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A B S T R A C T   

Objective: The aim of this study is to compare the performance of two electrocardiogram (ECG) lead-space 
reduction (LSR) techniques in generating a transformed ECG lead from which T-wave morphology markers 
can be reliably derived to non-invasively monitor blood potassium concentration ([K+]) in end-stage renal disease 
(ESRD) patients undergoing hemodialysis (HD). These LSR techniques are: (1) principal component analysis 
(PCA), learned on the T wave, and (2) periodic component analysis (πCA), either learned on the whole QRST 
complex (πCB) or on the T wave (πCT). We hypothesized πCA is less sensitive to non-periodic disturbances, like 
noise and body position changes (BPC), than PCA, thus leading to more reliable T wave morphology markers. 
Methods: We compared the ability of T wave morphology markers obtained from PCA, πCB and πCT in tracking 
[K+] in an ESRD-HD dataset, including 29 patients, during and after HD (evaluated by correlation and residual 
fitting error analysis). We also studied their robustness to BPC using an annotated database, including 20 healthy 
individuals, as well as to different levels of noise using a simulation set-up (assessed by means of Mann–Whitney 
U test and relative error, respectively). 
Results: The performance of both πCB and πCT-based markers in following [K+]-variations during HD was com-
parable, and superior to that from PCA-based markers. Moreover, πCT-based markers showed superior robustness 
against BPC and noise. 
Conclusion: Both πCB and πCT outperform PCA in terms of monitoring [K+] in ESRD-HD patients, as well as of 
robustness against BPC and low SNR, with πCT showing the highest stability for continuous post-HD monitoring. 
Significance: The usage of πCA (i) increases the accuracy in monitoring dynamic [K+] variations in ESRD-HD 
patients and (ii) reduces the sensitivity to BPC and noise in deriving T wave morphology markers.   

1. Introduction 

Continuous cardiac monitoring using electrocardiogram (ECG) re-
cordings has become increasingly important for early detection of car-
diovascular risk [1–3]. Over the last years, numerous ECG-based 
markers have been proposed for early stratification of individuals at 
high-risk of sudden cardiac death [4–7], among which are end-stage 
renal disease (ESRD) patients undergoing hemodialysis (HD) therapy 
[8]. One of the main causes of sudden cardiac death in ESRD-HD 

patients is ventricular arrhythmia appearing consequence of blood 
potassium concentrations ([K+]) out of the normal range [9]. Therefore, 
a reliable, non-invasive and affordable method for continuous moni-
toring of [K+] and its associated cardiovascular risk in ESRD-HD patients 
is crucial. 

The effects of [K+] on the ECG have been investigated for many years, 
mainly involving T-wave morphological changes [10,11] which led to 
the development of several T-wave derived biomarkers able to 
noninvasively quantify [K+] [12–14]. Recently, we proposed and 
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investigated the feasibility of several T-wave morphology-based markers 
derived from T-wave time-warping analysis [15] in tracking [K+]

[16–19]. These T-wave descriptors were obtained by applying principal 
component analysis (PCA) as a lead space reduction (LSR) technique, so 
that morphology analysis is performed over the transformed lead (TL) 
maximizing the T-wave variance. However, this approach may not be 
the best strategy for emphasizing clinically relevant information, which 
is the main focus of this work. Indeed, PCA’s maximum-variance crite-
rion might be problematic when there is a low signal-to-noise ratio 
(SNR) or in the presence of body position changes (BPC) [20,21]. In 
other words, PCA may not be able to distinguish between noise and the 
useful [K+]-driven T-wave morphological variations, thus jeopardizing 
the potential clinical significance of PCA time-warping based markers. 
An alternative LSR technique to PCA is periodic component analysis 
(πCA) [22,23], which transforms the multi-lead ECG signal by maxi-
mizing the periodic components on the TL. This technique has already 
been applied to the ECG to detect T-wave alternans [24], demonstrating 
superior performance to PCA in noisy scenarios. 

Starting from studies in the literature where πCA is used to empha-
size every-second beat periodicity (alternans) [24], this work was per-
formed by applying πCA to enhance the one-beat periodicity under the 
hypothesis that it would outperform PCA in minimizing the contribution 
of noise and other non-cardiac, no-beat periodic sources before deriving 
time-warping based T-wave morphology markers to monitor [K+] vari-
ations. T-wave changes can also occur as a consequence of causes other 
than [K+] variations including (i) BPC which have been shown to in-
fluence T-wave morphology, in particular its amplitude [25,26] and (ii) 
different noise sources [27]. These sources could affect the specificity 
and robustness of T-wave morphological markers as surrogate of elec-
trolyte changes, thus jeopardizing their clinical validity. In this work, a 
detailed analysis was carried out to understand how both BPC and noise 
influence the T-wave-based biomarkers as function of the TL. 

The aim of this work is to compare the performance of πCA and PCA 
as LSR techniques prior to T-wave time-warping analyses for deriving 
robust T-wave-based biomarkers for [K+] monitoring. For that purpose, 
we analysed 12-lead ECG signals from two datasets: the first includes 
ECG recordings from 29 ESRD-HD patients, while the second includes 
ECG recordings from 20 healthy subjects undergoing controlled body 
position changes. The two datasets are fully described in Section 2. 
Finally, the novelty of this work is the proposal, definition and evalua-
tion of a new πCA strategy based on emphasizing beat-to-beat periodic 
structures in ECG. Preliminary results were presented in a conference 
[28]. 

2. Materials 

2.1. ESRD-HD dataset 

2.1.1. Study population 
The ESRD-HD study population included 29 patients from the 

Nephrology ward from Hospital Clínico Universitario Lozano Blesa 
(Zaragoza, Spain). Inclusion criteria were (i) 18-year-old or older, (ii) 
being diagnosed with ESRD and (iii) undergoing HD at least three times 
per week, with venous or cannula access. Table 1 shows the population 
characteristics. The study protocol was approved by the Aragon’s 
research ethics committee (CEICA, ref. PI18/003) and all patients and/ 
or their legal guardians signed informed consent. Further details can be 
found in [17]. 

2.1.2. Blood sample analysis 
For each patient, six blood samples were extracted and analysed 

during the HD session: the first one at the HD onset and the following 
three, at each subsequent hour (Fig. 1, h0 to h3 in red). The 5th blood 
sample (h4) was collected at the HD end (minute 215th or 245th, 
depending on the HD session duration), while the 6th blood sample was 

taken after 48 h (h5), immediately before the next HD session. The me-
dian and interquartile range (IQR) of [K+] values, measured from the 
blood samples extracted each hour are presented in Table 2. 

2.1.3. ECG measurements 
A 48 h, standard 12-lead ECG Holter recording (H12+, Mortara In-

struments, Milwaukee, WI, USA, sampling frequency of 1 kHz, ampli-
tude resolution of 3.75 μV) was acquired for each enrolled patient, 
starting 5 min before the HD onset (Fig. 1, blue line). Recordings from 
this dataset were also used to generate simulated ECG signals to evaluate 

Table 1 
Clinical characteristics of the ESRD-HD dataset.1   

(N = 29)  

Age (years) 75 (12)
Gender (male) 20 (70%)

Anti-arrhythmic drugs (yes) 9 (31%)

Implanted pace-maker (yes) 1 (3%)

Time under HD treatment (months) 15 (59)
HD session duration 

210 min 3 (10%)

240 min 26 (90%)

Kidney disease etiology 
Diabetes mellitus 17 (59%)

Interstitial nephritis 2 (7%)

Glomerulonephritis 2 (7%)

Tuberous sclerosis 1 (3%)

Polycystic kidney 1 (3%)

Cancer 1 (3%)

Unknown 5 (18%)

HD liquid composition 
Potassium (1.5 mmol/L) 21 (72%)

Potassium (3 mmol/L) 5 (17%)

Potassium (decreasing) 3 (11%)

Calcium (2.5 mg/dL) 21 (72%)

Calcium (3 mg/dL) 8 (28%)

HD techniques 
Conventional 18 (62%)

Online 8 (28%)

Acetate-Free Biofiltration with decreasing intra-HD [K+]  3 (10%)

1 Values are expressed as number (%) for categorical variables and median 
(interquartile range) for continuous variables. 

Fig. 1. Temporal diagram with the main time events of the study protocol: h0 

to h5 are the time points (in minutes) for blood sample extraction, where h4 is 
taken at the end of the HD session (minute 215th or 245th, depending on the 
HD duration). 

Table 2 
Median and (IQR) values of [K+] (mmol/L) across ESRD-HD patients at each 
blood test hour hi.   

h0  h1  h2  h3  h4  h5  

[K+]
5.00 3.85 3.64 3.39 3.30 4.80 
(1.36) (1.08) (0.84) (0.74) (0.62) (1.56)  
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the robustness against noise of the proposed markers, as described in 
section III.D. Due to battery exhaustion, 27 out of the 29 ECG recordings 
did not last the planned 48 h, being 44 h the average ECG duration in our 
database. 

2.2. BPC dataset 

The BPC study population included 20 healthy individuals (11 males 
and 9 females, 32 ± 9 years old) performing the following sequence of 
BPC: supine (S), right side (R), and left side (L): S → R → S → L. The 
complete sequence was repeated five times with a duration of 1 min per 
body position, so that muscular activity and other artifacts were allowed 
to decay before the next BPC was initiated. A standard 12-lead ECG was 
simultaneously acquired at a sampling rate of 1 kHz and amplitude 
resolution of 0.6 μV. More details can be found in [26,29]. All partici-
pants gave explicit consent to participate in the study. The experimental 
procedures involving healthy volunteers described in this data collection 
were in agreement with the principles outlined in the Helsinki Decla-
ration. Further details on this dataset can be found in the following 
publication [29]. 

3. Methods 

This section describes the general methodology used to derive the T- 
wave markers, which is applied to the ESRD-HD and BPC datasets, as 
well as to the simulated ECGs. 

3.1. ECG pre-processing and standard single-lead analysis 

First, removal of baseline wander was done with a 0.5 Hz cut-off 
high-pass filter, implemented with a forward-backwards 6th order 
Butterworth filter [30]. Then, residual noise out of the T-wave band was 
removed with a 40 Hz cut-off frequency 6th order low-pass Butterworth 
filter. An example of this implementation is depicted in Fig. 2(a) and (b). 
QRS complexes were then detected and T waves delineated using a 
wavelet-based single-lead delineation method applied to each of the 12 
leads [31]. 

3.1.1. Standard single-lead analysis 
Standard lead analysis was performed for ESRD-HD ECGs, with the T 

waves selected in leads II, V4 and V6 and delineated with [31]. Wave-
forms from leads V4 and V6 were used in a previous study [12] for 
estimating [K+] while lead II is the most popularly used in patient 
monitoring [32]. Then, time-warping based markers were computed as 

later described in Section 3.3. 

3.2. Lead space reduction 

For each ECG recording, a transformation matrix Ψ was obtained 
using πCA and PCA and applied to the 8 independent leads (I, II, V1, V2, 
V3, V4, V5 and V6) to obtain 8 TLs named periodic components (πC#) 
and PC#, respectively. Since the different datasets investigated in this 
study were recorded under different conditions, πCA and PCA learning 
period locations were specifically defined for each of them and sum-
marized in Table 3. The portion of heartbeat (onset and end points) 
considered in the learning of each LSR technique are summarized in 
Table 4. 

3.2.1. Principal component analysis 
PCA separates the orthogonal components of the 8 independent leads 

in descending order of variance [21]. The matrix ΨPCA defining the 
transformation was obtained from the eigenvectors of the 8 × 8 
inter-lead ECG auto-correlation matrix computed using the samples in 
the T waves [15,21] within the corresponding learning window (see 
Table 4). As a result, PC1 (first PC) is the TL maximizing the T-wave 
energy. 

3.2.2. Periodic component analysis, πCA 
This technique aims to emphasize the periodic structure of the 8 

independent leads, instead of the variance as in PCA. In this work, we 
applied ΨπCA to maximize the beat-to-beat periodic components on the 

Fig. 2. Example of the implemented ECG pre-processing and LSR obtained from a real ECG of an ESRD-HD patient. (a) Raw eight independent ECG leads from a 
particular ESRD-HD patient. (b) Pre-processed filtered signal from (a) as described in Section 3.1. Panels (c), (d) and (e) show, πCB, πCT and PCs, respectively, 
obtained after linear transformation of (b). 

Table 3 
Time excerpts location for: (i) learning of ΨPCA and ΨπCA, (ii) mean warped T 
wave (MWTW) analysis for biomarkers estimation and (iii) MWTW reference 
computation.  

ESRD-HD BPC ECG Simulation  

Learning period to estimate ΨPCA and ΨπCA matrices   

10-min window at the 
end of HD 

60-s window at first 
supine position 

Last 60 beats simulating the 
end of HD  

Width and analysis window locations of MWTW and marker estimation  

2-min every 30  min 60-s (each BPC) Intervals of 60 beats  

Window location for reference MWTW computation  

End of HD [17] First supine position Last 60 beats simulating the 
end of HD  
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transformed signal, in contrast to [24], where it was used to emphasize 
the every-second-beat periodicity for T-wave alternans detection. To 
avoid spurious variability due to errors in QRS detection (Section 3.1), a 
pre-alignment of QRS complexes falling within the learning period (see 
Table 3) at each lead was performed. Then, T-waves were extracted 
using a window from R wave peak (Rp) plus 60 ms to Rp + 400 ms. The 
complete QRST complex, defined as the segment from Rp − 80 ms to 
Rp + 400 ms, was also extracted (Table 4). Then πCA was computed by 
learning either at the T-waves or at the complete QRST complexes, 
resulting in πCT#s, or πCB#s, respectively. 

3.2.3. Transformation matrix ΨπCA computation 
Let K be the number of aligned T waves (or QRST complexes) in the 

learning window, having N samples each, for L available leads. Let 
xk,l(n) denote the nth selected sample of the kth beat in the lth lead of the 
filtered ECG signal. In vector notation, xk,l = [xk,l(0) ⋯ xk,l(N − 1)]T 

represents the T wave (or QRST complex) from the kth beat of the lth 
lead, which are piled together in the L × N matrix Xk: 

Xk = [ xk,1 xk,2 … xk,L ]
T
, (1)  

where the nth column of Xk contains the amplitudes of the L leads at a 
given sample n. Two data matrices X and X(m) were then constructed by 
concatenating K consecutive matrices Xk, 

X = [X1 X2 ⋯ XK ], (2)  

and the m-beat delayed version 

X(m) = [Xm+1 Xm+2 ⋯ Xm+K ] (3) 

To maximize the m = 1 − beat periodicity of the signal, the desired 
πCA transformation must minimize the following residual measure of 
periodicity [24]: 

ε(w) =
‖ wT X(1) − wT X ‖

‖ wT X ‖
. (4)  

By the Rayleigh–Ritz theorem, it can be shown that the weight vector 
w = [w1 w2 ⋯ wL]

T that minimizes Eq. (4) is given by the generalized 
eigenvector corresponding to the smallest generalized eigenvalue of the 
matrix pair 

(
A(1)

X ,RX

)
that accomplishes the following equation: 

A(1)
X ΨπCA = RXΨπCAΛ, (5)  

being Λ a diagonal matrix containing the eigenvalues at the diagonal, RX 

the spatial correlation matrix of X, estimated as 

RX =
1

KN
XXT , (6)  

and A(1)
X the spatial correlation of the non-beat-to-beat periodic residue, 

estimated as: 

A(1)
X =

1
KN

(
X(1) − X

)(
X(1) − X

)T
. (7)  

Then, the transformation matrix ΨπCA is taken as the generalized 
eigenvector matrix of matrix pair 

(
A(1)

X ,RX

)
, with the eigenvectors 

(columns) sorted according to the corresponding eigenvalues in 

ascending order of magnitude. In this way, the transformation Y =

ΨT
πCAX projects the component with smaller relative non-periodic 

residuum (i.e., the most periodic component) into the first row of Y. 
Fig. 2(c)–(e) shows an example of πCB#, πCT# and PC# obtained 

from one ESRD-HD patient ECG. In agreement with our hypothesis, the 
high-energy artifact in second 3 in panel (b) is preserved in PC1 but 
much more attenuated in the first two πCB and πCT components. Also 
note that πCB dominantly emphasizes the QRS at πCB1, while the T wave 
is dominantly emphasized at πCT1. 

3.3. T-wave morphology markers 

For all datasets, T waves were delineated using the same technique 
mentioned in Section 3.1 [31]. Then, πCT1 and PC1 were taken for 
subsequent analyses. The optimal πCB# for analysis was chosen as the 
one (πCB1 or πCB2) having the highest T wave energy content, by 
computing the total T wave energy within the same period used for 
learning (see Table 3). This is done since there is no guarantee that the 
highest T wave energy content is in πCB1 or in πCB2, a result of the 
interplay between T-wave and QRS dominance at TL energy projection, 
see Fig. 2(c). 

All T waves from the selected πCA or PCA TL were further low-pass 
filtered at 20 Hz using a 6th order Butterworth filter to remove 
remaining out-of-band frequency components. Then, the specific anal-
ysis windows (see Table 3) were selected to perform the T-wave time- 
warping. The duration of these windows was selected to be small 
enough to hold the assumptions of heart rate and [K+] values stability 
(the latter only applicable to the ESRD-HD dataset). In each window, a 
mean warped T wave (MWTW) was computed as in [15,17]. Finally, the 
warping markers were computed by comparing each MWTW with 
respect to a reference MWTW, estimated from the time excerpts loca-
tions described in Table 3. 

T-wave time-warping: T-wave time-warping markers definition is 
include here, referring to the works where they were introduced for a 
more detailed description [15,17]. 

We denote as fi
(ti) = [f i(ti(1)) ⋯ f i(ti(Ni))]

T the ith, and as fr
(tr) =

[f r(tr(1)) ⋯ f r(tr(Nr))]
T the reference one, MWTWs at each dataset, 

where tr = [tr(1) ⋯ tr(Nr)]
T and ti = [ti(1) ⋯ ti(Ni)]

T are the corre-
sponding time vector having a total of Nr and Ni samples, respectively 
(Table 3). Let γ(tr) be the warping function that relates tr and ti such that 
the composition [fi∘γ](tr) = fi

(γ(tr)) denotes the re-parameterization or 
time domain warping of fi

(ti) using γ(tr). Then the above-mentioned 
markers where computed as: 

dw(i) =
(

sd(i)
|sd(i)|

)
1
Nr

∑Nr

n=1
|γ∗i (t

r(n) ) − tr(n)| (8)  

where γ∗i (tr) is the optimum warping function [15] and sd(i) accounts for 
the sign of dw(i) as: 

sd(i) =
∑

n∈Nu
r

(γ∗i (t
r(n) ) − tr(n)) +

∑

n∕∈Nu
r

(tr(n) − γ∗i (t
r(n) )) (9)  

with Nu
r being the number of samples within the T-wave up-slope. Then, 

the non-linear component of the above mentioned dNL
w (i) was quantified 

as: 

dNL
w (i) =

1
Nr

∑Nr

n=1
|γ∗i (t

r(n)) − γ∗i,l(t
r(n))| (10)  

where γ∗i,l(t
r) is the best linear fitting to γ∗i (tr) according to the least ab-

solute residual criterion [33]. Finally, a heart rate corrected version of 
dw(i), denoted as d̂w,c(i), is obtained as: 

d̂w,c(i) = dw(i) − ĉ(RRi − RRr) (11) 

Table 4 
Segmented beat excerpt limits for LSR learning.   

πCB  πCT  PCA 

Initial point Rp − 80 ms  Rp + 60 ms  Ton  

Final point Rp + 400 ms  Rp + 400 ms  Tend  

Rp, Ton and Tend positions were obtained by using [31]. 
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where RRi and RRr are the mean RR intervals corresponding to the ith 
analysis window and the reference point (see Table 3), and ̂c is a patient 
specific parameters estimated as in [17]. Table 5 provides an overview 
of the T wave morphology markers investigated in this work. 

3.4. ECG simulation 

To validate the usage of both πCA and PCA in extracting time- 
warping parameters in ESRD-HD ECG signals and to assess their per-
formance against noise, a Monte Carlo simulation approach was adop-
ted. Each trial was generated as the sum of a clean 8-lead ECG and an 8- 
lead noise component, expressed in the matrix Vhi (8× N), where i ∈ {0,
…,4} denotes each of the 5 h time points corresponding to the blood 
sample extractions during HD with the noise being of one of these three 
types: baseline wander (bw), muscle activity (ma) and electrode motion 
artifacts (em) as described next. 

3.4.1. Clean ECG signal 
A set of clean beats were extracted from a patient in the ESRD-HD 

dataset. Then, two-min ECG windows were selected at each hour dur-
ing the HD session, in correspondence to each blood sample and in each 
lead, the beats were detected, aligned and averaged to get a clean 
representative beat per lead and hour. Each of those representative beats 
were repeated 60 times and then concatenated for the five hours getting 
a clean 300-beat 8-lead synthetic ECG. 

3.4.2. Noise generation 
The three types of noise used in this work (i.e., bw, ma and em) were 

extracted from the MIT-BIH Noise Stress Test Database (NSTDB) [34, 
35]. For each type of noise, 100 different realizations Vhi were extracted, 
to be added to the same clean ECG (see Section 3.4.1). Each realization 
starts at an arbitrary point in one of the two leads of the NSTDB 
recording also randomly selected. In real signals, noise is spatially 
correlated but due to the its generation setup Vhi wasn’t. Therefore, to 
correlate Vhi a realistic way, the first step was to estimate the spatial 
correlation of the real ECG noise from which the clean beats were 
extracted. Thus, at each ith hour, up to 150 segments of ECG, assumed to 
contain only noise (50 ms intervals following the T-wave end), were 
selected from each independent lead. These segments were concate-
nated creating the noise component of the 8-lead vectors which were 
then normalized to be zero-mean and unit standard deviation recordings 
from where the noise correlation matrix RVhi 

was estimated. 
The Cholesky decomposition [36] was applied to RVhi

, obtaining a 
whitening matrix Dhi . The inverse of Dhi was used to generate a spatially 
correlated noise V′

hi
, 

V′

hi
= D− 1

hi
Vhi . (12)  

These zero-mean, unitary-standard deviation V′

hi 
noise components were 

modulated and added to the clean ECG to create five different SNR 
levels, SNR ∈ {10,15,20,25,30} dB. 

3.4.3. Transformation matrix Ψ estimation 
A transformation matrix Ψ (using πCA or PCA) was estimated from 

the learning period in each noisy ECG, and later applied over: (i) the 

corresponding entire noisy signal, making both the learning and the lead 
transformation phases done over the noisy signal, and denoted “NtoN” 
and (ii) the simulated clean ECG, having the learning phase in noisy 
conditions while lead transformation done over the clean ECG, denoted 
“NtoC”. 

3.5. LSR performance quantification and statistical analysis 

The analysis and statistical tests carried out to evaluate LSR tech-
nique performance in each dataset are presented in this section. 

3.5.1. ESRD-HD dataset 
Two different analysis were performed on the results obtained from 

the ESRD-HD dataset. 
Marker performance assessment during the HD: Pearson’s (r) correla-

tion coefficients were computed to test the linear association between 
each T-wave morphology marker d(i) (d ∈ {dw, d̂w,c, dNL

w }) and the cor-
responding relative [K+] variations computed as: 

Δ[K+](i) = [K+]hi
− [K+]r, (13)  

being [K+]hi 
the blood potassium concentration at the ith hour of the HD, 

i ∈ {0, …, 4}, and [K+]r = [K+]h4
, the concentration at the end of the 

treatment (see Fig. 1). 
Marker dynamics evaluation in post HD: For every patient, a fitting 

error (ϵ) between each LSR-specific marker series d(i) and its linear 
regression fit between the 12th and 44th hours after HD onset was 
computed [28]. This ϵ provides information on the marker’s deviation 
from a gradual linear trend along time, hypothesized a surrogate of the 
trend followed by [K+]. A trend example with its linear fit is presented in 
Fig. 3. 

3.5.2. BPC dataset 
Biomarkers extracted from BPC dataset by warping MWTWs from 

each BPC with respect to the reference taken at first supine position (see 
Table 3) were tested to check their robustness against postural changes 
and, for that purpose, two different tests were performed. 

The warping markers were grouped by body position type and the 
non-parametric Kruskal–Wallis test was applied to check for statistically 
significant differences (p ≤ 0.05) between the supine, right and left 
positions medians. This allowed to assess whether or not the T wave 
markers were influenced by the body position. 

To check if the marker values generated by the Δ[K+] during HD 
therapy are larger or comparable, and thus indistinguishable, to those 
generated by a BPC, we compared the values from each marker from the 
ESRD-HD dataset with those from the BPC using the Mann–Whitney U- 
test. For this, markers from the BPC dataset were pooled together and, 
since the same BPC could occur in both directions (e.g., S → L, but also 
L → S), resulting in markers with the same magnitude but opposite sign, 

Table 5 
T-wave time-warping morphology markers.  

Markers Description 

dw (ms)  Time-domain morphological changes between the reference and the ith 
MWTW.  

dw,c (ms)  Heart rate corrected version of dw .  

dNL
w (ms)  Nonlinear component of the time-domain morphological changes 

between the reference and the ith MWTW.   

Fig. 3. Example of linear fitting (red line) performed over the PCA-based dw 

values (blue dotted line) between the 12th and 44th hours after HD onset for 
one patient of the ESRD-HD dataset. The same procedure was done for each 
LSR-specific dw, d̂w,c markers. 
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we extended the pool by duplicating each value and reverting its sign. 

3.5.3. ECG simulation 
For each LSR technique, noise type, marker (d), SNR (n), and simu-

lation run (j), normalized relative errors e were computed as: 

en,d,j =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑4

i=0

(
dNtoN(n, j, hi) − dNtoC(n, j, hi)

)2

∑4
i=0

(
dNtoC(n, j, hi)

)2

√
√
√
√ × 100 (14)  

where n ∈ {10,15,20,25,30} dB accounts for the SNR, j ∈ {1,…,100}
accounts for the simulation run for each noise type, i ∈ {0,…,4} for the 
ith hour where the markers are estimated, and d ∈ {dw, d̂w,c, dNL

w }. We 
considered the dNtoC marker series as the reference for evaluation of 
markers under noisy conditions. The transformation matrix was learnt in 
the same noisy conditions, at the reference as when applied to estimate 
the marker, so the error really quantifies how the noise affects the 
computation of the marker rather than ΨPCA or ΨπCA estimation. 

4. Results 

4.1. ESRD-HD dataset 

When considering the πCB strategy, πCB1 was selected over πCB2, in 
19 out of 29 patients (66%) as the TL having the highest T wave energy. 

The intra-patient Pearson’s (r) correlation coefficients, calculated 
between Δ[K+](i) and each time-warping markers d(i) computed with 
the LSR techniques (πCB, πCT and PCA) and the standard leads (II, V4 
and V6) are shown in Table 6. 

The temporal evolution for πCAs and PCA-based dw is depicted in 
Fig. 4(a) up to the 44th hour, the average ECG duration in the ESRD-HD 
dataset. Similar dynamics were found for d̂w,c markers (not displayed). A 
zoomed view of the first 10 h is also presented in an inset of Fig. 4(a), 
allowing a proper time dynamics comparison with the 10 h-long 
[K+]-recovery curve (Fig. 4(b)) available in the literature [37,38]. 

Values of the fitting error ϵ for the trends of biomarkers, expressed as 
median and IQR across patients, are given in Table 7. Finally, to further 
evaluate the relations among TL derived markers, Pearson’s correlation 
between makers derived from πCB, πCT, PC along the whole ECG was 
computed for each patient, and presented in Table 8. 

4.2. BPC dataset 

Fig. 5 shows the distributions of dw (panel a), d̂w,c (panel b) and dNL
w 

(panel c) grouped by LSR technique: πCB, πCT and PC, and arranged 
according to the body position type: supine (S), right-side (R) and left- 
side (L). The Kruskal–Wallis test was used for evaluating the statistical 
significance level of the differences across the supine, right and left 
positions for each πCB (purple), πCT (blue) and PC (green). P-values are 
indicated in each panel. The Kruskal–Wallis test showed significant 
marker differences between positions for all markers and LSR tech-
niques, with the exception of πCT-based dw and d̂w,c (p = 0.27 and p =

0.14, respectively). 

Table 6 
Intra-patient Pearson’s (r) correlation coefficients between Δ[K+], πCB, πCT, PC, 
Lead II, V4 and V6 time-warping parameters d(i). Values are expressed as me-
dian (IQR).  

r  πCB  πCT  PC II V4 V6 

dw  
0.91 0.90 0.89 0.90 0.86 0.87 
(0.32) (0.27) (0.35) (0.26) (0.39) (0.29) 

d̂w,c  
0.90 0.90 0.89 0.87 0.86 0.86 
(0.24) (0.29) (0.25) (0.33) (0.49) (0.27) 

dNL
w  

0.65 0.75 0.68 0.47 0.56 0.61 
(0.49) (0.50) (0.52) (0.58) (0.45) (0.47)  

Fig. 4. Time dynamic for dw computed by applying πCB (purple), πCT (green) 
and PCA (blue) given as median and IQR is displayed in panel (a). Only the first 
44 h were depicted being the average ECG duration in the ESRD-HD dataset. 
Similar time trends were found also for d̂w,c (not showed). A detailed view of 
the first 10 h (zoomed rectangle) allows better trend comparison with the 
[K+]-recovery curves reproduced from [38], panel (b), coming from two 
different serum-dialysate gradient cases (i.e., the difference between the pa-
tient’s [K+] level and the [K+] concentration in the dialysate liquid) scenarios: 
5.8 mmol/L (solid line) and 4.7 mmol/L (dashed line). Note that curves in panel 
(b) only cover the first 10 h (4 h of HD and 6 h after the HD end) but no values 
are depicted between the 6th and the 44th hour after the HD therapy ends. 

Table 7 
Median ϵ (IQR) (ms/ms) across patients in the ESRD-HD dataset for πCB, πCT, 
PC, II, V4 and V6 leads for the dynamics of dw(i) and d̂w,c(i), estimated from the 
12th to the 44th hour.  

ϵ  πCB  πCT  PC II V4 V6 

dw  
3.37 2.71 3.21 4.16 3.22 3.68 
(3.22) (2.01) (3.02) (3.28) (4.77) (3.25) 

d̂w,c  
3.22 2.68 2.51 3.03 2.48 3.26 
(3.13) (1.23) (2.68) (3.04) (3.05) (2.42)  

Table 8 
Median (IQR) intra-patient Pearson’s correlation coefficients in ESRD-HD 
dataset for πCB, πCT and PC based markers evaluated using the whole ECG 
recordings.  

r  PC - πCB PC - πCT πCB - πCT 

dw  0.69 (0.56) 0.75 (0.40) 0.87 (0.52) 

d̂w,c  0.63 (0.53) 0.68 (0.41) 0.78 (0.45) 

dNL
w  0.55 (0.48) 0.61 (0.58) 0.60 (0.44)  

F. Palmieri et al.                                                                                                                                                                                                                                



Biomedical Signal Processing and Control 68 (2021) 102719

7

4.3. ESRD-HD and BPC dataset results comparison 

Fig. 6 presents the distributions of Δ[K+] (in blue), dw, d̂w,c and dNL
w 

markers (in red) computed at different hours of the HD, being the 
rightmost boxplot the zero-mean distribution of each markers obtained 
at the BPC dataset. The Mann–Whitney U-test significance values be-
tween zero-mean distribution markers from BPC dataset and h2 and h3 
markers from ESRD-HD dataset are shown over-plotted. For h2, markers 
were always significantly different from the BPC cases. On the contrary, 
for h3, only dNL

w resulted significantly different from BPC marker values, 
also regardless of the LSR technique. 

4.4. ECG simulation 

Fig. 7 shows the e relative error’s median and IQR values for πCB, πCT 

and PC at different simulated SNR values of bw (blue line), em (orange 
line) and ma (yellow line) noise. 

5. Discussion 

Periodic component analysis, implemented in two different versions, 
πCB and πCT, was compared to PCA as LSR technique prior to T wave 
time-warping. To perform a thorough and comprehensive evaluation of 
the proposed time-warping markers, we investigated three different 
specific and supervised scenarios: (i) [K+] induced variations with no 
concurrent BPC (ESRD-HD dataset during HD), (ii) controlled BPC with 
no concurrent [K+] variations (BPC dataset) and (iii) simulated ECGs 
with three types of added noise at different SNR values simulating 
[K+]-driven T wave induced variations but without BPC (ECG simulation 
dataset). 

The results in each dataset can be evaluated by themselves or jointly, 
based on the concurrency/non-concurrency of the underlying mecha-
nism that generates the T wave change (i.e., only postural changes in 
BPC dataset and controlled SNR in the simulate ECG). Thus, reference 
results are obtained that can be compared to the markers’ behaviour in 
the ESRD-HD dataset, to better assess the reliability of our findings. 
Time-warping markers were derived from the different transformed and 
standard leads and compared in terms of their ability for [K+] moni-
toring, as well as robustness against BPC and noise. Note that we are 
interested in understanding the markers dynamics and behaviour under 
controlled events that can be found on regular ECG monitoring. There-
fore, conclusions are not affected by the duration of the different signals, 
as long as it ensures the correct evaluation of the mean warped T-waves 
as detailed in Section 3.3. 

5.1. ESRD-HD dataset 

The ability of πCA and PCA to emphasize [K+]-induced T-wave var-
iations, in order to later calculate the markers described in Section 3, 
was tested on the ESRD-HD dataset. In addition, the same warping 
markers were computed from the standard leads II, V4 and V6 to eval-
uate if the LSR techniques (either πCA or PCA) improve the performance 
of the T-wave morphology markers in following Δ[K+] over the standard 
leads. In previous works, we successfully applied PCA as the LSR tech-
nique before extracting T-wave morphology markers and we compared 
dw, ̂dw,c and dNL

w performance in tracking [K+] with respect to the state-of- 
the-art [17]. There, it was demonstrated that T wave time-warping 
based markers resulted in Spearman’s and Pearson’s correlation with 
Δ[K+], in median, higher than other descriptors proposed in the litera-
ture. Nevertheless, πCA has already been found to be more robust 
against noise in other ECG applications [24], supporting the use of πCA 
in this [K+]-tracking context. For each marker, two performance metrics 
were investigated: Pearson’s correlation with Δ[K+] during the HD as 
presented in [17] and marker deviation from a linear trend in the late 
post-HD period, as in [28]. 

Note from Table 2 that [K+] is higher at h0 than at h5, a result 
attributable to the fact that at h5 all patients were ending a two-day 
inter-dialysis pause, while at h0 most of the patients, 27 out of 29, 
were at the end of a three-day inter-dialysis pause. 

5.1.1. Correlation between T-wave markers and Δ[K+]

Results from Table 6 reveal that dw and d̂w,c are the descriptors 
having the highest r median values (r ≥ 0.89). Also, single-lead-based 
markers were outperformed by those obtained by applying a LSR tech-
nique, PCA or πCA, as already proved in [17]. Moreover, πCT-based 
indices are slightly better correlated with Δ[K+] (higher median r and 
lower deviation, i.e., dNL

w ). This can be a consequence of the fact that 
with πCB, the overall ventricular activity is considered to learn the 
transformations, and then the more energetic QRS complex could had 
prevailed over the T-wave, while for πCT the learning is fully driven by 
T-wave. However, results are still very similar to strongly conclude 
which LSR technique (PCA, πCT or πCB) should be preferred for Δ[K+]

tracking during the HD period. 

5.1.2. Post-HD marker trend and linear fitting error 
Throughout the first 10 h of recording, dw as well as d̂w,c, Fig. 4(a), 

showed (in median) dynamics similar to [K+]-recovery curve from the 
literature [37,38], Fig. 4(b). After that period, both markers settled on 

Fig. 5. Distributions of the warping markers dw 

(panel a), d̂w,c (panel b) and dNL
w (panel c) ob-

tained for the BPC dataset. The markers values 
were grouped by body position: supine (S), 
right (R) and left (L) and by LSR technique: πCB 

(purple-coloured boxplots), πCT (blue-coloured 
boxplots) and PC (green-coloured boxplots). 
The statistical significance level (p-value, Krus-
kal–Wallis test) of the differences among the 
supine, right and left positions for each πCB 

(purple), πCT (blue) and PC (green) is indicated 
in each panel. Outliers are not depicted.   
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an apparent linear trend, a behaviour in agreement with an expected 
gradual increase of [K+] over time in ESRD-HD patients [37,38]. This led 
us to conjecture about the deviation from a linear trend, measured by ϵ, 
as a metric to evaluate each method’s performance in the interval where 
no blood samples were collected. Therefore, for a given LSR technique 
the smaller the ϵ, the more coherent of the proposed markers mea-
surements across patients. The idea of a linear polynomial to fit marker 
values was already presented by Attia et al. [12] to generate a patient 
specific regression model. Results reported in Table 7 suggest that πCT, 
resulted in the least scattered values, i.e., in more coherent measure-
ments across patients, than the other LSR techniques in the post HD 
period, confirmed by the small median ϵ and reduced variability 

(median 2.68 ≤ ϵ ≤ 2.71 and variability 1.23 ≤ IQR ≤ 2.01). This is 
followed by πCB and PCA, both leading to similar results, and finally by 
the standard lead analysis having median 2.48 ≤ ϵ ≤ 4.16 and 
2.42 ≤ IQR ≤ 4.77, suggesting a larger dispersion in the marker trends. 

From Table 8, it can be observed that the highest correlation between 
markers was obtained when comparing πCB and πCT (last column), 
probably as a consequence of the fact that both LSR techniques use the 
same maximization criteria. However, this test just measures agreement 
between markers but not with Δ[K+], preventing us from taking further 
conclusions from it. 

Correlations with Δ[K+] and linear fitting error metrics confirmed 

Fig. 6. Distributions of Δ[K+] (blue, scale at the left side of each panel), dw, d̂w,c and dNL
w markers (red, scale at the right side of each panel) – subpanels (a.1), (b.1) 

and (c.1), respectively – computed at the different hours of the HD. In each panel, the rightmost boxplot – subpanels (a.2), (b.2) and (c.2), respectively– includes the 
zero-mean distribution of markers obtained from the BPC dataset. Mann–Whitney U-test significance level (p-value) between BPC and both h2 and h3 of HD are given 
in each panel, where ns stands for “not significant” (p-value > 0.05). Note that for the first two groups (i.e., HD onset h0, and h1) p-values were always lower than 0.05 
and, hence, not displayed. Red + indicate outliers. 
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that πCB, πCT and PCA-based markers outperform standard lead esti-
mations, and we may conclude that πCT is the most consistent LSR 
technique in terms of trend dispersion (post-HD period), and r (during 
the HD therapy) for some markers. 

5.1.3. Clinical Significance 
According to these results, markers extracted from a TL outperform 

those obtained from standard single leads. In particular, πCT appears to 
be the most suitable LSR technique to extract the T-wave morphology 
marker best correlated with Δ[K+], thus allowing a more reliable 
continuous monitoring of ESRD-HD patients during the HD as well as in 

the post-HD period. 

5.2. BPC dataset 

The relative position of the heart electric axis with respect to the 
surface electrodes changes with body position, influencing the shape of 
the ECG waveform [26,25] and, consequently, the T-wave morphology 
markers measured on the signal. We tested the proposed LSR techniques 
to figure out if any of them resulted in higher marker robustness against 
BPC. The analysis of marker distributions, Fig. 5, evidences that all 
markers are affected by BPC. For all LSR techniques, the S position 
showed the smallest median and IQR values as a result of the election of 
the warping reference in S position, see Table 3, followed by R and L. 
However, only πCT showed non-significant differences in Kruskal–Wallis 
test between dw and d̂w,c when computed and compared in different 
body positions suggesting that πCT is the method less affected by the 
patient’s posture. 

5.2.1. Clinical significance 
According to these results, the proposed T wave time-warping 

markers to quantify morphology changes are not significantly affected 
by the subject’s posture when evaluated at πCT TL. This suggests that 
πCT should be the preferred TL for daily life continuous monitoring of 
ESRD-HD patients. 

5.3. Comparative results from ESRD-HD and BPC datasets 

To elucidate up to what extend dw, d̂w,c and dNL
w can capture wave-

form alterations generated by Δ[K+] remaining no-significantly affected 
by concomitant BPC, we compared markers from HD with those from 
BPC. Patients in HD therapy remained still (usually seated) during the 
whole session, ensuring that no marker alteration occurred due to BPC. 
Conversely, in the BPC dataset, where healthy subjects were enrolled, 
the ECG waveform and thus marker values alterations were mainly 
attributed to postural changes. As explained above, the length of the 
recording does not play a relevant role provided that it ensures the 
correct evaluation of the MWTW as detailed in Section 3.3. According to 
Fig. 6, significant differences can be observed for any given LSR and 
marker when comparing distributions from h0, h1, h2 and BPC, probably 
due to the [K+] being outside the normal range (considered to be in h4, 
Table 2) thus being the main factor in the ECG waveform shaping. On 
the contrary, as HD final stage approaches, h3, the value of Δ[K+] re-
duces and the ECG waveforms returns close to shapes at reference in h4. 
At h3, all markers computed from the ESRD-HD dataset but dNL

w , showed 
median values similar to those obtained in the BPC signals. This different 
behaviour of dNL

w could be attributed to the fact that a BPC generates a 
rotation of the electrical axis, not introducing any non-linearity across 
time behaviour to be captured by dNL

w , therefore making it insensitive to 
BPC. No preferential behaviour in this respect is observed as a function 
of the chosen LSR. 

5.3.1. Clinical significance 
These results suggest that the marker reflecting T wave nonlinear 

morphological changes, dNL
w , is able to still capture relevant information 

describing small Δ[K+] that are not affected by concomitant BPC. These 
results can be of great interest when choosing a marker to robustly 
monitor ESRD-HD patients [K+] in daily life, see also [39]. 

5.4. ECG simulation 

Synthetic ECG signals with controlled noise contamination, 
emulating ESRD-HD recordings, were used to test the robustness of the 
dw, d̂w,c and dNL

w against noise for the different LSR techniques. Noise 
signals were taken from real Holter recordings and forced to be spatially 

Fig. 7. Relative error e between reference dNtoC and estimated dNtoN under the 
presence of additive bw (blue line), em (orange line) and ma (yellow line) noises 
at different SNRs. Median and IQR from the 100 runs were given for each SNR. 
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correlated as in the 12-lead recordings [40]. 
According to Fig. 7 for a given SNR in any LSR technique, em and ma 

noises resulted in the highest e, possibly due to their spectra are com-
parable to that of the ECG, and so preprocessing is less efficient. Because 
of that, em and ma filtration was not as effective as bw which showed the 
smallest e median and IQR. However, a general decreasing error trend 
with increasing SNR can be observed. Moreover, these graphs would 
confirm that πCA outperforms PCA for low SNR (10 dB and 15 dB) as 
hypothesized. In addition, it appears that πCT has median e smaller than 
πCB in the majority of the proposed biomarkers. This outcomes can be 
attributable to the fact that the QRS complex, despite having larger SNR, 
has different spatial distribution than the T wave and thus favouring πCT 

spatial transformation. Finally, no clear advantages in using πCA over 
PCA can be appreciated for high SNR (i.e., SNR > 20 dB). Nevertheless, 
these results would confirm our hypothesis that πCA performs better 
than PCA for low SNR values as it was evidenced in [24] for alternans 
detection. 

5.4.1. Clinical significance 
These results indicate that at low SNR, πCT-based markers are the 

most robust against ECG noises meaning that πCT is the most suitable 
LSR to extract relevant multilead T wave morphology information from 
noisy records (i.e., Holters) in non-invasive ambulatory [K+] monitoring 
of ESRD-HD patients. 

5.5. Limitations and future works 

Despite the encouraging results, several limitations deserve to be 
mentioned. First, a direct correlation study between biomarkers and 
Δ[K+] was only possible during the HD therapy since no [K+] samples 
were collected in the post-HD period until the 48th hour. In other words, 
an explicit relation between dw, d̂w,c and dNL

w and Δ[K+] in the post-HD 
period could not be assessed nor inferred from the linear fitting error ϵ 
since there is no certainty that [K+]-recovery trend is exactly linear. 
However, [K+] dynamics tend to appear slow, gradual and monotonic 
[37,38], making the deviation from a linear trend still a plausible in-
direct indicator to assess the marker robustness. Other regression types 
could be further investigated, together with studies including regular 
blood samples extraction during the post-HD period. 

Second, the sample size in ESRD-HD dataset is smaller than the study 
population in similar investigations [39]. Thus, even if the usage of πCT 

as LSR technique is a step toward robust T-wave morphology feature 
extraction from the ECG, it needs to be validated in larger cohorts to be 
finally translated to clinical practice. 

Third, the BPC series only contained lying-based changes, thus 
excluding daily-life postural changes (e.g., lying-seated-standing), rep-
resenting a limitation for the generalization of the results. However, we 
believe that this limitation is attenuated when considering the fact that 
the analyzed BPC can be considered as the most strenuous in terms of 
heart rotations with respect to electrodes positions [26]. 

Finally, in addition to producing T-wave changes generated by [K+]

variations, HD can trigger myocardial ischaemia events [41–44], which 
could also affect the T-wave morphology and the marker validity. This 
fact raises a question for future investigations. 

6. Conclusion 

Results from this work highlight the advantages of applying one- 
beat-period πCA, and, in particular, πCT rather than PCA as LSR tech-
nique before deriving T-wave morphology markers to monitor [K+]

variations in ESRD-HD. The main advantages concern a greater 
robustness against BPC and noise, improving the accuracy of T-wave 
time-warping based markers in monitoring Δ[K+]. The πCT-derived dw 

and d̂w,c markers seem to be the most suitable (better correlated) for [K+]

monitoring in both HD therapy and recovery periods. Nevertheless, dNL
w , 

computed by using either πCA or PCA, appears to be the least affected by 
BPC, offering a new starting point when evaluating [K+]-driven T-wave 
morphological changes. 
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πCA periodic component analysis 
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ϵ series fitting error from linear regression 
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