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Abstract The study of the dynamic interactions between signals related to the autonomous
nervous system can improve the understanding of the underlying mechanisms of the cardiovas-
cular control. In this study, cross time–frequency (TF) analysis is used to estimate the phase
differences, the time–delay and the phase locking between cardiovascular signals. Phase dif-
ferences and time delay give a measure of the changes in the synchronization between two
oscillations, while phase locking measures the degree of similarity of these changes across sub-
jects. The presented methodology is based on the smoothed pseudo Wigner–Ville distribution
and includes time–frequency coherence analysis.
In a first simulation study involving highly non–stationary synthetic signals, this methodology
provided accurate estimates of the temporal changes of the phase differences, with an error
characterized by interquartile ranges lower than 2% and 9% for SNR equal to 20 dB and 0 dB,
respectevely. A comparative study showed that the proposed estimator outperformed an esti-
mator based on the integration of the difference between the instantaneous frequency of each
spectral component. In a second simulation study, it is shown that the presented methodology
reliably followed abrupt time delay changes, with a time of adaptation lower than 10 s.
This methodology was used to characterize the interactions between the RRV and the respira-
tory signals during tilt table test. In 16 young healthy subjects, head-up tilt caused the phase
differences (resp. time delay) to decrease about 0.57 rad (resp. 0.312 s) in HF spectral range,
with HF∈[0.15, 0.4 Hz]. During the test, the phase locking estimated in HF range, fluctuated
around 0.64±0.11 and slightly decreased during head-up tilt, from 0.67±0.11 to 0.61±0.11,
thus indicating a higher variability across subjects in the coupling during head-up tilt.
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1 INTRODUCTION

To introduce the time–frequency phase differences (TFPD) and the time–frequency phase
locking (TFPL), let’s write a simple model for the analytic representation of cardiovascular
signals, as the sum of complex exponentials showing both amplitude and frequency modulation,
embedded in noise:

{

x(t) = Ax,LF(t)eiθx,LF(t)+Ax,HF(t)eiθx,HF(t)+wx(t)

y(t) = Ay,LF(t)eiθy,LF(t)+Ay,HF(t)eiθy,HF(t)+wy(t)
(1)

In this expression LF and HF indicate the low frequency component, LF∈[0.04, 0.15 Hz],
and the high frequency component, HF∈[0.15, 0.4 Hz], respectively;θk,B(t), with B∈[LF,HF]
andk ∈ [x,y], is the instantaneous phase, related to the instantaneous frequency byfk,B(t) =
(dθk,B(t)/dt)/(2π); wk(t) is a white Gaussian noise (WGN). As cardiovascular signals are usu-
ally non–stationary, the phase difference between each spectral component,θB(t) = θx,B(t)−
θy,B(t), is expected to be time–varying. An illustrative example oftwo synthetic signals which
share similar instantaneous frequencies and are characterized by time–varying phase differ-
ences, is shown in Fig. 1. This example may represent LF oscillations of R–R variability
(RRV) and systolic arterial pressure variability (SAPV) during non–stationary conditions. The
estimation of the TFPD spectrum, which quantifies the changes in the synchronization between
two oscillations, and the TFPL, which measures the degree ofsimilarity of these changes across
subjects, can reveal valuable information to characterizethe dynamic interactions between sig-
nals related to the cardiovascular and cardiorespiratory systems.
The estimation of phase differences between biomedical non–stationary signals in the joint TF
domain was used in few studies [1, 2, 3, 4, 5]. Among them, no one focuses on the characteriza-
tion of cardiovascular dynamics. From a methodological viewpoint, TFPD has been estimated
by wavelet transform [2, 3], by Rihaczek transform [1] and by reduced interference distributions
[6].
The purpose of this study is to describe a robust technique toaccurately estimate the TFPD and
TFPL via smoothed pseudo Wigner–Ville distribution (SPWVD), and to show the usefulness
of such approach in the analysis of the cardiovascular and cardiorespiratory system. The pre-
sented methodology is assessed in simulation studies and isused to characterize the dynamic
interactions between the RRV and respiratory signals duringtilt table test.

2 METHODS

Given (1), the time–course of the phase difference between two signals, evaluated for a
specific spectral componentB, can be estimated as:

θ̂B(t) = 2π
∫ t

0
[ fx,B(τ)− fy,B(τ)]dτ (2)

This procedure has two main drawbacks: it is very sensitive to estimation errors infk,B(t), since
an estimation error att0 affects allθ̂B(t > t0 ), and gives a quantification of the phase differences
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Figure 1: Example of signals oscillating at typical Mayer wave frequency and characterized by
time–varying phase differencesθ(t)
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Figure 2: Time–frequency structure of signals of type (1) used in the simulation studies. (a)–(b):
Instantaneous frequencies, (c)–(d): instantaneous amplitudes of signalsx(t) andy(t), respec-
tively. Time–course of LF and HF spectral indices are in black and red, respectevely.
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only at fk,B(t). In cardiovascular signal analysis, these inconveniencesare particularly serious,
since biomedical signals are never perfectly narrow–band and an accurate estimation of the
instantaneous frequencies is not always possible.
Cross TF analysis provides a simultaneous characterizationof the phase differences in time
and frequency, and allows to overcome these limitations. The presented methodology is based
on the estimation of the TFPD spectrum, from which the time–course of the phase difference
between each spectral component is extracted. It is composed of the following steps:

(i) Estimation of auto and cross TF spectra,Ŝxx(t, f ), Ŝyy(t, f ) andŜxy(t, f ),via SPWVD [7, 8]:

Ŝxy(t, f ) =
∫∫ ∞

−∞
Φ(τ,ν)Axy(τ,ν)ej2π(tν−τ f )dνdτ (3)

Axy(τ,ν) =
∫ ∞

−∞
x
(

t +
τ
2

)

y∗
(

t −
τ
2

)

e− j2πνtdt (4)

Φ(τ,ν ;τ0,ν0,λ ) = exp

{

−π
[(

ν
ν0

)2

+

(

τ
τ0

)2]2λ
}

(5)

whereAxy(τ,ν) is the cross ambiguity function andΦ(τ,ν) is a smoothing kernel func-
tion [9], already used in cross TF analysis of cardiovascular signals [8, 10, 11].

(ii) Estimation of the TFPD spectrum,Θ̂(t, f ), and TF coherence,̂γ(t, f ):

Θ̂(t, f )=arctan

[

ℑ
[

Ŝxy(t, f )
]

ℜ
[

Ŝxy(t, f )
]

]

; Θ̂(t, f ) ∈ [−π,π] (6)

γ̂(t, f )=
∣

∣Ŝxy(t, f )
∣

∣

√

Ŝxx(t, f )Ŝyy(t, f )
; γ̂(t, f ) ∈ [0,1] (7)

(iii) Localization of the TF regions where the coherence is statistically significant. This is done
by a hypothesis test, based on the comparison ofγ̂(t, f ) with a threshold functionγTH(t, f ),
obtained as the 95th percentile of the statistical distributionΓ(t, f )= {γ̂1(t, f ), ..., γ̂j(t, f ), ...},
whereγ̂j(t, f ) is the TFC between thejth realization of two WGNs. The estimation of the
threshold as the 95th percentile ofΓ(t, f ) is associated to a significance level (type I error)
of 5%. The regions where the TF coherence is significant,Ω(γ)

B , are defined as:

Ω(γ)
B =

{

(t, f ) ∈ (R+ ×B) | γ̂(t, f )> γTH(t, f )

}

; with B= {LF,HF} (8)

(iv) Identification of the TF regions,Ω(θ )
B , in which the time–course of the phase difference

between each spectral component is estimated. To localize these TF regions, the instan-
taneous frequency which corresponds to the maximum of the magnitude of the cross TF
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spectrum, evaluated insideΩ(γ)
B is estimated as:

f (θ )
B (t) = arg

[

max
f∈Ω(γ)

B

[

∣

∣Ŝxy(t, f )
∣

∣

]

]

(9)

RegionsΩ(θ )
B , with Ω(θ )

B ⊆ Ω(γ)
B , are centered aroundf (θ )

B (t) and are defined as:

Ω(θ )
B =

{

(t, f ) ∈ Ω(γ)
B | f = f (θ )

B (t)±
∆f

2

}

(10)

where∆f is a term related with the frequency resolution of the TF distributions, which
determines the maximum width ofΩ(θ )

B . Parameter∆f is estimated as the full width at
half maximum of the functionφ(t =0, f ), whereφ(t, f ) is the two dimensional Fourier
transform of (5):

φ(t, f ) =
∫∫

Φ(τ,ν)ei2π(tν−τ f )dτdν (11)

(v) The time–course of the phase differences between each spectral component of the two
signals,θ̂B(t), is finally estimated (in radians) by averaging the TFPD spectrum in Ω(θ )

B :

θ̂B(t) =

[

∫

Ω(θ )
B

Θ(t, f )df

]/[

∫

Ω(θ )
B

1df

]

; B∈{LF,HF} (12)

The time delay associated tôθB(t) can be estimated (in seconds) as:

D̂B(t) =
θ̂B(t)

2π f (θ )
B (t)

(13)

The degree of phase–locking between different couples of signals [1] is estimated, on the whole
population, by the TFPL:

Ψ̂(t, f ) =

∣

∣

∣

∣

∣

1
L

L

∑
j=1

ei2πΘ̂j(t,f )

∣

∣

∣

∣

∣

, Ψ̂(t, f ) ∈ [0,1] (14)

whereL is the number of subjects. For a given TF point,Ψ̂(t, f )=1 if at that point the phase
differences are the same for all subjects, whileΨ̂(t, f )=0 if the phase differences randomly
change across subjects.

3 VALIDATIONS

Two simulation studies were carried on with the purpose of validating the proposed method-
ology and comparing its performance with a traditional estimator not based on cross TF anal-
ysis. In particular, these simulations aim at assessing, inillustrative examples, the tracking
capability and the robustness against noise of the estimators. Simulated signals are of type (1)
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and are characterized by the highly non–stationary TF structure reported in Fig. 2. These sig-
nals can be seen as locally coupled, since their spectral components share similar instantaneous
frequencies and their amplitudes vary slowly. From a physiological viewpoint, the time–course
of the instantaneous frequencies of the HF components,fx,HF(t) and fy,HF(t), covers the range of
possible respiratory frequencies observed in many autonomic tests, and it may correspond to
the pattern of the respiratory frequency observed during some respiratory disorders such as pe-
riodic breathing. From a theoretic viewpoint, the trackingof time–varying spectral components
characterized by sinusoidal frequency modulation is challenging, due to the high level of inner
interference terms which characterizes signals with such amodulation [12].

Simulation I – phase differences: The performance of the estimator of phase differences
based on cross TF analysis, described through (3)–(12), is compared to the performance of
the estimator based on the integration of the instantaneousfrequencies, described in (2). The
time–course of the phase difference between each spectral component ofx(t) and y(t), i.e.
θB(t) = θy,B(t)− θx,B(t), are reported in Fig. 3a–b. These phase differences cause the instanta-
neous frequencies of the signals to slightly differ. In thissimulation, the tracking of the phase
differences is particularly challenging since all the parameters which determine the TF struc-
ture of the signals, i.e.Ak,B(t), fk,B(t) andθB(t), vary quickly and simultaneously. In particular,
the most abrupt changes occur in LF, where the rate of variation of θLF(t) gives, fort ≈260 s,
| fx,LF(t)− fy,LF(t)| ≈ 0.028 Hz.

Simulation II – time delay: In this simulation, the performance of the proposed methodol-
ogy in tracking the time delay, given in (13), is assessed. Signal y(t) is obtained from signal
x(t), whose TF structure is the same as that used in the previous simulation (see Fig. 2a–b), as
y(t) = x(t +D(t)). Time delayD(t) increased stepwise as shown in Fig. 4.

4 PHYSIOLOGICAL STUDY

Signals were recorded from 16 young healthy subjects (age 29±3 years) during a tilt ta-
ble test with a protocol already illustrated in [10]. The experimental protocol consisted of: 4
minutes in early supine position (W1), 5 minutes tilted head–up to an angle of 70o (W2) and 4
minutes back to later supine position (W3). During head–up tilt, subjects undergo a progressive
orthostatic stress. The ECG and respiratory signals were recorded using the Biopac MP 150
system with a sampling frequency of 1 kHz and 125 Hz, respectively. The QRS complexes in
the ECG were detected and the RR signal was obtained by using a method based on the integral
pulse frequency modulation model, which accounts for the presence of ectopic beats and arti-
facts [13]. The RR and the respiratory signals were resampledat 4 Hz and the RRV signals was
obtained by high–pass filtering the corresponding series with a cut–off frequency of 0.03 Hz.
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5 RESULTS

5.1 Simulation studies

Time–frequency spectra were estimated by using the kernel (5), which gave a time and fre-
quency resolution of about 12 s and 0.04 Hz. In both simulations, the estimation ofθB(t) and
D(t) was repeated for different level of SNR, going from 20 to 0 dB. For every SNR level, 100
couples of signals were processed. The results of the first simulation are summarized in Fig.
3, where panels (a)–(d) and (e)–(h) show the results obtained by cross TF analysis as in (12),
and by integration of the differences of the instantaneous frequencies, as in (2), respectively. In
(2), the instantaneous frequencies of the spectral components ofx(t) andy(t) were estimated as
the frequencies corresponding to the maximum of the instantaneous auto TF spectra in both LF
and HF bands. The time–course of the estimated phase differences between each component,
θ̂B(t), is shown in panels (a)–(b) and (e)–(f), where results are given as the range between the
lower and upper quartiles of the estimates. As shown, the estimator based on cross TF analysis
gave a better characterization of the changes of the phase differences than the estimator based
on the estimation of the instantaneous frequencies. To quantify the goodness of the estimation,
the median, and the lower and upper quartiles of the estimation errors,θB(t)− θ̂B(t), were cal-
culated for every iteration. The results of error analysis are given in Fig. 3c–d and Fig. 3g–h,
where circles and bars represent the average of the median and of the interquartile ranges of the
estimation errors. Numerical results are given in Table 1. Concerning the results obtained by
cross TF analysis, it is shown that the median errors were always lower than 0.013 rad, even
for SNR as low as 0 dB. The variability of the estimation depended on the SNR and on the
rate of variation ofθB(t). For SNR=20 dB and forθ(t) varying quadratically, as inθHF(t), the
interquartile ranges were lower than 0.05 rad, less than 2% of the total range of variation of
θ(t). For SNR=0 dB and forθ(t) varying sinusoidally, as inθLF(t), the interquartile range was
about 0.42 rad, about 8% of the total range of variation ofθ(t).
The estimation of the phase differences by integration of the differences between the instan-
taneous frequencies gave results characterized by much lower accuracy. The estimation errors
were characterized by interquartile ranges at least 34% higher than those obtained by cross TF
analysis. For SNR equal to 0 dB, the interquartile ranges of the errors given by (2) were, in LF
and HF bands, more than 200% and 800% higher than those obtained by the proposed method.
The lower accuracy in estimating the phase differences by (2) with respect to (12), was mainly
due to the difficulty of perfectly tracking the instantaneous frequencies of the signals, specially
in presence of noise.
Results of the simulation II are reported in Fig. 4 and Table 1.In this simulation, the time
delayD̂B(t) is estimated only by cross TF analysis, as in (13). In Fig. 4a–b, it is shown that
the median trend of the estimates correctly tracked the abrupt changes ofDB, with a time of
adaptation, from the stepwise increase ofDB(t) to the stabilization of the estimates, of about 10
s. As shown in Table 1, the variability of the estimates is greatly affected by the level of the
noise and is higher in LF.
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Figure 3: Simulation I. (a)–(d): results of the proposed methodology based on cross TF analysis;
(e)–(h): results obtained by instantaneous frequency estimates. (a)–(b) and (e)–(f): red lines
representθ(t); shadowed areas represent the range between the lower and upper quartile of
estimatesθ̂(t). In these examples SNR=10 dB; (c)–(d) and (g)–(h): circles andbars represent
the average of the I, II and III quartiles of the estimation errors.
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Param (eq.) [unit] 20 dB 10 dB 5 dB 0 dB

θ̂LF(t)
(12) [Hz] 0.000± 0.200 0.000± 0.220 0.013± 0.274 -0.004± 0.426

(2) [Hz] -0.180± 0.268 -0.131± 0.300 -0.113± 0.331 -0.201± 0.886

θ̂HF(t)
(12) [Hz] -0.001± 0.049 -0.006± 0.153 -0.007± 0.264 0.005± 0.468

(2) [Hz] -0.254± 0.126 -0.23± 0.253 -0.309± 0.551 -1.719± 3.923

D̂LF(t) (13) [sec] 0.008± 0.084 0.011± 0.218 0.017± 0.376 0.006± 0.571
D̂HF(t) (13) [sec] 0.000± 0.036 -0.002± 0.093 0.003± 0.151 -0.006± 0.256

Table 1: Simulation results. Results are reported as the average of the median± the interquartile
range of the estimation errors obtained at each iteration. From top to bottom, results concern
the estimation errors shown in Fig. 3c, 3d, 3g, 3h, 4c, 4d.
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5.2 Physiological study

An illustrative example of the estimation of the phase differences between the RRV and the
respiratory signals is shown in Fig. 5. In Fig. 5a it is shown that, despite the non–stationary
structure of the signals, by TF coherence analysis was possible to localize regions in which
coherence was statistically significant. These regions,Ω(γ)

B , are encircled by a black contour.
In Fig. 5b it is shown that the TFPD spectrum was everywhere close toπ. Given that the
spectral content of the respiratory signal usually lies in HF, only results concerninĝθHF(t) are
shown. Parameter̂θHF(t) was estimated by averaging the TFPD inΩ(θ )

HF, whose boundaries are
reported in Fig. 5b. In Fig. 5c, it is shown that for this subject, the movement back and forth
from supine position to head–up tilt provoked almost instantaneous changes in̂θHF(t), which
during tilt decreased more thanπ/2 and then, when supine position was restored, went back to
values similar to those observed in early supine position. These changes in the phase differences
corresponded to a change in the time delayDHF(t), whose mean trend decreased 1.57 s, from
2.89 s in early supine position to 1.32 s during tilt. Note that this subject showed particularly
high changes of both phase differences and time delay.
Results concerning the global trends of the study populationare shown in Fig. 5d, where lines
represent the instantaneous median values ofθ̂HF(t) and shadowed areas the lower and upper
quartiles, estimated among subjects. In the whole study population, the head–up tilt caused the
phase differences to decrease about 0.55 rad in HF, being themedian trend equal to 2.70±0.14
rad inW1, 2.12±0.13 rad inW2, 2.61±0.24 rad inW3. On average, during the head–up tilt, the
time delayDB(t) decreased 0.272 s, being the median trend equal to 1.60±0,20 s (W1), 1.33±
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0.19 s (W2) and 1.46±0.28 s (W3).
The TFPL, shown in Fig. 6a, fluctuated around 0.64±0.11 in HF and 0.44±0.15 in LF. The
median trend and the interquartile range of the TFPL, evaluated in HF, are shown in Fig. 6b. In
HF, the median trend of the TFPL was equal to 0.67±0.07 (W1), 0.61±0.07 (W2) and 0.63±0.03
(W3). Although the phase differenceŝθHF(t) followed a common pattern, shown in Fig. 5d,
the phase locking, evaluated in HF, is not high and slightly decreased during head–up tilt, thus
indicating a higher variability across subjects in the coupling duringW2. The low values of the
TFPL are likely due to the fact that the common pattern ofθ̂HF(t) took place, for every subject,
in different portions of the TF domain. This shown the importance of the localization of specific
TF regions,Ω(γ)

B , to properly estimate the time–course of the phase differences.

6 DISCUSSION

In this study, a new methodology for the quantification of phase differences in non–stationary
signals related to the cardiovascular and cardiorespiratory systems, based on cross TF analysis,
is proposed. This methodology includes the estimation of the temporal changes of the phase
differences, the time delay and the phase locking. The SPWVD provides auto and cross spectra
characterized by high joint TF resolution [8], which can be independently adjusted in time and
frequency. Moreover, the localization of TF regions where spectral coherence is statistically
significant (i.e., where signals are sharing similar instantaneous frequencies) allows to robustly
estimate the phase differences and the time delay. The localization of these TF regions is of
crucial importance to reliably extract the time–course of the phase differences from the TFPD
spectrum.
In non–stationary context, this methodology was shown to provide accurate estimates also in
presence of noise, and it outperformed techniques based on instantaneous frequency estimates.
Finally, the TF representation of the phase-locking between different couples of signals allows
to assess whether a determined stimulus provokes, among different subjects, similar patterns
of synchronization. The analysis of signals recorded during tilt table test shows that head–
up tilt provoked changes in the phase differences between RRVand the respiratory signals.
The presented methodology provides a characterization of cardiovascular interactions which
may add valuable information toward a better understandingof the dynamics involved in the
cardiovascular control.
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