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Abstract—A first study on the potential of
electrocardiogram(ECG)-derived respiration (EDR) signals
based on QRS slopes and R-wave angles for sleep apnea
detection is been presented. This EDR techniques have been
previously validated with a wearable ECG armband for
respiratory rate estimation. Furthermore, the amplitude of the
oscillations in these EDR signals was observed to be related to
the tidal volume in a previous pilot study.

The hypothesis of this work is that that relation can be
exploited for sleep apnea detection. A public data set (Physionet
Apnea-ECG) composed of 105 polysomnography recordings was
analyzed. A linear discriminant analysis was used using features
related to the amplitude of the EDR oscillations.

The classifier obtained an area under the curve from 0.74 to
0.82 when using the different analyzed features sets, suggesting
that the relation between tidal volume and the amplitude of the
EDR signals based on QRS slopes and R-wave angles can be
exploited for sleep apnea detection. These results allow us to think
of a sleep apnea screening tool based on the wearable armband
and these EDR techniques, which would have both social and
economic advantages.

Index Terms—ECG-derived respiration, EDR, sleep apnea

I. INTRODUCTION

The sleep apnea-hypopnea syndrome (SAHS) is a sleep

disorder characterized by repetitive periods of interruption

or considerable reduction of respiratory flow, having serious

consequences for the health that have a big socioeconomic

impact that can be reduced by adequate treatment. The re-

ported prevalence of this condition among adults varies from

9% to 36%, and some studies suggest that this prevalence may

be underestimated in the literature because its symptoms are

not always apparent [1]. However, most of the patients from

SAHS remain undiagnosed, and thus, untreated. In fact, some

studies estimate that the percentage of undiagnosed patients
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of SAHS is between 80% and 90% [2]. The Gold Standard

for SAHS diagnosis is supervised polysomnography (PSG),

which consists of an overnight recording of a large number of

biomedical signals. Thus, PSG requires an overnight stay in

a sleep laboratory and supervision by experts, so it remains

a cumbersome process with high costs associated, not being

convenient for screening and leading to the mentioned SAHS

underdiagnosis.

The social consequences of this underdiagnosis include an

increased cardiovascular risk [3] and an elevated risk of traffic

accidents [4]. In addition, this underdiagnosis also has an im-

portant cost because people with undiagnosed SAHS usually

have more healthcare costs in comparison with diagnosed (and

treated) patients [5], and their productivity is lower [6]. Thus,

a SAHS screening based on a wearable device would have

both social and economic advantages.

In recent times, several devices have been proposed for

sleep monitoring in a less invasive way, aiming to move the

sleep studies from the sleep laboratories in clinical settings to

home environments. This transition has two main objectives.

On one hand, to improve the quality of records by increasing

user comfort during sleep monitoring and so reducing the

effects of the measurement process on the quality of the sleep

(the measurement target). On the other hand, to overcome the

limitation of reduced number of sleep laboratories, reaching a

broader population.

Some respiratory information can be obtained from the

ECG, based on its morphology and/or the occurrence of

heartbeats through a phenomenon known as respiratory sinus

arrhythmia. Algorithms for deriving respiratory information

from the ECG are usually referred as ECG-derived respira-

tion (EDR) techniques. One of the morphology-based EDR

techniques in the literature exploits the variations in the

QRS slopes and R-wave angle. This technique outperformed

others in different terms and data sets, including during sleep

[7]. In addition, it has been validated for respiratory rate

estimation with an ECG-based wearable armband [8]. Thus,
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the combination of this EDR technique and the this ECG-based

wearable armband may be interesting for SAHS monitoring.

However, to the best of our knowledge, the potential of QRS

slopes and R-wave angles for sleep apnea/hypopnea detection

has been never analyzed. In this paper, a first assessment of

this potential is performed by applying this EDR technique

with a public PSG data set: Apnea-ECG [9].

II. METHODS

A. Materials

The data analyzed in this study is publicly available on

Physionet [10] under the name Apnea-ECG [9]. This data

set is composed of a training set of 70 PSG records and an

additional test set of 35 records. These records include (among

other signals) ECG with a sampling rate of fs = 100 Hz, QRS

automatically detected, and apnea annotations in a 1-min basis.

B. ECG artifact detection

ECG artifact detection was performed based on the ratio of

powers proposed in [11]. ECG was spitted into segments of

length of 1 min, similarly to the apnea annotation criterion.

The percentage of power of the kth ECG segment within the

frequency band between 5 Hz and 20 Hz, with respect to the

total power of the same ECG segment was computed:

rP(k) =

∫

20Hz

5Hz

∣

∣Xk
ECG

(f)
∣
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2

df

∫ fs/2

0

∣

∣Xk
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(f)
∣

∣

2

df

, (1)

where X(f) is the spectrum of the kth 1-min-length ECG

segment.

In general terms, the percentage of power within the 5-20

Hz band is higher in a clean ECG segment than in an ECG seg-

ment corrupted by movement and/or electromyogram artifacts,

which usually show significant power in higher frequencies.

In this study, an empirical threshold of 50% was used for

considering clean (rP(k) ≥ 0.5) or corrupted (rP(k) < 0.5)

ECG segment. Those segments considered corrupted by this

criterion were discarded for further analysis.

C. ECG derived respiration

Three EDR signals were analyzed in this study, based on

QRS slopes (upslope and downslope) and the R-wave angle

[8]. R peak of the ith QRS complex nRi
was set as the point

where the ECG is maximum within a time window of 80 ms

centered in the ith QRS annotation provided by the data set

(see Section II-A). Subsequently, Q and S peaks (nQi
and nSi

)

were set as the points where the ECG is minimum within a

window of 40 ms before and after nRi
, respectively. Then, the

time instants with maximum ECG variation from nQi
to nRi

,

and from nRi
to nSi

were computed:

nUi
= argmax

n∈(nQi
,nRi)

{|x′(n)|} (2)

nDi
= argmax

n∈(nRi
,nSi)

{|x′(n)|} , (3)

where x′(n) denotes the first derivative of the ECG signal.

Then, the slope around nUi
is estimated as the slope of

a straight line fitted by least squares within 8 ms centered in

such point. This slope is denoted IUS in this paper. On the other

hand, IDS denotes the estimated slope around nDi
, estimated

in a similar way. Besides of generating EDR signals, these

slopes were used also for computing the R-wave angle, which

was also used for generating an additional EDR signal:

ΦRi
= arctan

(

IUSi
− IDSi

0.4 (6.25 + IUSi
IDSi

)

)

. (4)

The three series described above were considered EDR

signals:

du
US, DS, Φ

(n) =
∑

i

{IUSi
, IDSi

,ΦRi
} δ(n− nRi

), (5)

where the superscript u denotes that these EDR signals are

unevenly sampled, as the heartbeats do not occur evenly.

An outlier-rejection rule based on median-absolute-deviation

(MAD) was applied. Note that there should be a valid param-

eter (IUSi
, IDSi

, and ΦRi
) estimation per heartbeat. A too low

number of estimates was considered as a sign of presence

of noise. Thus, every 60-min segment with less than 45

parameters estimations was not considered for further analysis.

Then, the outlier-rejected series were evenly sampled at 4

Hz by cubic splines interpolation. Subsequently, these evenly-

sampled signals were bandpass filtered with cutoff frequencies

of 0.075 Hz and 1 Hz, considering such band as the respiratory

band. The resulting signals are denoted without the superscript

u in this paper (dUS, DS, Φ(n)). Figure 1 shows an example of

these EDR signals.

D. ECG segment classification

1) Classifier: A classification strategy based on linear dis-

criminant analysis (LDA) was used.

2) Features: The amplitude of these EDR signals may be

related to the tidal volume [12]. The standard deviation of

each EDR signal during each ECG segment was computed

as estimation of the amplitude of these oscillations. These

standard deviations were normalized by the intra-subject mean

of the corresponding series in order to minimize the inter-

subject variations.

3) Training: Segments from the 70 PSG recordings that

compose the training set of the data set (see Section II-A)

were used in the training procedure. The number of elements

in the two classes (apnea present/not present) were balanced by

using k-means to reduce the number of elements in the larger

class while maintaining a good representation of the data. A

5-fold validation strategy was used during training stage.

4) Test: Segments from the 35 PSG recordings that com-

pose the training set of the data set (see Section II-A) were

used in the training procedure. No balancing of classes was

performed in the test set.
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Fig. 1. Example of ECG (xECG(n)) and EDR signals (dUS(n), dDS(n), and dΦ(n)) during a 60-seconds segment labeled as ’normal breathing’ (left), and
during a 60-seconds segment labeled as ’apnea present’ (right).

III. RESULTS

A total of 8786 ECG segments (4393 labeled as ’apnea’

and 4393 labeled as ’normal’) were used for training. This

number was obtained after discarding ECG segments based on

the ECG artifact detection and the EDR MAD outlier rejection

rule, and after class balancing based on k-means. Table I shows

the obtained accuracies, sensitivities, specificities, and areas

under curve (AUC) obtained for the test set for the different

analyzed feature sets. Figure 2 shows the best obtained receiver

operating characteristic (ROC) curve in terms of AUC, which

was for dR(n).

TABLE I
OBTAINED ACCURACIES (ACC), SENSITIVITIES (SE), SPECIFICITIES (SP),
AND AREAS UNDER THE CURVE (AUC) OBTAINED FOR THE TEST SET FOR

THE DIFFERENT ANALYZED FEATURE SETS. LAST ROW (”ALL”) REFERS

TO THE COMBINATION OF FEATURES FROM THE THREE EDR SIGNALS

EDR Acc Se Sp AUC

dUS(n) 74.6% 0.85 0.58 0.82

dDS(n) 71.5% 0.86 0.49 0.75

dR(n) 74.1% 0.86 0.52 0.78

ALL 71.1% 0.85 0.49 0.74

IV. DISCUSSION

A first study on the potential of EDR signals based on

QRS slopes and R-wave angles for sleep apnea detection has

been presented. This EDR technique was chosen because it

outperformed others in different terms and data sets (including

during sleep) [7], and because it has been previously validated

with an ECG-based wearable armband [8] that results very

interesting for SAHS monitoring. A pilot study showed that

there is a relation between the tidal volume and the amplitude

of the oscillations in these EDR signals [12].

The hypothesis of this work is that that relation can be

exploited for sleep apnea detection. The amplitude of the
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Fig. 2. Receiver operating characteristic (ROC) curve obtained for dR(n).

oscillations of the EDR signals was estimated by using their

standard deviation within the studied segment, normalized

by the mean in of the series in the entire recording. This

normalization tries to minimize the effect of the differences

in the amplitude of the EDR oscillations among different

subjects.

Obtained AUCs suggest that the amplitude of the oscilla-

tions of the three analyzed EDR signals have potential for

sleep apnea detection. Best EDR in terms of both accuracy and

AUC was dUS(n) (Acc=74.6% and AUC=0.82), followed by

dR(n) (Acc=74.1% and AUC=0.78). dDS(n) obtained slightly

lower values n(Acc=71.5% and AUC=0.75). Obtained Acc and

AUC when combining the three analyzed EDR signals were

slightly lower (71.1% and 0.74, respectively). This observa-

tion may be explained by the high redundancy between the

features, as all of them were thought to be related to the tidal

volume. These results suggest that the combination of them
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adds more noise than non-redundant information to the LDA

classifier.

A similar analysis was performed in [13] for EDRs based

on QRS area and principal component analysis (PCA). Re-

ported results (AUCs of 0.92 and 0.78 for QRS area and

PCA, respectively) in [13] should not be used with those

results reported in this paper for a direct comparison of EDR

techniques, for several reasons. First, the whole 105 recordings

of the Physionet Apnea-ECG were used in this work, using the

separation of training and test data proposed by the data set.

However, respiratory impedance pneumography was needed

for the analysis presented in [13]. This signal is available for

only 8 recordings in the Apnea-ECG data set, resulting in a

much more limited data set where a cross validation approach

was performed. Furthermore, two temporal-optimization meth-

ods were used in [13] based on time overlapping and taking

into account the relation between consecutive segments. None

of these methods were used in the first exploration study

presented in this work, which is not focused on classification

performance.

As a first exploration study, some decisions were made

based on simplicity and may not be optimal from the point

of view of performance results. For example, the features are

based on standard deviation of the EDR signals, which is

a simple measure of the amplitude of the EDR oscillations.

Thus, hypothesizing that this amplitude is related to the tidal

volume, it is expected that it is lower during apnea events

than during normal breathing. However, the data is not labeled

as apnea event or normal breathing. Instead, the labels are

on a 1-min basis, and they indicate whether there is at least

one apnea event or not within each one of the segments.

Therefore, a 1-min segment labeled as ’apnea’ can contain

up to 50 seconds of normal breathing. On the other hand,

those segments may contain one or more recover-from-apnea

events, which are usually characterized by a deeper breathing

(instead of a shallower breathing during apnea). In this way,

an approach based on estimating the variations in tidal volume

through the envelope of the EDR signals could obtain a

better performance in this data set. Furthermore, future studies

focused on classification performance should include other

features complementing the information of features based

on EDR-based tidal volume estimation. Those features may

include ECG-derived autonomic nervous system markers, such

as those based on heart rate variability.

Moreover, a simple technique for ECG artifact detection

was used, based on a ratio of powers [11]. The threshold

for considering a 1-min ECG segment as an artifact or as

a clean segment was empirically set after a visual inspection

of recordings. In addition, a median-absolute-deviation outlier-

rejection rule is applied to the EDR series. However, the ECG

artifact detection approach has a big room for improvement.

Future studies focused on performance should include other

ECG signal quality indexes complementing the information

of the ratio of powers, and thresholds optimization.

V. CONCLUSION

Obtained results suggest that the relation between tidal

volume and the amplitude of the EDR signals based on QRS

slopes and R-wave angles can be exploited for sleep apnea

detection. These EDR methods have been previously validated

for respiratory rate estimation using an ECG-based wearable

armband, and their relation with tidal volume was observed

also using this device. Therefore, these results allow us to

think of a SAHS screening tool based on the wearable armband

and these EDR techniques, which would have both social and

economic advantages. Future studies focused on classification

performance should include a better ECG artifact detector and

additional features that may complement the information of

the amplitude of the EDR signals, e.g., features based on heart

rate variability.
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