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Periodic repolarization dynamics 
as predictor of risk for sudden 
cardiac death in chronic heart 
failure patients
Saúl Palacios1*, Iwona Cygankiewicz2, Antoni Bayés de Luna3, Esther Pueyo1,4,5 &  
Juan Pablo Martínez1,4,5

The two most common modes of death among chronic heart failure (CHF) patients are sudden cardiac 
death (SCD) and pump failure death (PFD). Periodic repolarization dynamics (PRD) quantifies low-
frequency oscillations in the T wave vector of the electrocardiogram (ECG) and has been postulated 
to reflect sympathetic modulation of ventricular repolarization. This study aims to evaluate the 
prognostic value of PRD to predict SCD and PFD in a population of CHF patients. 20-min high-
resolution (1000 Hz) ECG recordings from 569 CHF patients were analyzed. Patients were divided into 
two groups, PRD+ and PRD− , corresponding to PRD values above and below the optimum cutoff point 
of PRD in the study population. Univariate Cox regression analysis showed that SCD risk in the PRD+ 
group was double the risk in the PRD− group [hazard ratio (95% CI) 2.001 (1.127–3.554), p < 0.05 ]. 
The combination of PRD with other Holter-based ECG indices, such as turbulence slope (TS) and index 
of average alternans (IAA), improved SCD prediction by identifying groups of patients at high SCD 
risk. PFD could be predicted by PRD only when combined with TS [hazard ratio 2.758 (1.572–4.838), 
p < 0.001 ]. In conclusion, the combination of PRD with IAA and TS can be used to stratify the risk for 
SCD and PFD, respectively, in CHF patients.

Approximately 1–2% of the adult population in Western societies is diagnosed with heart failure (HF)1,2, includ-
ing over 10% of people aged 70 years or  older3. An estimated 64 million people suffer from HF worldwide and 
the total associated cost in health programs is estimated to reach $400 billion by  20304. HF is a clinical syndrome 
accompanied by a high burden of co-morbidities5 and poor  prognosis6.

In chronic HF (CHF) patients, sudden cardiac death (SCD) represents the cause of death in 30–50% of  them7 
and accounts for more than 60% of all cardiovascular deaths out of  hospital8. SCD is defined as death due to 
unexpected circulatory arrest that occurs within an hour of the onset of symptoms or during  sleep9. Another 
common cause of death in CHF is pump failure death (PFD), resulting from progressive pump failure. Treatment 
with β-blockers and implantable cardioverter defibrillators (ICDs) are effective therapies for prevention of SCD, 
improving the quality of life of affected patients and altering the mode of death from SCD to  PFD10. Based on this 
evidence, there is an important need to successfully predict the mode of death in CHF, which could contribute 
to a more cost-effective use of medications or devices.

A variety of non-invasive indices derived from resting electrocardiograms (ECGs) or ambulatory Holter 
recordings have been proposed for stratifying CHF patients according to their PFD and SCD risk. Among oth-
ers, heart rate variability (HRV)11, QT interval variability index (QTVi)12, baroreflex  sensitivity13, fragmented 
 QRS14,15, T-wave  alternans16,17 or turbulence  slope18 have been investigated. Periodic repolarization dynamics 
(PRD) has been proposed to assess sympathetic modulation of ventricular repolarization by measuring low-
frequency (LF, below 0.1 Hz) oscillations in the T-wave  vector19. Elevated PRD has been related to increased 
arrhythmic risk in a range of cardiac diseases and  conditions19–22.

Autonomic imbalance, with increased sympathetic activity and withdrawal of vagal activity, has been 
described as a hallmark of  HF23. Such an imbalance leads to worsening of prognosis in CHF  patients24, with 

OPEN

1BSICoS Group, Aragón Institute of Engineering Research, IIS Aragón, Universidad de Zaragoza, Zaragoza, 
Spain. 2Department of Electrocardiology, Medical University of Lodz, Lodz, Poland. 3Cardiovascular Research 
Foundation, Cardiovascular ICCC-Program, Research Institute Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 
Barcelona, Spain. 4CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain. 5These 
authors contributed equally: Esther Pueyo and Juan Pablo Martínez. *email: spalacios@unizar.es

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-99861-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:20546  | https://doi.org/10.1038/s41598-021-99861-1

www.nature.com/scientificreports/

higher likelihood for PFD and  SCD25,26. On this basis, we hypothesize that, if the PRD index is a marker of 
sympathetic-associated repolarization instability, it could be used for risk prediction in a CHF population. This 
work specifically aims to assess the capacity of the PRD index, calculated by using an update of the originally 
proposed  algorithm27, for SCD and PFD risk stratification of CHF patients. PRD was analyzed both individually 
and in combination with other repolarization and autonomic-related ECG indices to predict SCD and PFD.

Results
The study population consisted of 569 CHF patients (409 men and 160 women), aged 20–80 years (mean 
63± 12 ), enrolled in the MUSIC (MUerte Subita en Insuficiencia Cardiaca) study. From the 992 included in 
the original MUSIC  study28, 341 patients had atrial fibrillation, flutter or pacemaker and were excluded for the 
present analysis. Out of the remaining 651 patients, 82 patients did not have an available high-resolution ECG 
recording and were therefore not included. Mean left ventricular ejection fraction (LVEF) was 37.0 ± 13.8% 
(range 12–70%), with most patients (55%) presenting LVEF ≤ 35% . Half of the patients (50.1%) had ischemic 
cardiomyopathy and 259 patients had previous myocardial infarction (45.5%). Detailed characteristics of the 
study population are shown in Table 1.

Association of PRD with cardiac events. PRD was dichotomized according to the optimum cutoff 
point obtained from ROC analysis for each of the investigated endpoints. Optimum cutoff values were 1.33◦ for 
SCD, 1.31◦ for PFD (approximately coincident with the median PRD over the study population) and 1.32◦ for 
cardiac death (CD), comprising SCD and PFD. In each case, PRD+ and PRD− subgroups were defined to contain 
patients with PRD values above and below the cutoff point, respectively. Additional information on the deriva-
tion of the cutoff values is provided in “Methods” section.

The percentages of SCD, PFD and CD victims in PRD+ and PRD− groups are presented in Fig. 1. There were 
106 CD victims in the study population (18.6%), of which 53 died of SCD and 53 of PFD. The SCD mortality rate 
was significantly higher (p = 0.018) in the PRD+ group (33 victims, 11.7%) than in the PRD− group (20 victims, 
7%). Regarding PFD, no significant differences in mortality rates between PRD+ and PRD− groups were found (28 
victims, 10% in PRD+ vs 25 victims, 8.7% in PRD− ). For CD, significant differences were found, with mortality 
being remarkably higher in the PRD+ group as compared to the PRD− group (22.3% vs 15%).

SCD and PFD risk prediction based on PRD and other individual variables. Kaplan–Meier sur-
vival analysis showed that PRD+ patients had significantly lower SCD survival probability than PRD− patients 
( p = 0.024 ), as illustrated in Fig. 2. When accounting for PFD as a competing risk, Fine and Gray  analysis29 
showed that the cumulative SCD incidence curves for PRD+ and PRD− patients were statistically significantly 
different ( p = 0.048 ). When PFD was considered as endpoint, no significant differences in the survival rates 
were found between PRD+ and PRD− groups.

Univariate Cox analysis results for SCD risk prediction by the PRD index as well as by demographical, clinical 
and other ECG variables are shown in Table 2. The variables significantly associated with SCD were New York 
Heart Association (NYHA) class III, LVEF ≤ 35% , NSVT and VPB > 240 , N-terminal prohormone of brain 
natriuretic peptide (NT-proBNP) > 1000 pg/mL , IAA+ , TS+ and PRD+ . None of the HRV variables (LFn, HFn 

Table 1.  Clinical and ECG variables of database. Data are represented as median (interquartile range) for 
continuous variables and as number (percentage) for dichotomized variables. IAA index of average alternans, 
LVEF left ventricular ejection fraction, NSVT nonsustained ventricular tachycardia, NYHA New York Heart 
Association, TS turbulence slope, VPB ventricular premature beat.

Clinical variables

Age (years) 64 (16)

Gender (male) 409 (71.9%)

NYHA class III 99 (17.4%)

LVEF ≤ 35% 312 (54.8%)

Ischemic etiology 285 (50.1%)

Diabetes mellitus 212 (37.3%)

Amiodarone 53 (9.3%)

NT-proBNP > 1000 pg/mL 186 (32.7%)

Prior MI 259 (45.5%)

ECG variables

Median RR (ms) 857 (179)

RR range (ms) 697 (279)

QRS > 120 ms 234 (41.1%)

NSVT and VPB > 240 in 24-h 148 (26.0%)

IAA ≥ 3.7µV 139 (24.4%)

TS ≤ 2.5ms/RR 249 (43.8%)
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or LF/HF) was associated with SCD risk. Regarding PFD, PRD+ was not able to predict this endpoint, whereas 
age, ischemic etiology, prior myocardial infarction, NYHA class, NT-proBNP > 1000 pg/mL and TS+ were 
significant predictors (Table 3).

Multivariate Cox proportional hazards regression model for SCD prediction including clinical variables 
such as the combination of NSVT and VPB > 240 , LVEF ≤ 35% , NYHA class and NT-proBNP > 1000 pg/mL 
together with PRD+ led to the results presented in Table 4. PRD+ and some of the clinical variables were inde-
pendent predictors of SCD, being associated with similar hazard ratio (HR) values. When considering PFD as a 
competing risk event, the regression model for SCD as endpoint included clinical variables and PRD, the latter 
with a HR of 1.65, even if being only marginally predictive ( p = 0.095).

When tested in the subpopulation of patients with CHF of non-ischemic etiology, PRD was able to predict 
SCD in the multivariate model ( HR = 2.497 , p = 0.05 ). In the subpopulation of patients with CHF of ischemic 
etiology, PRD was not predictive of SCD in the univariate model and therefore it was not included in a multi-
variate model.

We finally tested the capacity of PRD+ for CD prediction. The HRs for univariate and multivariate Cox analy-
ses were 1.64 ( p = 0.014 ) and 1.63 ( p = 0.016 ), respectively. Other demographical, clinical and ECG variables 
were also able to predict CD in a univariate Cox model (Table 5).
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Figure 1.  Percentages of SCD, PFD and CD victims in PRD+ and PRD− groups. ∗p < 0.05.

Figure 2.  Estimated probability curve of SCD survival for PRD+ and PRD− groups.
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If rather than dichotomizing PRD based on optimum cutoff points, dichotomization was performed accord-
ing to the median PRD over the whole study population, results only slightly changed. In particular, the HR for 
SCD prediction using PRD+ decreased from 2.001 to 1.934 for univariate Cox analysis and from 2.002 to 1.934 
for multivariate Cox analysis.

SCD and PFD risk prediction based on the combination of PRD with other variables. To 
improve the predictive power for SCD risk, the combination of PRD with other Holter-based variables, such as 
IAA and TS, was assessed. As shown in Fig. 3, patients with PRD+ and TS+ had significantly higher SCD mortal-
ity ( p < 0.05 ) and PFD mortality ( p < 0.001 ) than the rest of patients. CD mortality was significantly higher too. 
Results for the combination of PRD and IAA are presented in Fig. 4. Patients with PRD+ and IAA+ had increased 

Table 2.  Univariate Cox analysis for SCD as endpoint. Age, gender, ischemic etiology, prior myocardial 
infarction, NYHA class, LVEF, HRV indices (LFn, HFn, LF/HF), combined NSVT and VPB > 240 , diabetes, 
NT-proBNP > 1000 pg/mL , IAA+ , TS+ and PRD+ were the analyzed variables. ∗p < 0.05 , ∗∗p < 0.01.

Univariate

HR (95%) p value

Endpoint: SCD

Age 1.016 (0.992–1.040) 0.198

Gender 1.967 (0.960–4.030) 0.064

Ischemic etiology 1.630 (0.940–2.827) 0.082

Prior MI 1.639 (0.952–2.823) 0.074

NYHA class III 2.370 (1.318–4.263) 0.004**

LVEF≤ 35% 2.231 (1.227–4.056) 0.009**

LFn 2.198 (0.556–8.687) 0.261

HFn 0.455 (0.115–1.799) 0.261

LF/HF 1.080 (0.998–1.168) 0.055

NSVT and VPB > 240 2.167 (1.255–3.743) 0.006**

Diabetes mellitus 1.378 (0.800–2.372) 0.248

NT-proBNP > 1000 pg/mL 2.339 (1.349–4.056) 0.002**

IAA+ 2.312 (1.318–4.055) 0.003**

TS+ 2.619 (1.418–4.838) 0.002**

PRD+ 2.001 (1.127–3.554) 0.018*

Table 3.  Univariate Cox analysis for PFD as endpoint. Age, gender, ischemic etiology, prior myocardial 
infarction, NYHA class, LVEF, HRV indices (LFn, HFn, LF/HF), combined NSVT and VPB > 240 , diabetes, 
NT-proBNP > 1000 pg/mL , IAA+ , TS+ and PRD+ were the analyzed variables. ∗p < 0.05 , ∗∗p < 0.01 , 
∗∗∗p < 0.001.

Univariate

HR (95%) p value

Endpoint: PFD

Age 1.051 (1.024–1.079) 1.9× 10−4 ***

Gender 1.135 (0.616–2.090) 0.685

Ischemic etiology 1.946 (1.110–3.411) 0.020*

Prior MI 1.941 (1.119–3.365) 0.018*

NYHA class III 2.715 (1.524–4.836) 0.001**

LVEF ≤ 35% 1.743 (0.987–3.077) 0.056

LFn 0.802 (0.219–2.939) 0.739

HFn 1.247 (0.340–4.570) 0.739

LF/HF 0.957 (0.846–1.083) 0.488

NSVT and VPB > 240 1.738 (0.991–3.047) 0.054

Diabetes mellitus 1.903 (1.110–3.260) 0.019∗

NT-proBNP > 1000 pg/mL 4.945 (2.692–9.082) 2.6× 10−7 ∗∗∗

IAA+ 1.115 (0.594–2.093) 0.735

TS+ 4.964 (2.477–9.947) 6× 10−6 ∗∗∗

PRD+ 1.242 (0.724–2.129) 0.431
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Table 4.  Multivariate SCD risk prediction including the following variables: NYHA class, LVEF ≤ 35% , 
combined NSVT and VPB > 240 , NT-proBNP > 1000 pg/mL and PRD+. ∗p < 0.05.

Multivariate

HR (95%) p value

Endpoint: SCD

NYHA class III 1.606 (0.850–3.036) 0.144

LVEF ≤ 35% 2.034 (1.050–3.940) 0.035*

NSVT and VPB >240 1.516 (0.840–2.734) 0.167

NT-proBNP > 1000 pg/mL 1.632 (0.908–2.933) 0.101

PRD+ 1.825 (1.019–3.268) 0.043*

Table 5.  Univariate Cox analysis for SCD and PFD victims (CD as endpoint). Age, gender, ischemic etiology, 
prior myocardial infarction, NYHA class, LVEF, HRV indices (LFn, HFn, LF/HF), combined NSVT and 
VPB > 240 , NT-proBNP > 1000 pg/mL , IAA+ , TS+ and PRD+ were the variable to analyze in this model. 
∗p <0.05, ∗∗p < 0.01 , ∗∗∗p < 0.001.

Univariate

HR (95%) p value

Endpoint: CD

Age 1.032 (1.014–1.050) 3.6× 10−4 ∗∗∗

Gender 1.461 (0.921–2.319) 0.108

Ischemic etiology 1.780 (1.201–2.636) 0.004∗∗

Prior MI 1.783 (1.211–2.624) 0.003∗∗

NYHA class 2.537 (1.681–3.830) 9× 10−6 ∗∗∗

LVEF ≤ 35% 1.965 (1.303–2.965) 0.001∗∗

LFn 1.304 (0.508–3.344) 0.581

HFn 0.767 (0.299–1.968) 0.581

LF/HF 1.030 (0.963–1.102) 0.384

NSVT and VPB > 240 1.944 (1.315–2.874) 0.001∗∗

Diabetes mellitus 1.620 (1.106–2.372) 0.013∗

NT-proBNP > 1000 pg/mL 3.330 (2.227–4.979) 4.6× 10−9 ∗∗∗

IAA+ 1.637 (1.083–2.474) 0.019∗

TS+ 3.552 (2.251–5.604) 5× 10−9 ∗∗∗

PRD+ 1.636 (1.104–2.425) 0.014∗

Combined variables (PRD and TS)
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Figure 3.  Percentages of SCD, PFD and CD victims in the PRD+ and TS+ group and in the rest of patients. 
∗∗p < 0.01 , ∗∗∗p < 0.001.
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SCD mortality ( p = 0.007 ) and CD mortality ( p = 0.023 ) than the rest of the population. No significant differ-
ences were found with respect to PFD mortality ( p = 0.816).

Figures 5 and 6 show Kaplan–Meier probability curves for SCD survival using the combined variables PRD+ 
and TS+ and PRD+ and IAA+ , respectively. For the two variables, significantly lower survival was found for 
patients with positive PRD and TS or IAA. When PFD was considered as endpoint, differences in survival 
probabilities were only statistically significant when using PRD+ and TS+ . Considering PFD as a competing 
risk event for SCD, Fine and Gray analysis showed significantly higher cumulative SCD incidence for PRD+ 
and TS+ ( PRD+ and IAA+ , respectively) patients than the rest of the population ( p < 0.001 in all cases). When 
accounting for SCD as a competing risk event for PFD, the cumulative PFD incidence for patients with PRD+ 
and TS+ was significantly higher than for the rest of patients in the population ( p < 0.001).

In univariate Cox analysis (Table 6) with SCD as endpoint, PRD+ and TS+ as well as PRD+ and IAA+ were 
risk predictors, with associated HRs of 3.1 and 2.8, respectively. For PFD as endpoint, PRD+ and TS+ patients 
presented more than two and a half times higher risk than the rest of the population. For CD as endpoint, PRD+ 
and TS+ was associated with a HR of 3.1, while PRD+ and IAA+ with a HR of 1.9.

Results from multivariate Cox proportional hazard regression analysis including NYHA class, LVEF ≤ 35% , 
NSVT and VPB > 240 and NT-proBNP > 1000 pg/mL as well as one of the two combined ECG variables at a 
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Figure 4.  Percentages of SCD, PFD and CD victims in the PRD+ and IAA+ group and the rest of patients. 
∗p < 0.05 , ∗∗p < 0.01.

Figure 5.  Estimated probability curve of SCD for two subgroups defined by PRD+ and TS+.
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Figure 6.  Estimated probability curve of SCD for two subgroups defined by PRD+ and IAA+.

Table 6.  Univariate Cox analysis results for PRD+ and TS+ , PRD+ and IAA+ , PRD+ and TS+ and PRD+ and 
IAA+ separately considering SCD, PFD or both as endpoints. ∗p < 0.05 , ∗∗p < 0.01 , ∗∗∗p < 0.001.

Univariate

HR (95%) p value

Endpoint: SCD

PRD+ and TS+ 3.090 (1.729–5.522) 1.4× 10−4 ∗∗∗

PRD+ and IAA+ 2.803 (1.465–5.364) 0.002∗∗

Endpoint: PFD

PRD+ and TS+ 2.758 (1.572–4.838) 4× 10−4 ∗∗∗

PRD+ and IAA+ 0.763 (0.275–2.117) 0.603

Endpoint: CD

PRD+ and TS+ 3.089 (2.066–4.617) 3.8× 10−8 ∗∗∗

PRD+ and IAA+ 1.888 (1.134–3.142) 0.015∗

Table 7.  Multivariable SCD risk prediction including the following variables: NYHA class, LVEF ≤ 35% , 
combined NSVT and VPB > 240 , NT-proBNP > 1000 pg/mL and a combined ECG variable that can be either 
PRD+ and TS+ or PRD+ and IAA+. ∗p < 0.05 , ∗∗p < 0.01.

Multivariate Multivariate

HR (95%) p value HR (95%) p value

Endpoint:SCD

NYHA class III 1.586 (0.813–3.092) 0.176 1.858 (0.987–3.497) 0.055

LVEF≤ 35% 2.084 (1.028–4.225) 0.042∗ 2.228 (1.136–4.371) 0.020∗

NSVT and VPB > 240 1.278 (0.679–2.405) 0.447 1.552 (0.861–2.798) 0.144

NT-proBNP > 1000 pg/mL 1.560 (0.831–2.930) 0.167 1.807 (0.997–3.275) 0.051

PRD+ and TS+ 1.998 (1.068–3.738) 0.030* – –

PRD+ and IAA+ – – 3.046 (1.578–5.877) 0.001∗∗
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time are presented in Table 7 for SCD as endpoint. Both PRD+ and IAA+ and PRD+ and TS+ independently 
predicted SCD risk with HRs of 3.0 and 2.1, respectively. Multivariate regression analysis for SCD with PFD as 
competing risk indicated that the combined variable PRD+ and IAA+ ( PRD+ and TS+ , respectively) predicted 
SCD independently of other clinical variables, with an associated HR of 2.9 (2.4, respectively, being p < 0.01 
in all cases).

In the subpopulation of patients with CHF of non-ischemic etiology, PRD+ and TS+ predicted SCD with a 
HR 3.2 (p = 0.012) and PFD with a HR of 3.43 ( p = 0.011 ) independently of other clinical variables. PRD+ and 
IAA+ predicted SCD risk in both ischemic and non-ischemic etiology subpopulations, with associated HR of 
3.3 and 2.9, respectively.

To complete the study, we tested the capacity of the combined variables for CD risk prediction. Table 8 
shows the results for the two tested multivariable proportional hazard models. Both PRD+ and IAA+ and PRD+ 
and TS+ predicted CD risk independently of other demographic and clinical variables with HRs of 2.4 and 2.0, 
respectively.

Discussion
This work investigates the performance of PRD, characterizing the oscillatory behavior of the T wave, for car-
diac risk stratification in a population of CHF patients. Although PRD has been previously used in various 
 contexts19,27,30–34, in this study, we computed PRD in a large CHF cohort to predict the risk of the two most 
common modes of death, namely SCD and PFD, both considering PRD on its own and in combination with 
other ECG-based indices.

Our results show that CHF patients presenting high PRD values have nearly twice higher risk of suffering 
SCD than CHF patients with low PRD. These findings are in agreement with previous clinical studies showing 
a relationship between increased PRD and enhanced mortality, particularly due to ventricular arrhythmias, 
in different patient  populations19,35. Specifically in post-myocardial infarction patients with impaired LVEF, 
elevated PRD has been related to enhanced risk for  SCD20. Also, PRD has been suggested to be potentially useful 
in guiding clinical decisions on prophylactic implantation of ICDs in patients with ischemic and non-ischemic 
 cardiomyopathy36.

PRD measures the magnitude of LF oscillations in the T wave vector of the ECG and has been postulated to 
reflect sympathetic modulation of ventricular  repolarization19. The same range of LF oscillations in the T wave 
vector accounted for by PRD has been reported for the action potential duration (APD) in in vivo studies on HF 
 patients37. Through in silico simulations, synergistic β-adrenergic and mechanical effects induced by sympathetic 
activation have been shown to contribute to the generation of these LF oscillations of  APD38,39. Those results 
have been supported by subsequent experimental studies showing that increased sympathetic activity potenti-
ates such oscillations and β-adrenergic blockade attenuates  them37,40. In the presence of calcium overload and/
or reduced repolarization reserve, both being commonly associated with HF, the amplitude of LF oscillations of 
APD have been theoretically shown to be magnified, facilitating the occurrence of arrhythmogenic  events39,41. 
A recent in vivo study in a canine model of ventricular remodeling caused by chronic atrioventricular block has 
provided evidence that dogs inducible for ventricular arrhythmias present higher LF oscillations of repolariza-
tion than non-inducible  dogs42. Based on all these observations, the results of our study possibly suggest that 
CHF patients with high PRD present augmented repolarization variability that can lead to destabilization of 
repolarization and promote arrhythmogenesis.

Since CHF is a complex clinical syndrome, some studies have reported the benefit of using combined ECG risk 
markers and/or a risk score integrating information from various clinical and ECG variables to improve clinical 
decision  making43–47. The use of markers providing information about different pathophysiological processes 

Table 8.  Multivariable CD risk prediction including the following variables: age, ischemic etiology, 
prior myocardial infarction, NYHA class, LVEF ≤ 35% , combined NSVT and VPB > 240 , 
NT-proBNP > 1000 pg/mL and a combined ECG variable that can be either PRD+ and TS+ or PRD+ and 
IAA+. ∗p < 0.05 , ∗∗p < 0.01 , ∗∗∗p < 0.001.

Multivariate Multivariate

HR (95%) p value HR (95%) p value

Endpoint: CD

Age 1.015 (0.995–1.035) 0.135 1.021 (1.001–1.041) 0.035∗

Ischemic etiology 1.515 (0.776–2.956) 0.224 2.038 (1.058–3.923) 0.033∗

Prior MI 1.009 (0.523–1.946) 0.980 0.947 (0.500–1.791) 0.866

NYHA class 1.771 (1.119–2.801) 0.015∗ 1.914 (1.226–2.988) 0.004∗

LVEF≤ 35% 1.568 (0.977–2.517) 0.062 1.727 (1.089–2.737) 0.020∗

NSVT and VPB > 240 1.236 (0.789–1.937) 0.354 1.489 (0.969–2.287) 0.069

NT-proBNP > 1000 pg/mL 2.092 (1.326–3.302) 0.002∗∗ 2.293 (1.478–3.557) 2×10−4 ∗∗∗

PRD+ and TS+ 1.893 (1.215–2.947) 0.005∗∗ – –

PRD+ and IAA+ – – 2.431 (1.446–4.085) 0.001∗∗
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associated with CHF has been shown to be very  useful48,49. Here, a combination of PRD and other ECG-based 
indices are tested for SCD and PFD risk prediction. For PFD prediction, the combination of PRD with TS, meas-
uring heart rate turbulence, stratifies the study population into two groups according to the risk of PFD. The risk 
of dying from PFD is two and a half times higher in patients with high PRD ( PRD+ ) and low TS ( TS+ ) than in the 
rest of patients. Nevertheless, the capacity for PFD prediction of TS on its own is already very good, as reported 
in previous  studies50, and PRD only slightly improves it. TS represents a vagally-mediated response of heart rate 
to ventricular premature beats with involvement of baroreflex sensitivity. TS has been considered an excellent 
marker of neurohormonal activation in CHF  patients50,51. Since autonomic dysfunction and neurohormonal 
activation have a relevant role in the progression of CHF, our results on the capacity for PFD risk stratification 
of combined PRD and TS support assessment of such CHF landmarks noninvasively from short-term ECGs (for 
PRD evaluation) and Holter recordings (for TS evaluation). In terms of SCD prediction, the stratifying ability 
of PRD is enhanced when combined with the marker IAA evaluating T-wave alternans amplitude over 24 h. 
While T-wave alternans, measured by IAA in this work, is related to abnormal cardiac  function17, PRD measures 
changes in sympathetic modulation of ventricular  repolarization19. The synergistic information provided by the 
two variables serves to improve SCD prediction. In all the above described findings, the risk stratification capacity 
of PRD is maintained when accounting for competing risk events in survival analyses.

NT-proBNP concentration, dichotomized using the threshold (1000 pg/mL) proposed in the original 
MUSIC  study28, was not a significant predictor of SCD in multivariable regression models comprising PRD 
or combined ECG markers. When the endpoint was CD, NT-proBNP > 1000 pg/mL could significantly pre-
dict CD in a multivariable model. Other studies have proposed alternative thresholds for NT-proBNP, like 
NT-proBNP > 5180 pg/mL52, and found the dichotomized variable to be a predictor of both SCD and PFD. 
However, as our CHF population includes only patients in NYHA classes II and III, only 7% of the patients had 
NT-proBNP values above 5180 pg/mL.

On the basis of previous studies showing that PRD is unrelated to HRV and respiratory  activity19, we hypoth-
esized that PRD and HRV markers could add complementary information. However, our results show that HRV 
markers do not have a relationship either with SCD or PFD and, thus, we have not combined them with PRD for 
risk stratification purposes. On the other hand, of the clinical variables assessed in our study, NYHA class and 
LVEF ≤ 35% are the two with the highest HR for both PFD and SCD. In any case, the HR of these two clinical 
variables are lower than those obtained for the combined ECG variables PRD and TS in the prediction of PFD 
and PRD and IAA in the prediction of SCD. LVEF is widely used in the clinics to identify high-risk patients but 
its accuracy is  low53. Regarding NYHA class, as it reflects a subjective assessment and can change frequently 
over short periods of  time28, its interpretation is more critical than other variables. The analysis conducted in 
this work suggests that the adjunct use of clinical variables and ECG-based markers can improve the prognostic 
value of all of them and render a risk score with remarkably superior performance to predict the two most com-
mon modes of death in CHF patients.

An important aspect regarding the use of PRD is the fact that it can be measured from 5-min ECGs by using 
the phase-rectified signal averaging (PRSA)-based method employed in this study, first described by Rizas 
et al.35 and subsequently updated by Palacios et al.27 Here, we use 20-min ECGs, from which the 5-min segment 
associated with minimum PRD is selected. This is an advantage as compared to a number of previously analyzed 
markers, such as  IAA17,  QTVi12,  TS54, �αQT55, �αTpe56 or  TMR57, which require longer ECG recordings or specific 
protocols, like stress tests or steady heart rate, for their evaluation. While the combination of PRD with other 
Holter-based markers improves risk stratification, it requires long-duration recordings. On this basis, we propose 
that PRD could be used in an initial step to select patients with high CD risk. Over those selected patients, the use 
of longer duration signals and associated variables could be useful to specifically predict each of the death modes. 
Several works have proposed other markers related to repolarization variability measured from short-term ECG 
recordings, such as the variance normalized by the mean of QT end, QT peak or T-peak-to-T-end (Te) intervals, 
and have evaluated them in CHF populations. In recent studies, the mean and/or standard deviation of Te have 
been shown to predict 30-day  mortality58,59 and mortality in  hospital60 among decompensated CHF patients.

To sum up, our study documents the prognostic value of PRD in combination with other Holter-derived 
markers to predict PFD and SCD in a large cohort of CHF patients. Future studies on CHF cohorts including a 
larger number of SCD and PFD victims would allow conducting more robust statistical analysis to confirm the 
findings here reported. Also, studies on larger populations would facilitate assessing the capacity of PRD for 
risk stratification in specific CHF patient subpopulations, such as those with reduced or preserved LVEF or at 
different NYHA classes, among others.

Methods
Study population. The MUSIC study is a prospective, multicenter, longitudinal study designed to assess 
risk predictors of cardiac mortality and SCD in ambulatory patients with CHF. Patients were consecutively 
enrolled from the specialized CHF clinics of eight University Hospitals between April 2003 and December 2004. 
All had symptomatic CHF (NYHA class II–III) and were treated according to institutional guidelines. The study 
included patients with either depressed or preserved LVEF. Patients with preserved LVEF were included if they 
had CHF symptoms and a prior hospitalization for HF or some objective signs of HF confirmed by chest X-ray 
(findings of pulmonary congestion) and/or echocardiography (abnormal LV filling pattern and LV hypertro-
phy). Patients were excluded if they had recent acute coronary syndrome or severe valvular disease amenable for 
surgical repair. Patients with other concomitant diseases expected to reduce life-expectancy were also excluded. 
All patients gave written informed consent and the study protocol was approved by all the institutional investiga-
tion and ethics committees from the following participant hospitals: Valme Hospital, Santiago de Compostela 
Hospital, Son Dureta Hospital, Arrixaca Hospital, Gregorio Marañon Hospital, Joan XXIII Hospital, Insular Las 
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Palmas Hospital, Sant Pau  Hospital28. All methods were performed in accordance with the relevant guidelines 
and regulations.

Study protocol. For each patient, two ECG recordings were available: a 24-h ambulatory ECG sampled at 
200 Hz in 3 orthogonal X, Y and Z leads using SpiderView recorders (ELA Medical, SorinGroup, Paris, France) 
and a prior 20-min ECG sampled at 1000 Hz while patients were resting in supine position. In this study, PRD 
was measured from the 20-min ECG recording. Patients were followed every 6 months on an outpatient basis 
for an average of 48 months. Death was defined as SCD if it was: (1) a witnessed death occurring within 60 
min from the onset of new symptoms, unless a cause other than cardiac was obvious; (2) an unwitnessed death 
( < 24 h ) in the absence of preexisting progressive circulatory failure or other causes of death; or (3) a death dur-
ing attempted resuscitation. Deaths occurring in hospital as a result of refractory progressive end-stage CHF, or 
CHF patients undergoing heart transplantation, were defined as PFD. Endpoints were reviewed and classified 
by the MUSIC Study Endpoint Committee. A description of clinical data for the overall population and more 
detailed information about the study protocol can be found in Vazquez et al.28.

ECG pre-processing. High-resolution ECG signals were preprocessed by a 50 Hz notch filter to remove 
powerline interference. QRS complexes were detected using Aristotle  software61. The heart timing method 
described in Mateo and  Laguna62 was applied to detect irregular sinus beats. As the main analysis was focused 
on the T-wave, a 40-Hz low-pass filter was subsequently applied onto the ECG signals to remove noise without 
distorting the T-wave shape. Finally, baseline wander was estimated by cubic splines interpolation and cancelled.

For each beat i, a window including the T-wave was defined from the QRS position, denoted by QRSi , 
and the associated RR interval preceding it, denoted by RRi . The T-wave window onset, denoted by Toni , 
was set at 90 ms after the QRSi mark: Toni = QRSi + 90ms . The T-wave window end, denoted by Tendi , was 
defined as Tendi = QRSi +min(360ms, 23RRi ) for RRi below 720 ms. For RRi equal or higher than 720 ms, 
Tendi = QRSi + 360ms.

The noise level was estimated in each lead and beat by measuring the root mean square value of the high-
frequency components (above 15 Hz) in a window around the T-wave, similarly to previous  works56. A global 
measure of noise for each beat i was obtained by summing the noise levels of all leads and denoted by VRMS

noise(i) . 
If a beat was too noisy ( VRMS

noise >140 µV), the associated T-wave marks ( Ton and Tend ) were discarded for further 
analysis, but the associated QRS mark was retained.

PRD computation. PRD was measured in the preprocessed signal by using the method described in Pala-
cios et al.27, a modified version of the original method described in Rizas et al.19. This method included the fol-
lowing steps: 

1. T waves were selected using the T wave windows defined in section ECG pre-processing.
2. A constant value was subtracted from each T wave in each of the analyzed leads so that the amplitude at Tend 

was set to 0 mV.
3. The average electrical vector was calculated for each T-wave window. The angle dT◦ between two consecutive 

T-wave windows was calculated by the dot product of the corresponding average vectors.
4. A 10th-order median filter was used to attenuate outliers and artifacts in the dT◦ time series.

Steps (i) to (iii) are illustrated in Fig. 7.
Over the obtained dT◦ time series, a method based on  PRSA63 was applied to evaluate the oscillations meas-

ured by the PRD  index35: 

5. Anchor points were defined by comparing averages of M = 9 values of the dT◦ series previous and posterior 
to the anchor point candidate xi . A point xi was considered to be an anchor point if: 

 The value of M = 9 was established because it allows detecting frequencies in the range of interest (from 
0.025 to 0.1 Hz), as fully described in Bauer et al.63.

6. Windows of 2L values were defined around each anchor point. Anchor points in the last L samples of the 
dT◦ series were discarded, as windows of length 2L could not be defined around them. In this study, L = 20 
was chosen, as it allowed detection of frequencies in the range of interest.

7. The PRSA series was obtained by averaging the dT◦ values over all 2L-sample windows contained in each 
5-min segment.

For each 5-min segment, a PRD value was defined as the difference between the maximum and minimum values 
of the PRSA series. For the 20-min recording of each subject, a unique PRD value was calculated as the minimum 
PRD over the analyzed 5-min segments with 4-min overlap.

Illustrative examples of dT◦ and PRSA time series from two subjects, a SCD victim and a survivor, are shown 
in Fig. 8.

By setting a cutoff point of 1.33◦ , an optimum thresholds was identified as that maximizing the geometric 
mean of sensitivity and specificity for SCD as endpoint, two groups were defined: PRD+ , containing those patients 

(1)
1
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with PRD above the cutoff value and PRD− , containing the remaining patients. Additionally, the median PRD 
in the study population was applied rendering a value of 1.31◦ . Similarly, the optimum value for CD as endpoint 
was 1.32◦.
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Figure 7.  Illustration of steps for PRD calculation from ECG recording in Frank lead configuration (a) T-waves 
for four consecutive beats. (b) Three-dimensional visualization of each pair of T-wave vector. (c,d) Angle 
between two consecutive T-wave vectors, dT◦ , along 100 beats.
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Heart rate variability analysis. For the 5-min segment with minimum PRD, HRV indices were com-
puted as in Bailón et al.64. Power spectral density (PSD) was estimated based on the periodogram. LF and high-
frequency (HF) powers were calculated as the areas under the PSD within the 0.04–0.15 Hz and 0.15–0.5 Hz 
frequency bands, respectively. Normalized powers, denoted by LFn and HFn, were obtained by dividing LF and 
HF powers by the sum of the two. The ratio between LF and HF powers, denoted by LF/HF, was additionally 
 computed65.

Clinical variables and other Holter-based ECG indices. Clinical variables such as LVEF ≤ 35% , 
NT-proBNP > 1000 pg/mL , non-sustained ventricular tachycardia (NSVT) and a number of ventricular pre-
mature beats (VPB) > 240 , whose capacity for SCD and PFD risk prediction has been previously  shown28, were 
included in our analysis.

Additionally, other Holter-based indices calculated in previous studies of our group were considered based 
on their risk prediction power. On the one hand, the index of average alternans, IAA, quantifying the average 
amplitude of T-wave alternans over a 24-h period, was computed by automatic ECG  analysis17. IAA was shown 
to risk stratify for SCD in the study population here analyzed when dichotomized at 3.7µ V to define IAA+ and 
IAA−  groups17. On the other hand, turbulence slope, TS, describing the initial phase of sinus rhythm decelera-
tion after a VPB, was determined as the maximum positive slope of a regression line assessed over any of 5 
consecutive RR intervals within the first 20 sinus RR intervals after a VPB during the 24-h ECG  recording51. 
TS was shown to stratify risk for both SCD and PFD when dichotomized at 2.5 ms/RR, with TS+ , denoting the 
group of patients with TS below the threshold, being associated with higher risk than the group TS− containing 
the remaining  patients51.

Statistical analysis. Continuous variables are presented as median [interquartile range (IQR)]. The Mann–
Whitney U test (or Wilcoxon rank-sum test) was used for univariate comparisons of continuous variables 
between patient groups. Survival probability was estimated by Kaplan–Meier analysis, with the log-rank test 
used to assess group differences. Univariate and multivariate  Cox66 proportional hazards regression models and 
Fine and Gray analysis for competing  risk29 were used for prediction of endpoints. Hazard ratios (HR) and 95% 
confident intervals (CI), expressed as HR [95% CI] were quantified. P values < 0.05 were considered for statisti-
cal significance. Variables being significantly different between groups in the univariate analysis were input to 
the multivariate Cox regression model. Data were analyzed using MATLAB R2017a (9.2), SPSS (version 24.0) 
and R software (version 4.1).

Conclusions
This study tests PRD, a non-invasive marker of repolarization instability associated with low-frequency oscilla-
tions in sympathetic activity, as a predictor of SCD and PFD risk in CHF patients. The combination of PRD with 
an index of T wave alternans further enhances the capacity of PRD for SCD risk stratification. Additionally, the 
combination of PRD with heart rate turbulence slope allows predicting PFD risk. Altogether, the value of ECG 
markers, either derived from short-term ECGs or ambulatory Holter recordings, is highlighted as a means to 
improve prognosis in CHF patients beyond commonly used clinical variables.

Data availability
The current study analyzed datasets which are not publicly available due to restrictions in the ethical permission 
but the data can be accessed through the corresponding author upon reasonable request and with permission 
of the MUSIC Study Committee.
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