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Abstract A method for deriving respiration from the

pulse photoplethysmographic (PPG) signal is presented.

This method is based on the pulse width variability (PWV),

and it exploits the respiratory information present in the

pulse wave velocity and dispersion. It allows to estimate

respiration signal from only a pulse oximeter which is a

cheap and comfortable sensor. Evaluation is performed

over a database containing electrocardiogram (ECG), blood

pressure (BP), PPG, and respiratory signals simultaneously

recorded in 17 subjects during a tilt table test. Respiratory

rate estimation error is computed obtaining of 1.27 ±

7.81 % (0.14 ± 14.78 mHz). For comparison purposes, we

have also obtained a respiratory rate estimation from other

known methods which involve ECG, BP, or also PPG

signals. In addition, we have also combined respiratory

information derived from different methods which involve

only PPG signal, obtaining a respiratory rate error of

-0.17 ± 6.67 % (-2.16 ± 12.69 mHz). The presented

methods, PWV and combination of PPG derived respira-

tion methods, avoid the need of ECG to derive respiration

without degradation of the obtained estimates, so it is

possible to have reliable respiration rate estimates from just

the PPG signal.

Keywords Photoplethysmography � PPG-derived

respiration � Respiratory frequency � Respiratory system �
Robustness � Signal synthesis

1 Introduction

Obtaining accurate respiratory signal and rate from non-

invasive devices is useful in several situations. The simple

observation of respiratory rate remains the first and often

the most sensitive marker of acute respiratory dysfunction

[12]. There exist specific devices for monitoring respiration

based on different techniques such as spirometry, pneu-

mography or plethysmography, but those devices may

interfere with natural breathing, and are inconvenient in

certain applications such as ambulatory monitoring, stress

testing, and sleep apnea diagnosis [2].

Many algorithms for deriving respiration from the

electrocardiogram (ECG) have been developed. Several of

them are reviewed in [1]. In [8], respiration is estimated

from the amplitude of R peak in ECG, and subsequently it

is visually compared with the respiratory signal recorded as

reference by pneumographic techniques. In other studies

such as [19] respiration estimation is accomplished from

the area of each QRS complex in a fixed time window in

two ECG leads, and compared visually with the reference

respiratory signal. In [22] a very similar method is pro-

posed, but evaluation is performed with a more analytic

method. There also have been published studies in which

the respiration estimation is accomplished from the elec-

trical axis rotation angles obtained from ECG leads [2, 20].

There also exist studies in which respiration is estimated

from the blood pressure (BP) signal, which also can be

acquired by non-invasive techniques. In [6], the estimation

is performed with an algorithm based on the variability of
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the area enclosed under the dicrotic notch in BP signal.

Another known method for non-invasive respiration esti-

mation is the pulse transit time (PTT) signal [3], which is

the time taken by the pulse wave to propagate from the

heart to the periphery and its computation requires to use

both ECG and pulse photoplethysmographic (PPG) signals.

Deriving respiration from PPG signal is especially inter-

esting because it is provided by a cheap and very comfortable

device called pulse oximeter, which is widely used in clinical

routine for blood oxygen saturation measurement. It allows

to know if a low oxygen saturation is due to low respiratory

rates or is the result of a low degree of gas exchange in the

lungs, which can represent a dangerous physiological con-

dition [21]. Blood oxygen saturation is a very important

parameter in studies concerning respiration and essential in

many situations such as sleep apnea diagnosis. Obtaining

accurate respiratory signal from a pulse oximeter would

allow us to consider an ambulatory diagnosis with its both

social and economic advantages. It is also interesting for

sport trainings since it is useful to know the point when the

exercise shifts from aerobic to anaerobic and that point is

determined from the curve of respiratory rate and other

parameters related to breathing among others [14]. The pulse

oximeter can be placed at different parts of the body (i.e.

fingers, ears) depending on the concrete application. There

are several known methods for deriving respiration from the

PPG signal such as pulse amplitude variability (PAV) [15]

and pulse rate variability (PRV). Although PRV is not an

exact surrogate for the heart rate variability (HRV) [4], both

signals are highly correlated even during non-stationary

conditions [10]. In that way, PRV is also affected by para-

sympathetic system and so related to respiration. In [5], both

amplitude and frequency modulation of PPG signal due to

respiration are used to compare two time–frequency meth-

ods for respiratory rate estimation.

A preliminary analysis of how respiration modulates the

width of the pulses in PPG signal was presented in [17]. The

study has now been extended and further elaborated, where

the accuracy of the method is increased, and a comparison

with other physiological signals and other similar methods

in the literature is performed. Our hypothesis is that respi-

ration affects pulse wave width: during inspiration sympa-

thetic activation stiffs arteries increasing pulse wave

velocity in comparison with expiration, moreover there are

intrathoracic pressure variations induced by respiration

whose effect can add to the former constructively. We also

propose a method for combining the respiratory information

carried by several PPG derived respiration (DR) signals

based on [2]. Evaluation is performed over a database which

contains simultaneous recordings of ECG, BP, PPG and

respiration signals. For comparison, we also evaluate DR

signals obtained with other methods which involve the

ECG, PPG, and BP signals.

2 Methods

2.1 Data, signal preprocessing and significant points

detection

The database was recorded during a tilt table test from 17

volunteers (11 men), aged 28.5 ± 2.5 years, according to

the following protocol: 4 min in early supine position,

5 min tilted head-up to an angle of 70� and 4 min back to

later supine position. Table takes 18 s to tilt during tran-

sitions. The PPG signal (xPPG(n)) was recorded from index

finger by Biopac OXY100C with a sampling rate of 250 Hz

(see an example in Fig. 1), whereas the standard ECG leads

I, III and the six precordials were recorded by Biopac

ECG100C with a sampling rate of 1,000 Hz, and the

respiratory signal (r(n), see an example in Fig. 2) was

recorded with a sampling rate of 125 Hz by a plethys-

mography-based technique using Biopac RSP100C sensor

and TSD201 transducer. Standard ECG lead II was

obtained by the sum of I and III leads, and vectorcardio-

gram (VCG) was synthesized using the inverse Dower

matrix [7]. The BP (xBP(n)) signal was recorded with a

sampling rate of 250 Hz by Finometer system (see an

example in Fig. 3).

The ECG baseline contamination was removed with a

high-pass filter with a cutoff frequency of 0.03 Hz, and the

50 Hz interference was attenuated with the non-linear

technique described in [13]. Then, location of each QRS in

lead V4 (nQRSi) were obtained by the wavelet based QRS

detector described in [18]. Lead V4 was chosen because of

its high SNR and also because it is one of those whose

amplitude modulation is in phase with respiration. Then,

locations of each maximum of R wave (nRi) and minimum

of S wave (nSi) (see Fig. 3) were detected by a search

of maximum and subsequent minimum (respectively)

within an 80-ms length time window centred at nQRSi. The

(a)

(b)

Fig. 1 Example of xPPG(n) (a) and its low-pass derivative

x0PPG(n) (b) with definitions of pulse onset (nOi) and end (nEi) points

in PPG, and PWV based PPG DR signal
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preprocessing applied to the PPG and BP signals consists

of a low-pass filtering with a cutoff frequency of 35 Hz.

Subsequently, each pulse apex (nAi) and basal (nBi) points

in PPG and each systolic pressure point (n�Ai
) in BP (see

Fig. 3) were automatically determined using the algorithm

described in [9] which uses the nRi previously obtained.

Artifactual PPG pulses were suppressed by using the

artefact detector described in [11].

2.2 Pulse width variability

In order to measure the pulses width in PPG signal, it is

necessary to locate the onset and end of each pulse wave.

The detection is performed with a modification of the

algorithm presented in [16] which was originally designed

for detecting the wave boundaries in ECG signals. The

algorithm uses a low-pass derivative

x0PPGðnÞ ¼ xPPGLP
ðnÞ � xPPGLP

ðn� 1Þ ð1Þ

where xPPGLP(n) is the low-pass filtered version of PPG

signal, using a cut–off frequency of fC which was set to

5 Hz as shown in Sect. 3.1.

For the ith pulse wave, the algorithm uses the maximum

upslope point (nUi)

nUi
¼ arg max

n
x0PPGðnÞ
� �

; n 2 ½nAi
� 0:3f P

s ; nAi
� ð2Þ

where fs
P is the sampling rate of the PPG signal.

The pulse wave onset nOi search is limited to XOi

interval:

XOi
¼ ½nAi

� 0:3f P
s ; nUi

� ð3Þ

and is determined as:

nOi
¼

arg min
n2XOi

x0PPGðnÞ � gx0PPGðnUi
Þ

�� ��� �
if C1

last relative minimum of x0PPGðnÞ; if C2

arg min
n2XOi

x0PPGðnÞ
� �

; otherwise

8
>>><

>>>:

ð4Þ

where gx0PPG(nUi) represents a beat varying threshold

dependent on maximum upslope value of each pulse wave,

and conditions C1 and C2 are defined by:

C1 : 9m 2 XOi
3 x0PPGðmÞ� gx0PPGðnUi

Þ

C2 : C1 ^ exists a relative minimum of x0PPGðnÞ in XOi
:

Pulse wave ends nEi were detected in a similar way as

nOi but using maximum downslope (nDi) instead of nUi, in

the interval [nAi, nAi ? 0.3fs
P] and XEi

¼ ½nDi
; nAi
þ 0:3f P

s �:
Figure 1 illustrates the significant points determination rule

of this algorithm.

Once nOi and nEi are detected, we can compute a DR

signal based on pulse width variability (PWV) as:

du
PWVðnÞ ¼

X

i

1

f P
s

nEi
� nOi

ð Þd n� nAi
ð Þ ð5Þ

where the superscript ‘‘u’’ denotes that the signal is

unevenly sampled. Figure 1 illustrates this definition and

Fig. 2 shows an example of this DR signal where it

becomes evident the close relation of temporal oscillations

of this signal to those of respiration signal r(n).

2.3 Other derived respiration signals

As mentioned previously, for comparison purposes, respi-

ration has also been derived by other known methods

which involve the ECG, BP, and PPG signals. Studied DR

Fig. 2 Example of dPWV
u (n) (continuous line) and amplitude scaled

reference r(n) (dashed line) for comparison

(a)

(b)

(c)

Fig. 3 Examples of xECG(n) (a), xPPG(n) (b), and xBP(n) (c), with

definitions of ECG DR and BP DR signals, and definitions of PRV-

and PAV-based PPG DR signals
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signals from PPG are three: PRV, PAV, and the PWV

already presented.

The one based on PRV is defined as:

du
PRVðnÞ ¼

X

i

f P
s

1

nAi
� nAi�1

d n� nAi
ð Þ: ð6Þ

The PAV-based DR signal takes its reference to derive

amplitude at the basal point:

du
PAVðnÞ¼

X

i

xPPG nAi
ð Þ � xPPG nBi

ð Þ½ �d n� nAi
ð Þ: ð7Þ

From the ECG, we have obtained six DR signals: one

based on HRV, two based on R amplitude variability, and

three based on the electrical axis rotation angles called

du
UX
ðnÞ; du

UY
ðnÞ and du

UZ
ðnÞ; which are computed by the

same algorithm presented in [2] based on spatio-temporal

alignment of successive QRS–VCG loops with respect to a

reference loop.

The HRV-based DR signal is computed similar to the

PRV-based one:

du
HRVðnÞ ¼

X

i

f E
s

1

nRi
� nRi�1

d n� nRi
ð Þ ð8Þ

where fs
E is the sampling rate of the ECG signal.

The difference of two R wave amplitude-based DR

signals is the reference used to derive signal amplitude: one

takes the reference as zero while the other one takes it as

the amplitude of S point at the same beat:

du
RðnÞ ¼

X

i

xECG nRi
ð Þd n� nRi

ð Þ ð9Þ

du
RSðnÞ ¼

X

i

xECG nRi
ð Þ � xECG nSi

ð Þ½ �d n� nRi
ð Þ ð10Þ

where xECG(n) is the filtered ECG at lead V4.

Another method which involves the ECG derives res-

piration from PTT. We have obtained the PTT signal and

taken it as a DR signal:

du
PTTðnÞ ¼

1

f P
s

nMi
� f P

s

f E
s

nRi

� �
d n� nRi
ð Þ ð11Þ

where the fs
P / fs

E term is due to the different sampling rates

of ECG and PPG signals, and nMi is the time instant when

the PPG signal reaches 50 % of amplitude between onset

and apex points:

nMi
¼ arg min

n2½nOi
;nAi
�

xPPGðnÞ �
xPPGðnOi

Þ þ xPPGðnAi
Þ

2

����

����

� �
:

ð12Þ

Since PPG measures the pulse wave caused by periodic

pulsations in arterial blood volume and BP depends, among

other factors, on this blood volume, we have obtained a DR

signal based on BP pulses width as in PPG:

du
BWVðnÞ ¼

X

i

1

f P
s

ðn�Ei
� n�Oi

Þdðn� n�Ai
Þ ð13Þ

where n�Oi
and n�Ei

are the onset and end points of the ith

pressure wave in BP (see Fig. 3) detected with the same

algorithm used for the PPG signal.

We have obtained also other two BP DR signals: BP rate

variability (BRV) ds
P(n) and BP amplitude variability

(BAV) dBAV
u (n). The first one, defined in (14), is based on

rate similarly to dPRV(n) and dHRV(n), and the second one

is based on the beat-to-beat systolic pressure variability as

defined in (15).

du
BRVðnÞ ¼

X

i

f P
s

1

n�Ai
� n�Ai�1

dðn� n�Ai
Þ ð14Þ

du
BAVðnÞ ¼

X

i

xBP n�Ai

	 

d n� n�Ai

	 

: ð15Þ

Note that in dBAV
u (n) the absolute value of systolic

pressure is considered, instead of referring it to the basal

point as in dPAV
u (n), since, otherwise, respiratory modulation

of systolic and diastolic pressures could compensate each

other.

Figure 3 illustrates definitions of all DR signals defined

in this section, and Fig. 4 shows an example of the unevenly

sampled version of each DR signal. Due to the presence of

some outliers in the DR signals, we applied a median

absolute deviation (MAD)-based outlier rejection rule as

described in [2]. Finally, we obtained a 4-Hz evenly sam-

pled version of each DR signal by cubic splines interpola-

tion, and filtered with a band-pass filter (0.075–1 Hz). The

resulting signals are denoted without the superscript ‘‘u’’,

i.e., dPWV(n) is the 4-Hz, outlier-rejected, evenly sampled,

band-pass filtered version of dPWV
u (n).

2.4 Respiratory rate estimation

The respiratory rate estimation algorithm is based on the

one presented in [2]. It allows to estimate the respiratory

rate from up to N DR signals, combining them in order to

increase robustness.

For power spectrum estimation, we used the Welch

periodogram. As in [2], running power spectra of each DR

signal used in combination are averaged in order to reduce

the variance. For the jth DR signal and kth running interval

of Ts-s length, the power spectrum Sj,k(f) results from

averaging the power spectra obtained from subintervals of

length Tm s (Tm \ Ts) using an overlap of Tm/2 s, after a

power normalization in [0, 1] Hz band. A Ts-s spectrum is

estimated every ts s.

For each Sj,k(f), the location of largest peak fs
P(j, k) is

detected. Then, a reference interval XRðkÞ is established as:

XRðkÞ ¼ ½fRðk � 1Þ � d; fRðk � 1Þ þ 2d� ð16Þ
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where fR(k - 1) is a respiratory frequency reference

obtained from previous (k - 1) steps and defines the

location of XRðkÞ:XRðkÞ is asymmetric with respect to

fR(k - 1) because the most important contamination pres-

ent in power spectra is in the low frequency (LF) band due

to the sympathetic system activity, reflected at some DR

signals.

All peaks larger than 85 % of fp
I (j, k) inside XRðkÞ are

detected, and fp
II(j, k) is chosen as the nearest to fR(k - 1).

Note that fp
II(j, k) can be the same fp

I (j, k) if the largest peak

is also the nearest to fR(k - 1). Then, Ls spectra Sj,k(f) are

‘‘peak-conditioned’’ averaged; only those Sj,k(f) which are

sufficiently peaked take part in the averaging. In this paper,

‘‘peaked’’ denotes that fp
II(j, k) exists and a certain per-

centage (n) of the spectral power must be contained in an

interval centered around it. Peak-conditioned averaging is

defined as:

�Skðf Þ ¼
XLs�1

l¼0

X

j

vA
j;k�lv

B
j;k�lSj;k�lðf Þ ð17Þ

where vA
j;k�l and vB

j;k�l represent two criteria aimed at

deciding whether power spectrum Sj,k-l(f) is peaked enough

or not, preventing those not peaked enough spectra from

taking part in the average. On one hand, vA lets those

spectra whose peakness is greater than a fixed value take

part in the average, as shows (18), and on the other hand,

vB compares the spectra of different DR signals, letting

those spectra more peaked in each time instant take part in

the average, although all of them have passed the vA

criterion, as shows (19). Note that vB has no effect if the

estimation is being accomplished from only one DR signal

(N = 1).

vA
j;k ¼

1; Pj;k � n
0; otherwise

�
ð18Þ

vB
j;k ¼

1; Pj;k � maxj Pj;k

� �
� k

0; otherwise

�
ð19Þ

where Pj,k is defined by

Pj;k ¼

Rmin f II
p ðj;kÞþ0:6d; fRðk�1Þþ2df g

max f II
p ðj;kÞ�0:6d; fRðk�1Þ�df g Sj;kðf Þdf

R fRðk�1Þþ2d
fRðk�1Þ�d Sj;kðf Þdf

: ð20Þ

In the averaged spectrum �Skðf Þ the algorithm also

searches the largest peak (denoted fs
P

p(k)) and fa
II

p(k) defined

as the nearest to fR(k - 1) inside the interval XRðkÞ which

is at least larger than 85 % of fa
I
p(k). At this time the

reference frequency fR(k) can be updated as:

fRðkÞ ¼ bfRðk � 1Þ þ 1� bð ÞfpðkÞ ð21Þ

where b denotes the forgetting factor and fp(k) is defined by

fpðkÞ ¼
f II
apðkÞ

; 9f II
apðkÞ

f Ia
p ðkÞ; otherwise

(

: ð22Þ

Finally, estimated respiration rate f̂ ðkÞ is defined as:

f̂ ðkÞ ¼ af̂ ðk � 1Þ þ 1� að ÞfpðkÞ ð23Þ

a ¼ a2; 9f IIa
p ðkÞ

a1; otherwise

�
: ð24Þ

Fig. 4 An example of unevenly sampled version of each derived respiration signal (continuous line) and amplitude-scaled reference r(n) (dashed
line) for comparison
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where a2 B a1, providing more memory when fa
II

p(k) could

not be set.

Note that �Skðf Þ is the result of an average from zero up

to N 9 Ls power spectra. If no spectrum takes part in the

average, the algorithm increases the reference interval by

doubling the d value and repeat the process from the search

of fp
I (j, k) and fp

II(j, k) in individual power spectra. In the

case that no spectrum is peaked enough after this second

iteration, fR(k) and f̂ ðkÞ are set as previous fR(k - 1) and

f̂ ðk � 1Þ; respectively.

At initialization time, in order to reduce the risk of

spurious frequency selection, d is set to 0.125 Hz and

fR(0) is set to 0.275 Hz, allowing the algorithm to pick

peaks inside [0.15, 0.525] Hz band. Occasionally, respi-

ratory rate can be below 0.15 Hz so algorithm could not

be initialized as proposed. To deal with that issue, if fR(k)

is not set after 5 averages �Skðf Þ; then d is increased

allowing algorithm to pick peaks in full [0, 1] Hz studied

band.

Concatenation of all �Skðf Þ results in a time–fre-

quency map �Sðk; f Þ where the LF contamination is con-

siderably reduced, as shown in Fig. 5. Values for

Ls, Ts, and Tm were selected as in [2]; 5, 40, and 12 s,

respectively. The other parameters were empirically set for

this work:

• n = 0.4 and k = 0.05 are based on the observation of

spectra to achieve a good compromise for peak

spectrum acceptance/rejection.

• b = 0.8 is slightly higher than 0.7 used in [2] for stress

test data, since in regular conditions respiratory

frequency band is expected to change more gradually

than in stress test. Thus, a higher filtering for fR tracking

has shown to be more adequate in this work.

• d = 0.08 Hz is selected according to the typical width

of expected band where respiration peak is supposed to

be located, which is taken as 0.24 Hz (the typical HF

bandwidth).

• a2 = 0.3 is taken by fixing the maximum allowed

changes in respiratory frequency inside the frequency

band. This filtering is much lower than the one imposed

for the frequency band by b since within the respiratory

band higher sudden changes of the respiratory fre-

quency are observed and so they are preserved.

• a1 = 0.7 which represents a high memory when f̂ is far

from fR, outside XR:

2.5 Performance measurements

With the objective of evaluating the different methods

for deriving respiration, we obtained a 4-Hz sampled,

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

Fig. 5 Examples of time–frequency maps: Welch periodograms for

PRV (a), PAV (b), and PWV (c); peak-conditioned average with

estimated rate in black line for PRV (d), PAV (e), PWV (f),

combination of UX;UY and UZ (g), combination of PRV, PAV and

PWV (h), and reference respiratory signal (i)
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band-pass filtered, [0.075, 1] Hz version of the respiratory

signal r(n), and we computed two error functions for each

one of the 17 subjects in our database: absolute error eA(k)

and relative error eR(k):

eAðkÞ ¼ f̂dðkÞ � f̂RESðkÞ ð25Þ

eRðkÞ ¼
eAðkÞ

f̂RESðkÞ
� 100 ð26Þ

where f̂dðkÞ and f̂RESðkÞ are the respiratory rates estimated

from the evaluated DR signal and r(n), respectively. Note

that the same absolute differences can correspond to very

different relative errors due to the f̂RESðkÞ normalization.

In order to study the optimal values for parameters g and

fC in the pulse width-based DR signals, the performance

measurement z was defined as the intersubject mean of

intrasubject mean of the absolute value of relative error

|eR(k)|:

z ¼ 1

M

XM

m¼1

eRðkÞj jm ð27Þ

where M is the number of subjects in our database, and

eRðkÞj jm is the mean of |eR(k)| obtained from mth subject.

3 Results

3.1 Pulse width measurement parameters optimization

In reference to the parameters optimization of the pulse

width measurement algorithm, we computed all the 286

possible combinations corresponding to g 2 ½0; 0:5� with a

step of 0.05, and fC 2 ½2:5; 15� Hz with a step of 0.5 Hz, for

both PPG and BP signals. The values which minimized z

were g = 0.05 and fC = 5 Hz for PPG signal (with

z = 5.26 %), and g = 0.3 and fC = 3 Hz for BP signal

(with z = 5.66 %).

We used these optimal values to obtain DR signals

based on width (ds
P(n)) and dBWV

u (n)).

3.2 Evaluation of derived respiration signals

In order to evaluate the DR signals, we computed the mean

and standard deviation of both eR(k) and eA(k) signals for

each subject. Then, intersubject mean of both means and

standard deviations (STD) were computed for three groups

of subjects: one group containing all the subjects, and other

two groups which make a division of the subjects based on

whether their mean respiratory rate �fRES is greater than 0.15

Hz or not. In other words, whether their �fRES overlaps in

frequency with the sympathetic modulation or not. Respi-

ratory rate was estimated from each DR signal but for

rotation angle series, and from two combinations: one

combining all three PPG DR signals PCOMB, and other

combining all three rotation angle series UCOMB: Results are

shown in Table 1. Moreover, the percentage of times in

which each DR signal is used in PCOMB is shown in Table 2.

For comparison with [5], we also obtained the median of

eR(k) for each subject for our two proposed methods: the

PWV and the combination of PRV, PAV and PWV,

PCOMB. Table 3 shows inter-subject median and inter-

quartile range (IQR) of these medians, for the same three

groups of subjects over which we computed the mean of

means and STD.

4 Discussion

As it was mentioned previously, deriving respiration from

the PPG signal is especially interesting because it is

recorded by a simple and cheap device which also result

very comfortable for the patient and, in addition, is widely

adopted as a blood oxygen saturation monitor: the pulse

oximeter. Blood oxygen saturation is a very important

parameter in studies concerning respiration and essential in

many situations such as sleep apnea diagnosis. Obtaining

accurate respiratory signal from a pulse oximeter would

allow us to consider an ambulatory diagnosis with its both

social and economic advantages.

We have developed a method for deriving respiration

from the PPG signal: the PWV, which has obtained very

accurate results, comparable or even better than other

known methods which involve ECG or BP.

In respiratory rate estimation from only one DR signal,

this method based on PWV has obtained the best results

(1.27 ± 7.81%; 0.14 ± 14.78 mHz), being much better

than PRV (-10.29 ± 13.63 %; -34.60 ± 33.73 mHz) or

PAV (-8.75 ± 17.06 %; -26.41 ± 41.84 mHz), which

are more affected by the sympathetic modulation which

results in a very high negative error in the �fRES� 0:15 Hz

group. The PWV-based method results are also comparable

to the PTT-based one (0.96 ± 9.26 %; -1.54 ± 18.57

mHz), which needs ECG in addition to PPG signal.

In PCOMB, the PWV-based method has a fundamental

role since PWV is much less affected by the sympathetic

modulation (see Fig. 5). This fact explains why the PWV

method is more often used in the �fRES� 0:15 Hz group

(67.63 % of times) than in the �fRES\0:15 Hz group

(42.41 % of times) (Table 2). Results referred to estimated

rate from PCOMB (-0.17 ± 6.67 %; -2.16 ± 12.69 mHz)

are comparable with combination of three electrical axis

rotation angle series (2.05 ± 6.92 %; 2.63 ± 11.50 mHz)

and have outperformed those obtained with only PWV.

This means it is reasonable to combine respiratory
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information of these three signals or, in other words, the

respiratory information carried by these three signals can

complement.

The BWV-based method also obtained very good results

(2.54 ± 8.76 %; 1.93 ± 15.08 mHz), but acquiring BP

signal is more uncomfortable and expensive than acquiring

Table 1 Inter-subject mean of means and standard deviations of eA(k) in mHz and eR(k) in percentage

�fRES C 0.15 Hz �fRES \ 0.15 Hz All

eA(k) (mHz) [eR(k) (%)] eA(k) (mHz) [eR(k) (%)] eA(k) (mHz) [eR(k) (%)]

ECG methods

HRV

Mean -62.78 (-21.21) 4.08 (4.19) -39.18 (-12.25)

STD 46.31 (15.15) 13.75 (11.91) 34.82 (14.00)

R

Mean -24.33 (-7.55) 13.86 (12.49) -10.85 (-0.48)

STD 43.17 (15.48) 24.64 (20.50) 36.63 (17.25)

RS

Mean 6.28 (3.04) 40.28 (41.50) 18.28 (14.84)

STD 31.53 (12.50) 36.46 (36.94) 35.05 (21.13)

UCOMB

Mean 1.50 (0.81) 4.71 (13.30) 2.63 (2.05)

STD 10.52 (4.58) 4.31 (11.20) 11.50 (6.92)

BP methods

BRV

Mean -58.13 (-19.21) 4.71 (4.31) -35.95 (-10.78)

STD 44.06 (14.49) 13.30 (11.20) 33.33 (13.62)

BAV

Mean -14.68 (-4.49) 0.93 (1.28) -9.17 (-2.78)

STD 34.63 (11.80) 13.14 (10.66) 24.04 (11.40)

BWV

Mean -2.01 (-0.58) 9.16 (8.26) 1.93 (2.54)

STD 12.94 (4.82) 19.01 (15.97) 15.08 (8.76)

PPG methods

PRV

Mean -55.89 (-18.34) 4.41 (4.46) -34.60 (-10.29)

STD 44.58 (14.56) 13.85 (11.93) 33.73 (13.63)

PAV

Mean -40.43 (56.37) -0.73 (0.35) -26.41 (-8.75)

STD -13.72 (19.68) 15.20 (12.27) 41.84 (17.06)

PWV

Mean -2.97 (-0.92) 5.85 (5.32) 0.14 (1.27)

STD 14.08 (4.83) 16.06 (13.27) 14.78 (7.81)

PCOMB

Mean -4.35 (-1.50) 1.87 (2.27) -2.16 (-0.17)

STD 12.76 (4.58) 12.57 (10.50) 12.69 (6.67)

Other methods

PTT

Mean -5.76 (-1.73) 6.20 (5.88) -1.54 (0.96)

STD 20.21 (6.89) 15.58 (13.62) 18.57 (9.26)

UCOMB refers to the combination of the three rotation angle series, and PCOMB refers to the combination of PRV, PAV, and PWV
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PPG signal and the first one provides no information about

blood oxygen saturation.

The obtained values of median and IQR of medians

(0.02 ± 1.48 % for PWV and -0.37 ± 0.66 % for PCOMB)

are worse than those obtained in [5] (�fRES between 0.2 and

0.3 Hz, 0.00 ± 0.00 %; �fRES between 0.4 and 0.6 Hz,

0.00 ± 1.18 % for supine position and 0.00 ± 1.07 % for

tilt position), but it must be kept in mind that database used

in [5] contains signals recorded during a controlled respi-

ration experiment. Controlled respiration means the sub-

jects are instructed to breathe according to a timed beeping

sound, generating known respiratory rates which provides a

much better reference than ours. Moreover, those generated

rates were constant, so estimation methods were not

required to follow rate variations which is not an easy task

and, furthermore, all generated rates were higher than

0.2 Hz, not overlapping in frequency with the sympathetic

modulation present below 0.15 Hz in LF band.

Note the same subjects used to evaluate performance of

the methods were also used to optimize the parameters g
and fc, and this could bias the results. An additional test

was performed: eight randomly selected subjects (training

set) were used for parameters optimization and the

remaining nine subjects (test set) were used for the eval-

uation of PWV and PCOMB methods. Same values were

obtained for optimal parameters (g = 0.05 and fc = 5 Hz).

Results were almost identical to the ones just commented

above (see Table 1), obtaining a mean ± SD of frequency

estimation error of 1.71 ± 7.99 % (0.91 ± 13.74 mHz) for

the PWV method, and 0.09 ± 6.61 % (-1.75 ± 12.26

mHz) for the PCOMB method.

The innovative method based on PWV represents a

powerful approach for respiration estimation from the PPG

signal. It showed better performance than other single DR

signals in respiratory rate error terms (1.27 ± 7.81 %).

Additionally, using it in combination with PRV and PAV

DR signals results improved to (-0.17 ± 6.67 %) even

outperforming the ones obtained with other methods which

involve ECG or BP registration. These results allow to

derive respiration from PPG suitable for ambulatory anal-

ysis and for sleep apnea diagnosis due to the simplicity of

PPG recordings.
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Erratum to: Deriving respiration from photoplethysmographic
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DOI 10.1007/s11517-012-0954-0

Due to an equations formatting error, the presentation of

some expressions was incorrect. A list of these expressions

is given below:

Sect. 2.3, ninth paragraph: dPs ðnÞ should be read as

duBRVðnÞ:
Sect. 3.1, second paragraph: dPs ðnÞ should be read as

duPWVðnÞ:
Table 2: The correct table is given at the end of this

erratum.

Sect. 2.4, third paragraph: f Ps ðj; kÞ should be read as

f IPðj; kÞ:
Sect. 2.4, fifth and sixth paragraphs: The corrected

paragraphs are given below.

In the averaged spectrum �Skðf Þ the algorithm also

searches the largest peak [denoted f Iap ðkÞ] and f IIap ðkÞ
defined as the nearest to fRðk � 1Þ inside the interval XRðkÞ
which is at least larger than 85 % of f Iap ðkÞ: At this time the

reference frequency fRðkÞ can be updated as:

fRðkÞ ¼ bfRðk � 1Þ þ ð1� bÞfpðkÞ ð21Þ
where b denotes the forgetting factor and fp(k) is defined by

fpðkÞ ¼
f IIap ðkÞ; 9f IIap ðkÞ
f Iap ðkÞ; otherwise

�
: ð22Þ

Finally, estimated respiration rate f̂ ðkÞ is defined as:

f̂ ðkÞ ¼ af̂ ðk � 1Þ þ ð1� aÞfpðkÞ ð23Þ

a ¼ a2; 9f IIap ðkÞ
a1; otherwise

�
ð24Þ

where a2 B a1, providing more memory when f IIap ðkÞ could
not be set.

The online version of the original article can be found under

doi:10.1007/s11517-012-0954-0.
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Centro de Investigación Biomédica en Red en Bioingenierı́a,

Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain

Table 2 Percentage of utilization of each DR signal in combination

of PRV, PAV and PWV

Group Percentage of use (%)

PRV PAV PWV

�fRES � 0:15 Hz 48.24 37.80 67.63

�fRES \ 0:15 Hz 59.77 61.27 42.41

All 52.31 46.08 58.73

123

Med Biol Eng Comput (2013) 51:243

DOI 10.1007/s11517-012-0997-2


