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Abstract
Respiratory signals monitored in the neonatal intensive care units are usually
ignored due to the high prevalence of noise and false alarms (FA). Apneic
events are generally therefore indicated by a pulse oximeter alarm reacting to the
subsequent desaturation. However, the high FA rate in the photoplethysmogram
may desensitize staff, reducing the reaction speed. The main reason for the high
FA rates of critical care monitors is the unimodal analysis behaviour. In this
work, we propose a multimodal analysis framework to reduce the FA rate
in neonatal apnoea monitoring. Information about oxygen saturation, heart
rate, respiratory rate and signal quality was extracted from electrocardiogram,
impedance pneumogram and photoplethysmographic signals for a total of 20
features in the 5 min interval before a desaturation event. 1616 desaturation
events from 27 neonatal admissions were annotated by two independent
reviewers as true (physiologically relevant) or false (noise-related). Patients
were divided into two independent groups for training and validation, and a
support vector machine was trained to classify the events as true or false. The
best classification performance was achieved on a combination of 13 features
with sensitivity, specificity and accuracy of 100% in the training set, and a
sensitivity of 86%, a specificity of 91% and an accuracy of 90% in the validation
set.
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1. Introduction

In premature infants, immaturity of respiratory control almost invariably results in respiratory
pauses (apnoeas) of variable duration that may require pharmacological intervention or
ventilatory support (Martin and Abu-Shaweesh 2005, Halbower 2008). A close temporal
relationship between apnoea, bradycardia (slow heart rate) and desaturation (low oxygen
saturation in arterial blood) has been described in these infants, although the succession of
these three events is variable and complex (Poets 2010). This condition is known as apnoea of
prematurity.

Conventional monitoring in the neonatal intensive care unit (NICU) analyses respiratory
and electrocardiographic signals separately to detect cessations of breathing effort and large
changes in the heart rate (HR) respectively. Additionally, pulse oximetry monitoring of the
peripheral oxygen saturation (SpO2) from the photoplethysmographic signal (PPG) provides
an alarm trigger when the SpO2 falls below a pre-defined value.

An important limitation of pulse oximetry monitors is the high rate of false alarms (FA),
produced by bad connections, poor sensor contact and unimodal data analysis (Chambrin
2001). FA rates associated with pulse oximeters higher than 70% have been reported in the
literature (Petterson et al 2007). Voluntary and involuntary movements in the neonate such
as kicking, stretching, crying and imposed motion (Tobin et al 2002) cause motion artefacts
which lower the signal-to-noise ratio of the SpO2 series and produce inaccurate readings. In
this work we present a method to distinguish whether low SpO2 readings in NICU monitors
are caused by motion artefacts, termed FA from here on, or have a true physiological origin,
termed apnoea-related events from here on. (Of course, low O2 saturation can be due to poor
perfusion, but the rate of change of O2 levels is extremely slow.)

In the literature on signal processing for apnoea analysis, most studies focus on the
diagnosis of the obstructive sleep apnoea syndrome, either in adults (Marcos et al 2009,
Alvarez et al 2010, Khandoker et al 2009) or in children (Gil et al 2009, 2010). Fewer studies
focus on the detection or classification of apneic episodes. For example, several recent works
(Acharya et al 2011, Bsoul et al 2011, Khandoker and Palaniswami 2011) applied machine
learning techniques to classify apnoea/hypoapnoea and normal epochs, based solely on the
electrocardiogram (ECG). Comparatively, the detection of FA in apnoea monitors has received
scarce attention (Belal et al 2011).

The method proposed in this work is applicable to NICU monitors that include respiratory,
electrocardiographic and photoplethysmographic signals. A support vector machine (SVM)
classifies each desaturation event as FA or apnoea-related based on information about the
instantaneous values and changes of the HR, respiration rate (RR), oxygen saturation (SpO2),
and also based on the information on the quality of the monitored signals, which can be
particularly useful for dealing with noisy or missing data (Clifford et al 2009). Earlier works
which employed signal quality measures (Zong et al 2004, Aboukhalil et al 2008) addressed
the FA issue by using unimodal signal quality metrics to decide if the information from a given
signal could be trusted. In this work we describe a framework which uses both features and
signal quality metrics simultaneously from multiple channels, thereby taking advantage of the
covariant structure of the noise and data to produce a more accurate FA reduction system.

2. Materials and methods

2.1. Data set

Data for this study were extracted from the Multi-Parameter Intelligent Monitoring for
Intensive Care II (MIMIC II) database (Saeed et al 2011), which is available from the PhysioNet
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archives (Goldberger et al 2000). The MIMIC II database contains bedside monitor trends and
physiological waveforms from over 3500 NICU patients hospitalized at Beth Israel Deaconess
Medical Center, Boston, USA between 2004 and 2007. In this study, we analysed the data
recorded during 27 randomly selected stays in the NICU. Data consisted of four physiological
waveforms sampled at 125 Hz—two leads of ECG, impedance pneumogram (IP) and pulse
photoplethysmogram (PPG)—as well as two 1 Hz derived parameter time series provided
by bedside monitors—the HR derived from the ECG and the peripheral oxygen saturation
(SpO2) derived from the PPG. These specific waveforms and time series are usually but not
always available in individual MIMIC II recordings. Figure 1 presents excerpts from two
patients’ data, one of them showing a classic apneic episode, and the other one showing a FA.
The MIMIC II database does not provide demographic or clinical information for neonatal
patients.

2.2. Methods

First, a set of reference annotations was created as a gold standard to evaluate the performance
of the FA detection algorithm. Then, various variables were computed from the data to
characterize the trends and changes of physiological parameters and the quality of the signals.
Each variable was independently analysed with a receiver operating characteristic (ROC) curve
to find the optimum evaluation point in a 300 s interval preceding each desaturation event.
Finally, a multivariate classification strategy based on SVMs was evaluated. Each of these
steps is explained in the following sections.

2.2.1. Annotation of desaturation events. There is no consensus among neonatologists as to
what constitutes a safe SpO2 level. Acceptable SpO2 levels may vary with the developmental
stage, and target values ranging from 85% to 95% can be found in the literature (Finer and
Leone 2009). The intermediate value within this range, 90%, was considered as the limit
to trigger desaturation alarms in this work. Desaturation events were thus defined as those
intervals where SpO2 < 90%.

Two investigators independently annotated 1880 desaturation events from 27 NICU stays.
For each event, the investigators decided among three options: (1) the desaturation was
associated with an apnoea (positive event), (2) the desaturation was caused by noise or artefacts
(negative event, that is, a FA), or (3) it could not be determined whether the desaturation is
associated with an apnoea or not (unsure). Option (1) was chosen if the following conditions
were fulfilled: within the interval of 300 s before the desaturation event (a) the HR decreased
at least 10 beats per minute (bpm), (b) the minimum HR was < 130 bpm, and (c) on visual
inspection the quality of ECG and PPG waveforms appeared to be high, so that one would
expect the waveforms to provide reliable parameter estimates, and no obvious artefacts were
present. Option (2) was chosen if high levels of noise and/or artefacts were clearly visible in
the signals. Option (3) was chosen otherwise.

The two annotators agreed for 1616 (86%) events, which were then used as the reference
set of annotations for classification: 316 positive (apnoea-related) events and 1300 negative
(noise-related) events. This reference set was split into training and validation subsets for SVM
analysis. The training subset comprised 14 NICU stays, with a total of 158 positive and 638
negative events (80% of events labelled as FA), and the validation subset comprised the other
13 stays, with 158 positive and 662 negative events (81% of events labelled as FA); in this
way, the validation and training data were made independent.



1506 V Monasterio et al

200 220 240 260 280 300 320
80

100

120
S

pO
2

(%
)

200 220 240 260 280 300 320
0

100

200

H
R

(b
pm

)

200 220 240 260 280 300 320
−2

0

2

E
C

G
(m

V
)

200 220 240 260 280 300 320
−1

0

1

2

IP
(a

.u
.)

200 220 240 260 280 300 320
0

0.5

1

P
P

G
(a

.u
.)

time(s)

(a)

200 220 240 260 280 300 320
80

100

120

S
pO

2
(%

)

200 220 240 260 280 300 320
0

100

200

H
R

(b
pm

)

200 220 240 260 280 300 320
−2

0

2

E
C

G
(m

V
)

200 220 240 260 280 300 320
−1

0

1

2

IP
(a

.u
.)

200 220 240 260 280 300 320
0

0.5

1

P
P

G
(a

.u
.)

time(s)

(b)

Figure 1. (a) Excerpt of SpO2, HR, ECG, PPG and IP tracings during an apneic event. A cessation
of respiration can be observed in IP signal at t = 270 s, followed by bradycardia around 20 s
later; oxygen saturation falls below 90% at t = 300 s. (b) Excerpt of SpO2, HR, ECG, PPG and
IP tracings showing a noise-related desaturation (a FA) at t = 300 s. Tracings show no signs of
bradycardia, and high amounts of noise are visible in IP and PPG signals before the desaturation
(from t = 250 to t = 300 s) (a.u., arbitrary units).

2.2.2. Computation of physiological variables. Four groups of variables were computed:
variables related to oxygen saturation, variables related to HR, variables related to RR and
variables related to the quality of the signals. A total of 20 variables were computed every 5 s
for the 300 s interval before each desaturation event as follows.
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Figure 2. Computation of RR series: first, surrogate respiratory signals were derived from ECG and
PPG waveforms; then, RRs were estimated from respiratory signals using an AR model; finally,
robust RR estimates were computed by combining the individual RR estimates with a fusion
algorithm.

Variables related to HR and oxygen saturation. Variables related to HR and SpO2 were
derived from HR and SpO2 1 Hz series. The 300 s interval before each desaturation event was
analysed with a running window of 20 s, with a sliding step of 5 s. In each 20 s window, the
minimum value and the slope of HR and SpO2 series were computed. These variables were
denoted as min HR, ∇HR, min SpO2 and ∇SpO2 respectively. The slopes were computed using
ordinary least-squares regression (LSR) over the 20 s window. Robust LSR was disregarded
because it did not improve the results over ordinary LSR and entailed a higher computational
cost.

Variables related to RR. Variables related to RR were computed in several steps
(figure 2). First, respiratory signals were derived from ECG and PPG waveforms as follows.
ECG beats were detected using an open source implementation of Hamilton and Tompkins’
QRS detector (Hamilton and Tompkins 1986). Then, three widely used methods (Moody
et al 1985) were applied for estimating a respiratory signal from the ECG-derived respiration
(EDR): a method based on the QRS area summation (EDRG), a method based on R-S amplitude
tracking (EDRRS) and a method based on the estimation of respiratory sinus arrhythmia
(EDRRSA). Since the PPG waveform exhibits amplitude fluctuations due to respiration, a
similar approach to EDRRS was considered, and the differences between successive peaks and
valleys in the signal were computed to estimate a PPG-derived respiratory signal ( PDRRS).
PPG peak detection was performed using an open source beat detector for arterial blood
pressure signals (Zong et al 2003) with a time and amplitude threshold adjustment to fit PPG
beat width and height (Li and Clifford 2012).

Second, RR was estimated from each derived respiratory signal and from IP signal using
a RR extraction algorithm (Nemati et al 2010) based on the work of Mason and Tarassenko
(Mason and Tarassenko 2001, Mason 2002), who used autoregressive (AR) modelling to
estimate the respiratory frequency in adults. Since RR is usually higher in neonates than
in adults, the upper bound for RR was increased from 55 bpm (original algorithm) to
70 bpm in this work. The resulting RR estimations were denoted as RR_EDRRS, RR_EDRRSA,
RR_EDRG, RR_PDRRS and RR_IP. First and second steps were performed for the 300 s interval
before each desaturation event using a running window of 20 s with a sliding step of 5 s. Figure
3 presents an excerpt of IP, ECG-derived and PPG-derived respiratory signals for the patient
in figure 1(a), together with the corresponding RR estimates.

Third, an improved RR estimate was computed using the data fusion algorithm developed
by Nemati et al (2010) and Li et al (2008). This method is an application of a modified Kalman
filter (KF) framework for data fusion to the estimation of RR from multiple physiological
sources. KF were employed to obtain independent RR estimates from the series of derived RR,
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Figure 3. IP, ECG-derived and PPG-derived respiratory signals corresponding with the interval
between 250 and 270 s in figure 1(a). RR estimates for segments shown above were 42 bpm for IP,
42 bpm for EDRRS, 45 bpm for EDRRSA, 44 bpm for EDRG and 21 bpm for PDRRS (a.u., arbitrary
units).

and then the independent estimates were fused taking into account the uncertainty associated
with each estimate. In this work, the fusion algorithm was applied to the series of derived RR
for the 300 s interval before each desaturation event, and the result was denoted as RR_fused.

In Nemati et al (2010), the authors also proposed a variation of the fusion algorithm that
makes use of signal quality indexes (SQI), which are explained in the following section. SQI
are incorporated into the computation of the individual KF and into the fusion step to obtain
a more robust RR estimation. In this work, we applied the fusion algorithm with SQI to the
series of derived RR for the 300 s interval before each desaturation, and denoted the result as
RR_fusedSQI .

Finally, we computed the minimum RR (min RR) and the slope of all RR series (∇RR)
every 15 s for the 300 s interval before each desaturation event.

Variables related to signal quality. The selected index for determining the quality of PPG,
IP and derived respiratory signals is the spectral purity, an approach proposed in Nemati et al
(2010). The spectral purity of a signal is defined as (Sornmo and Laguna 2005)

�s = ω2
2

ω0ω4
, (1)
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where ωn is the nth-order spectral moment defined as

ωn =
∫ π

−π

ωnP(e jω) dω, (2)

where P(e jω) is the power spectrum of the signal. In the case of a periodic signal with a single
dominant frequency, �s takes the value of one and approaches zero for non-sinusoidal noisy
signals. Therefore, in an ideal respiratory waveform we would expect �s = 1. The spectral
purity was computed for PPG, IP and derived respiratory signals for the 300 s interval before
each desaturation using a running window of 20 s with a sliding step of 5 s.

To determine the quality of the ECG, we followed the approach proposed in Li et al (2008)
and computed the fourth moment (kurtosis) of the ECG signal using a running window of 20 s
with a 5 s sliding step, and denoted the result as kECG .

2.2.3. Computation of features with univariate ROC analysis. The temporal relation between
apnoea, desaturation and bradycardia is not completely understood, and significant changes
in HR, RR and SpO2 do not necessarily appear at the same time before an apnoea-related
desaturation event. Therefore, we independently analysed each variable to find the evaluation
interval that maximized the univariate classification of desaturation events for that variable.
To do so, we defined 20 time windows within the 300 s interval before each event. The end
point was defined for all windows as the beginning of the desaturation event (tend), and the
starting point of each window k was defined as tend − 15k s (window 1 comprised the 15 s
before desaturation, window 2 comprised the 30 s before desaturation, and so on). Within each
window k, the minimum value of the variable was selected for all desaturation events and a
ROC curve was constructed. The resulting area under the curve (AUC) was a measure of the
classification performance of the variable at the selected interval k. This process was repeated
for all k windows, and the window with the maximum AUC was selected as the optimum
evaluation interval for the variable.

Finally, features for SVM classification were selected as the minimum value of each
variable within its optimum evaluation interval. Features were named as the corresponding
variables without the cursive; for example, ‘min HR’ denotes the feature computed as the
minimum of variable ‘min HR’ within its optimum evaluation interval.

2.2.4. Feature selection. Among the 20 features resulting from ROC analysis, it was not
known which of them were most relevant, and which were irrelevant or redundant for FA
detection. For classification purposes, reducing the number of input features by selecting
only the relevant ones usually leads to higher performance with lower computational effort.
Therefore, a feature selection algorithm was applied before performing SVM classification.

In general, two types of feature selection methods have been proposed in the literature:
filter methods and wrapper methods. The essential difference between them is that a wrapper
method depends on the algorithm that is used to build the final classifier, while a filter
method does not (Saeys et al 2007). In this work we applied a filter method, the minimum
redundancy maximum relevance (mRMR) method (Peng et al 2005), which computes a rank
of the most relevant features using mutual information metrics. Mutual information methods
for feature selection usually compute the utility of each feature by evaluating the feature’s own
mutual information, its correlation with the rest of existing features and a term which depends
on class-conditional probabilities (Brown 2009). In particular, the class-conditional term is
omitted in mRMR. We denoted as Fk the feature with the kth highest rank as computed by the
mRMR algorithm, and then we defined 20 subsets of features as Sk = {F1, . . . , Fk}, that is, S1
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comprised the feature with the highest rank, S2 comprised the features with the two highest
ranks, and so on.

2.2.5. SVM classification. Consider the problem of separating the set of training vectors
belonging to two classes, (xi, yi), i = 1, . . . , n, where xi ∈ Rn is an input vector and
yi ∈ {+1,−1} is a label that determines the class of xi. The objective of a SVM is to find
the separating hyperplane with a maximal margin (Cortes and Vapnik 1995), which can be
expressed as the following minimization problem:

min
w,b,ξ

1

2
wT w + C

n∑
i=1

ξi, (3)

subject to yi(wT φ(xi) + b) � 1 − ξi, (4)

ξi � 0, (5)

where w and b define the separating hyperplane, ξi are ‘slack’ variables which allow for
misclassified vectors and φ is a function that maps the training vectors xi into a higher
dimensional space. In the SVM literature, the term ‘feature’ may denote either the result of the
mapping φ(xi), or each one of the n elements of the input vector xi. In this paper we adopted
the second use.

An explicit definition of the mapping function φ can be avoided by using a kernel function
K(xi, x j) = φ(xi) · φ(x j). In this work we used a radial basis function (RBF) kernel, defined
as

K(xi, x j) = exp(−γ ‖xi − x j‖2), γ > 0. (6)

An RBF kernel has been found to improve classification results over a linear kernel in most
cases (Chang and Lin 2011). However, to define an RBF kernel it is necessary to select an
appropriate value for γ . In practice, suitable values for γ and C can be found empirically by
means of a grid search.

In this work, we performed a grid search to find the optimum RBF parameters for each
subset of features Sk as follows:

(i) Consider a grid space of (C, γ ) with log2C ∈ {−5,−4, . . . , 15} and log2γ ∈
{−15,−14, . . . , 3}.

(ii) For each pair (C, γ ) in the space, perform ten-fold cross validation (CV) on the training
set.

(iii) Choose the pair (C, γ ) that produces the maximum mean CV accuracy.

For each subset of features Sk, we used the selected pair (C, γ ) to train the RBF–SVM
with the whole training set, and tested the final performance of the classifier with the validation
set.

Every time the classifier was trained and tested (either with data subsets for CV, or
with the whole sets for the final evaluation), the corresponding training and validation inputs
were normalized, and the penalty parameter C was scaled as follows. Training inputs were
normalized so that each input feature had zero mean and unit variance, and validation
inputs were scaled to the same scaling factors than training inputs. To account for the
imbalance between positive and negative classes in the dataset, the penalty associated with
misclassification (C) was multiplied by a factor r for positive events, and by a factor of 1/r
for negative events, with r being equal to the ratio between negative and positive events in the
training inputs.
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Table 1. Results of ROC analysis: maximum AUC and optimal evaluation interval (window) for
each variable.

Variable AUC Window Sign

min SpO2 0.59 7 −
∇SpO2 0.68 3 −
min HR 0.96 2 −
∇HR 0.91 4 −
min RR_EDRRS 0.55 2 −
min RR_EDRRSA 0.69 2 −
min RR_EDRG 0.56 2 −
min RR_PDRRS 0.57 8 −
min RR_IP 0.58 19 −
min RR_fused 0.57 2 −
∇RR_fused 0.59 5 −
min RR_fusedSQI 0.58 2 −
∇RR_fusedSQI 0.61 4 −
kECG 0.78 2 +
SQI_PPG 0.68 3 +
SQI_IP 0.64 19 −
SQI_EDRRS 0.57 4 −
SQI_EDRRSA 0.72 5 −
SQI_EDRG 0.52 4 −
SQI_PDRRS 0.58 4 −

3. Results

3.1. Computation of features with univariate ROC analysis

Results of the univariate ROC analysis are presented in table 1, which contains the optimum
evaluation window for each variable and the corresponding AUC. A positive (negative) sign in
the third column indicates that values above (below) the discrimination threshold are classified
as positive events.

The maximum AUC, 0.96, was obtained for the minimum HR within the interval of 30 s
before the desaturation event (variable min HR at window 2). The second highest AUC was
obtained for the minimum slope of HR within the interval of 120 s before the desaturation
event (variable ∇HR at window 4) (table 1).

3.2. Feature selection

Prior to RBF–SVM classification, we computed the rank of most relevant features by applying
the mRMR algorithm to the training set (table 2). The four most relevant features were min
HR, SQI_PPG, SQI_EDRRSA and ∇HR.

3.3. SVM classification

A grid search was conducted for each subset of features to find the optimum RBF parameters
(table 3). The resulting classification performances in training and validation sets are presented
in tables 4 and 5.

Not all features could be computed for every desaturation event for two reasons.
First, there were intermittently missing data in all signals, and second, the appearance of
successive desaturation events separated by less than 20 s (minimum interval for variable
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Table 2. Feature ranking according to mRMR.

Feature Rank

min HR 1
SQI_PPG 2
SQI_EDRRSA 3
∇HR 4
∇SpO2 5
SQI_PDRRS 6
SQI_EDRRS 7
SQI_IP 8
SQI_EDRG 9
∇RR_fusedSQI 10
kECG 11
∇RR_fused 12
min SpO2 13
min RR_fused 14
min RR_IP 15
min RR_PDRRS 16
min RR_fusedSQI 17
min RR_EDRG 18
min RR_EDRRSA 19
min RR_EDRRS 20

Table 3. Optimization parameters for RBF–SVM. The accuracy in the training set from cross
validation is reported as mean ± standard deviation.

Features log2C log2γ Accuracy

S1 13 3 91.7 ± 1.6
S2 5 3 88.7 ± 2.5
S3 13 −9 88.8 ± 2.9
S4 3 1 91.5 ± 2.8
S5 11 −1 93.0 ± 3.4
S6 9 −1 94.4 ± 2.5
S7 3 −1 93.6 ± 2.5
S8 1 −1 93.3 ± 2.8
S9 3 −3 93.7 ± 2.0
S10 3 −3 94.4 ± 3.1
S11 7 −3 95.3 ± 2.7
S12 3 −3 94.8 ± 2.6
S13 5 −3 95.1 ± 2.3
S14 13 −3 95.8 ± 1.2
S15 5 −3 95.1 ± 2.0
S16 11 −5 94.8 ± 1.9
S17 5 −5 94.4 ± 1.5
S18 3 −5 94.8 ± 2.3
S19 3 −5 95.1 ± 3.1
S20 11 −7 94.8 ± 2.0

computation) was frequent. Columns ‘Positive’ and ‘Negative’ in tables 4 and 5 show the
number (percentage) of events in which all features of the corresponding combination could
be computed.

The highest accuracy in the validation set (90.2%) was obtained with a subset of 13
features (S13, that is, those features with ranks 1–13 in table 2), which included all features
related to HR and SpO2, the slope of the RR (∇RR_fusedSQI and ∇RR_fused), and all features
related to the quality of the signals.
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Table 4. RBF–SVM classification results for the training set. Features were selected according to
the rank in table 2. Columns ‘Positive’ and ‘Negative’ show the number (percentage) of classified
events. S: sensitivity, Sp: specificity, PPV: positive predictive value and NPV: negative predictive
value.

Features Positive Negative S Sp PPV NPV Accuracy

S1 148 (93.7) 542 (85.0) 93.2 91.3 74.6 98.0 91.7
S2 148 (93.7) 542 (85.0) 96.6 88.9 70.4 99.0 90.6
S3 147 (93.0) 507 (79.5) 94.6 87.0 67.8 98.2 88.7
S4 147 (93.0) 502 (78.7) 98.6 95.2 85.8 99.6 96.0
S5 147 (93.0) 492 (77.1) 100.0 100.0 100.0 100.0 100.0
S6 147 (93.0) 492 (77.1) 100.0 100.0 100.0 100.0 100.0
S7 147 (93.0) 491 (77.0) 100.0 98.8 96.1 100.0 99.1
S8 147 (93.0) 491 (77.0) 100.0 98.8 96.1 100.0 99.1
S9 147 (93.0) 491 (77.0) 100.0 96.9 90.7 100.0 97.6
S10 147 (93.0) 491 (77.0) 100.0 98.4 94.8 100.0 98.7
S11 140 (88.6) 436 (68.3) 100.0 100.0 100.0 100.0 100.0
S12 140 (88.6) 436 (68.3) 100.0 99.5 98.6 100.0 99.7
S13 140 (88.6) 436 (68.3) 100.0 100.0 100.0 100.0 100.0
S14 140 (88.6) 436 (68.3) 100.0 100.0 100.0 100.0 100.0
S15 140 (88.6) 436 (68.3) 100.0 100.0 100.0 100.0 100.0
S16 140 (88.6) 436 (68.3) 100.0 100.0 100.0 100.0 100.0
S17 140 (88.6) 436 (68.3) 100.0 99.5 98.6 100.0 99.7
S18 140 (88.6) 436 (68.3) 100.0 98.2 94.6 100.0 98.6
S19 140 (88.6) 436 (68.3) 100.0 98.2 94.6 100.0 98.6
S20 140 (88.6) 436 (68.3) 100.0 100.0 100.0 100.0 100.0

Table 5. RBF–SVM classification results for the validation set. Features were selected according to
the rank in table 2. Columns ‘Positive’ and ‘Negative’ show the number (percentage) of classified
events. S: sensitivity, Sp: specificity, PPV: positive predictive value, NPV: negative predictive value.
The combination producing the best accuracy in the validation set is marked in bold.

Features Positive Negative S Sp PPV NPV Accuracy

S1 143 (90.5) 577 (87.2) 91.6 84.2 59.0 97.6 85.7
S2 143 (90.5) 576 (87.0) 88.8 83.2 56.7 96.8 84.3
S3 143 (90.5) 575 (86.9) 92.3 79.7 53.0 97.7 82.2
S4 143 (90.5) 570 (86.1) 85.3 90.5 69.3 96.1 89.5
S5 143 (90.5) 564 (85.2) 81.8 90.6 68.8 95.2 88.8
S6 143 (90.5) 564 (85.2) 82.5 91.0 69.8 95.4 89.3
S7 143 (90.5) 564 (85.2) 82.5 91.5 71.1 95.4 89.7
S8 143 (90.5) 564 (85.2) 81.8 91.8 71.8 95.2 89.8
S9 143 (90.5) 564 (85.2) 83.2 89.0 65.7 95.4 87.8
S10 143 (90.5) 564 (85.2) 82.5 89.7 67.0 95.3 88.3
S11 123 (77.8) 406 (61.3) 84.6 90.1 72.2 95.1 88.8
S12 123 (77.8) 406 (61.3) 87.8 89.7 72.0 96.0 89.2
S13 123 (77.8) 406 (61.3) 86.2 91.4 75.2 95.6 90.2
S14 123 (77.8) 406 (61.3) 82.9 91.9 75.6 94.7 89.8
S15 123 (77.8) 406 (61.3) 81.3 91.4 74.1 94.2 89.0
S16 123 (77.8) 406 (61.3) 85.4 88.9 70.0 95.3 88.1
S17 123 (77.8) 406 (61.3) 87.8 88.4 69.7 96.0 88.3
S18 123 (77.8) 406 (61.3) 92.7 86.2 67.1 97.5 87.7
S19 123 (77.8) 406 (61.3) 92.7 86.7 67.9 97.5 88.1
S20 123 (77.8) 406 (61.3) 87.0 88.4 69.5 95.7 88.1
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4. Discussion

The best classification performance in the validation set, an accuracy of 90%, was obtained
with a subset of 13 features (row S13 in table 5). The accuracy in the training set was 100%
for the same combination of features (table 4). The most useful feature for FA detection was
the minimum HR within the 30 s interval before a desaturation. This was the variable with
the maximum AUC (table 1), and it was ranked as the most relevant feature by the mRMR
algorithm (table 2). Just adding the information on the minimum HR made it possible to detect
84% of the FA in the training set, while maintaining a high sensitivity to apnoea-related events
(row S1 in table 5).

Instantaneous RR were found to be less useful for FA detection. Several causes may
explain this fact. One of them is that, unlike in central apnoea, in obstructive apnoea the
respiratory effort does not cease completely, and therefore a fraction of all apneic events may
remain unidentified when RR is analysed independently from other variables. A respiratory
signal based on air flow measures would allow the identification of obstructive apnoeas, but
such signal was not available for this study. A second possible cause is the limited accuracy
of the algorithms for deriving respiratory signals and RRs. It has been shown that respiratory
estimation algorithms depend heavily on the quality of the signals and on the actual (true)
RR being estimated. In particular, the RR values computed with the AR model used in this
work tend to be more inaccurate at lower RRs (Nemati et al 2010). This limitation can be
partly overcome by combining RR from different sources into a robust RR estimate, and
by evaluating the slope instead of the instantaneous value. Indeed, the contribution of the
feature ∇RR_fusedSQI to the classification performance was higher than the contribution of
any individual RR estimate (see tables 1 and 2).

The RBF–SVM algorithm mainly relied on HR and SQI information to classify events.
The best subset of features, S13, contained all the features related to the quality of signals. We
can interpret this behaviour as a replication of the rules for annotating desaturation events (see
section 2.2.1). This was expected, since the results of any classification algorithm can only
be as good as the quality of the reference dataset (in terms of correctness of annotations and
representativity of cases). Indeed, the quality of the reference dataset is always a key issue in
studies on patient monitoring (Clifford et al 2009). In the literature, we can find examples where
a reference dataset is created using a preliminary mark-up system followed by rejection of
data subsets by expert clinicians. For example in Belal et al (2011), expert annotators labelled
clusters of patient events found by a heuristic algorithm, rather than individual events. In our
work, on the other hand, each event was individually (double) labelled to ensure no algorithmic
bias, and to most closely map to the human understanding of the event. No pre-screening bias
was therefore introduced and the technique is thus expected to generalize to unseen new data,
as long as our examples of artefacts and true events are sufficiently representative.

Several limitations of the study need to be acknowledged. First, it should be noted that
although over 1500 events were used, only 27 patients were actually included in the study.
A larger cross-section of patients is likely to be needed, perhaps divided by age and prematurity.
Second, the technique proposed in this paper is not intended for the unambiguous identification
of sleep apnoea. The aim of the algorithm is to rule out false monitoring alarms that have no
relation to the physiological state of the patient. The term apnoea-related is used in the paper
to denote those desaturation episodes which are related to bradycardia and/or changes in RR
in the absence of apparent noise, and therefore are likely to have a physiological origin, but it
should not be understood as a formal definition of apnoea.

Another important limitation is that the best classification results could only be obtained
for a reduced subset of events (note the percentage of classified events, ‘Positive’ and ‘Negative’
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columns in table 5). A possible solution for the practical implementation of the algorithm would
be to label all unclassifiable events as apnoea-related, so that true apnoea-related events are
not missed. This approach would decrease the classification accuracy in the validation set from
90% to 63%. Even in that case, the proposed technique would reduce the percentage of FA
from 81% to 67% in the validation set, so it could still be pertinent for real time use in NICU
apnoea monitoring. However, we expect that a large number of these events could be further
labelled with expert over-reading and so increase the performance.

We also note that the selected 13-feature subset was the best combination among the
tested possibilities, but different combinations not listed in the subsets may outperform the
chosen one. An exhaustive search over every possible combination might thus improve results.
However, the relative small variations in the final accuracy of the algorithm (see table 5) and
the feature selection results suggest that higher potential improvements could be achieved by
exploring further signal quality parameters.

5. Conclusions

The work presented in this paper demonstrates a general framework for fusing both features and
signal quality metrics simultaneously from multiple channels. Such an approach exploits the
covariant information in the noise and the data, thereby producing a more accurate false alarm
reduction system. Results from this work indicate that the analysis of oxygen saturation, heart
rate, respiration rate and the quality of the monitored signals with a support vector machine
significantly reduces the number of pulse oximetry false alarms. Conventional apnoea monitors
can be therefore greatly improved with the use of multimodal analysis and machine learning
techniques.
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