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Abstract—Obstructive sleep apnea (OSA) is a high-
prevalence disease in the general population, often under-
diagnosed. The gold standard in clinical practice for its di-
agnosis and severity assessment is the polysomnography,
although in-home approaches have been proposed in re-
cent years to overcome its limitations. Today’s ubiquitously
presence of wearables may become a powerful screening
tool in the general population and pulse-oximetry-based
techniques could be used for early OSA diagnosis. In this
work, the peripheral oxygen saturation together with the
pulse-to-pulse interval (PPI) series derived from photo-
plethysmography (PPG) are used as inputs for OSA diagno-
sis. Different models are trained to classify between normal
and abnormal breathing segments (binary decision), and
between normal, apneic and hypopneic segments (multi-
class decision). The models obtained 86.27% and 73.07%
accuracy for the binary and multiclass segment classifica-
tion, respectively. A novel index, the cyclic variation of the
heart rate index (CVHRI), derived from PPI’s spectrum, is
computed on the segments containing disturbed breathing,
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representing the frequency of the events. CVHRI showed
strong Pearson’s correlation (r) with the apnea-hypopnea
index (AHI) both after binary (r= 0.94, p< 0.001) and mul-
ticlass (r= 0.91, p<0.001) segment classification. In addi-
tion, CVHRI has been used to stratify subjects with AHI
higher/lower than a threshold of 5 and 15, resulting in
77.27% and 79.55% accuracy, respectively. In conclusion,
patient stratification based on the combination of oxygen
saturation and PPI analysis, with the addition of CVHRI,
is a suitable, wearable friendly and low-cost tool for OSA
screening at home.

Index Terms—Obstructive sleep apnea (OSA), Hjorth
parameters, pulse photoplethysmography (PPG), pulse-to-
pulse interval (PPI), oxygen saturation, cyclic variation of
the heart rate index (CVHRI).

I. INTRODUCTION

OBSTRUCTIVE Sleep Apnea (OSA) is a syndrome caused
by repetitive episodes of total or partial interruption of

the respiratory flow during sleep due to blockades produced by
intermittent relaxation of throat muscles. Obstructive respira-
tory events are the cause of sleep fragmentation, hypoxemia,
hypercapnia and increased sympathetic activity [1]. The list of
symptoms can include daytime sleepiness, cognitive impair-
ment, memory loss [2], together with comorbidities such as
hypertension, cerebrovascular artery disease, coronary artery
disease, congestive heart failure and atrial fibrillation [3]. OSA
prevalence ranges from 9% to 38% in the general adult popula-
tion, being much higher in the elderly groups [4]. Furthermore,
prevalence is expected to increase in the general population due
to obesity and overweight epidemic [5]. OSA underdiagnosis
was estimated as 93% for women and 82% for men by Young
et al. [6], however, the increase in obesity prevalence together
with the generalization of screening are factors that may have
altered these statistics from then until now. For decades, the
gold standard for diagnosis included polysomnography (PSG)
performed in a clinical environment. The patient is requested to
sleep in a medical center while he or she is continuously mon-
itored, making this test uncomfortable and with some impact
in the natural sleep. Recently, the use of out-of-center sleep
testing with limited channels was included in the diagnostic
criteria for adult OSA, although it commonly underestimates the
number of obstructive respiratory events per hour as compared
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to PSG [3]. Obstructive respiratory events are usually measured
by the apnea-hypopnea index (AHI). This index, being the total
count of apneas and hypopneas normalized by the sleep time
in hours, has been a matter of controversy since its introduc-
tion in OSA diagnosis and severity rating [7], [8]. Despite of
this, AHI is still the main measurement in OSA diagnosis, as
OSA is defined as a combination of symptoms or comorbidities
together with an AHI≥5; or an AHI≥15, even in absence of
symptoms [3].

Early diagnosis of OSA is important as it can cause several
major health issues [9]. OSA underdiagnose would be reduced
by the development of novel techniques for massive screen-
ings in the general population. Among these techniques, the
assessment of heart rate variability (HRV) is appealing since it
can be applied to signals recorded at home using wearables.
Variability of the heartbeat period is known to be related to
sleep breathing disorders. Zwillich et al. [10] discovered that
most apneas –excluding those without oxygen desaturations–
are associated with bradycardia episodes, and that bradycardias
became more marked when apnea length and oxyhemoglobin
desaturation increases. In 1984, Guilleminault et al. [11] de-
scribed the Cyclic Variation of the Heart Rate (CVHR), a pattern
of bradycardia during apnea, followed by abrupt tachycardia on
airflow restoration. This pattern has been an object of study,
including frequency-domain analysis [12], morphology vari-
ations [13] and automatic detection [14]. Shiomi et al. [12]
discovered an augmented very low frequency (VLF) component
of heart rate (0.008-0.04 Hz) in OSA patients synchronized with
episodes of absence of air exchange or hypoxemia, that occurred
at a cycle length of 25–120 seconds. They also described a VLF
peak during episodes of OSA, likely related to the CVHR os-
cillation frequency, itself related to the frequency of the apneas.
Stein et al. [13] set a 20% of the sleeptime with CVHR as a
threshold to predict AHI ≥ 15. They suggested that, despite
Guilleminault described CVHR as an effective monitoring of the
OSA, it had not been used by the end of the 20th century due to
technical difficulties. They also appointed, back in 2003, that this
technique should be included as a part of routine Holter reports.

Pulse rate variability (PRV) is a well-known alternative that
offers a high correlation with HRV even in non-stationary sit-
uations [15]. The main advantage is that acquisition is made
by an optic sensor placed on the skin, rather than attached
electrodes. This technique, called pulse photoplethysmography
(PPG), is the most popular in wrist-worn devices worldwide.
Khandoker et al. [2] demonstrated that PRV could be used to
distinguish OSA events from normal breathing during sleep,
although several variability measures were significantly differ-
ent from the HRV reference during OSA events. Analogously,
Lázaro et al. [16] demonstrated that PRV can be used as HRV
surrogate in apnea detectors based on decreases of amplitude
fluctuations of the PPG (DAP). Later, Lazazzera et al. [17]
combined DAP, PRV and peripheral capillary oxygen saturation
(SpO2) for OSA screening purposes in adults. In [18], Hayano
et al. presented an automatic detection of the CVHR pattern from
a PPG signal for its use in a commercial wearable watch device.
This algorithm is based on the detection of every cycle on the
pulse-to-pulse interval (PPI) signal. Magnusdottir et al. [19] used

CVHR combined with cardiopulmonary coupling to identify
sleep apnea.

In [20], a novel method of OSA screening based on CVHR
was proposed and preliminarily evaluated with recordings from
15 subjects. CVHR was detected from PPI signal using its
Hjorth parameters as inputs of a bagged trees model. More-
over, a frequency-based metric, the CVHR Index (CVHRI),
was proposed for severity stratification, obtaining a Pearson’s
correlation (r) of r = 0.68 (p < 0.05) with AHI. The SpO2

signal is added to the model in this work, hypothesizing that
it may considerably improve segment classification outcomes
given that it provides a different source of information of the
apnea-generated hypoxia. In addition, the further inclusion of
frequency-domain PRV metrics as predictors is studied in Ap-
pendix A. Different combinations of PPI and SpO2 inputs are
used in order to understand their individual contribution. CVHRI
is evaluated with recordings from 96 subjects as a potential
metric for stratification of subjects with AHI higher or lower
than a threshold, considered either 5 or 15, corresponding with
OSA diagnosis thresholds with and without symptoms or comor-
bidities, respectively. The novelties of this work are summarized
as follows:

� The use of Hjorth parameters as the only features of SpO2

and PPI signals for the classification of segments.
� The inclusion of the SpO2 signal to the model preliminary

presented in [20]. A larger dataset of 96 subjects is also
used, in comparison with the previous 15-subject dataset.

� The inclusion of PRV metrics as model inputs is also
studied.

� The use of a new PPI-derived index, the CVHRI, for
stratifying subjects between OSA/non-OSA.

The manuscript structure is as follows. The methodology is
explained in Section II, where the database is detailed in Section
II-A, the classification of segments is addressed in subsections
II-B, and II-C, and II-D, as well as the stratification of subjects
in Section II-E, and the statistical metrics to evaluate the per-
formance of segment classification and subject stratification in
Section II-F. In Section III, the results of segment classification
are studied in Section III-A, correlation of CVHRI with AHI
in Section III-B, and subject stratification in Section III-C.
Section IV is dedicated to the discussion of the results and is
organized discussing segment classification in Section IV-A,
correlation of CVHR with AHI in Section IV-B, and subject
stratification in Section IV-C. This section includes an additional
Section IV-D focused on the study of limitations. The manuscript
is finished with conclusions presented in Section V.

II. METHODS

A. Dataset

The dataset is composed of 96 subjects (age 44.5± 11.4 years,
62 males) suspected to suffer from OSA, who underwent a PSG
(Medatec, Brainnet II, Brussels, Belgium) at the sleep laboratory
of the University Hospitals Leuven (UZ Leuven). All included
patients did not suffer from any of the following comorbidities:
atrial fibrillation, hypertension, stroke, myocardial infarction,
hyperlipidemia or diabetes. All signals were sampled at 500 Hz,
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Fig. 1. Signal processing flowchart of signals used in for segment
classification.

including nasal pressure and oronasal flow (thermistor). Hypno-
grams are also available. PPG and SpO2 signals were recorded
using a Nonin 8000 J sensor at 500 Hz. One subject was removed
from dataset due to he/she was wake most of the test time,
whereas another one was removed due to an unreliable nasal
pressure signal. Thus, in total, 94 subjects were used. 72% of
the subjects had AHI≥5, while 50% had AHI≥15, based on
AASM annotation rules [21]. The inclusion of these data sets
was approved by the ethical committee of UZ Leuven (S60319)
and all patients signed an informed consent.

B. Signals for Segment Classification

1) Pulse-to-Pulse Intervals: The PPG signal is processed
to obtain pulse event series using an adaptive threshold pulse
detector [16]. Then, pulse series are checked using the algo-
rithm described in [22], correcting both false positives and false
negatives. Finally, the PPI signal is obtained by evenly sampling
the pulse series at 4 Hz using linear interpolation. PPI signal is
also smoothed using a second-order polynomial fitting with a
moving window of 20 seconds (see Fig. 1).

2) SpO2: SpO2 values are quantified in integer units and
the lack of hysteresis provokes large quantization noise. A
3-second median filter is used to reduce noise in the SpO2 signal.
SpO2 is also decimated to 25 Hz, following the AASM 2012
recommendations [21].

C. References for Performance Evaluation

1) Airflow: The AASM [21] recommends different sensors
to annotate apneas and hypopneas: apneas are proposed to
be annotated from oronasal thermistor, while hypopneas are
from nasal pressure. However, oronasal thermistor signals were
saturated in most of the cases, making them not reliable. Thus,
following the AASM guidelines for this cases, both apneas and
hypopneas are annotated from nasal pressure signals.

Fig. 2. Signal processing flowchart of reference signals.

First, nasal pressure signals are low-pass filtered at 15 Hz for
noise removal, and detrended by a high-pass filter at 0.1 Hz,
using 3-order Butterworth filters (see Fig. 2). Airflow is com-
puted from the nasal pressure signal by the algorithm described
in [23] by detection of maxima (for positive segments) or minima
(for negative segments) between consecutive zero crossings.
These minima and maxima are interpolated using piecewise
cubic Hermite interpolating polynomials, obtaining a positive
and a negative envelope. Finally, the airflow is defined as the
difference between the envelopes. Airflow signal is decimated
to 100 Hz, following the AASM 2012 recommendations [21].

2) Basal Respiration: Running basal respiration was used as
reference for annotating reductions of the airflow signal. This
signal is obtained by an algorithm that computes the median of
the airflow signal in 1-minute segments. The result of the sum
of each segment median, multiplied by a weight of 0.4, plus the
previous segment median, multiplied by 0.6, is stored. These
weights were chosen empirically, looking for the smoothest line
that at the same time allowed to follow the variations in the
baseline in a subset of 10 random subjects. The use of averaging
with memory helps to obtain a more accurate basal respiration in
signals with the presence of apneas. Without these disruptions,
averaging is a simple task and no weighting is required. How-
ever, subjects with apneas present regions with large variations,
sometimes composed of a succession of events. Therefore, a
compromise must be reached that allows these disruptions not
to raise or lower the basal respiration to arbitrary values, while
allowing the average to follow the changes over time. The more
challenging decision is in those cases with burst events, where
respiration does not return to a basal respiration between events.
In these cases, basal values before and after the burst must be
taken into account to make a correct approximation. Thus, once
the algorithm obtains a value for each airflow segment, it is run
again backwards. Finally, basal respiration is the mean of the
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Fig. 3. Top panel: Event-based annotations. Solid lines represent airflow (top row) and nasal pressure (bottom row), the dashed-dotted line
represents basal respiration and the dashed line represents zero-reference for airflow and basal respiration. Annotation onsets and endsets
correspond to airflow reductions and restorations, respectively. Bottom panel: Grouped annotations. Events are grouped in apneic/hypopneic bursts.
Note that new bursts are initiated every 8 events, allowing precise apneic/hypopneic characterization. These annotations are later transformed into
segment-based annotations.

forward and backward results. This allows for more accurate
transitions between normal and disrupted breathing segments.

3) Annotations: Events are labeled as apnea if airflow de-
creases ≥ 90% from basal respiration, during ≥ 10 seconds,
while they are labeled as hypopnea if the decrease is ≥ 30%
during ≥ 10 seconds and there is an associated ≥ 3% desat-
uration. A third label, severe hypopnea, is applied to airflow
decreases ≥ 70% during ≥ 10 seconds, regardless of saturation.
These are borderline cases, in which airflow does not completely
disappear, although the reduction is considerably greater than
in most hypopneas (See Section IV-A). Hypopneas related to
arousals were not annotated. No distinction was made between
central and obstructive apnea/hypopnea annotations, although
respiratory effort was assessed (89.7% of apneas/hypopneas
were obstructive [17]).

Event-based annotations were transformed into segment-
based annotations. This step is performed taking into ac-
count that the objective is to annotate each segment
into abnormal/normal breathing (binary decision) or ap-
neic/hypopneic/normal breathing (multiclass decision) as a ref-
erence for segment classification. Events are grouped in bursts.
Bursts are composed of at least two events, separated by a
maximum of 180 seconds, and are labeled as apneic or hypopneic
depending on the events forming each burst. A burst is labeled as
apneic if it contains at least one apnea or at least half of the events
are severe hypopneas. Bursts are labeled as hypopneic otherwise.
The maximum number of grouped events is empirically set to
eight, allowing precise apneic/hypopneic characterization. An
example of event-based annotation grouping in bursts is shown
in Fig. 3.

Finally, time is divided in 180-second segments with 150-
second overlap (step: 30 seconds). A segment is labeled as
apneic if it contains at least one apneic burst; as hypopneic if
it contains at least one hypopneic burst and no apneic bursts;
or as normal breathing if it does not contain any burst. Apneic
and hypopneic classes are grouped into abnormal breathing in
the binary case. Classes were balanced by randomly removing
the majority class before segment classification, obtaining a
total of 53.242 segments in the binary case (26.621 normal and
26.621 abnormal breathing segments), and 25.278 segments in
the multiclass case (8.426 apneic, 8.426 hypopneic and 8.426
normal breathing segments).

D. Segment Classification Models

For each segment, Hjorth parameters H0, H1 and H2 of the
PPI and SpO2 signals, surrogates of power, dominant frequency
and bandwidth, respectively [24], [25], were computed in a
sliding window following the expressions:

Activity : H0(m) = w̄0(m)

Mobility : H1(m) =

√
w̄2(m)

w̄0(m)

Complexity : H2(m) =

√
w̄4(m)

w̄2(m)
− w̄2(m)

w̄0(m)
, (1)

where w̄i is the i-th-order spectral moment. w̄i can be estimated
using the temporal expression of the moments in the m-th
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window of P samples:

ˆ̄wi(m) ≈ 2π

P

mP∑
n=(m−1)P+1

(xi/2(n))2, (2)

being x(n) either the PPI or the SpO2 signal and P the number of
samples corresponding to 180 s. The Hjorth parameters are used
as inputs for segment classification. The motivation for using
these parameters is twofold. On the one hand, they are simple and
low cost to compute since they can be estimated from the time
domain signal. On the other hand, they are easily interpretable,
being related to the signal energy, dominant frequency and band-
width. The original hypothesis was that segments with CVHR
pattern would have different Hjorth parameters from segments
without CVHR [20]. In particular, it was hypothesized that the
PPI in segments with CVHR would have a lower Complexity,
H2, as the bradycardia-tachycardia pattern would mask the
normal variability of the heart, causing it to more closely re-
semble a sinusoid, as shown in [20]. Analogously, desaturations
in SpO2 should affect all parameters, especially the Activity,
H0.

The best model is selected maximizing the Area Under the
Curve (AUC) of the Receiver Operating Characteristics (ROC)
curve. For training, 5-fold cross-validation was performed in
order to avoid bias in results due to overfitting. Models from
the decision trees, discriminant analysis, logistic regression,
naive bayes, support vector machine, nearest neighbor, ker-
nel approximation, ensembles, neural networks families were
tested. As result, Bagged trees outperformed the others and
was the selected model, and a leave-one-subject-out testing
strategy was followed. Different models were created for binary
and multiclass decision. Also, for each classification strategy,
three models were created, depending if they use PPI and SpO2

(PPI+SpO2 model), only PPI (PPI model) and only SpO2 (SpO2

model) as inputs (see Fig. 4).

E. OSA Stratification by CVHRI

CVHRI is a metric proposed in [20] for apnea severity
quantification. The spectrum of the PPI is computed using
Fast Fourier Transformation (FFT) for each i-th 180-second
segment classified as abnormal breathing in the binary case, or
as apneic/hypopneic in the multiclass case. The frequency of the
FFT modulus maxima, Fmax

i , between 0 and 0.1 Hz is obtained.
Then, CVHRI is defined as the sum of the frequencies of the
spectrum peaks of each abnormal breathing/apneic/hypopneic
segment divided by the total number of segments, obtaining a
single parameter which characterizes each patient, similarly to
AHI.

CVHRI =

∑Iab

i=1 F
max
i

Itot
, (3)

where Iab is the total number of abnormal breathing segments
in the binary case or the sum of apneic and hypopneic seg-
ments in the multiclass case and Itot is the total number of
segments. Pearson correlation coefficient (Pearson’s r) between
CVHRI and AHI is computed for each model. This index was

Fig. 4. Segment classification models.

proposed in [20] as an alternative for detecting each bradycardia-
tachycardia pattern individually, i.e., the CVHR pattern, in order
to be less costly and more robust. The former is achieved because
only one peak per segment must be detected, which is easier in
the majority of the cases, while the latter benefits from the highly
optimized FFT algorithms.

Finally, CVHRI is used for subject stratification. Groups of
interest are those clustered by AHI<5 v. AHI≥5 and AHI<15
v. AHI≥15, as are the ones used for OSA diagnosis. A CVHRI
threshold for each subgroup is searched by Linear Discriminant
Analysis (LDA). Class weights w(j) are computed for dealing
with imbalanced data following:

w(j) =
N

2N(j)
, (4)

where N is the total number of patients and N(j) the number
of patients corresponding to class j. Train and test groups are
selected randomly, splitting the dataset in two halfs. 5-fold cross-
validation is used to prevent overfitting during training.

F. Performance Analysis

Segment classification performance is evaluated in terms of
accuracy (Acc) precision (P ) and recall (R). These metrics
have been evaluated for all subjects and also for AHI<15 and
AHI≥15 subsets. The leave-one-subjet-out strategy is imple-
mented by summing up the number of false and true events for
each left subject and then computing metrics presented in Tables
I and II. After segment classification, CVHRI is computed for
every subject and compared to AHI. Pearson’s r correlation was
computed between CVHRI and AHI with a significance level of
0.05. Correlation results are divided as well in binary and multi-
class depending on the segment classification prior to the CVHRI
computing. Also, results are computed for all subjects and for
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Fig. 5. AHI v. CVHRI after binary segment classification. Vertical lines separate AHI <5, 5≤ AHI<15 and AHI≥15 groups.

TABLE I
BINARY SEGMENT CLASSIFICATION METRICS

TABLE II
MULTICLASS SEGMENT CLASSIFICATION METRICS

AHI<15 and AHI≥15 subsets separately. Finally, stratification
results were computed taking the AHI clustering (AHI<5 v.
AHI≥5 and AHI<15 v. AHI≥15) as reference. Accuracy, posi-
tive predictive value (PPV), sensitivity (Se), negative predictive
value (NPV), specificity (Sp), Area Under the Curve (AUC)
and Cohen’s Kappa (κ) are reported alongside the best CVHRI
threshold for each model that better cluster the subjects.

1) Binary Segment Classification: The target here is normal
and abnormal breathing segment classification. A number of
true normal breathing segments, Tn, false normal breathing
segments, Fn, true abnormal breathing segments, Tab, and false
abnormal breathing segments, Fab, are obtained, which are
quantified by the metrics in Table I.

2) Multiclass Segment Classification: The target here is nor-
mal breathing, apneic or hypopneic segment classification. We
obtain a number of true normal breathing segments, Tn, false
normal breathing segments, Fn, divided between those coming
from apneic and hypopneic segments (Fn = Fn,ap + Fn,h),
true apneic segments, Tap, false apneic segments, Fap, di-
vided between those coming from normal breathing and
hypopneic segments (Fap = Fap,n + Fap,h), true hypopneic

TABLE III
BINARY SEGMENT CLASSIFICATION RESULTS (%)

TABLE IV
MULTICLASS SEGMENT CLASSIFICATION RESULTS (%)

segments, Th, and false hypopneic segments, Fh, divided be-
tween those coming from normal breathing and apneic segments
(Fh = Fh,n + Fh,ap), which are quantified by the metrics in
Table II.

III. RESULTS

A. Segment Classification Results

The results for binary and multiclass classification are shown
in Tables III and IV, respectively. Results are given for all
subjects together as well as separately in the AHI<15 and
AHI≥15 subgroups.

B. CVHRI Correlation With AHI

1) Binary: Fig. 5 shows CVHRI v. AHI scatter plots for each
binary segment classification model, including Person’s r. A
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Fig. 6. AHI v. CVHRI after multiclass segment classification. Vertical lines separate AHI <5, 5≤ AHI<15 and AHI≥15 groups.

TABLE V
STRATIFICATION AFTER BINARY SEGMENT CLASSIFICATION (%, EXCEPT AUC AND κ)

TABLE VI
STRATIFICATION AFTER MULTICLASS SEGMENT CLASSIFICATION (%, EXCEPT AUC AND κ)

very strong correlation (r = 0.94) was found when CVHRI
segments are detected with both the PPI+SpO2 model and the
SpO2 model. No correlation was found when CVHRI segments
were detected by the PPI model, except for the group with
AHI≥15, where a low correlation (r = 0.37) was obtained.
Correlation was slightly lower when including only the AHI≥15
group in comparison with all subject correlation, being 0.91
using the PPI+SpO2 model and 0.89 using the SpO2 model. No
correlation was found in any case for AHI<15.

2) Multiclass: Fig. 6 shows CVHRI v. AHI scatter plots
for each multiclass segment classification model. Results when
using a multiclass classifier prior to the CVHRI computation are
analogous to the binary case, obtaining slightly lower values. A
very strong correlation was found using the PPI+SpO2 model
(r = 0.91) and the SpO2 model (r = 0.89), while a low correla-
tion was found when using the PPI model (r= 0.32). Correlation
was again slightly lower when including only the AHI≥15 group
in comparison with all subject correlation, being r = 0.88 using
the PPI+SpO2 model and r = 0.86 using the SpO2 model, with
the exception of the PPI model, that increased its correlation to
r = 0.45. No correlation was found in any case for AHI<15
either.

C. OSA Stratification by CVHRI

Stratification results after binary and multiclass segment clas-
sification are shown in Tables V and VI, respectively.

IV. DISCUSSION

The present work has found sufficient evidence for supporting
the use of spectral features, extracted by Hjorth parameters, as
models for OSA screening based on oximetry systems. These
models stand out for their low computational cost, –linearly
proportional to the length P of the segment, in contrast to
FFT, with a computational cost proportional to P log2(P ), or
wavelet transform, also proportional to P but with a greater
number of operations [26]–, being suitable for built-in wear-
able applications. Moreover, CVHRI computed on not normal
breathing classified segments has demonstrated to be strongly
correlated to AHI, implying that could be a proper AHI surrogate
when the airflow is not available, specially in moderate-to-severe
cases (AHI ≥ 15). However, the limitations that apply to AHI
as a diagnosis and severity stand-alone index should also be
attributed to CVHRI, making it just valuable as surrogate for
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AHI. As future research, it could be interesting to include pa-
tients with comorbidities. As CVHR amplitude is mortality risk
predictor [27], a new index could be included as the amplitude of
the peak between 0 and 0.1 Hz of the PPI spectra used in CVHRI
computation. In addition, CVHR is thought to reflect cardiac
autonomic responses to cardio-respiratory perturbation caused
by apneic/hypoxic episodes [27]. Consequently, it is possible
that it could be useful in other disturbance assessments.

A. Segment Classification

Both PPI+SpO2 and SpO2 models perform similar, obtaining
85.01% and 86.27% accuracy when including all subjects, re-
spectively. Differences are high when comparing with the PPI
model, which obtained a 60.30% accuracy. Both PPI+SpO2 and
SpO2 models performed slightly better in the AHI<15 group,
obtaining 87.33% and 89.38% accuracy, in comparison with
the AHI≥15 group (83.01% and 83.51% accuracy). Despite the
better accuracy, precision and recall are uneven between classes
in the AHI<15 group, e.g., 95.21% (normal class) against
38.06% (abnormal breathing class) precision and 90.57% (nor-
mal class) against 56.01% (abnormal breathing class) recall in
the PPI+SpO2 model; being even in the AHI≥15 group, with
≥81.41% in all cases.

Multiclass results follow analogous trends as for the binary
case. PPI+SpO2 and SpO2 models showed the best performance,
with 73.07% and 71.71% accuracy, respectively, whereas PPI
model obtained 44.39% accuracy. Both PPI+SpO2 and SpO2

models performed better in the AHI<15 group as well, obtaining
80.39% and 79.39% against 66.77.39% and 65.10% accuracy in
the AHI≥15 group. Precision an recall are also uneven in the
AHI<15 group in comparison with the AHI≥15 group. Most
errors are confusions between apneic and hypopneic breathing:
e.g., in the PPI+SpO2 model, normal breathing precision and
recall was 92.86% and 80.19%, while for apneic/hypopneic
breathing was 65.91/23.71% precision and 60.70/49.87% recall.
This differences are accentuated in the AHI < 15 group: e.g.,
in the PPI+SpO2 model, normal breathing precision and recall
was 96.00% and 84.53%, while for apneic/hypopneic breathing
was 16.25/19.62% precision and 25.93/48.22% recall.

According to the results, most of the predictive capacity of
the models rely on the SpO2 signal, taking into account that
PPI+SpO2 models and SpO2 models perform identically, in
contrast with the poor performance of the PPI models. How-
ever, correlation between CVHRI and AHI was slightly higher
using PPI+SpO2 models. The inclusion of SpO2, evaluated in a
higher number of subjects, has largely improve the results of the
preliminary work [20]. It is possible that PPI could be useful to
detect arousal-related hypopneas as [16], [28] suggest (see IV-D
Section).

The overall segment classification performance worsens in the
multiclass case relative to the binary case, although accuracies
remain high (73.07%). Multiclass classifiers may be useful in fu-
ture research, specially when including comorbidities, although
nowadays there is no distinction in OSA treatment whether
there is an apneic or hypopneic predominance. Severe hypopneas
annotations (airflow reduction higher than 70% but lower than
90% related to desaturation) were introduced to improve apneic

TABLE VII
MULTICLASS SEGMENT CLASSIFICATION RESULTS (%)

segment detections. 90% reduction of the airflow is an arbitrary
threshold that attempts to operationalize the requirement of
“absent or nearly absent airflow” [29]. This way, it was observed
that borderline events labeled as hypopneas have comparable
PPI and SpO2 response to that of apneas rather than < 70% air-
flow reduction hypopneas. Nevertheless, analyzing the segment
classification results, virtually no differences were found when
the label severe hypopnea was omitted, i.e., strictly following the
AASM rules, as it is shown in Table VII. This comparison has
been computed using the best classification model (PPI+SpO2).
The utility of this label for stratification will be discussed in
Section IV-C.

Previous studies have classified apneic events based on SpO2

and PPI. The approach of this work is different. In this case,
there is no detection of apneic/hypopneic events, but rather a
classification of segments, which subsequently allows CVHRI
to be calculated. To the authors’ knowledge, there are no studies
in which segments are classified, which is one of the main
novelties of this study. The different approaches make the results
not directly comparable with other works. As a reference, it is
worth mentioning the event classification results of Lazazzera
et al. [17], which obtained a 75.1% accuracy on the same
database and using the same input signals. This result was ob-
tained for multiclass classification, so it should be compared with
the 73.03% (Table IV) of this work. Deviaene et al. [30] obtained
an accuracy of 83.4% using SpO2 and PPG features, in a database
with 102 subjects, also recorded at UZ Leuven. In this study
they reached the same conclusion that SpO2 models outperform
PPG models, obtaining an accuracy of 82.2% with the SpO2

model. The authors concluded that it is better to use both inputs
if available [30]. In a recent study by Huttunen et al. [31], the
authors compare different combinations of signals used as inputs
of a deep learning model that is able to simultaneously detect
respiratory events and classify sleep stages. The authors compare
three models: the first using PPG and SpO2, the second adding
the nasal pressure, and the third using SpO2, nasal pressure
and the electroencephalogram. Interestingly, the three obtain
virtually the same results in estimating AHI, supporting the use
of pulse oximeters in OSA screening without additional sensors.

B. CVHRI Correlation With AHI

Best correlation between CVHRI and AHI was found in the
AHI≥15 subgroup. This may appear counter-intuitive observing
segment classification accuracies, that are higher in the AHI<15
subgroup. However, the abnormal class (or apneic + hypopneic
classes in the multiclass model) is better detected in the AHI≥15
subgroup, according to precision and recall results, probably due
to the fact that those are the cases with the most clear bursts of
respiratory events. As CVHRI is measured only in abnormal (or
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TABLE VIII
COMPARISON WITH OTHER STUDIES (%, EXCEPT AUC AND κ)

apneic + hypopneic) segments, it is not as reliable in the AHI<15
subgroup as in the AHI≥15 subgroup.

C. OSA Stratification by CVHRI

Analogously to the previous result sections, stratification
accuracy decreases substantially when using PPI segment clas-
sification model. Similar trends are followed after multiclass
decision. Established thresholds are a reliable tool for OSA
diagnosis after PPI+SpO 2 and SpO2 model, being the first
slightly more accurate. Morover, its use for screening purposes
is supported by high negative predictive values. Bad results
after PPI models were expected taking into account segment
classification results. Binary models obtained slightly better
results in comparison with multiclass models. This, in addition to
the higher complexity of multiclass models suggest that binary
models should be used for stratification purposes. Results are
comparable with other researches that use PPG-derived metrics
for OSA diagnosis (Table VIII), such as [32], [33], although
none of these works used train-test splits nor cross-validation.
Also, higher scores in [33] could be explained since airflow
information was added to the model by using a nasal cannula. A
comparison with [34] cannot be directly done as different groups
were used (5≤ AHI<15, 15≤AHI<30 and AHI≥30), obtaining
κ values ranged from 0.49 to 0.79. It is reasonable to assume
that these results are in the same order than in [32], as they used
the same proprietary algorithm (Morpheus Ox. WideMed Ltd,
Herziliya, Israel). Same AHI groups were used in [35]. In this
work, AHI was estimated from SpO2 using an artificial neural
network. Estimated AHI classified patients in mentioned groups
with 90.9% accuracy.

The inclusion of the label severe hypopnea also deserves
discussion at this point. This label applies to events with an
airflow reduction ≥70% for ≥10 seconds, regardless of desatu-
ration. Therefore, by omitting this label, events with an airflow
reduction between 70% and 90% –at which point they are clas-
sified as apneas regardless of desaturations– need to be linked
to desaturation to be scored. Thus, there are events previously
annotated as severe hypopnea that may change to hypopnea
and events where annotations may be removed. Stratification
results did not change substantially by omitting the severe hy-
popnea label. Only two errors arose after binary classification
(one subject with AHI<5 was stratified as with an AHI≥5 and
other with AHI<15 was stratified as with an AHI≥15) and one
error after multiclass classification (one subject with AHI<15
was stratified as with an AHI≥15) with respect to the results
including the severe hypopnea label. Considering that the dataset
consisted of 94 subjects, the increase in error was 2.12% after

binary classification and 1.06% after multiclass classification.
Therefore, no large differences were obtained to support the
need for the label, although the type of error, i.e., false positive
in all cases, may be relevant in a screening tool.

D. Limitations

Arousal-related events are not taken into account in this work,
being desaturation-related hypopneas and apneas the only events
annotated. This decision was made taking into account that
models rely on CVHR pattern detection and that PPI and SpO2

were the only used signals. First, CVHR pattern is not present
in events not associated to desaturations [10]. Second, although
PPI can be used to assess arousals to some extent [25] using
PPI’s DAPs, it has not been demonstrated its feasibility from
PPI’s Hjorth parameters. Also, arousal assessment using PPI’s
DAPs has the limitation that some of the DAPs are not related to
apneic arousals [25]. In any case, thresholds for OSA stratifica-
tion should be set observing Oxygen Desaturation Index (ODI)
thresholds, rather than AHI’s, if arousals are not included [36].
Moreover, no distinction between central, obstructive and mixed
apneas was made. The justification is rather similar to that for
arousal-related hypopneas, as respiratory effort is not available
with limited channel motorization.

Another limitation was introduced by the saturation of the
oronasal thermistor signals, that lead to the use of the alternative
oronasal pressure for airflow assessment. However, the use of an
orosonasal pressure sensor instead of a nasal pressure sensor may
be considered a half-way solution between the recommended
and the alternative, as nasal pressure is criticized because the sig-
nal may show decreased amplitude during mouth breathing [29].

The device used for the input signals is a commercial pulse
oximeter. Since this work has focused on a screening tool,
with the possibility of being used in at-home solutions with
wearables, it is possible that the signals available may be of lower
quality. Tests should be performed to calculate performance
metrics for each case.

Finally, segment classification models used in this work were
designed to detect bursts of respiratory events that lead to a
CVHR pattern, rather than isolated events. As CVHR is medi-
ated by the parasympathetic system [11], it cannot be detected
in patients with autonomic nervous system impairments, such
as autonomic neuropathy, multiple system atrophy or Guillain-
Barré syndrome.

V. CONCLUSION

A classifier for during-sleep breathing segments has been
presented. This classifier exploits the differences in oscillatory
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TABLE IX
BINARY SEGMENT CLASSIFICATION RESULTS (%)

TABLE X
MULTICLASS SEGMENT CLASSIFICATION RESULTS (%)

pattern characteristics of the SpO2 and PPI signals by using the
Hjorth parameters as features. This approach obtained 86.27%
accuracy in the binary (normal-abnormal breathing) decision,
and 73.07% accuracy in the multiclass (normal breathing-
apneic-hypopneic) decision. A novel index, CVHRI, has been
computed in not normal breathing segments after segment clas-
sification. This index has shown to be strongly correlated with
AHI both after binary (r = 0.94, p < 0.001) and multiclass
(r = 0.91, p < 0.001) segment classification. A better perfor-
mance has been found in subjects with AHI≥15 rather than in
the AHI<15 subgroup. In addition, CVHRI has been used to
stratify AHI≥5 and AHI≥15 subgroups, resulting in 77.27%
and 79.55% accuracy, respectively. These results suggest that
the presented methods provide value for OSA limited-channel
screening, allowing monitoring with wearables at home.

APPENDIX

INCLUSION OF FREQUENCY-DOMAIN PULSE RATE

VARIABILITY METRICS AS PREDICTORS

The inclusion of frequency-domain PRV metrics in the study
for the detection of apneic segments is justified by the known
relationship of OSA with sympathetic overactivity. For this rea-
son, HRV has previously been used as a method to assess cardiac
autonomic changes during sleep [37]. To find out whether the
inclusion of these metrics can provide even improved results, the
best resulting model (PPI+SpO2 model) was taken as a starting
point and power in the low frequency band (PLF), in the high
frequency band (PHF) and PLF/PHF ratio were added to the
inputs. These features were calculated in the same segments
as the other models to make the results comparable. Both PLF

and PHF were computed by trapezoidal integration of the power
spectral density estimate obtained by periodogram within the
classic windows, i.e., 0.04–0.15 Hz for the low frequency and
0.15–0.4 Hz for the high frequency.

To facilitate comparison with the PPI+SpO2 model, both
model results are shown including and excluding the PRV met-
rics (see Tables IX and X). The variations in the predictor output

are minimal, demonstrating that the inclusion of these metrics
does not significantly improve the model. For simplicity, results
related to the subsequent computation of CVHRI and its ability
to predict OSA are not shown since the variation in the outcome
is as imperceptible as for segment classification.

It should be noted that the use of the classic high-frequency
band has been criticized [38]. It is known that respiration af-
fects the boundaries of this autonomic component, therefore it
should be studied whether the inclusion of respiratory frequency
information to the PRV analysis would allow a more accurate
classification.
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