortality: A systematic review and 
meta-analysis of observational studies. 
Cardiovascular Drugs and Therapy. 
2018;32:197-212

[184] Trenor B, Cardona K, Romero L, 
Gomez JF, Saiz J, Rajamani S, et al. Pro-
arrhythmic effects of low plasma [K+] in 
human ventricle: An illustrated review. 
Trends in Cardiovascular Medicine. 
2018;28:233-242



27

Melatonin for a Healthy Heart Rhythm
DOI: http://dx.doi.org/10.5772/intechopen.91447

[185] Ishigaki S, Ohashi N, Isobe S, 
Tsuji N, Iwakura T, Ono M, et al. 
Impaired endogenous nighttime 
melatonin secretion relates to intrarenal 
renin-angiotensin system activation 
and renal damage in patients with 
chronic kidney disease. Clinical 
and Experimental Nephrology. 
2016;20:878-884

[186] Zetner D, Andersen L, 
Rosenberg J. Pharmacokinetics of 
alternative administration routes of 
melatonin: A systematic review. Drug 
Research (Stuttgart). 2015;66:169-173

[187] Andersen LPH, Gögenur I, 
Rosenberg J, Reiter RJ. The safety of 
melatonin in humans. Clinical Drug 
Investigation. 2016;36:169-175

[188] Gul-Kahraman K, Yilmaz-
Bozoglan M, Sahna E. Physiological and 
pharmacological effects of melatonin on 
remote ischemic perconditioning after 
myocardial ischemia-reperfusion injury 
in rats: Role of Cybb, Fas, NfκB, Irisin 
signaling pathway. Journal of Pineal 
Research. 2019;67:e12589

[189] Sahna E, Olmez E, Acet A. Effects 
of physiological and pharmacological 
concentrations of melatonin on 
ischemia-reperfusion arrhythmias 
in rats: Can the incidence of sudden 
cardiac death be reduced? Journal of 
Pineal Research. 2002;32:194-198

[190] Dominguez-Rodriguez A, 
Abreu-Gonzalez P, Reiter RJ. Circadian 
variation in acute myocardial infarction 
size: Likely involvement of the 
melatonin and suprachiasmatic nuclei. 
International Journal of Cardiology. 
2017;235:191

[191] Nagibin V, Egan 
Benova T, Viczenczova C, Szeiffova 
Bacova B, Dovinova I, Barancik M, 
et al. Ageing related down-regulation 
of myocardial connexin-43 and 
up-regulation of MMP-2 may predict 
propensity to atrial fibrillation in 

experimental animals. Physiological 
Research. 2016;65(Suppl 1):S91-S100

[192] Sedova KA, Bernikova OG, 
Cuprova JI, Ivanova AD, Kutaeva GA, 
Pliss MG, et al. Association between 
antiarrhythmic, electrophysiological, 
and Antioxidative effects of melatonin 
in ischemia/reperfusion. International 
Journal of Molecular Sciences. 
2019;20:6331

[193] Al-Khatib SM, Stevenson WG, 
Ackerman MJ, Bryant WJ, Callans DJ, 
Curtis AB, et al. AHA/ACC/HRS 
guideline for management of patients 
with ventricular arrhythmias and the 
prevention of sudden cardiac death: 
Executive summary: A report of the 
American College of Cardiology/
American Heart Association task force 
on clinical practice Gui. Heart Rhythm. 
2017;15:e190-e252

[194] Li J, Hu D, Song X, Han T, 
Gao Y, Xing Y. The role of biologically 
active ingredients from natural drug 
treatments for arrhythmias in different 
mechanisms. BioMed Research 
International. 2017;2017:1-10

[195] Al-Gobari M, Al-Aqeel S, 
Gueyffier F, Burnand B. Effectiveness 
of drug interventions to prevent sudden 
cardiac death in patients with heart 
failure and reduced ejection fraction: 
An overview of systematic reviews. BMJ 
Open. 2018;8:e021108

[196] Erath JW, Hohnloser SH. Drugs 
to prevent sudden cardiac death. 
International Journal of Cardiology. 
2017;237:22-24

[197] Zanoboni A, Zanoboni-
Muciaccia W. Experimental 
hypertension in pinealectomized rats. 
Life Sciences. 1967;6:2327-2331

[198] Holmes SW, Sugden D. 
Proceedings: The effect of melatonin on 
pinealectomy-induced hypertension in 
the rat. British Journal of Pharmacology. 
1976;56:360P-361P



Melatonin

28

[199] De Farias TDSM, De Oliveira AC, 
Andreotti S, Do Amaral FG, Chimin P, 
De Proença ARA, et al. Pinealectomy 
interferes with the circadian clock 
genes expression in white adipose 
tissue. Journal of Pineal Research. 
2015;58:251-261

[200] Simko F, Pechanova O. 
Remodelling of the heart and vessels in 
experimental hypertension: Advances 
in protection. Journal of Hypertension. 
2010;28(Suppl 1):S1-S6

[201] Russcher M, Koch B, Nagtegaal E, 
van der Putten K, ter Wee P, Gaillard C. 
The role of melatonin treatment in 
chronic kidney disease. Frontiers in 
Bioscience (Landmark Ed). 2012;17: 
2644-2656

[202] Campos LA, Cipolla-Neto J, 
Amaral FG, Michelini LC, Bader M, 
Baltatu OC. The angiotensin-melatonin 
Axis. International Journal of 
Hypertension. 2013;2013:1-7

[203] Ishigaki S, Ohashi N, 
Matsuyama T, Isobe S, Tsuji N, 
Iwakura T, et al. Melatonin ameliorates 
intrarenal renin–angiotensin system 
in a 5/6 nephrectomy rat model. 
Clinical and Experimental Nephrology. 
2018;22:539-549

[204] Franczyk-Skóra B, Gluba-
Brzózka A, Wranicz JK, Banach M, 
Olszewski R, Rysz J. Sudden cardiac 
death in CKD patients. International 
Urology and Nephrology. 2015;47: 
971-982

[205] Pun PH. The interplay between 
CKD, sudden cardiac death, and 
ventricular arrhythmias. Advances 
in Chronic Kidney Disease. 
2014;21:480-488

[206] Bonato FOB, Canziani MEF, 
Bonato FOB, Canziani MEF. Ventricular 
arrhythmia in chronic kidney disease 
patients. Jornal Brasileiro de Nefrologia. 
2017;39:186-195

[207] Bonato FOB, Watanabe R, 
Lemos MM, Cassiolato JL, Wolf M, 
Canziani MEF. Asymptomatic 
ventricular arrhythmia and clinical 
outcomes in chronic kidney disease: A 
pilot study. The Journal CardioRenal 
Medicine. 2016;7:66-73

[208] Reddan DN, Szczech L, 
Bhapkar MV, Moliterno DJ, Califf RM, 
Ohman EM, et al. Renal function, 
concomitant medication use and 
outcomes following acute coronary 
syndromes. Nephrology, Dialysis, 
Transplantation. 2005;20:2105-2112

[209] Diez ER, Altamirano LB, 
García IM, Mazzei L, Prado NJ, 
Fornes MW, et al. Heart remodeling 
and ischemia–reperfusion arrhythmias 
linked to myocardial vitamin D 
receptors deficiency in obstructive 
nephropathy are reversed by 
Paricalcitol. Journal of Cardiovascular 
Pharmacology and Therapeutics. 
2015;20:211-220

[210] Mazzei L, Docherty NG, 
Manucha W. Mediators and mechanisms 
of heat shock protein 70 based 
cytoprotection in obstructive 
nephropathy. Cell Stress & Chaperones. 
2015;20:893-906

[211] Lutz W, Kohno K, Kumar R. The 
role of heat shock protein 70 in vitamin 
D receptor function. Biochemical and 
Biophysical Research Communications. 
2001;282:1211-1219

[212] Ferder M, Inserra F, Manucha W, 
Ferder L. The world pandemic of 
vitamin D deficiency could possibly 
be explained by cellular inflammatory 
response activity induced by the renin-
angiotensin system. The American 
Journal of Physiology-Cell Physiology. 
2013;304:C1027-C1039

[213] García IM, Altamirano L, 
Mazzei L, Fornés M, Cuello-Carrión FD, 
Ferder L, et al. Vitamin D receptor-
modulated Hsp70/AT1 expression may 



29

Melatonin for a Healthy Heart Rhythm
DOI: http://dx.doi.org/10.5772/intechopen.91447

protect the kidneys of SHRs at the 
structural and functional levels. Cell 
Stress & Chaperones. 2014;19:479-491

[214] McElwee SK, Velasco A, 
Doppalapudi H. Mechanisms of sudden 
cardiac death. Journal of Nuclear 
Cardiology. 2016;23:1368-1379

[215] van den Top M, Buijs RM, 
Ruijter JM, Delagrange P, Spanswick D, 
Hermes ML. Melatonin generates 
an outward potassium current in rat 
suprachiasmatic nucleus neurones 
in vitro independent of their circadian 
rhythm. Neuroscience. 2001;107:99-108

[216] Hou S-W, Zheng P, Sun F-Y. 
Melatonin inhibits outward delayed 
rectifier potassium currents in 
hippocampal CA1 pyramidal neuron 
via intracellular indole-related 
domains. Journal of Pineal Research. 
2004;36:242-249

[217] Yang XF, Miao Y, Ping Y, Wu HJ, 
Yang XL, Wang Z. Melatonin inhibits 
tetraethylammonium-sensitive 
potassium channels of rod ON type 
bipolar cells via MT2 receptors in rat 
retina. Neuroscience. 2011;173:19-29


