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Photoplethysmographic Waveform Versus Heart
Rate Variability to Identify Low-Stress States:

Attention Test
Marı́a Dolores Coca Peláez , Marı́a Teresa Lozano Albalate , Alberto Hernando Sanz,

Montserrat Aiger Vallés, and Eduardo Gil

Abstract—Our long-term goal is the development of an
automatic identifier of attentional states. In order to accom-
plish it, we should first be able to identify different states
based on physiological signals. So, the first aim of this pa-
per is to identify the most appropriate features to detect
a subject’s high performance state. For that, a database
of electrocardiographic (ECG) and photoplethysmographic
(PPG) signals is recorded in two unequivocally defined
states (rest and attention task) from up to 50 subjects as
a sample of the population. Time and frequency parameters
of heart/pulse rate variability have been computed from the
ECG/PPG signals, respectively. Additionally, the respiratory
rate has been estimated from both signals and also six mor-
phological parameters from PPG. In total, 26 features are
obtained for each subject. They provide information about
the autonomic nervous system and the physiological re-
sponse of the subject to an attention demand task. Results
show an increase of sympathetic activation when the sub-
jects perform the attention test. The amplitude and width of
the PPG pulse were more sensitive than the classical sym-
pathetic markers (PLFn and RLF/HF) for identifying this atten-
tional state. State classification accuracy reaches a mean of
89 ± 2%, a maximum of 93%, and a minimum of 85%, in the
100 classifications made by only selecting four parameters
extracted from the PPG signal (pulse amplitude, pulsewidth,
pulse downward slope, and mean pulse rate). These results
suggest that attentional states could be identified by PPG.
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I. INTRODUCTION

THERE are many professionals, as defence and security
personnel, pilots, air traffic controllers, etc, where a high

level of attention is necessary to develop their work in safety
conditions. This attention may be affected, among others, by
psychological stress and by states of sleep deprivation [1], [2].
It is also essential for such personnel to maintain an adequate
divided attention, defined as the ability to respond to at least
two tasks at the same time [3]. The Brief Test of Attention
(BTA) is standardized for the measure of divided attention [4].
Divided attention is a type of simultaneous attention that allows
us to process different sources of information and successfully
execute more than one task at a time. The BTA is conceptualized
as an auditory perception task that requires divided attention.
The two simultaneous requirements of the BTA are simple,
with a low level of mental stress [4].

The fundamental hypothesis in which this work is based con-
sists in the fact that alterations in the Autonomic Nervous Sys-
tem (ANS) during the execution of an activity that requires the
subject sustained attention can be noninvasively quantified by
the recording of physiological signals. These alterations in the
ANS can be studied by analysing the Heart Rate Variability
(HRV) from the electrocardiographic (ECG) signal or the Pulse
Rate Variability (PRV) from the photoplethysmographic (PPG)
signal [5]. The ANS is composed by two branches, the sympa-
thetic nervous system and the parasympathetic or vagal nervous
system. HRV or PRV spectral analysis reveals two main com-
ponents: a high-frequency (HF) component, due to respiratory
sinus arrhythmia, and a low-frequency (LF) component, which
reflects both sympathetic and parasympathetic activity. Power
in the HF band has been used as a measure of parasympathetic
activity. Normalized power in the LF band and the ratio between
power in LF and HF bands have been considered as a measure
of sympathovagal balance [6]. Another interesting signal to be
considered in ANS analysis is the respiratory signal, which can
be extracted from the ECG or PPG signals [7]–[9]. Other works
found that the breathing pattern is altered during mental stress
and attentional tasks [10]–[12]. Also, it has been shown that
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changes in the respiratory pattern alter the spectral content of
HRV and PRV [13] and consequently the interpretation of sym-
pathetic or vagal activations [11], [14].

Many studies support that HRV and PRV give similar in-
formation about the ANS response [15]–[19]. However, PPG
recording needs only one low-cost device widely used in the
clinical routine that can be located in several parts of the body,
while the recording of the ECG signal involves several elec-
trodes all over the chest of the subject, so the PPG signal is
more adaptable to the limitations imposed by the different tasks
that some professionals must perform.

To the best of our knowledge there are no previous works on
identifying attention demand states by means of morphological
parameters extracted from the pulse of PPG signal. Changes
in the morphology of the PPG signal have been used to de-
tect physical stress [20], the baroreflex response to changes in
posture or other forms of blood volume sequestration [21] or
even detect mild hypovolemia [22], [23]. Other authors have
studied the relationship between systemic vascular resistance
and the PPG waveform, specifically with the pulse amplitude,
width and slopes [24], finding a high correlation with the first
two. An increase in systemic vascular resistance is correlated
with an activation of the sympathetic system [25], so the PPG
waveform also provides information about the ANS of subjects.
In this work, we studied the relationship among attention states
and parameters extracted from the PPG waveform, related to the
width, amplitude and slope of the pulse.

Knowing the capability of a person to maintain an adequate
level of attention at a precise moment is essential before tasks
execution where safety is involved. In order to successfully
perform this, pattern recognition has various methods of feature
selection and classification [26]. In this study, feature selection
is done through a wrapping method, that is, a subset of features
is selected by considering the accuracy of the classifier. This
method allows us to include criteria that avoid redundancy when
selecting features. This condition is essential given that HRV and
PRV time and frequency features are highly correlated [15]–
[19]. Including these criteria reduces the number of features
that maximize the accuracy of the classifier.

An ensemble learning method is used in this paper. This
method facilitates using a set of classifiers so we can obtain
greater accuracy compared to using each classifier individually.
There are many studies showing improvements in the classifi-
cation of these methods [27]–[30]. There are several techniques
that can be used to build these classifier subsets: bootstrap aggre-
gating (bagging), boosting, random subspace and stacking [31].
Among these techniques, bagging obtains the best results when
the features of the sample population introduce noise into the
classification [32]. In small samples, the classifiers built may
be biased and show a large variance in the probability of mis-
classification. Bagging reduces this error and is usually applied
to decision tree methods. Thus, the ensemble learning method
selected for the identification of attention demand states in this
work is: bagging decision tree method.

The main goal of this study is the automatic identification
of a resting state versus an attention demand state. To that end,
an analysis of HRV and PRV parameters, together with the

respiratory rate extracted from ECG and PPG, and six features
extracted from the PPG waveform is done. The use of the PPG
waveform parameters to differentiate attentional states is the
main innovation of this work.

II. MATERIALS

The generated database includes recordings of 50 subjects
(all males). Their mean age is 31 ± 7 years (mean ± std) and
they are mainly military personnel (49 out of 50; 98% of total
population).

The ECG and PPG signals are recorded in two unequivo-
cally defined states: rest and attention task. Details of the two
registered periods were described below:

� Baseline (BL): Subjects remain 5 minutes seated, without
performing any task. First 30 seconds from the baseline are
discarded. Next 4 minutes are processed, in two segments
of two minutes (BL1 corresponds to the first two minutes;
BL2 corresponds to the last two minutes). In this study,
each parameter extracted from the ECG and PPG signals
is normalized by the reference state BL1 .

� Attention test (BTA): During the attention demand state,
subjects perform the BTA which is divided in two parts.
In the first one, subjects listen to a recording with 10 lists
of letters and numbers with a variable length between 4
and 18 elements, and write how many numbers each list
contains, ignoring letters. In the second part, subjects lis-
ten to the 10 lists again, but this time they must count
letters, ignoring numbers. Two segments of two minutes
length of the BTA segment while subjects count numbers
(BTA1), or letters (BTA2), are processed. These seg-
ments are located just 30 seconds after every part of the
BTA started.

The recordings were done using the device Nautilus devel-
oped by the University of Kaunas, Lithuania [33]. This device
allows to record the ECG signal with three leads at a sampling
frequency (fs) of 2000 Hz; and the PPG signal (fs = 1000 Hz)
in the finger with two possible wavelengths: red and infra-red.
The PPG sensor is located in middle finger of the non-dominant
hand. Nautilus device also allows recording the ambient tem-
perature (fs = 50 Hz).

III. METHODS

A. Time Parameters of HRV and PRV Signals

ECG is first down-sampled to 1000 Hz to obtain the same
sampling frequency as the PPG signal. A low-pass FIR filter is
then applied to both signals to estimate the baseline interference
and to remove it from the signal (cut-off frequency of 0.03 Hz
and 0.07 Hz for the ECG and PPG signals, respectively) [34].
Another low-pass FIR filter, with cut-off frequency of 35 Hz,
is applied over the PPG signal to remove the high frequency
noise [8].

Heart beats are detected from the frontal bipolar second
lead of the recorded ECG signal using an algorithm based on
wavelets [35]. Ectopic beats, missed and false detections are
identified and corrected [36]. As a result, QRS complex are
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Fig. 1. Pulse waves of the PPG signal (measure in arbitrary units,
a.u.) with their most representative points highlighted: the apex (nAi), the
basal (nBi) and the medium (nMi) points. Distance between two adjacent
medium points is the pulse to pulse interval or P P i, used to compute the
time series, and distance between the apex and the basal points (Ai−1 )
is the amplitude used to compute the P AV .

located in the ECG and the difference between consecutive R
waves conforms the RR time series.

From both wavelength (red and infra-red) of the PPG signal
(xPPG(n)), artefactual pulses were suppressed by using the arte-
fact detector described in [37]. Then, the apex (nAi), the basal
(nBi) and the medium (nMi) points of the i-th PPG pulse were
automatically detected using an algorithm based on a low-pass
differentiator filter [38]. Fig. 1 shows a PPG signal where its
more representative points are highlighted. The medium points
are considered the fiducial points in PPG because of their ro-
bustness [39], so they are selected to compute the pulse to pulse
(PP) time series as the difference between consecutive nMi.

Five time parameters were computed, from the beat to
beat/pulse to pulse time series, as the mean of the two min-
utes selected for each state (BL1 , BL2 , BTA1 and BTA2):

� HR/PR: heart/pulse rate (measure units: s−1);
� SDNNX: standard deviation of all normal-to-normal

(NN) intervals (measure units: ms);
� SDSDX: standard deviation of differences between adja-

cent NN intervals (measure units: ms);
� RMSSDX: square root of the mean of the squares of

the successive differences between adjacent NN (measure
units: ms);

� pNN50X: number of pairs of successive NN that differ
by more than 50 ms, divided by the total number of NN.
(measure units: %);

where X ∈ [H,P ] denotes the original signal, ECG or PPG,
respectively.

B. Frequency Parameters of HRV and PRV Signals

HRV and PRV frequency analysis are similar: with the beat to
beat/pulse to pulse time series, using an algorithm based on the
integral pulse frequency modulation model [40], instantaneous
heart/pulse rate signal (dXR(t)) sampled at 4 Hz is obtained by:

dXR(t) =
1 + MX(t)

TX(t)
(1)

where MX(t) represents the modulating signal which carries the
information from ANS and TX(t) is the mean heart/pulse period,
which is considered to be slow-time-variant by this model.

Then, a time-varying mean HR or PR, (dXRM(t)), is obtained
by low-pass filtering dXR(t), with a cut off frequency of 0.03 Hz:

dXRM(t) =
1

TX(t)
(2)

Later on, HRV and PRV signals (dXRV(t)) are obtained as:

dXRV(t) = dXR(t) − dXRM(t) (3)

Finally, MX(t) is obtained by correcting dXRV(t) by dXRM(t):

MX(t) =
dXRV(t)
dXRM(t)

(4)

Time-frequency analysis is applied to MX(t) to character-
ize the rapid response of ANS to BTA. The smoothed pseudo
Wigner-Ville distribution (SPWVD) is used because it provides
better resolution than non-parametric linear methods, indepen-
dent control of time and frequency filtering, and power is esti-
mated with lower variance than parametric methods when rapid
changes occur. The SPWVD of the signal x(t) is defined as [41]:

Sx(t, f) =
∫ ∫ ∞

−∞
Φ(τ, ν)Ax(τ, ν)ej2π (tν−τ f )dνdτ (5)

Ax(τ, ν) =
∫ ∞

−∞
x

(
t +

τ

2

)
x∗

(
t − τ

2

)
e−j2νπ tdt (6)

where Ax(τ, ν) is the narrow band symmetric ambiguity func-
tion (AF) of the analytic signal x(t) = MX(t) + jM̂X(t), where
M̂X(t) represents the Hilbert transform of MX(t). The AF quan-
tifies the time-frequency auto-correlation of x(t) in the delay-
doppler frequency domain (τ, ν) and can be seen as the 2D
Fourier transform of the Wigner-Ville distribution.

The kernel Φ(τ, ν) was defined as:

Φ(τ, ν) = exp

⎧⎨
⎩−π

[(
ν

ν0

)2

+
(

τ

τ0

)2
]2λ

⎫⎬
⎭ (7)

The iso-contours of Φ(τ, ν) are ellipses whose eccentricity de-
pends on parameters ν0 and τ0 [42], [43]. Parameters ν0 and
τ0 are used to change the length of the ellipses axes aligned
along ν (i.e. the degree of time filtering) and τ (i.e. the degree of
frequency filtering), respectively. The parameter λ = 0.25 sets
the roll off of the filter. The parameters ν0 and τ0 were selected
to have a time resolution of 15 s and a frequency resolution of
0.0313 Hz. The time and frequency resolutions were estimated
as the full width at half maximum of the SPWVD of a pure sinus
and of a temporal impulse, respectively.

For each subject, the temporal evolution of the power content
of HRV and PRV within each frequency band, P X

B was obtained
integrating Sx(t, f) in the frequency bands B ∈ {LF,HF}.

Finally, four frequency parameters are defined as the mean of
the two minutes selected for each state (BL1 , BL2 , BTA1 and
BTA2):

� P X
LF: power in the LF band (0.04–0.15 Hz; measure units:

a.u.);
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� P X
HF: power in the HF band (0.15–0.4 Hz; measure units:

a.u.);
� P X

LFn
: power in LF band normalized respect to powers in

LF and HF bands (measure units: n.u., normalized units):
P X

LFn
= mean(P X

LF(t)/(P X
LF(t) + P X

HF(t)));
� RX

LF/HF: ratio between LF and HF power (measure units:
n.u.):
RX

LF/HF = mean(P X
LF(t)/P X

HF(t)).

C. Respiratory Information Extracted From the ECG and
PPG Signals

Respiratory signal provides important additional information
to complete the ANS analysis. The vagal tone is reflecting the
respiratory sinus arrhythmia, which is synchronous with res-
piration, so the relationship between respiratory rate and the
parasympathetic system must be present in the analysis. There-
fore, those subjects with a respiratory rate lower than 0.15 Hz
(upper limit of the LF band) or higher than 0.4 Hz (upper limit of
the HF band) are discarded to avoid possible misinterpretations
in ANS results [11].

Respiratory information can be extracted from ECG or PPG.
The first step is to obtain all the derived respiration signals for
the ECG (EDR) and the PPG (PDR). Secondly, an algorithm
for combining the information of all EDR or all PDR signals is
applied in order to estimate a respiratory rate for ECG and PPG
respectively.

The method for estimating respiratory rate from the ECG
signal presented in [44] is used. It exploits respiration-induced
morphology variations in the ECG signal based on 3 EDR sig-
nals: upwards to the R-wave slope, downwards to the R-wave
slope, and R-wave angle [45]. The method assigns to each beat
occurrence the value of its associate QRS slope or R-wave an-
gle. These signals are unevenly sampled, so it is necessary to
resample at 4 Hz for standardising them. Finally a mad-based-
outlier rejection and a band-pass filter (0.075–1 Hz) are applied.
In this study, three leads are registered and three EDR signals
are estimated for each lead, so 9 final EDR signals conform the
ensemble to extract respiratory information.

When respiratory information is extracted from the PPG sig-
nal, the algorithm explained in [8] is applied to the database.
In this case the PDR are the PRV , described in Section III-B,
the Pulse Amplitude Variability (PAV ) and the Pulse Width
Variability (PWV ). An example of these three PDR signals is
shown in Fig. 2.

PAV is estimated based on the following equation, using the
apex and basal points (nAi and nBi) described in Section III-A:

PAV (n) =
∑

i

[xP P G (nAi) − xP P G (nBi)] δ(n − nAi) (8)

To estimate PWV , firstly start (nOi) and end (nEi) points of
every pulse in the PPG signal (Fig. 3) have to be identified as
in [8]. Then, PWV is defined as:

PWV (n) =
∑

i

1
fs

(nEi − nOi)δ(n − nAi), (9)

where fs is the sampling rate of the PPG signal.

Fig. 2. Example of the P RV , P AV and P W V of a subject of study
where the modulation performed by the breathing can be observed.

Fig. 3. Location of the start nO i , the end nE i and the apex nA i point,
used to calculate the morphological parameters of the PPG signal. Dis-
tance between nA i and nO i points, in vertical axe, is the amplitude (Au )
and, in horizontal axe, is the width (Wu ), both are used to calculate the
P Su . Distance between nA i and nE i points, in vertical axe, is the am-
plitude (Ad ) and, in horizontal axe, is the width (Wd ), both are used to
calculate P Sd . Distance between the start and the end points (W ) is the
width used to compute the P W .

PAV and PWV signals are unevenly sampled so it is nec-
essary to resample at 4 Hz for standardising them.

The algorithm used to estimate respiratory rate (F X
R ) from the

PPG and the ECG signals is the same, only a minor modifica-
tion in a parameter for the respiratory rate estimation from the
PPG signal is necessary due to the low frequency components
not related to respiration that appear, changing the peakness
conditions and limits as in [7].

Finally, with these two algorithms, a respiratory rate estima-
tion from ECG and PPG is obtained, that allow us to characterise
respiratory information in every state.

D. Morphological Parameters of PPG Signal

The PPG waveform is commonly divided into two phases: the
anacrotic phase is the upward segment of the pulses, whereas the
catacrotic phase is the downward segment of the pulses. The first
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phase is primarily concerned with systole, and the second phase
with diastole and wave reflections from the periphery [46].

Other authors have studied the relationship between different
morphological parameters of the PPG signal with the physiol-
ogy of subjects [24], [25], [46]. Among the parameters studied,
the amplitude and width of the PPG pulses showed a strong
correlation with the activation of the sympathetic system [24],
[46], although a not so strong relationship was found with the
pulse slopes [24].

In this work, six morphological parameters of the PPG signal
are considered. The first two are the amplitude (PA) and the
width (PW ) of the PPG signal, that are estimated based on
the following equations, which are similar to the equation in
Section III-C:

PA(i) = xP P G (nAi) − xP P G (nBi) (10)

PW (i) =
1
fs

(nEi − nOi) (11)

The next two parameters are two segments of the PPG wave
width. The first segment corresponds to the anacrotic phase of
the pulses (PWu ) and the second one to the catacrotic phase
(PWd ). The maximum amplitude of the pulse nAi is the point
of separation between them. The parameters are estimated as:

PWu (i) =
1
fs

(nAi − nOi) (12)

PWd(i) =
1
fs

(nEi − nAi) (13)

The last two morphological parameters are defined as the
upward and downward slopes of each PPG pulse, simplified as
the Pulse Slope (PS). These two parameters are calculated as
the ratio between the amplitude and the width of each upward
and downward segment, as:

PSu (i) = fs
xP P G (nAi) − xP P G (nOi)

nAi − nOi
(14)

PSd(i) = fs
xP P G (nAi) − xP P G (nEi)

nEi − nAi
(15)

An outlier identification is carried out on all morphological
parameters based on [7], where every sample outside the range
[median ± G · std] of the Ng previous data is removed. In this
study G = 5 and Ng = 50.

In summary, based on the significant points of each PPG pulse
(Fig. 3), the following morphological parameters are defined as
the mean of the two minutes selected for each state (BL1 , BL2 ,
BTA1 and BTA2):

� PW . Mean width of the pulses (measure units: s);
� PA. Mean amplitude of the pulses (measure units: a.u.);
� PWu . Mean width of the anacrotic phase of the pulses

(measure units: s);
� PWd . Mean width of the catacrotic phase of the pulses

(measure units: s);
� PSu . Mean upward slope of the PPG pulses, calculated

as the ratio between amplitude and width of that segment
(measure units: a.u.);

� PSd . Mean downward slope of the PPG pulses, calculated
as the ratio between amplitude and width of that segment
(measure units: a.u.).

E. Statistical Analysis

A statistical analysis of the 26 parameters obtained from the
ECG and the PPG signals was implemented in order to identify
both states (rest and attention task). Firstly, an outlier identifi-
cation for each subject was performed, for this, the following
interquartile limits are defined:

T l
Y = Q2

(Yk
BT A 1

− Yk
BL1

) − 3 · IQR
(Yk

BT A 1
− Yk

BL1

)
(16)

Th
Y = Q2

(Yk
BT A 1

− Yk
BL1

)
+ 3 · IQR

(Yk
BT A 1

− Yk
BL1

)
(17)

The parameters that exceed any of these limits are identified
and eliminated of the entire study:

If
(Yk

BT A 1
− Yk

BL1

)
< T l

Y or(Yk
BT A 1

− Yk
BL1

)
> Th

Y

}
⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yk
BT A 1

= null

Yk
BT A 2

= null

Yk
BL1

= null

Yk
BL2

= null

(18)

In these equations, Y is the mean of each one of the 26 param-
eters in each segment (BTA1 , BTA2 , BL2 and BL1) for each
subject, and k = 1...Nk , where Nk is the number of subjects.

Secondly, every parameter is normalized to the sum of the
reference state (BL1):

R(Yk
S ) =

Yk
S

Yk
S + Yk

BL1

, (19)

where S can be BTA1 , BTA2 or BL2 .
Parameters have been normalized to minimize the effects of

the intersubject variance.
Finally, the Shapiro-Wilk test is applied to distinguish

whether the parameters have a normal distribution. When the
normal distribution of one parameter is verified, the t-Student
test is applied. In other case, the Wilcoxon paired test is applied.
A p-value<α defines significance, where the significance level
α can be 0.05, 0.01 or 0.001. These tests are applied to each one
of the 26 normalized parameters extracted from the ECG and
PPG signals recorded during the BTA and resting state.

F. Feature Selection and Classification

Bagging or bootstrap aggregating is a method that generates
multiple versions of a predictor and combines them to get a
better one [31]. The method consists of the following steps:

1) If Z = (Z1 , Z2 , . . . , Zn ) is the training set, a random
extraction with replacement is performed, generating Nb

subsets: Zb = (Z1
b , Z2

b , . . . , Zn
b ) with b = 1...Nb . Each

subset has the same number of elements as the original
set.

2) A simple individual Cb classifier is built with each subset
Zb .
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Fig. 4. Selection of features and classification method implemented in this work. The initial data are the normalized values of the states BT A1
(R(YB T A 1)) and BL2 (R(YB L 2)). P i

j are subsets of the F i , which include only the first j features of the F i selection.

3) The Cb classifiers are combined by selecting the majority
class in the final decision rule.

In this study, we resample to entire data set, Nb = 30 and
Zz = R(Yk

S) (where z = 1...n). A decision tree is selected as
simple individual classifier (Cb ) in the bagging method. Since
bagging ensemble reduces the variance and increases the clas-
sification accuracy in classifiers such as decision trees and arti-
ficial neural networks [47], [48].

The ensemble classifier obtained with each training set has
been validated using leave-one-out cross-validation. That is,
one of the subjects, kout , has not been included in the training
set, in any of the two states (neither rest or attention task).
The classifier is validated with these two states of the subject
based on their features (R(Yko u t

S ) where possible values for S
are BTA1 , BTA2 and BL2). The whole process is repeated
for kout = 1...Nk . In this case, the size of the training set (n)
in the bagging method is 2 · (Nk − 1). In this equation, −1 is
because one subject is used in the leave-one-out cross-validation
and we multiply by 2 because there are two states for each
subject.

A wrapping method based on bagging has been used as a
feature selector. This feature selection method consists of the
following steps:

1) A classifier is trained and validated with each of the fea-
tures using the leave-one-out method.

2) The feature of the classifier with the greatest accuracy
is selected (F = {F1}, where F is the set of selected
features).

3) A classifier is trained and validated with two features, the
one previously selected, in addition to each of the remain-
ing features. The features with redundant information are
not considered in this step.

4) The two features of the classifier with the greatest accu-
racy are selected (F = {F1 , F2}).

5) Steps 3 and 4 are repeated, sequentially increasing the
number of features (F = {F1 , F2 , . . . Ff }, where f is
the maximum number of features that can be selected).

An exclusion criterion for features with redundant informa-
tion is included in this feature selection process. Other studies
have shown that HRV and PRV time and frequency features are
highly correlated [15]–[19]. Pearsons correlation coefficient is
used to corroborate the correlation when both variables have a
normal distribution. In other case, the Spearmans coefficient is
applied. Consequently, of the features with a high correlation
coefficient, only the first one selected will be included in set F .
Similarly, only the first respiratory rate selected, estimated from
the PPG signal or the ECG signal, will be considered. When im-
posing these two restrictions, the maximum number of features
for the classifier will be 16 (f equal to 16).

The smallest subset with greatest accuracy is selected from
these 16 features. Once the most significant features have been
selected, the final classifier is trained and validated. Since the
results obtained depend on a random subsets generation training
process (Zb ), this last step has been repeated 100 times to obtain
more reliable accuracy of the final classifier.

A block diagram of this methodology can be seen in Fig. 4.

IV. RESULTS

The population sample used in this study comprises 50 sub-
jects whose ECG and PPG signals are recorded in two states:
rest and attention task. Twenty-six parameters are extracted from
these signals, 10 from the ECG signal and 16 from the PPG sig-
nal. For each of these parameters, the suitability of including
each subject is evaluated using two criteria. The first of these
criteria is applied to the HRV and PRV frequency parameters.
The respiratory rates of nine subjects are lower than 0.15 Hz or
greater than 0.4 Hz, which may result in an overestimation of
the power in the LF band or an underestimation of the power in
the HF band, respectively. Therefore, the frequency parameters
of these 9 subjects, extracted from the ECG and PPG signals,
are removed from the study. The second criterion is associated
with the identification of outliers. For each parameter, the sub-
jects outside the interval [T l

Y Th
Y ], defined in subSection III-E,
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TABLE I
VALUES (MEDIAN ± IQR) OF TIME, FREQUENCY AND RESPIRATION PARAMETERS AT EACH STATE (AU. ARBITRARY UNITS, AD. ADIMENSIONAL, NU.

NORMALIZED UNITS) AND THEIR NORMALIZATION. STATISTICAL DIFFERENCES ARE REPRESENTED BY: � (p < 0.05), �� (p < 0.01) AND ��� (p < 0.001). IN
THE COLUMNS R(YB T A 1) AND R(YB T A 2), THE VALUES WITH SUBSCRIPT † INDICATE A NORMAL DISTRIBUTION OF PARAMETERS, IN ALL OTHER CASES

THE DISTRIBUTION IS NOT NORMAL. Final Size INDICATES FINAL NUMBER OF SUBJECTS USED FOR EACH PARAMETER. (ARBITRARY UNITS: A.U. /
NORMALIZED UNITS: N.U.)

TABLE II
NORMALIZED VALUES (MEDIAN ± IQR) OF MORPHOLOGICAL PARAMETERS
OF PPG AT EACH STATE. STATISTICAL DIFFERENCES ARE REPRESENTED
BY: � (p < 0.05), �� (p < 0.01) AND ��� (p < 0.001). IN THE COLUMNS
R(YB T A 1) AND R(YB T A 2), THE VALUES WITH SUBSCRIPT † INDICATE A

NORMAL DISTRIBUTION OF PARAMETERS, IN ALL OTHER CASES THE
DISTRIBUTION IS NOT NORMAL. Final Size INDICATES FINAL NUMBER OF

SUBJECTS USED FOR EACH PARAMETER

are eliminated from the study. The subjects eliminated in each
parameter due to this second criterion, and the final population
are shown in Tables I and II.

The parameters object of this study can be affected by changes
in the ambient temperature of the room where the test is per-
formed. The room temperature sensor indicates that the tem-
perature variations during the recordings were 0 ± 2 degrees
Celsius (median ± iqr).

A. Statistical Analysis

Results of the BTAs show a greater number of correct answers
when the subjects count letters. The mean correct answers in the
population was 8.4 ± 1.1 (mean ± std) when counting letters
and 6.7 ± 1.2 (mean ± std) when counting numbers, with 10
being the maximum score. This difference in results is signif-
icant (p < 0.001), as only three subjects obtain better results

when counting numbers. However, the number of correct an-
swers maintains a moderate correlation (Spearman’s correlation
coefficient 0.43) between the two parts of the test.

Table I shows time and frequency parameters obtained from
ECG and PPG together with the estimated respiratory rate, for
both states and the results of the statistical analysis. These re-
sults show a decrease in the power of the HRV and PRV classical
bands (PHF and PLF) during both BTA parts. This decrease is
significant only in the HF band of the PRV, during BTA1 . In
this table the changes produced in HRV and PRV time param-
eters are shown as significant. These parameters indicate an
increase in heart rate when subjects are carrying out the BTA,
and a decrease in the other time parameters (SDNN , SDSD,
RMSSD and pNN50). These four time parameters are related
to the instability of the heart rhythm. A significant increase in
the respiratory rate can also be observed during the BTA.

Table II shows the morphological parameters extracted from
the PPG signal for both states. This table shows a significant
increase in the width of PPG signal pulses when the subjects
carry out the BTA, as well as a significant decrease in pulse am-
plitude during BTA1 . The PPG waveform amplitude is affected
by an unknown coefficient that is constant along the recording,
which depends on the physiology of each subject. Therefore,
normalization of parameters with a baseline reference state is
done so that results are not affected by this coefficient. Only
the data not affected by this unknown coefficient are shown in
Table II.

B. Feature Selection and Classification

After identifying the parameters that change significantly
when the subjects go from a state of rest to carrying out a
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Fig. 5. Boxplots of the frequency and time parameters of the HRV and PRV. In red R(YB L 2). In blue R(YB T A 1). In black R(YB T A 2).

Fig. 6. Boxplots of the morphological parameters extracted from the
PPG signal. In red R(YB L 2). In blue R(YB T A 1). In black R(YB T A 2).

BTA, this study’s next challenge is the automatic identification
of these two states. To minimize the effects of the intersubject
variance, all parameters are normalized with a Yk

BL1
reference

state. The two classes to be separated correspond to the sub-
jects’ resting state (R(YBL2)) and an attention demand state
(R(YBT A 1) and R(YBT A 2)). The boxplot in Fig. 5 and Fig. 6
show the described ratios of each parameter extracted from the
ECG and PPG signals. The boxplot show a large dispersion
between subjects in HRV and PRV time and frequency param-
eters ratios than PPG morphological parameters. Moreover, a
change in the tendency between R(YBL2) and R(YBT A 1) can
be observed in this morphological parameters.

Table III shows the correlation coefficient between the HRV
and the PRV time and frequency parameters. We can see that this
correlation is above 0.57 in almost all the comparisons made.
Only in PLFn and RLF/HF, when the BTA is being carried out,
does the correlation fall below 0.40. These results indicate that
the HRV and the PRV time and frequency parameters are cor-
related [49]. So that these parameters would provide redundant

information in the classification. In order to achieve the greatest
possible accuracy, with the least number of features, redundant
parameters have not been included in the selection of features.

Finally, the method of feature selection used employs an al-
gorithm based on a bagging ensemble method, requiring a ran-
domness seed, which is why the process is repeated 10 times.
Fig. 7(a) shows the accuracy obtained in the identification of the
R(YBL2) and R(YBT A 1) states in each of these 10 processes,
by increasing the number of selected features from 1 to 16.
Optimal results are those obtained with four, five, six or seven
features, due to their great accuracy and their low number of
features. For each of the 10 selection cases, the classification is
repeated 100 times with the four, five, six or seven first features.
The quality of the results is evaluated with the mean, maximum
and minimum accuracy of these 100 repetitions.

Table IV shows the order of the features obtained in the se-
lection process, as well as the accuracy obtained by separating
the classes R(YBL2) and R(YBT A 1). It shows that the first two
features selected in the 10 cases is PPG Pulse Width (PW ) and
HR, or PR. The following selected features, in each of the
cases, are varied without appreciating differences significant in
the classification results. However, in five cases, the features
three and four are PP

LFn
and RP

LF/HF. Maximum accuracy of
95text% is reached in case 4, but with nine features (Fig. 7(a)).
In Table IV, all cases show a similar accuracy, but in case 4 the
first four features are obtained from a single signal, the PPG
signal. With these four features and when using the R(YBT A 2)
and R(YBL2) segments as the test population, average accu-
racy is 85 ± 1% (mean ± std), maximum accuracy is 89% and
minimum accuracy is 81%, for 100 repetitions. This validation
has been done using the leave-one-out cross-validation method,
since the subjects of the training set (R(YBL2) and R(YBT A 1))
and test set (R(YBL2) and R(YBT A 2)) are the same.

If feature selection is done only over the parameters extracted
form the ECG signal, the maximum accuracy obtained is less
than 85 % (Fig. 7(b)). Similar results are obtained by classi-
fying only with parameters extracted from the PPG signal, ex-
cluding the morphological parameters from the feature selection
(Fig. 7(c)).
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TABLE III
CORRELATION FOR HRV AND PRV PARAMETERS. THE VALUES WITH SUBSCRIPT † CORRESPOND WITH THE PEARSONS

CORRELATION COEFFICIENT, IN ALL OTHER CASES THE COEFFICIENTS ARE CALCULATED USING A SPEARMAN RANK CORRELATION

Fig. 7. Accuracy obtained when identifying the subject’s state, resting or demand of attention, when the number of selected features increases, in
each of the 10 cases generated. (a) All the features have been taken into account in the selection. (b) Only the features extracted from the ECG
signal have been considered in the selection. (c) Only the features extracted from the PPG signal, without the morphological feature, have been
considered in the selection.

V. DISCUSSION

The purpose of this study is the automatic identification of an
attention demand state versus a resting state. The resting state
corresponds to a state of inactivity, while an attention demand
state is induced by a standardized test, the BTA. For this, a
database is built with parameters extracted from the ECG and
PPG signals of 50 subjects, recorded during those two desig-
nated states. HRV and PRV time and frequency parameters are
extracted, as well as six morphological parameters from the
PPG signal. For an adequate analysis of the frequency parame-
ters of the HRV and PRV, a recording of the ECG/PPG signals
of approximately 2 minutes is necessary [6]. In this work, this
constraint has been respected. Likewise, it has been verified that
there are no variations in ambient temperature that may affect
the parameters under study.

The respiratory rate is extracted from both ECG and PPG
signals. This respiratory rate is not only included as a parameter
for the development of the classifier, but is also used to complete
the subject’s ANS response study. To minimize the effect of the
intersubject variability, the statistical and classification study is
carried out on the proposed parameters ratios, i.e., the states
under study are normalized with the subject’s baseline state
through the equation (19).

One limitation of this work is the non-inclusion of a specific
respiratory signal record. To overcome this limitation, two al-
gorithms were implemented to extract the respiratory rate of the
ECG and PPG signals [8], [44]. It should be noted that the two
algorithms used were tested with respect to a reference device
and the good results obtained validate their use for estimating

respiratory rates. The margin of error reported for the EDR [44]
and PDR [8] methods, in the worst case, has a standard devia-
tion of approximately 0.025 Hz. These algorithms are accurate
enough to identify subjects with respiratory rates falling outside
the [0.15 Hz 0.4 Hz] band. In this case, these subjects’ HRV
and PRV frequency parameters are eliminated from the study
since they can lead to the ANS response being misinterpreted
[11], [14].

Table I shows an increase in respiratory rate and heart rate, to-
gether with a significant decrease in the rest of time parameters
during the attention demand task. This decrease could suggest
that the heart rate of the subjects are more stable during the
BTA as these parameters mostly reflect the stability of the sig-
nal. Likewise, the FR has been identified in other works with
significant differences between stress situations and attentional
states versus resting states [11].

Results from the frequency parameters show a significant de-
crease in the PHF of the PRV, and a non-significant decrease
in PLF during the first part of the BTA (BTA1). Besides,
non-significant changes are shown in the normalized values of
PLFn and RLF/HF. This decrease in the PHF matches with other
works where subjects perform high level of attention demand-
ing tasks [11]. In those works, also a significant increase in PLFn

and RLF/HF has been shown. Some authors relate this increase in
these sympathetic markers (PLFn and RLF/HF) to the activation
of the sympathetic system, which occurs when the subject is
exposed to various types of stressors (e.g. mental arithmetic,
exams, reaction time) [11], [50]. However, this behaviour is not
experimented in our work due to the fact that BTA has a low
stress component differently to [11], where the main goal lies in
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TABLE IV
THE SECOND COLUMN SHOWS THE FIRST SEVEN FEATURES SELECTED IN EACH OF THE 10 CASES. THE FOURTH COLUMN SHOWS THE MEAN AND

STANDARD DEVIATION OF THE ACCURACY OBTAINED OF THE ONE HUNDRED REPETITIONS WITH 4, 5, 6 AND 7 FEATURES, WHEN CLASSIFYING THE STATES
R(YB L 2) AND R(YB T A 1). COLUMNS FIVE AND SIX SHOW THE MAXIMUM AND MINIMUM VALUES OF ACCURACY OBTAINED IN THE

HUNDRED REPETITIONS OF EACH CLASSIFIER

stress generation. On the other hand, other authors question the
assertion that PLFn and RLF/HF are a representation of the sym-
pathetic response of the ANS. This assertion is based on four
assumptions [51], [52]: (1) cardiac sympathetic nerve activity is
a major, if not the exclusive, factor responsible for the LF peak
of the heart rate power spectrum; (2) cardiac parasympathetic is
exclusively responsible for the HF peak of the heart rate power
spectrum; (3) disease or physiological challenges provoke re-
ciprocal changes in cardiac sympathetic and parasympathetic
nerve activity; and (4) there is a simple linear interaction be-
tween the effects of cardiac sympathetic and cardiac parasym-
pathetic nerve activity on HRV. Each of these statements has
been rebutted by several studies [52], [53]. In particular, the
complex nature of LF power and the non-linear interactions be-
tween sympathetic and parasympathetic nerve activity, makes it
impossible to affirm that the physiological basis of the RLF/HF is
due exclusively to the sympathetic branch of the ANS. Similar
conclusions can be applied to the interpretation of the PLFn.

Concerning morphological PPG parameters, PW and PWd

values increase when subjects carry out the BTA, being the pa-
rameters that reaches the lowest significance level (α = 0.001)
in their p-value. PWu had no significant changes. These results
indicate that there are non-significant changes in systole, and
that the change in the width of the pulses are due to changes
either in the diastole, or in the wave reflections from the periph-
ery, or in both. Another work showed an increase in the width of
PPG signal as the systemic vascular resistance increased, con-
sistent with prolongation of the time required for transmission
of the pulse wave at the level of the arteriolar vessels [24]. This
increase in systemic vascular resistance is due to the fact that
the innervation of the finger is predominantly adrenergic, that
is, it is activated by the sympathetic system [25]. On this basis,
the increase of PW and PWd observed in our results indicates
an activation of the subjects’ sympathetic nervous system when
carrying out the BTA. However, the classical markers (PLFn and
RLF/HF) show non-significant changes. Our results also show a
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significant decrease in PA and PSu , during the first part of
the BTA. The reduction of the PA can be attributable either
to a loss of central blood pressure or to constriction of the ar-
terioles perfusing the skin. An arterial blood pressure increase
due to increased peripheral resistance, as well as a peripheral
vasoconstriction, due to an activation of the sympathetic system,
could be the respective factors responsible for this reduction in
amplitude [46].

During the second part of the BTA (BTA2), changes in PHF,
PA and PSu cease to be significant, and the remaining param-
eters stay the same. We also observe that the p value of PW and
PWd parameters, during the BTA1 segment, is lower than 0.001,
significance level that is not reached during the BTA2 segment.
These differences seem to indicate a decrease in the activation
of the sympathetic nervous system during the second part of the
test, which may be due to a learning curve while carrying out the
BTA, or to the fact that counting letters is cognitively simpler
for the subjects. The results obtained by the subjects, in each
of the BTA parts, supports this observation since the number of
correct answers is significantly higher when the subjects count
letters.

Other works have suggested that the pulse width, at half height
of the beat, correlates with the systemic vascular resistance bet-
ter than the amplitude [24]. Our results have also obtained a
statistical significance in the PW , corroborating their greater
sensitivity to changes in systemic vascular resistance. Addition-
ally, our results show PW and PA present a higher sensitivity
than classical features PLFn and RLF/HF for identifying low sym-
pathetic nervous system activation.

The results obtained from the selection of features corroborate
the fact of the great sensitivity of the PW for identifying a low
sympathetic nervous system activation. The PPG signal width is
the first parameter selected in the 10 classification cases shown
in Table IV. Fig. 7(a). shows that with this unique feature the
classification results approximates 70% of accuracy in these 10
cases. When one more feature is included, the classification ac-
curacy exceeds 80% in all cases. Additionally, the results show
that in five cases the features selected in third and fourth position
are PLFn and RLF/HF, both extracted from the PPG signal. How-
ever, the accuracy obtained with the time-frequency features of
the PPG signal are very poor if the morphological features of
this signal are not included, as can be seen in Fig. 7(c). There
are some evidences that the mechanisms of regulation of heart
rate and peripheral blood flow are not identical as they could
be generated in different central neural structures [54]. These
differences could explain the added value of using PPG mor-
phological features for identifying attention states in addition to
PRV features.

Similar accuracy is obtained in all cases with four features,
but in case 4 these four features are only extracted from the PPG
signal: PW , PR, PSd and PA. Except for PSd , these features
have already been associated with an activation of subjects’
sympathetic nervous system by other authors [11], [24], [46].
Table IV shows that the third selected feature, in three of the
ten cases, is the downward slope of the PPG pulses (PSd ). This
parameter did not show significant differences between the two

studied states; however, it seems to contain relevant information
that can assist in automatically identifying the subject’s state.
These four features accurately identified a different state from
a training state. When using the test population R(YBT A 2) and
R(YBL2), accuracy is maintained at 85 ± 1% (mean ± std).

The classification results (Table IV) show that PPG signal
morphological parameters are extremely sensitive for the auto-
matic identification of the two studied states: rest and attention
task. The significance of PPG signal morphology is for the iden-
tification of the subject’s state can be clearly seen when, upon
applying the same classification algorithm with only features
extracted from the ECG or PPG signals, without morphological
ones, the accuracy only reaches 85% in the best case (Fig. 7(b)
and Fig. 7(c)). For this reason and based on the results of this
study, we can conclude that the PPG signal can differentiate
between resting and attention demand states.

VI. CONCLUSION

This study has shown that when subjects carry out a brief
attention test they experience a slight activation in their sympa-
thetic nervous system and a lowering of their parasympathetic
nervous system (PHF of the PRV. significantly decreases). These
results show that PPG pulse width and amplitude (PW and PA)
are more sensitive than the classic parameters, PLFn and RLF/HF,
when detecting the activation of the sympathetic nervous system
in mild states of mental stress. They have also shown that param-
eters extracted from the PPG signal can better identify subjects’
resting or attention demand states than parameters extracted
from the ECG signal. With only four parameters extracted from
the PPG signal (PW , PR, PSd and PA) a mean accuracy of
89% in classification is obtained.
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