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of his sleep-deprivation state. Sleep-deprivation state was 
estimated from the first three minutes of driving using only 
one HRV feature (positive predictive value 0.80, sensitivity 
0.62, specificity 0.88 on 30 drivers). Incorporating drowsi-
ness assessment based on HRV signal may add significant 
improvements to existing car safety systems.

Keywords Sleep debt · Impaired driving · Heart 
rate variability · Autonomic nervous system · Linear 
discriminant analysis · Classification · Smoothed pseudo 
Wigner–Ville distribution

1 Introduction

The number of road fatalities in Spain in 2011 was 2060 
and summed 108,858 in the 37 countries members of the 
International Road Traffic and Accident Database world-
wide [30]. Previous research estimates that 10–30 % of 
these crashes are related to drowsy driving or driver fatigue 
[7, 20, 30], and that sleep debt [24], drugs, toxic substances 
or alcohol and heat excess are the main causes of drowsi-
ness [32]. Recent studies showed that 2 hours of continuous 
nocturnal driving were sufficient to produce driving impair-
ment comparable to blood alcohol concentration of 0.05 % 
[28], and that drivers with excessive drowsiness and other 
sleep disorders have greater crash rate when compared with 
awake individuals [6, 8]. Thus, detection of drowsiness and 
sleep-deprivation state, though challenging, is essential for 
road safety.

Electroencephalogram (EEG) is the most often used sig-
nal to analyze the relaxation level of a subject. However, 
the need for uncomfortable contact electrodes on the head 
of the subject makes this technique not appropriate as part 
of a safety system for driving in daily real life scenarios. 
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Moreover, driving may affect the relaxation level signature 
on the EEG, so other biological or vehicle signals are being 
studied and assessed in different systems [9, 10, 14, 17, 19, 
22, 23, 33].

Autonomic nervous system (ANS) activity presents 
alterations during stress, extreme fatigue and drowsiness 
episodes [17]. Wakefulness states are characterized by an 
increase in sympathetic activity and/or a decrease of para-
sympathetic activity, while extreme relaxation states are 
characterized by an increase in parasympathetic activity 
and/or a decrease in sympathetic activity [2, 9, 17]. The 
ANS activity can be estimated noninvasively from the heart 
rate variability (HRV) signal obtained from surface ECG. 
Low-frequency (LF) band (0.04–0.15 Hz) power is influ-
enced by sympathetic and parasympathetic activity as well 
as other mechanisms. However, when it is expressed in nor-
malized units, it is usually accepted as a measure of sym-
pathetic activity dominance. High-frequency (HF) band 
(0.15–0.4 Hz) power is considered of parasympathetic ori-
gin in classical HRV analysis, when respiratory frequency 
is assumed to be in the range from 0.15 to 0.4 Hz [25]. Bal-
ance between sympathetic and parasympathetic systems is 
measured by the LF/HF ratio. Sympathovagal balance has 
been shown to decrease sometime after the sleep onset [23].

We hypothesized that drowsy states correspond with 
higher levels of HF resulting from parasympathetic activa-
tion. Fatigued states correspond with sleep demand (para-
sympathetic activation) counteracted by subject’s trying to 
stay awake which results in an increase in LF due to sym-
pathetic activation. A relaxed and awake subject would pre-
sent lower levels of HF and LF. Finally, stress states corre-
spond with higher LF levels caused mainly by sympathetic 
activation while the subject is awake (Fig. 1).

To test our hypothesis, we developed and assessed two 
different drowsiness detectors based on HRV analysis. 
First, we developed a drowsiness episodes detector, which 
periodically evaluates the state of the driver as awake or 
drowsy. Its output could be used to trigger an alarm to alert 
the driver when becoming drowsy. Next, we developed a 
sleep-deprivation detector, which identifies as not suitable 

for driving those drivers that present sleep-deprivation. The 
sleep-deprivation detector assesses the global state of the 
driver using the first three minutes of driving, and it could 
be used as a safety test in a similar fashion as alcohol or 
drug tests.

2  Methods

2.1  Materials

Fico Mirrors S.A. provided three databases: two from a 
simulated driving environment and a third from a real driv-
ing situation (databases summary in Table 1). Thirty (17 
men, 13 women) healthy volunteers in the age range from 
25 to 60 years were included in the study if they reported 
not to suffer from known chronic, cardiac and mental dis-
eases. All subjects signed an informed consent form, were 
informed of the purpose of the experiment, and were paid 
for their participation.

In all trials, a two-lead ECG signal at a sampling fre-
quency of 256 Hz together with other signals which are not 
used in this study was recorded using a biomedical monitor 
(Bitmed eXim Pro, BitMed). Each minute was annotated 
with the state of the driver as awake, fatigued or drowsy by 
an external observer as described in [22]. The drowsiness 
episodes detector used the external observer annotations as 
reference, and the labels from the sleep-deprivation proto-
col were used as reference in the sleep-deprivation detector.

Drivers participating in the simulation trials followed a 
sleep-deprivation protocol before the test and were labeled 
as not-sleep-deprived if they had regular sleep (7–9 h), par-
tially sleep-deprived if they slept less than 4 h in the night 
previous to the test, and fully sleep-deprived if they were 
awake for at least 20 h preceding the test. The simulator 
was built in partnership with a provider specialized in tri-
als, following well-defined protocols that assure control and 

Fig. 1  Hypothetical subject states distribution as function of high-
frequency (HF) and low-frequency (LF) power of heart rate variabil-
ity signal

Table 1  Databases summary. Number of minutes labeled as awake, 
drowsy or fatigued and number of drivers with or without sleep depri-
vation in each database and the expected system outputs

RDB real driving database, SDB simulated driving database, ADB 
alarm test driving database

Database Minutes Sleep-deprived

Awake Drowsy or fatigued Not Partial or full

SDB 44 877 6 3

RDB 2010 544 9 1

ADB – – 2 9

Total 2054 1421 17 13

Alarm Off On – –

Suitable – – Yes No
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repeatability. The simulation scenario was a two-way high-
way with two lanes in each direction, low density of traf-
fic, night environment, path with no sharp curves and rural 
environment with far apart trees. To recreate an atmosphere 
as similar as possible to a car, the room climate control was 
setup to 24 ◦C, low lighting and with highway sounds. These 
conditions were the same for all subjects. The first simula-
tion trial [(Simulated Driving Database (SDB)] consists of 
the recordings of nine (five women) subjects driving for 120 
minutes, while 11 (six women) subjects driving during 100 
minutes participated in the second simulation trial (Alarm 
Test Driving Database [ADB]). ADB was only used in the 
sleep-deprivation detector since no information of external 
observer of drowsy or awake minutes was available.

Drivers participating in the real driving trial were not-
sleep-deprived. Real Driving Database (RDB) consists 
of the recordings of ten (two women) professional driv-
ers while driving a vehicle on highway or road during a 
working day (8 h). Drivers had to stop at least 10 minutes 
every 2 h. All subjects but one were labeled as not-sleep-
deprived. Annotations of one of the drivers, which stopped 
to sleep after the first driving hour, are mainly drowsy and 
fatigue. Thus, the initial state of this driver was considered 
as sleep-deprived.

2.2  System overview

Figure 2 shows the components of the system, which is 
based on the one described in [29], with minor changes to 
include the sleep-deprivation detector classifier. It works 
analyzing running windows of one-lead (lead II) 2-min-
utes ECG. Once the system starts, it provides an output 
indicating whether or not the driver is sleep-deprived, thus 
whether or not he is suitable for driving, after the first 3 
minutes. Then, the drowsiness episodes detector evaluates 

the state of the driver every minute, maintaining the alarm 
OFF if the driver is identified as awake and triggering the 
alarm to ON if the driver is identified as drowsy or fatigued. 
Last two rows of Table 1 show the system’s output corre-
sponding to each proposed classifier. Signal processing and 
online system algorithms were implemented in MATLAB 
(The MathWorks Inc., MA).

2.3  Signal qualification block

During real driving trial, the drivers stopped at least every 
2 h to take a break. Drivers were instructed to keep the sys-
tem on and just unplugged the leads connectors from the 
ECG recorder without switching off the data acquisition 
system during their resting breaks, so they did not have 
to manipulate the electrodes or other sensitive parts of 
the system. This procedure improved the user experience, 
minimized risks of wrong manipulation of the system, but 
also introduced peaks of noise when plugging and unplug-
ging the cables, and segments without signal in the records. 
We developed the signal qualification block to detect these 
ECG segments without signal but also those that are too 
noisy to perform QRS detection.

The signal qualification block assigns a quality index 
to each minute of the recording making possible to reject 
those minutes without signal or too noisy. Other situations 
like electrodes that lose contact with the skin can also cor-
respond with no signal intervals. Too noisy minutes cor-
respond with connecting and disconnecting, but also with 
movement artifacts. Signal qualification block provides sev-
eral levels of quality so a threshold can be used to determine 
when noise artifacts are too high to continue with analysis. 
Briefly, disconnected segments are characterized by a big 
spike that corresponds with the disconnection of the lead, 
which is followed by a signal of 0 µV that is followed by 

Fig. 2  Components of the 
system
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another big spike caused by the driver plugging the leads 
connector into the system back. The minutes containing the 
spikes have a maximum signal value much larger than the 
average value of the signal, while the minutes correspond-
ing with the disconnected period have an average and stand-
ard deviation values of 0 µV. On the other hand, standard 
deviation of the amplitude of the ECG minutes contain-
ing movement artifacts is larger than the standard devia-
tion of those minutes from ECG without noise. In addition, 
we observed that there could be a drift on the average and 
standard deviation of the ECG amplitude over time. There-
fore, we designed the signal qualification block in two steps. 
The first step characterizes a minute of ECG with either the 
standard deviation of the ECG amplitude or 0 if the ECG 
contains big spikes (Eq. 1). The second step computes the 
quality of an ECG minute as function of the value obtained 
in step one vs. the average step one values of the preceding 
minutes (Eq. 2).

More specifically, the first step characterizes the i-th 
minute of ECG signal, xi(n) that enters into the system 
computing the value defined by function fi

where R is an experimentally defined threshold for the 
ratio between maximum and mean values, and xi is the 
mean of xi(n) and L is the number of samples of xi(n). In 
this work, R = 30 and allows to discard segments of signal 
with amplitude variations higher than expected.

The second step qualifies the new minute assigning one 
of the following values to it: excellent, good, poor or bad. 
We determined two thresholds C1 (low-amplitude ECG or 
no signal) and C2 (high noise) empirically by assessing the 
ECG signals present in the SDB and RDB databases in a 
minute by minute basis. Briefly, we defined C1 = 40 µV and 
C2= 5000 µV such that if fi < C1 (no signal) or fi ≥ C2 
(large noise) then new minute is qualified as bad; other-
wise, it is qualified using the qualifying function defined in 

Eq. 2, where gi = fi −
1

i − 1

∑i−1

k=1
fk, and Ej are experi-

mentally adjusted thresholds with values E1 = 60 µV, E2 = 
125 µV, E3 = 300 µV. Function gi measures the difference 
in variance between the current signal segment and the 
accumulated mean of the previous segments.

(1)fi(xi) =











�

1
L

L−1
�

n=0

|xi(n)− xi|2 if
max (|xi(n)|)

|xi|
≤ R

0 if
max (|xi(n)|)

|xi|
> R

Minutes of signal qualified as bad by the signal qualifica-
tion block were discarded, and segments of two or more 
consecutive minutes of signal qualified as poor, good or 
excellent were used in the subsequent blocks.

2.4  HRV features estimation

HRV parameters are estimated from each of the ECG signal 
segments accepted by the signal qualification block. First, 
QRS complexes are detected by the algorithm described in 
[15], and artifacts (ectopic beats, false detections and false 
negatives) are identified using the algorithm described in 
[16], tunned to our driving databases. Then, HRV signal is 
estimated based on the integral pulse frequency modulation 
model with time-varying threshold (TVIPFM model), and 
the smoothed pseudo Wigner-Ville distribution (SPWVD) 
is applied to the estimated signal. Finally, HRV features are 
extracted applying the algorithm in [3].

2.4.1  HRV signal estimation

HRV signal is computed using the TVIPFM model 
described in [3]. It is based on the hypothesis that the ANS 
influence on the sinus atrial node can be represented by the 
modulating signal M(t), and a beat trigger impulse is gener-
ated when the integral of 1+M(t) reaches a threshold T, 
which represents the mean heart period, resetting the inte-
grator. The modulating signal M(t) is assumed to be causal, 
band limited and M(t) < 1. Following [3], the instantane-
ous HR

is estimated from the beat occurrence times tk. Then 
time-varying mean HR dHRM(t) = 1

T(t)
 is estimated low-

pass filtering dHR(t) with a cutoff frequency of 0.03 Hz. 
Finally, the modulating signal carrying information from 
the ANS is estimated as M̂(t) = dHRV(t)/dHRM(t), where 
dHRV(t) = dHR(t)− dHRM(t).

(2)qi(gi) =















Excellent if gi < E1

Good if E1 ≤ gi < E2

Poor if E2 ≤ gi < E3

Bad if gi ≥ E3

(3)dHR(t) =
1+M(t)

T(t)

2.4.2  SPWVD computing

(4)
Pm(n,m) = 2

K−1
�
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e−j2π m
M
k

m = −M + 1, . . . ,M
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SPWVD was computed as previously described in [3]. 
Briefly, Eq. (4) defines the discrete SPWVD of the am(n) 
signal, which represents the analytic signal of the modulat-
ing signal M(t) previously estimated and discretized with 
a sampling frequency Fs = 4 Hz, where n, m and k are the 
corresponding discrete indexes in time, frequency and tem-
poral delay. The term g(n′) is a temporal smoothing sym-
metric window of length 2N − 1 and the term |h(k)|2 is a 
frequencial smoothing window of length 2K − 1 and sat-
isfying (2K − 1 < 2M). Different K, N, and γ values were 
assessed (see supplementary section S1), and those that 
better suppressed the cross-terms while maintaining a good 
time-frequency resolution were selected (2K − 1 = 1023, γ 
= 1

256
 and 2N − 1 = 240) for the HRV analysis [4].

2.4.3  Respiratory frequency estimation

Respiratory frequency (RF) was estimated as the frequency 
at which it is located the maximum peak of the SPWVD in 
the HF band using the method described in [5] but just for 
one lead. Briefly, the percentage of total power (ζ) around 
the selected peak was computed as a measure of spectral 
“peakness” and can be considered as a descriptor of respi-
ration stability. Only peaky spectra, with ζ over a threshold, 
were considered for respiratory frequency estimation. In 
this study, a value of ζ = 8 % was used instead of the 35 % 
used in [5] due to the higher frequency resolution of the 
SPWVD with respect to Lomb’s periodogram in [5]. A dif-
ferent damping factor (γ = 1

64
) was used in the SPWVD to 

estimate respiratory information. Supplementary section S1 
describes how the ζ and γ values were selected.

2.4.4  Feature extraction

For each ECG segment analyzed, HRV parameters were 
extracted either from the estimated time-varying mean HR 
signal, sampled at 4 Hz, dHRM(n) or from the SPWVD of 
the modulating signal Pm(n,m). Instantaneous power in 
the LF and HF bands was computed integrating, for each 
time instant, Pm(n,m) in the corresponding bands. LF and 
HF powers were normalized by the sum of the LF and HF 
power, and the instantaneous LF/HF ratio was also com-
puted. Parameter ζ from respiratory frequency estimation is 
used as a feature in the classifiers in addition to classical 
HRV parameters.

The former parameters are estimated instantaneously. 
Since driver’s state was assessed in multiples of one min-
ute, median, median absolute deviation, minimum and 
maximum values of the instantaneous time-varying mean 
HR, absolute and normalized LF and HF powers, LF/HF 
ratio, RF and ζ are computed within each minute and con-
stitute the feature set for each minute. Moreover, to alle-
viate the high inter-subject variability of HRV, the feature 

median value of the first three minutes is considered as 
baseline and it is subtracted from the subsequent minutes 
feature values, adding new features (denoted baseline-cor-
rected features) to the feature set. Finally, the difference 
of each feature value with respect to the previous minute 
value, which measures the derivative or rate change of the 
feature, was also computed and added to the feature set as 
derivative features. In summary, we computed a set of 96 
features describing each minute.

2.5  Classification

All described classifiers are based on linear discriminant 
analysis (LDA) [21]. We used a stepwise method using 
Wilks’ lambda (Λ) minimization criterion for ranking and 
selecting the features in the discriminant function. Briefly, 
we first computed Λ for each feature, and the one with low-
est Λ and statistical significance (Pin < 0.05) entered into 
the discriminant function. Next, we estimated the param-
eters of the resulting discriminant function. Of the variables 
not included in the discriminant function, we selected the 
feature with lowest Λ (and Pin < 0.05) and entered it into 
the model. We then determined whether the addition of the 
feature significantly (Pout < 0.10) contributed to the model. 
Finally, we repeated the last two steps until all features were 
included in the discriminant function or none of the features 
not included in the discriminant function have significant Λ.

Once the features were selected, we reduced the number 
of selected features as follows. We built different classifiers 
in an incremental fashion (i.e., each classifier included the 
next most significant feature). The performance of each clas-
sifier was assessed as the F1 score function, which is defined 
as function of positive predictive value (P+) and sensitivity 
(Se) as F1 = 2(P+Se)/(P+ + Se). The classifier with the 
highest F1 score was selected for subsequent analysis.

The classification problem for two classes is known 
as detection problem. The two possible states (awake vs. 
drowsy in the drowsiness episodes detector; not-sleep-
deprived vs. sleep-deprived in the sleep-deprivation detec-
tor) of the driver are the classes, and the features consti-
tute the discriminant variables. Performance measurements 
positive predictive value (P+), sensitivity (Se) and speci-
ficity (Sp) were computed from the resulting confusion 
matrix after leave-one-out cross-validation for each classi-
fier. While leave-one-out cross-validation is usually done in 
an episode by episode basis, we performed leave-one-out 
cross-validation on the subject to avoid bias.

Statistical analysis and feature selection were carried out 
using SPSS for Windows, version 15.0, Chicago, SPSS Inc. 
Classifier performance evaluation and plots were carried 
out in R [26]. P values < 0.05 were considered statistically 
significant without adjustment for multiplicity, unless oth-
erwise stated.
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2.5.1  Drowsiness episodes detector

The goal of the drowsiness episodes detector is to identify 
episodes in which driver’s state is becoming non-suitable 
for driving because of drowsiness and rise an alarm. The 
two classes in the drowsiness episodes detector are: OFF 
(driver is awake) and ON (driver is drowsy or fatigued). 
Table 1 shows the total number of annotated episodes at 
each database and their corresponding alarm output.

2.5.2  Suitable for driving detector

Results obtained with the drowsiness episodes detector sug-
gested that the global drowsiness or sleep-deprivation state 
of the drivers could be detected from the feature set of the 
first minutes of the recordings. This could allow to identify 
whether or not a driver is suitable for driving before or dur-
ing the first minutes of driving.

In the sleep-deprivation detector, the two classes were: 
driver sleep-deprived (either partial or full sleep-deprived 
and, thus not suitable for driving) and not-sleep-deprived 
(suitable for driving). Table 1 shows the total number of 
drivers in each state at each database.

We considered a test time interval of three minutes, 
which corresponds with the beginning of the driving activ-
ity. As we have one feature value per minute, we computed 
the median of the feature values in the considered test time 
interval as a surrogate of the driver’s global state.

3  Results

The number of excellent, good, low and bad quality seg-
ments (minutes) as classified by the signal qualification 
block is reported in supplementary Table S1. In addition, 
ECG traces with color-coded quality segments as assigned 
by the signal quality block for some subjects are included 
in the supplement.

3.1  Drowsiness episodes detector

Merging the two databases SDB and RDB presented a well-
balanced number of drowsy and awake minutes. Wilks’ 
lambda (Λ) minimization criterion ranked and selected 34 
of the 96 features. Maximum performance (F1 score = 0.73) 
was achieved with the seven most statistically significant 
features (Table 2): minimum ζ corrected by baseline value 
(ζ n3
min

), minimum ζ (ζmin), median absolute deviation (MAD) 
of LF power corrected by baseline value (LFn3

mad
), MAD of 

LF power (LFmad), minimum LF power corrected by base-
line value (LFn3

min
), minimum LF power (LFmin) and mini-

mum instantaneous heart rate (HRimin). Further analysis was 
carried out with the classifier that uses these seven features.

Table 2 shows that drowsy episodes present smaller ζmin 
and bigger ζ n3

min
 than awake episodes. Note that ζ n3

min
 shows 

inverted behavior because it is referenced to baseline. Dur-
ing unstable respiration episodes, there is not a dominant 
frequency. Thus, the strength of the frequency peak esti-
mated as respiratory frequency is smaller during periods 
containing such episodes. Figure 3 shows two spectro-
grams used during the estimation of respiratory frequency. 
Spectrogram in Fig. 3a was extracted from a minute labeled 

Table 2  Most significant features of alarm detector

Values expressed as mean ± standard deviation. All features were dif-
ferent between awake and drowsy episodes according to Mann-Whit-
ney test (P < 0.001 for all)

ζ n3
min

 minimum percentage of total power around respiration domi-
nant frequency corrected by baseline value (%), ζmin minimum per-
centage of total power around respiration dominant frequency (%), 
LF

n3
mad

 median absolute deviation of low-frequency power corrected 
by baseline value (n.u. ×10−3), LFmad median absolute deviation of 
low-frequency power (n.u. ×10−3), LFn3

min
 minimum low-frequency 

power corrected by baseline value (n.u. ×10−3), LFmin minimum low-
frequency power (n.u. ×10−3), HRimin: minimum instantaneous heart 
rate (Hz)

Feature Awake Drowsy

ζ n3
min

−22.3 ± 12.8 −14.6 ± 9.0

ζmin 16.3 ± 9.4 14.1 ± 7.9

LF
n3
mad

0.53 ± 0.84 0.18 ± 0.50

LFmad 0.60 ± 0.60 0.40 ± 0.45

LF
n3
min

−4.00 ± 2.98 −2.56 ± 1.49

LFmin 1.06 ± 1.08 0.73 ± 0.69

HRimin 1.14 ± 0.12 1.26 ± 0.26

(a) (b)

Fig. 3  SPWVD of HRV evaluated at two different instants during 
awake a and drowsy b episodes from the same subject from RDB in 
Fig. 5a. Vertical solid lines represent the integration interval to esti-
mate ζ. Circles represent the maximum peak selected as estimated 
respiratory frequency
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as awake and shows a higher peak than the one in Fig. 3b, 
which corresponds with the next drowsy minute. The per-
formance obtained with this feature set is 0.96 P+, 0.59 Se 
and 0.98 Sp.

To quantify the potential contribution of HRV signals 
to systems using respiration signals, we compared the 
cross-validated probabilities calculated using leave-one-
out method between the classifier using only the two res-
piration related features (ζ n3

min
 and ζmin) and those of the 

classifier using seven features. HRV features increased 
P+ from 0.69 to 0.96 and specificity of the classifier from 
0.86 to 0.98. Figure 4 shows the improvement in specific-
ity in the episodes of drowsiness detector when adding 
the HRV features to the stability of respiration features.

Figure 5 shows signal quality and classification details 
of one subject from SDB and another subject from RDB. 
Circles correspond with the reference annotations and black 
crosses with the predicted states. Figure 5a shows that the 
classifier overestimates drowsy states in subjects with sleep 
deprivation. Figure 5b presents drowsy states underestima-
tion by the classifier in subjects with no sleep deprivation. 
These results suggest that episodes of drowsiness detec-
tor identify the global state of the subject. In other words, 

Fig. 4  ROC curves of drowsiness episodes detector using only res-
piration features (black dotted line) and respiration plus five HRV 
features (blue solid line). Arrows indicate specificity and sensitivity 
achieved by LOO-XV

Fig. 5  Detail of signal quality 
and classification of: a subject 
from SDB and b subject from 
RDB. Reference annotation (O), 
prediction (X). Quality: bad 
(red), low (yellow), good (blue) 
or excellent (green). Gaps in the 
classification panels correspond 
to poor and low-quality ECG 
segments in which the system 
does not produce an output
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whether the driver presents sleep deprivation and whether 
or not he is suitable for driving.

3.2  Sleep‑deprivation detector

The most statistically significant feature obtained for sleep-
deprivation detector using the first three minutes as the test 
time interval was the regressive difference of the minimum 
normalized HF power (HF%′

min
, P = 0.018), where normal-

ized HF power is defined as HF% = 100 · HF/(LF + HF). 
Performance achieved using only HF%′

min
 was 0.80 P+, 0.62 

Se and 0.88 Sp. Confusion matrix is shown in Fig. 6. The 
mean HF%′

min
 was higher in sleep-deprived (non-suitable for 

driving) subjects than in not-sleep-deprived (suitable for 

driving) subjects (3.5 ± 5.7 % vs. 2.0 ± 6.0 %). No other 
features resulted discriminant from the Wilk’s lambda 
minimization criterion, although the regressive difference 
of the maximum normalized LF power, which is related to 
HF%′

min
, can be used instead. Figure 6, where each symbol 

corresponds with one subject, shows classification results.

4  Discussion

The study showed that drowsiness episodes can be detected 
with high P+ assessing changes in the HRV signal. This 
can improve road safety by alerting the driver before he 
falls asleep. In addition, the study also showed that sleep-
deprived subjects have higher minimum values of the 
regressive difference of the minimum normalized HF 
power (HF%′

min
) than not-sleep-deprived subjects. This can 

be used to assess the state of the driver during the first min-
utes of driving and trigger an alert to notify those that pre-
sent sleep-deprivation. The study shows that HRV signal 
can enhance car safety systems.

Both drowsiness episodes detector and sleep-deprivation 
detector are based on LDA despite the fact that none of the 
features were normally distributed, as revealed by a Kol-
mogorov-Smirnov test. To avoid the normality assumption, 
other classification methods were tested, but performance 
did not improve with respect to LDA. Logistic regression, 
k-nearest neighbors and support vector machine obtained 
similar results to those obtained with LDA. This is not sur-
prising because the robustness of LDA under violations 
of its assumptions is well known [13]. While we did not 
assess artificial neural networks (ANN), it has been shown 
that LDA can perform comparably to linear ANN in some 
cases [18]. Thus, we selected LDA because its robustness 
and because it allows identifying the biomarkers and their 
corresponding values associated with awake, drowsy, not-
sleep-deprived and sleep-deprived states.

Performance could be improved by increasing the num-
ber of features used in the classifier. However, it increases 
the risk of over-fitting due to the reduced number of subjects 
included in the analysis. Note that although the number of 
drowsy and awake cases in the drowsiness episodes detector 
is high (1421 and 2054, respectively), they all belong to a 
reduced number of subjects (n = 19). It is also important to 
note that, although the number of drowsy and awake cases 
is almost balanced, most drowsy cases belong to subjects 
from the simulated driving databases and most awake cases 
belong to subjects form the real driving database.

Different methods for HRV analysis have been proposed 
in the literature, including time domain, frequency domain 
and nonlinear methods [1, 25, 27, 31]. Nonlinear methods 
have recently demonstrated superiority over time and fre-
quency domain indices in certain applications, although 

HFmin (%)

Subjects status per protocol

%'-10 0 10

(a)

HFmin (%)

Subjects status predicted by the system

%'-10 0 10

(b)

Sleep-deprived        Reference
System output YES NO Total

YES
NO

8           2          10
5         15          20

13         17          30Total
Driver status

full or partial sleep-deprived not sleep-deprived
(c)

Fig. 6  a Distribution of subjects as function of HF%′

min
 and their 

sleep-deprivation state, where circles show full or partial sleep-
deprived subjects and triangles show not-sleep-deprived subjects. 
Each symbol represents one subject. b Sleep-deprivation detec-
tor predictions for each subject. Open symbols correspond with the 
subjects that the detector classified appropriately either as not-sleep-
deprived (suitable for driving, open triangles) or as full or partial 
sleep-deprived (not suitable for driving, open circles). Solid triangles 
show when the detector failed to identify subjects that were full or 
partial sleep-deprived (not suitable for driving, false negatives). Solid 
circles show when the detector failed to identify subjects that were 
not-sleep-deprived (suitable for driving, false positives). c Confusion 
matrix of the sleep-deprivation detector from leave-one-out cross-val-
idation on the subject
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their physiological interpretation in terms of sympathetic 
and parasympathetic systems is not fully elucidated yet. 
Further studies should consider the performance of these 
nonlinear indices in drowsiness detection.

4.1  Drowsiness episodes detector

Before implementing the drowsiness episodes detector, fea-
tures from all subjects were analyzed searching patterns 
like those described in previous works as [9, 17], but they 
were not found consistently. For example, in some cases HF 
power increased and LF decreased before a drowsy episode, 
but this behavior also occurred during awake episodes. The 
speed and duration of the change in LF and HF powers may 
be also related to the threshold needed to cause a change in 
the state of the subject. We also looked for other significant 
patterns prior to or during state changes, but we did not find 
any. This lack of changes before the sleep onset has been 
observed in healthy subjects lying down and with lights off 
while participating in whole night sleep studies [23].

Although the beginning and end of isolated drowsy epi-
sodes within a not-sleep-deprived subject are not identified 
precisely, in general the detector is able to identify some min-
utes of the isolated (drowsy or awake) episodes. This inac-
curacy can also be due to the inclusion of fatigue episodes 
together with drowsy episodes when training and evaluating 
the classifier. Note that fatigue episodes can be considered as 
transient states, and their boundaries are not well defined.

We compared the results of drowsiness episodes detector 
with those previously published in [22]. While developing 
the episodes of drowsiness detector, the feature selection 
analysis showed that unstable respiratory patterns are asso-
ciated with drowsy episodes, which is in agreement with 
the findings in [22] using thoracic effort signal. We grouped 
drowsy and fatigued episodes within the same class, which 
made a quantitative comparison with [22] not feasible.

Awake states presented higher LF/HF as expected [19, 
23]. However, we observed around threefold higher LF/HF 
mean values than those observed by Patel et al [19] in both 
awake (3.89 ± 3.88 vs. 1.18 ± 1.15) and drowsy (3.61 ± 
2.93 vs.1.2 ± 0.87) states, potentially because differences 
in the methods assessing the states of the drivers.

4.2  Sleep‑deprivation detector

HF%′

min
 was the most significant feature for detecting sleep 

deprivation, showing higher values in sleep-deprived 
than in not-sleep-deprived subjects. The increase in the 
minimum HF value during the first minutes in the sleep-
deprived subjects reflects a higher parasympathetic activity, 
while the decrease in not-sleep-deprived subjects reflects 
the sympathetic activation. This pattern is in agreement 
with our initial hypothesis.

Impairment in driving and increase in crash risk, includ-
ing traffic fatalities, is one of the outcomes of excessive 
drowsiness [6, 8, 24]. The overall degree of drowsiness of 
a driver is assessed by the sleep-deprivation detector, which 
quantifies the level of parasympathetic system activity from 
the driver’s HRV signal. Although further investigation in 
larger population is needed, this type of assessment could 
help mitigating not only drowsy driving related accidents, 
but also other risks in activities that require high levels of 
concentration and short reaction times (e.g., airplane pilots, 
train drivers or ship captains).

4.3  Limitations

One of the limitations of the study is the reference signal used 
for the drowsiness episodes detector. Beginning and ending 
of drowsy episodes are difficult to identify precisely. A more 
robust and reliable reference is needed, but a gold standard 
does not currently exist. For example, drowsy epochs defined 
in EEG are defined with eyes closed, and our requirement 
is with eyes opened. The output of the classifiers could be 
part of a more complex system that uses other signals such 
as PERCLOS, lateral and longitudinal control or wheel pitch 
evolution, to detect if the current state of the subject is suit-
able for driving or not. More efforts are required to increase 
the database size so new features can be added in the training 
stage without the risk of over-fitting. It is also important to 
include information about subjects sleep habits and quality, 
like, for example, those in protocol described in [33], or even 
using subjective questionnaires like the Epworth Sleepiness 
Scale [12] or the Stanford Sleep Scale [11].

The number of awake vs. drowsy episodes was unbal-
anced between RDB and SDB databases (Table 1). RDB 
subjects were not-sleep-deprived, and most of their min-
utes were labeled as awake. On the other hand, some of the 
SDB subjects were sleep-deprived, and they had most of 
their minutes labeled as drowsy. To overcome this unbal-
ance between subjects, we conducted the analysis of the 
data by event type (i.e., awake vs. drowsy) pooling all 
minutes from all subjects in both databases. Future studies 
should consider using larger sample size (more subjects) 
and/or use a cross-over study design to be able to account 
for within subject features variability.

Performance of the classifiers was assessed using leave-
one-out cross-validation. However, all subjects were pooled 
in the feature selection stepwise process. This may have 
resulted in a set of features over-fitted to each database. 
Future work should assess how using of leave-one-out 
cross-validation in feature selection affects feature reduc-
tion and classifiers performance.

The Se of the proposed alarm detector is only of 0.59. 
However, from a driving safety point of view, the high P+

(0.96) shows that the number of false alarms is very low. 
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This is important because it has been shown that false alarms 
may result in the so-called alarm fatigue (i.e., users ignoring 
alarms because a high false alarm rate). Therefore, while only 
59 % of drowsiness episodes are detected, 96 % of these are 
detected appropriately. This suggests that the system could 
help to reduce drowsiness related accidents, especially if com-
bined with existing preventing car safety systems. However, 
whether or not larger sample size or cross-over study design 
would increase sensitivity deserves further investigation.

5  Conclusions

Two different driver’s drowsiness detectors based on HRV 
analysis have been developed in this work. The drowsiness 
episodes detector is an online detector that identifies the 
current state of the subject, triggering an alarm when the 
drivers become drowsy or fatigued while driving. Its per-
formance is P+ of 0.96, Se of 0.59 and Sp of 0.98 using 
seven features in the database containing simulated driving 
and real driving recordings. The sleep-deprivation detector 
identifies the global state of the driver indicating whether 
the driver is sleep-deprived, thus in a suitable for driving 
state or not before starting to drive. A subject is considered 
to be in a non-suitable for driving state if he is partially or 
full sleep-deprived. The classifier uses a time interval of 
3 min to determine if a subject presents sleep deprivation 
with a P+ of 0.80, Se of 0.62 and Sp of 0.88.

Despite limitations such as the lack of a gold standard 
to identify drowsy epochs, the small-sized population and 
the cross-sectional design of this study, obtained results 
are promising and may add significant improvements when 
incorporated to existing preventing car safety systems.
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