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Dynamical mechanism for generation of arrhythmogenic early afterdepolarizations in cardiac
myocytes: Insights from in silico electrophysiological models
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We analyze the dynamical mechanisms underlying the formation of arrhythmogenic early afterdepolarizations
(EADs) in two mathematical models of cardiac cellular electrophysiology: the Sato et al. biophysically detailed
model of a rabbit ventricular myocyte of dimension 27 and a reduced version of the Luo-Rudy mammalian
myocyte model of dimension 3. Based on a comparison of the two models, with detailed bifurcation analysis
using spike-counting techniques and continuation methods in the simple model and numerical explorations
in the complex model, we locate the point where the first EAD originates in an unstable branch of periodic
orbits. These results serve as a basis to propose a conjectured scheme involving a hysteresis mechanism with the
creation of alternans and EADs in the unstable branch. This theoretical scheme fits well with electrophysiological
experimental data on EAD generation and hysteresis phenomena. Our findings open the door to the develop-
ment of novel methods for pro-arrhythmia risk prediction related to EAD generation without actual induction
of EADs.
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I. INTRODUCTION

The transmembrane potential (V) of biological cells is the
difference in the electrical potential between the inside and
the outside of the cell due to the ion concentration gradients
between the two sides of the membrane. Electrically excitable
cells (muscle cells, neurons, and some secretory cells) have
the ability to respond to an applied stimulus by generating
an electrical signal that reflects changes in V along time. In
the case of cardiac muscle cells, upon being stimulated, they
are activated producing an electrical impulse called the action
potential (AP). This AP shows different phases. First, there is
a rapid increase in the transmembrane voltage (phase 0: depo-
larization), following which there is a short transient decrease
of V (phase 1: transient repolarization). Next, V remains
approximately constant (phase 2: plateau phase). Finally, V
decreases to the resting membrane potential (phase 3: repolar-
ization) until the cell receives another stimulus. Under some
circumstances, secondary voltage depolarizations can appear
during phase 2 of the AP, so-called early afterdepolarizations
(EADs). In diseases like heart failure and genetic syndromes,
EADs have been documented to be an important cause for
lethal ventricular arrhythmias [1–3]. Despite large research
efforts, further knowledge is still required to gain improved
understanding of all possible mechanisms underlying EAD
generation.

During the last decades, computational models of car-
diac electrical activity have greatly contributed to shed light
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on cardiac phenomena, including EADs. Highly detailed
complex models with a large number of state variables al-
low more faithful reproduction of experimental observations
and facilitate biophysical interpretation. However, in some
cases, in-depth analysis with these complex models can be
difficult to perform or it can be prohibitive in terms of
computational cost. Simple models, however, allow such
analysis and become basic elements to investigate certain
phenomena.

Many studies in the literature investigating EADs work
with either low-dimensional or high-dimensional models,
while only a few of them combine the use of both types of
models. In Ref. [4], for example, predictions are obtained
using a low-dimensional model, which are subsequently val-
idated using a more complex model. In contrast, here we
first obtain our results using a highly detailed model and we
explain these results theoretically using a low-dimensional
one. Due to the high number of variables and parameters of
the 27D Sato model and the impossibility of conducting a the-
oretical study, we use adapted sweeping numerical techniques
to study the dynamical mechanisms of EAD generation and
time course, but, if we want to give a theoretical explanation,
we need a simpler model, which simulates the behavior (cor-
responding the EAD appearance) of the more complex model.
Thus, the main goals of this work are to provide a theoretical
scheme of a possible transition between APs without EADs to
APs with EADs and to describe the basic elements involved
in that transition.

This paper is organized as follows. In Sec. II we describe
briefly the mathematical models used in this study. The re-
sults for both models are presented in Sec. III; discussion
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FIG. 1. Experimentally recorded and computationally simulated APs, some of which present EADs. (a) APs from a paced rabbit ventricular
myocyte exposed to 1 mM H2O2 (taken from Fig. 1(A) of Ref. [3]). Red arrows indicate the presence of an EAD. (b) APs from a
rabbit ventricular myocyte under partial block of the rapid delayed rectifier K current (IKr) with E-4031 (100–200 nmol/L) to prolong AP
repolarization (taken from Fig. 1(b) of Ref. [5]). Asterisks denote APs with distinct behavior: in the first sequence, the pointed AP, differently
from the rest of APs, does not show an EAD; in the second sequence, the pointed AP is the only one showing an EAD. (c) APs obtained from
numerical simulations using the Sato 27D cardiomyocyte model. (d) APs obtained from numerical simulations using the reduced Luo-Rudy
3D cardiomyocyte model. Shadow regions in panels (c) and (d) show one period of the orbit.

are reported in Sec. IV, and finally we summarize our main
conclusions in Sec. V.

II. MATHEMATICAL MODELS

We briefly describe the two mathematical models used in
this work. As a high-dimensional model, we use the 27D
Sato model of the rabbit ventricular myocyte built from the
Shannon et al. model [6]. This model was first modified by
Mahajan et al. [7] and later further updated by Sato et al. [3]
to properly reproduce EADs recorded experimentally, as illus-
trated in Figure 1. The rate of change of the transmembrane
potential (V ) is given by

Cm
d V

d t
= −(Iion + Istim), (1)

where the total ionic current Iion is the sum of nine ionic
currents:

Iion = ICa + INa + IKs + IKr + IK1 + Itos + Itof + INaK + INaCa.

Being ICa the L-type Ca2+ current and INa the fast sodium
current. The potassium current has five components: IKs and

IKr correspond to the slow and rapid component (respectively)
of the delayed rectifier K+ current, IK1 to the inward rectifier
K+ current and Itos and Itof to the slow and fast component
(respectively) of the rapid outward K+ current. The last two
correspond to pump currents. On the one hand the INaK trans-
ports two K+ ions into the cell in exchange for three Na+

ions out of the cell and, on the other hand, INaCa transports
three Na+ ions in and one Ca2+ ion out of the cell. An
additional stimulus current Istim is included, which in this
study is delivered at a constant stimulus period defined by the
pacing cycle length (PCL). The complete description of the
ionic currents involves 27 ordinary differential equations for
the 27 state variables, in which 177 model parameters are
used (see Refs. [3,7,8] for full details and equations). The
27D Sato model is a highly detailed model with non-smooth
functions, nonlinearities, high dimension and a large number
of parameters. The system of 27 ordinary differential equa-
tions was solved in C++ using an embedded Runge-Kutta
formulas [Dormand-Prince RK5(4)] with variable stepsize.
The error tolerance was set to 10−8 with a minimum time step
of 0.002 ms. The complete set of initial conditions for most of
the simulations are taken from Ref. [9].
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There may be different dynamic mechanisms contribut-
ing to the appearance of EADs and multiple ionic currents
and concentrations may be involved in EADs generation.
Although the aim of this study is not to determine which
currents are key in EAD formation, in our previous work,
the ICa current seems to play an important role, as confirmed
by the fact that inhibiting this current, even to only modest
extents, precluded EAD formation. This agrees with other
works where the relevance of the ICa current is shown [10–12]
even if not being the only factor. Here we focus on potential
dynamic mechanisms that can induce EADs.

In our analysis of this model, we use PCL and gKs (peak IKs

conductance) as bifurcation parameters. PCL has been shown
to play an important role in the dynamics of this model [9,13]
and there are many studies showing the importance of the
potassium current in the genesis of early afterdepolarizations
in cardiac cells [14]. See Ref. [9] for a more detailed study of
the dynamics of the Sato model.

As a low-dimensional model, we use a reduced 3D ver-
sion of the Luo-Rudy mammalian cardiac cell model (LR91)
[13,15]. The model includes two ionic currents and it is de-
fined by three ODEs:

Cm
d V

d t
= −(ICa + IK + Istim),

d f

d t
= f∞(V ) − f

τ f
,

d x

d t
= x∞(V ) − x

τx
. (2)

Also in this case, Istim is an external stimulus current of
period PCL. Here, we define Istim to have an amplitude of
−40 μA/cm2 and duration of 1 ms for the two analyzed
models. The ionic currents ICa and IK are defined by ICa =
GCad∞(V ) f (V − ECa) and IK = GKx(V − EK). The steady-
state functions f∞(V ), x∞(V ), and d∞(V ) are given by
standard Boltzmann functions. For this model, we investigate
the impact on cellular electrical activity of changes in two
parameters: PCL and GK (the conductance of the IK current).

From a mathematical point of view, this is a fast-slow dy-
namical system with multitimescale phenomena [16]. The first
fast-slow decomposition of this system, considering 1-slow–
2-fast variables [17], showed the presence of a subcritical
Poincaré-Andronov-Hopf bifurcation in the fast subsystem.
This approach has been successfully used in a variety of
cardiac studies to investigate the causes for the presence or ab-
sence of EADs. More recently, some studies have shown that
this fast-slow decomposition may not provide a satisfactory
explanation for certain EAD generation analysis. In Ref. [18]
another paradigm was introduced using a 1-fast–2-slow de-
composition that has proved to be more suitable. The reduced
3D version of the LR model with a 1-fast–2-slow decompo-
sition [18–20] provides further insight into the facilitation or
preclusion of EADs as a function of the pacing frequency or
pharmacological interventions.

Figures 1(a) and 1(b) present experimental APs recorded
in rabbit ventricular myocytes at different values of PCL
under different interventions [3,5]. As can be observed from
the figure, some of these experimental APs present EADs.
This behavior is reproduced by the two models analyzed in

FIG. 2. Numerical analysis of the Sato 27D model. (a) Bifur-
cation diagram obtained by varying PCL. The blue points on the
top part of the bifurcation diagram correspond to the AP peaks
(≈41 mV) and those on the bottom part correspond to the EAD
peaks (≈8 mV). Symbolic sequences 10, 1011, and 11 denote peri-
odic orbits with the following characteristics: without EAD; one AP
without EAD and one AP with EAD; and all APs with EAD, respec-
tively. (b) Zoomed in version of the top part in panel (a) to show the
structure of the bifurcation diagram corresponding to the AP peaks.
The points in blue show the diagram obtained when varying PCL
from left to right (i.e., starting each numerical integration from the
final conditions of the previous PCL value) and the points in red
show the diagram for varying PCL from right to left. Intervals with
dots of different colors that do not overlap indicate bistability. (c, d)
Biparametric bifurcation diagrams considering PCL and gKs as free
parameters. Color code corresponds to the ratio between the number
of voltage peaks and the number of APs. The horizontal white line is
associated with the default value of gKs = 0.153 mS/μF in the Sato
27D model, which was used to obtain the bifurcation diagrams of
panels (a) and (b).

this study when varying PCL. This is shown in Fig. 1(c) for
the Sato 27D cardiomyocyte model and in Fig. 1(d) for the
reduced 3D version of the Luo-Rudy cardiomyocyte model.

III. RESULTS

From the simulated APs presented in Fig. 1 using the two
mathematical models considered in this study, it can be seen
that, when varying PCL, there are transitions from APs with-
out EADs to some APs having EADs to all APs presenting
EADs. The first question in this study is whether the evolu-
tion of the two models is comparable in the sense that they
undergo similar transitions. To answer this question, we focus
on the results shown in Figs. 2 and 3. Figure 2 presents the
simulation results obtained using the Sato 27D model, while
Fig. 3 presents those corresponding to the reduced Luo-Rudy
3D model. The top panels of these two figures [Figs. 2(a),
2(b), and 3(a)] show the bifurcation diagram obtained by
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FIG. 3. Numerical analysis of the reduced Luo-Rudy 3D model.
(a) Bifurcation diagram obtained by varying PCL. The blue points
show the diagram obtained when varying PCL from left to right
and the points in red show the diagram for varying PCL from right
to left. (b, c) Biparametric bifurcation diagrams considering PCL
and GK as free parameters. Color code corresponds to the ratio
between the number of voltage peaks and the number of APs. The
horizontal white line is associated with the default value of GK =
0.046 mS/cm2 in the reduced Luo-Rudy 3D model, which was used
to obtain the bifurcation diagram of panel (a).

setting all the parameters of the models to their default values
and only varying the value of PCL. In both cases, PCL is
varied along an interval whose left end has a single periodic
attractor with a single AP without EAD, sequence 10, while
its right end has a single periodic attractor with an AP that
always presents an EAD, sequence 11. Here, we use the Farey
sequence notation Ls, taken from the mixed-mode oscillations
(MMO) literature [16], to characterize the periodic orbits with
large (L) and short (s) oscillations. For intermediate values
of PCL, different subintervals can be observed where the
periodic attractor has several APs, one of them without EAD
and the rest of them with EAD. The number of APs with
EAD in each of these subintervals grows with the PCL value.
Separating these subintervals, transition regions characterized
by the existence of bistability can be appreciated. Figure 2(b)
is a magnification of the upper peaks of the APs in Fig. 2(a)
to facilitate visualization of the internal structure. In these
bifurcation diagrams, two colors are used to represent the
continuation in the two possible directions, increasing PCL
(blue) and decreasing PCL (red). Thus, the existence of points
with different colors indicates the coexistence of attractors
and, therefore, bistability.

To study the evolution of the model dynamics more glob-
ally, a two-parameter bifurcation diagram is represented in the
two bottom panels of Figs. 2 and 3. In addition to varying
PCL, in this case the parameter gKs for the Sato 27D model
and the parameter GK for the Luo-Rudy 3D model are allowed
to vary as well. The white line segment in each of these
panels indicates the default value of gKs or GK used for the
bifurcation diagrams of the upper panels. Different colors are
used to represent different values of the ratio between the

FIG. 4. Cardiac Devil’s staircase for (a) Sato 27D model and
(b) reduced Luo-Rudy 3D model. The figures show the ratio between
the number of voltage peaks and the number of APs for the selected
lines in Figs. 2 and 3. Although the sizes of the steps are not the same
in the two models, the coincidence in the structure is evident.

number of voltage peaks (accounting for both AP peaks and
EAD peaks) and the number of APs. Thus, this ratio takes a
value of 1 for the sequence 10 and a value of 2 for the sequence
11. For both models, the two-parameter bifurcation diagrams,
obtained by additionally allowing the second parameter to
vary around its default value, present similar behavior to the
previously described one-parameter bifurcation diagrams. In
both cases, increasing the potassium conductance delays the
transition. In any case, the same color bands representative of
ratios with the same values are detectable in the two models.
Furthermore, with the biparametric bifurcation diagrams, we
see the same structure by fixing the PCL and varying the value
of the potassium conductance. From these results, it can be
concluded that the evolution of the model dynamics along the
analyzed PCL intervals is overall the same for the Sato and
the reduced Luo-Rudy models, although the scales for voltage
and PCL are different.

The parallelism in the evolution of the two mathematical
models is also illustrated in Fig. 4, where the ratio between
the number of voltage peaks and the number of APs for the
selected lines in Figs. 2 and 3 is shown. This ratio shows
an ascending staircase-like behavior when varying PCL. The
values taken by the ratio range from 1 (sequence 10) to 2
(sequence 11) with intermediate steps presenting lengths of
variable size corresponding to the transition regions shown in
the bifurcation diagrams. This ratio staircase is called cardiac
Devil’s staircase [9,21]. From Fig. 4, and the previous ones,
we suggest that, in the investigated parametric plane, the tran-
sition characteristics for the Sato 27D and reduced Luo-Rudy
3D models are similar.

IV. DISCUSSION

In the following, the relevant question on how to connect
the two coexisting stable orbits (bistability) shown in the tran-
sition regions of Figs. 2 and 3 is addressed. In particular, we
focus on the first of the transition regions from APs without
EADs (sequence 10) to one every two APs having EADs
(sequence 1011). Results are presented in Figs. 5 and 6. From
Fig. 5, showing results for the Sato 27D model, it is possible
to observe that the orbit without EADs experiences a process
of generation of alternans via a torus bifurcation. Although
options alternative to the torus bifurcation would be possible,
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FIG. 5. Central panel shows a magnification of the bifurcation diagram of Fig 2(b) in the EAD transition region between periodic orbits 10

and 1011 for the Sato 27D model. Blue points and red points correspond to different attractors. Green dots and arrows relate PCL values to the
corresponding voltage time series shown in the surrounding panels. For PCL values in which there is bistability, the voltage time series of the
two attractors (each in the corresponding color) are shown.

in this case the bifurcation diagram and the voltage time series
of the blue orbit for PCL = 1168 points out to that bifurcation.
From the same figure, the stable family of orbits with EADs
(red points) can be seen to end in a noisy area when PCL is de-
creased. A set of voltage time series is shown in the figure for
the orbits of both families illustrating standard orbits, alter-
nans, chaotic orbits and torus behavior. From the bifurcation
diagram in the central panel of Fig. 5, one can conjecture a
hysteresis phenomenon giving rise to the observed bistability
that is detected in biological experiments too [5,22,23]. The
two branches in the panel would be connected, but this is not
possible to be evaluated using the Sato 27D model. Thus, we
conduct a more detailed analysis of the same transition from
non-EADs to EADs using the reduced Luo-Rudy 3D model,
as shown in Fig. 6. In this case, the complete families of
periodic orbits (stable and unstable ones) are obtained using
the AUTO continuation software [24,25]. The use of simple
iterated map models [26] has recently allowed the analysis
of bifurcations involved in phenomena caused by feedback
between a number of magnitudes. In our case, continuation
techniques applied to the reduced Luo-Rudy 3D model allow
visualizing the complete evolution of the different periodic
orbits and facilitate linking them to the behavior observed
with more complex models and/or experiments.

The role of different dynamical mechanisms have been
studied in previous works. For instance, the generation of al-
ternans and EADs via period-doubling and torus bifurcations
have been studied in Refs. [11,12]. The link with period-
doubling bifurcations and bistability is shown in Ref. [27].
The existence of hysteresis phenomenon has been illustrated
in numerical models and in experiments [22,23]. References
[4,10] relate the Hopf and homoclininc bifurcations of the

1-slow–2-fast decomposition with some experiments show-
ing changes before and after EAD generation. In particular,
in Ref. [10] the influence of different currents in the EAD
generation is reported. In Ref. [28], the role of alternans
in the generation of lethal cardiac arrhythmias and sudden
cardiac death is described. The change from 1-slow–2-fast to
1-fast–2-slow decomposition was used in Ref. [18] and later in
Refs. [19,20] to analyze the creation of new EADs via singular
perturbation theory.

In this study, we combine different dynamical mechanisms
to provide a complete scheme that explains the steps of a
possible route to EAD generation. This scheme locates the
exact position of the EAD generation point that is placed in
an unstable branch of periodic orbits of a hysteresis loop.
Note that, up to our knowledge, the exact location of the EAD
generation point has not been reported in literature where
mechanisms underlying EAD generation have been described
but not the EAD location point. To obtain this position, several
numerical techniques, as continuation and spike-adding meth-
ods, are required to be used in conjunction. Here, we explain
the sudden change from normal beats to EADs. We describe it
as an “invisible” phenomenon because the change is in the un-
stable coexisting periodic orbits and this cannot be observed in
experiments where only the stable branches can be seen. This
invisible change is related to the recently reported concept
of tipping points [29], where a sudden change between two
clearly different behaviors is observed, but a smooth change
in the unstable invariants occurs.

The top plot of Fig. 6 shows the bifurcation diagram plot-
ting the voltage peaks of the different periodic orbits obtained
using the continuation software. The central panel shows
the same bifurcation diagram but plotting L2 norm of these
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FIG. 6. Top panel shows a magnification of the bifurcation dia-
gram of Fig 3(a) in the EAD transition region between periodic orbits
10 and 1011 for the reduced Luo-Rudy 3D model. This bifurcation
diagram has been completed with the unstable branches calculated
by the AUTO continuation software. The main bifurcations [period-
doubling (PD) and fold (of limit cycles)] that influence the stability
of the periodic orbits are marked with red and yellow dots. The blue
dot corresponding to the EAD generation point is located where a
low voltage peak is created in the unstable branch. The central panel
shows the above bifurcation diagram, but for the L2 norm of the
periodic orbits rather than the voltage peaks of those orbits. The
two stable branches can be seen to be connected by an unstable
branch that evolves continuously from one to the other. The bista-
bility and coexistence regions have been marked in green and grey,
respectively. The voltage time series of the points marked with small
colored squares are also shown and each of the curves in the time
traces correspond to the different branches, according to the type of
line.

periodic orbits. Branches with unstable periodic orbits are
dashed color lines, while the solid color curves represent the
branches with stable periodic orbits. Besides, some relevant
bifurcation points are located: the period-doubling (red PD1)
point leading to the generation of alternans in this model; the
(red PD2) point leading to destabilization of the red family
and creation of some chaotic behaviors; and the fold (yellow)
point where the periodic orbit family generates the hysteresis
phenomenon with different coexistence orbits, with or without
bistability. Note that this hysteresis phenomenon also gives

rise to so-called tipping points [29] in cardiac dynamics that
mark the point of sudden onset of EADs in experiments.
Furthermore, from the top plot of the figure it is possible
to identify where the EAD is created (denoted by the light
blue dot point and with the dashed blue vertical line) in the
periodic family, which corresponds to the unstable part of the
hysteresis. Since the voltage peaks are shown in the panel,
the appearance of a new peak of a lower value indicates the
creation of the EAD. This can be seen to be located at the ori-
gin of the lower voltage branch. To make it easier to identify
the unstable part where an EAD is found, the corresponding
dashed curves have a thick transparent red line below them.
This hysteresis phenomenon is more evident in the central
plot using the L2 norm. If we start on the blue stable branch
10 with PCL = 350 and we increase PCL until reaching PD1,
that branch becomes unstable. We now leave the blue branch
to continue along the purple branch (decreasing PCL value).
Initially, this branch represents periodic orbits with alternans
1010, i.e., no EAD, until the branch meets the EAD generation
value (dashed blue vertical line), where the orbit becomes
1110 and presents one AP with EAD and another AP without
EAD. From that moment on, the curve will have a transparent
red background to mark the existence of EAD. Continuing
along that branch, a fold is reached where another branch
merges with this one. The new unstable (dashed red) branch
gets to PD2 where it becomes stable. The voltage time series
of the existing attractors for different PCL values are also
shown in Fig. 6 to help visualize their evolution throughout
the transition. The lower plots show the time series of three
periodic orbits on vertical sections inside the hysteresis region
of coexistence, where the EAD is created. The picture on the
right side of the EAD generation point is before the generation
of EAD for the purple unstable branch, and so only one unsta-
ble periodic orbit has EAD (red branch). On the left side of the
EAD generation point the unstable periodic orbit correspond-
ing to the purple branch has an extra spike and, consequently,
an EAD has appeared. Note that, as the plateau phase (phase
2) of the AP has increased enough, the unstable periodic orbits
in this area have an extra AP and the EAD appears near it.
One theoretical explanation of this increment of the plateau
phase of the AP is related to the mechanism of creation of
EADs via “canards” [16] as shown in Refs. [18–20]. This
mechanism is theoretically based on the assumption that the
reduced model is a 2-slow–1-fast slow-fast model, rather than
a 1-slow–2-fast slow-fast model as considered in Ref. [17].
In that case, the existence of a Hopf bifurcation in the fast
subsystem explained theoretically the appearance of EADs,
but, as shown in Ref. [18], the 1-slow–2-fast model is not
the most suitable model in some cases, and the 2-slow–1-fast
one provides a more suitable framework. In any case, in both
situations, the location of the EAD generation point remained
to be elucidated. That hitherto unknown location is the one
we have detected using continuation in the 3D model. This is
shown in Fig. 6, where we can see how that point is in the
unstable branch of the hysteresis coexistence region. Detect-
ing the origin of the EADs is not otherwise possible, since
it is located in the unstable branch. Therefore, such origin is
“invisible” experimentally. However, the hysteresis, created in
the fold, in which both attractors (with and without EADs)
coexist, is observable and its effects are visible, both in the
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FIG. 7. Conjectured theoretical bifurcation scheme of a possible
mechanism for the development of the first EADs. This scheme
shows the minimum required elements, in view of the numerical
results, for the transition between the periodic orbits of sequence 10

and of sequence 1011.

reduced and extended models (see Figs. 2 and 3) and in the
experiments. Furthermore, the appearance of alternans in the
10 branch is an indicator in this case of the region where we
can easily end up in the 11 branch. In fact, the generation of
alternans leas to one AP evolving toward the appearance of an
EAD in it, and the other AP not having it.

Summarizing, in both the Sato 27D and the reduced Luo-
Rudy 3D models, it can be observed that the periodic orbit
without EAD experiences a bifurcation (torus bifurcation or
period-doubling bifurcation) that generates the appearance of
alternans. Subsequently, the family with alternans evolves,
creating a hysteresis and some of them begin to experience
EADs in the unstable branch. This alternation between an
AP without EAD and an AP with EAD leads to the periodic
sequence 1011 and the change from non-EADs to EADs, with
a connection via an unstable branch of periodic orbits.

V. CONCLUSIONS

Taking into account all the presented results, we conjecture
a theoretical scheme that explains a possible mechanism for
the generation of the first EADs in APs. This mechanism
would apply to both experimentally recorded and computa-
tionally simulated APs, as the ones shown in Fig. 1. The
proposed theoretical scheme with the basic ingredients (al-
though there may be more) is shown in Fig. 7: alternans
generation [30], fold bifurcation (giving rise to a hysteresis
phenomenon), EAD generation in the unstable branch, fold

bifurcation and period-doubling ending the hysteresis and
generating some chaotic behavior (more options are possi-
ble, such as a subcritical period-doubling). The generation of
alternans can be caused by several bifurcations like period-
doubling, border collision [31] or torus bifurcation, but, in any
case, it seems that prior generation of alternans is required for
the subsequent appearance of the first EAD, very recently re-
lated to the canard phenomenon [18–20]. Note that our results
using the link of complex and simple models and the use of
continuation and sweeping techniques allow us to locate the
EAD generation point in the unstable branch of the hysteresis
loop connecting both stable branches (one without and one
with EAD).

Our findings open the door to pro-arrhythmia risk predic-
tion related to the appearance of EADs before these EADs
actually appear. Also, our outcomes may prove helpful for
the investigation of the mechanisms lying behind the ob-
served EAD patterns and the design of related interventions.
Although such mechanisms may involve highly varied ionic
sources and, thus, comprehensive research should be con-
ducted to elucidate them, the ICa current appears to be an
important contributor in the investigated models. Indeed, in-
hibition of this current completely abolished EADs in both
the Sato 27D and the reduced Luo-Rudy 3D models, while
manipulations of other currents like the sodium-calcium ex-
changer in the detailed Sato model had less relevant effects.
Strategies directed to modulate specific properties of the ICa

current so as to prevent EAD generation while preserving
excitation-contraction coupling could be tested on the basis
of the present research.
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