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A Nonparametric Surrogate-Based Test of
Significance for T-Wave Alternans Detection
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and Gari D. Clifford, Senior Member, IEEE

Abstract—We present a nonparametric adaptive surrogate test
that allows for the differentiation of statistically significant T-wave
alternans (TWA) from alternating patterns that can be solely ex-
plained by the statistics of noise. The proposed test is based on
estimating the distribution of noise-induced alternating patterns
in a beat sequence from a set of surrogate data derived from re-
peated reshuffling of the original beat sequence. Thus, in assessing
the significance of the observed alternating patterns in the data, no
assumptions are made about the underlying noise distribution. In
addition, since the distribution of noise-induced alternans magni-
tudes is calculated separately for each sequence of beats within
the analysis window, the method is robust to data nonstation-
arities in both noise and TWA. The proposed surrogate method
for rejecting noise was compared to the standard noise-rejection
methods used with the spectral method (SM) and the modified
moving average (MMA) techniques. Using a previously described
realistic multilead model of TWA and real physiological noise, we
demonstrate the proposed approach that reduces false TWA detec-
tions while maintaining a lower missed TWA detection, compared
with all the other methods tested. A simple averaging-based TWA
estimation algorithm was coupled with the surrogate significance
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testing and was evaluated on three public databases: the Normal
Sinus Rhythm Database, the Chronic Heart Failure Database, and
the Sudden Cardiac Death Database. Differences in TWA ampli-
tudes between each database were evaluated at matched heart rate
(HR) intervals from 40 to 120 beats per minute (BPM). Using the
two-sample Kolmogorov–Smirnov test, we found that significant
differences in TWA levels exist between each patient group at all
decades of HRs. The most-marked difference was generally found
at higher HRs, and the new technique resulted in a larger margin
of separability between patient populations than when the SM or
MMA were applied to the same data.

Index Terms—ECG, noise, surrogate analysis, T-wave alternans
(TWA).

I. INTRODUCTION

T -WAVE alternans (TWA), referring to beat-to-beat vari-
ability in the timing or shape of ST-T complex on the sur-

face ECG, was first reported in 1908 by Hering [1]. Although the
phenomenon is widely understood to be an important indicator
of risk of sudden cardiac death (SCD) [2]–[4], until the 1980s,
TWA was believed to be rare. In 1981, Adam et al. first reported
the existence of the microvolt level TWA, which are too small
in amplitude to be visually detected at standard ECG display
scales [5]. Follow-up studies demonstrated that the absence of
significant TWA in a patient with congestive heart failure, low
ejection fraction, or a recent myocardial infarction is strongly
predictive of a low risk of SCD [6], [7]. A positive finding in
such a patient, though less specific, may indicate that an im-
plantable cardiac defibrillator would be appropriate, which is an
indication that can be confirmed using invasive testing. How-
ever, the positive predictive value of TWA remains low [8], and
it is yet to be determined whether further improvements in the
methodology of TWA detection/quantification can improve the
positive diagnostic power of the TWA test.

One unresolved issue in the area of TWA analysis is that of
noise modeling and rejection of false detections while maintain-
ing a low level of missed detections [9]–[11]. A comprehensive
list of various TWA estimation and detection techniques is pro-
vided by Martı́nez and Olmos [12]. Two of the most common
shortcomings of the discussed methods of TWA detection are:
1) unjustified assumptions about the nature of the physiological
noise (e.g., Gaussian or Laplacian distributions) [11] and 2) ar-
bitrary detection thresholds, often tuned on patient populations
that are judged as healthy [13], [14].

In this paper, we seek to determine if in the presence of noise
(due to exogenous sources, such as electrode movements or en-
dogenous interferences, such as muscle artifacts), alternating-
like patterns can appear in the data, and whether in the absence
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of an appropriate statistical test, such patterns can be mistaken
for physiological-based TWA. We propose a nonparametric test
to mitigate the problem of TWA false detection. The proposed
test makes no assumption concerning the distribution or station-
arity of the noise or the TWA in the data, and therefore, it is
robust under varying recording conditions. The purpose of this
paper is to devise a robust statistical test to assist in accurate
detection of TWA, independent of the particular estimation al-
gorithm being used. To the best of our knowledge, this paper is
the first to propose a statistical test for TWA detection that is
completely nonparametric and makes no assumption about the
nature (distribution or dynamics) of the underlying noise or the
TWA activity itself.

To provide a comparative study of the proposed TWA detec-
tion algorithm, we used an open-source TWA analysis tool to
evaluate current standards for TWA metrics on four datasets.
First, by using a model of TWA, to which realistic noise is
added, we created a gold-standard dataset in which the exis-
tence and magnitude of TWA is completely known. We then
evaluated the concept of false estimation of TWA amplitude by
the standard TWA analyzers at low levels of TWA amplitude
and varying noise level to determine the sensitivity floor of var-
ious noise-rejection techniques. Once the range of the standard
TWA analysis techniques was determined, we investigated the
feasibility of assessing statistical significance of a given alter-
nans amplitude via a nonparametric surrogate test that allows
for the differentiation of statistically significant TWA from alter-
nating patterns, which can be solely explained by the statistics
of noise. Our surrogate method is similar to the one described
by Small and Judd [15] and Theiler et al. [16], [17]; except that
all the computations are performed in the time domain rather
than the frequency domain. We also note that our approach is
related to the approximate permutation test, Monte Carlo per-
mutation tests or random permutation tests [18]. The proposed
statistical significance test was then applied to three publicly
available databases to investigate reports that TWA manifest
more significantly at higher heart rates (HRs) in both normal
and cardiac-impaired populations [19].

We start with a brief description of the datasets utilized in this
paper, followed by an introduction to the most commonly uti-
lized TWA analysis methods, and a discussion of false detections
in the presence of noise. Next, we describe the proposed non-
parametric statistical test to separate real TWA effect from the
noise-induced alternans-like artifacts. Finally, we evaluate the
performance of the proposed approach compared to the standard
approaches using simulated vectorcardiographs (VCGs) with
known TWA amplitude and three publicly available databases.

II. MATERIALS AND METHODS

Four datasets were used for the analysis; one set of computer-
simulated VCGs with known TWA amplitude and additive phys-
iological noise [from the MIT-BIH Noise Stress Test Database
(NSTDB)], one set of recordings from healthy subjects, one set
with chronic heart failure, and one set of recordings from SCD
patients.

Fig. 1. Examples of simulated VCG with TWA amplitude of 23 μV. Physio-
logical noise consisting of a mixture of muscle artifacts, electrode movements,
and baseline wander are added to each record. Only simulations at (top) SNR
of 10 dB and (bottom) clean VCG are shown here. Zooming into the bottom
plot, one can observe the microvolt variations from a normal beat (type-A) to an
abnormal beat (type-B). The maximum amplitude variation between a type-A
and a type-B beat is concentrated around the T-wave peak.

A. Simulated TWA

Five minutes duration records with TWA amplitudes of 0
through 100 μV were generated using an artificial multilead
VCG model with realistic TWA-like effects [20] and the x-axis
of the VCG was chosen as the test signal. Next, noise segments
of 5 min duration with random starting points were selected from
the MIT-BIH NSTDB [21]. The NSTDB comprises recordings
of three different types of noise, namely baseline wander, elec-
trode movement, and muscle artifacts. The additive noise was
constructed by mixing all three noise types, and the power of the
noise with respect to the VCG signal was adjusted to simulate
records of SNR of 10, 20, and 30 dB and no noise (due to space
limitations only results from SNR of 10 dB and no noise are
reported). For a given SNR level and TWA amplitude, we gen-
erated 50 VCG records of 5 min each at a sampling frequency
of 500 Hz and 16-bit resolution per sample, which is sufficient
to prevent significant quantization noise [10], [22]. Individual
records differ in that: 1) the underlying VCGs were generated us-
ing a stochastic model of HR variability (70 ± 5 beats/min) [23]
and 2) the additive noise was taken from random 5 min seg-
ments of the NSTDB. A short segment from one of the sim-
ulated records with a TWA amplitude of 23 μV with additive
noise at 10-dB SNR and no noise is shown in Fig. 1.

B. Real ECG Recordings

To assess the effectiveness of the proposed statistical test,
we compared the performance of each of the described TWA
detection methods for separating patient populations according
to the magnitude of TWA activity they manifest. To this end,
we employed three publicly available databases to investigate
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reports that TWA manifest more significantly at higher HRs,
and more often within the cardiac-impaired populations [19].

1) Normal Sinus Rhythm Database: This database includes
18 long-term (at least 8 h long) ECG recordings of subjects
referred to the Arrhythmia Laboratory at Boston’s Beth Israel
Deaconess Medical Center. Subjects included in this database
were found to have no significant arrhythmias; they include
5 men, aged 26 to 45, and 13 women, aged 20 to 50 years.
Recordings were performed at 128 Hz sampling frequency and
12-bit resolution [24].

2) Chronic Heart Failure Database: This database includes
long-term ECG recordings from 15 subjects (11 men, aged 22
to 71, and 4 women, aged 54 to 63 years) with severe congestive
heart failure. This group of subjects was part of a larger study
group receiving conventional medical therapy prior to receiving
the oral inotropic agent, milrinone. Recordings were performed
at 250 Hz sampling frequency and 12-bit resolution [24].

3) SCD Database: These data include 23 patients with un-
derlying sinus rhythm (four with intermittent pacing), one who
was continuously paced and four with atrial fibrillation. All pa-
tients had a sustained ventricular tachyarrhythmia, and most
had an actual cardiac arrest. The recordings were performed at
sampling frequency of 250 Hz and 12-bit resolution [24].

C. TWA Estimation and Detection

Since the purpose of this study was to propose a robust test of
significance of TWA patterns, independent of the particular pre-
processing (i.e., prefiltering, QRS detection, and beat alignment)
or estimation method, we utilized the same preprocessing steps
across all methods. (For a more thorough description, see [25].)
Our implementations of the modified moving average (MMA)
and spectral method (SM) are based on descriptions given in [12]
and [26] and are described in the following sections.

The algorithms and metrics chosen for comparative study in
this paper were intended to mimic the approaches employed in
commercial equipment and are most often used by clinicians
rather than to provide an exhaustive comparison of all TWA
analysis techniques. To facilitate comparisons across various
methods, an analysis window of length L = 64 beats with 32
beats overlap was utilized independent of the particular TWA
algorithm. All the analyses in this paper were performed on a
single lead of the ECG records (lead I). Although different sub-
jects may manifest maximal TWA activity across different leads,
we expect the differences to average out over our databases.

1) Proposed Detection Method (Surrogate Data Analysis):
In this paper, we propose a nonparametric (assumption-free) sta-
tistical test to separate physiologically induced alternans (real
TWA) in a beat sequence from alternating patterns that could
be a byproduct of the way one measures TWA amplitude and
deals with the artifacts of recording noise. The main motivation
behind the surrogate data analysis (SDA) method is that if the
estimated alternans amplitudes are not artifacts of noise, then
by eliminating the temporal relationship between the beats—
through shuffling of the beat sequence—the amplitude of the
beat-to-beat alternation ought to decrease significantly. Hence-
forth, we define a noise-induced alternating pattern (NIAP) as

Fig. 2. Normalized histogram of (black) NIAP and (dark blue) fitted gamma
distribution calculated from 250 times reshuffling of the beats within an analysis
window (L = 64 beats). Marked are the 95th and 99th percentiles of the cal-
culated alternans amplitude (nonparametric) and the fitted gamma distribution
(parametric). If the estimated TWA is larger than the 95th or 99th percentile, one
can confidently reject the null hypothesis at α = 0.05 or α = 0.01, respectively.

an alternating pattern in a beat sequence that is caused by fac-
tors other than alternation in ventricular repolarization on an
every-other-beat basis.

To cast the problem into a more rigorous statistical frame-
work, one has to approximate the distribution of NIAP. A sur-
rogate measure of NIAP may be obtained through repeated
reshuffling of the beat sequence (say N = 250 times) and by
estimating the alternans amplitude for each surrogate arrange-
ment of beats. In general, as the number of surrogates (shuf-
flings) increases, the normalized histogram of the measured
NIAP will approach the true distribution of NIAP. A statisti-
cal test can then be constructed by comparing the measured
TWA amplitude against some upper percentile ((1 − α) × 100)
of the NIAP estimates (e.g., 95th percentile or 99th percentile
for α = 0.05 or α = 0.01, respectively). If the estimated TWA
amplitude is greater than or equal to all the NIAP values up to
and including the (1 − α) × 100 percentile, the estimated TWA
amplitude is significant and its value is reported. Otherwise, the
TWA amplitude is labeled indeterminate for the given analy-
sis window. Thus, the indeterminate cases are those for which
neither the presence nor the absence of TWA activity can be
ruled out. (It is worth noting that in the absence of any TWA
activity and no random beat-to-beat variations, all possible ran-
dom arrangements of beats must result in 0 V TWA amplitude,
and thus, alternans-free beat sequences would not be labeled
indeterminate. However, in real data due to the presence of
noise, certain arrangements of beats will result in nonzero TWA
amplitude; therefore, as a consequence of our definition of in-
determinacy and noise, 0 V TWA amplitude is almost always
labeled indeterminate. However, this does not cause any prob-
lem, since in practice, missed or indeterminate 0 V alternans are
unimportant.)

Fig. 2 illustrates the normalized histogram of the NIAP
(black) calculated (using the simple averaging method (SAM)
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Fig. 3. Range of NIAP amplitudes at 95th percentile significance in reshuffled
beat sequences using the SAM (see Fig. 2), representing a statistical measure
of the upper limit on the NIAP. (Boxes) Median, (lower line) 5% and (upper
line) 95% are plotted to illustrate spread of the 99th percentile at each simulated
TWA amplitude and across all simulated records, at SNR of 10 dB and no noise
scenario.

described in the following section) from a 64 beats long segment
of the simulated ECG, shown in Fig. 1(top). Superimposed on
the graph are the fitted gamma distribution (dark blue) calculated
from 250 times reshuffling of the beats and the 95th and 99th
percentiles of the calculated alternans amplitude (of the empir-
ical distribution) and fitted (parametric) gamma distribution. If
the estimated TWA amplitude of the unshuffled beat sequence
is larger than the 95th or 99th percentiles of the NIAP distri-
bution, one can confidently reject the null hypothesis (i.e., the
alternating pattern in the beat sequence can be explained by the
statistics of noise) at α = 0.05 or α = 0.01, respectively. Note
that by introducing a parametric form, one can incorporate a be-
lief pertaining to the tail of the distribution or frequency of rare
events (heavy-tailed versus light-tailed), which may not be cap-
tured through a moderate number of reshufflings. For instance,
a heavy-tailed distribution can further reduce false-alarm rates,
since the upper percentiles of such distribution will be further
to the right of the corresponding percentiles of the empirical
distribution (or normalized histogram). However, this reduction
in false-alarm rates comes at a cost of increasing missed de-
tections. This may be a large contributing factor in reports that
current TWA analysis approaches are specific, but not sensitive.

The 99th percentile of NIAP amplitude in reshuffled beat se-
quences are shown in Fig. 3 for simulated VCG records at SNR
of 10 dB and no noise. Each red square on the graph represents
the median over 500 values (50 records of the same TWA am-
plitude and 10 overlapping windows per record). Within each
analysis window (of length L = 64 beats), the beat sequence is
reshuffled 250 times, the alternans amplitude is calculated for
each unique arrangement of the beats, and the 99th percentile of
alternans amplitude over all 250 arrangements is recorded. Note-
worthy is the tendency of the 99th percentile to increase with the
simulated TWA amplitude. Also note that the NIAP is nonzero
(even for 0-μV TWA) and that the baseline NIAP increases as
the SNR drops. These observations can be explained by the fact
that after reshuffling, the number of type-A and type-B beats
within the even and the odd group of beats is equal, and then,
any difference between the average value of even group and odd
group will be due to noise, since the type-A beats (type-B beats)
within the even group will cancel the type-A beats (type-B beats)

within the odd group. When the reshuffling of the beat sequence
is thoroughly random, certain arrangements of beats may result
in one of the beat types being overly represented in the odd
or even group of beats, and therefore, some of the intergroup
differences will be due to the existence of distinct beat types,
rather than being purely a noise artifact. In any event, the point
of reshuffling the beat sequence is that, if there are two distinct
beat types that manifest themselves in an alternating scheme
(i.e., ABABAB . . .), then almost all other arrangements of the
beats ought to produce an equal or smaller average difference
between the odd beats and the even beats.

It should be noted that there are L! ways to arrange L beats,
and (L/2)! × (L/2)! ways to arrange these beats such that the
new arrangements result in the same set of even and odd group
of beats, as in the original beat sequence. In general, the lat-
ter number is negligibly smaller than the former, and thus, the
probability of generating beat sequences with even and odd
groups of beats similar to the original beat sequence is negligibly
small (for 250 shuffles and L = 64, this probability is approxi-
mately: 250 × 6.9 × 1070 /1.3 × 1089 ≈ 1.4 × 10−16). Further-
more, even if by chance shuffling results in such an event, the
associated alternans amplitude will belong to the tail of the
NIAP distribution, and hence, will not cause a missed detection
for even a conservative significance level of α = 0.01.

In this paper, the SDA-based detection technique employs a
simple averaging-based method for estimating TWA amplitude,
which we now describe.

2) Simple Averaging Method: The SAM method is based on
calculating the absolute value of the difference between the av-
erage of the even and odd groups of beats within the analysis
window, at every sample point within the ST-T complex, and by
taking the maximum value of the calculated differences within
the ST-T complex. The SAM method is only an amplitude-
estimation technique and is essentially equivalent to the ampli-
tude estimation part of the SM with a rectangular window.

3) Spectral Method: In our implementation of the SM [5],
[27], we utilized Welch’s nonoverlapping periodogram method
of estimating power spectral density and a Hamming win-
dow [12]. The alternans value was considered significant if the
k-value was larger than 3 (where the k-value refers to the spec-
tral ratio index utilized within the SM method for detection
purposes) [27]. It can be shown that the periodogram calculated
at the frequency of 0.5 cycles/beat is proportional to calculating
the difference of even and odd group of beats (or a windowed
version of the even and odd beat sequences in the case of a
Hamming window) [12].

4) Modified Moving Average Method: The MMA method
was devised as an ad hoc method of calculating average tem-
plates for the even and the odd group of beats that are less
sensitive to large fluctuations in T-wave amplitude [28]. The
reported TWA amplitude is the maximum value of the differ-
ence between the calculated even and odd templates. Also note
that the MMA method is only a TWA amplitude-estimation
technique and does not include any test of significance (i.e., it
performs TWA amplitude estimation, but no TWA detection).
In practice, certain steps in the preprocessing/alignment step—
such as exclusion of beats with abnormal fluctuations in the TP
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segment (from the end of T-wave to beginning of the P-wave)—
are taken to reduce noise artifacts [29]. However, since in this
paper, a uniform preprocessing/alignment step is utilized inde-
pendent of the particular TWA detector, the TP-segment-based
noise rejection was omitted.

III. RESULTS

A. Simulated Data

In this section, we compare the performance of the SDA,
SAM, SM, and MMA methods on the simulated data described
in Section II-A, with and without additive realistic noise. The
MMA method, as noted in Section II-C4, is only a metric of
TWA amplitude and does not include an explicit detection step.
In contrast, SM uses thresholding method to reject noise ar-
tifacts. Furthermore, the SAM method is employed with and
without our proposed significance testing in order to establish
a baseline performance. Note that the significance level for the
surrogate test was picked to yield the same level of specificity
(i.e., proportion of negatives that are correctly identified) at
0 μV TWA amplitude, as the SM method with a k-value of 3.
In general, a more stringent level of specificity would necessar-
ily result in a larger percentage of missed detections and vice
versa. Thus, by fixing the level of specificity of all detection
algorithms, one can compare their missed detection rates as a
means to assess their relative performance.

1) Performance of the SDA and SAM: Fig. 4(top) illustrates
the performance of the SAM without significance testing on
the simulated data at SNR of 10 dB and no noise scenario.
Represented in each figure are the lower 5%, median, and the
upper 95% of the estimated TWA amplitude, as well as the
identity line y = x (representing ideal estimation). At each given
SNR, there was a noise floor that hindered accurate detection of
TWAs with small amplitudes. This noise floor decreased with
an increase in SNR and resulted in false quantification of TWA
amplitude, particularly at low TWA amplitudes (note that even
though only the results for SNR of 10 dB is shown here, these
observations were consistent for SNRs of 20 and 30 dB). Even
in the absence of background noise, a lower noise floor of 5–
10 μV was found below which it was impossible to distinguish
real TWA from noise artifacts. Note that since the estimated
alternans were all accepted, in Fig. 4(top) (in the absence of
significance testing), the percentage of indeterminate cases (or
missed detections) were zero in all cases.

Fig. 4(bottom) presents the TWA detection statistics after
rejecting cases that were ruled false positives using the SDA
method (α = 0.01) as well as the percentage of indeterminate
cases (gray-color error bar). Also note that at the SNR of 10 dB
and TWA amplitude of 0 μV, approximately 99% of the NIAP
were rejected. Furthermore, as we show next, the percentage
of missed detections at higher TWA amplitudes were notably
smaller than the SM (e.g., 20% ± 15% at the largest simulated
TWA amplitude and SNR of 10 dB, as apposed to 50% ± 20%
for the SM).

2) Performance of the SM: Performance of the SM on the
equivalent data is presented in Fig. 5(bottom), using a k-value
of 3 that is assumed to be constant throughout the analysis.

Fig. 4. Performance of the SAM on the simulated data (top) before and (bot-
tom) after application of the SDA method (α = 0.01). Estimated TWA ampli-
tude (Calc. TWA Amp.) versus simulated TWA amplitude at SNR of 10 dB (left)
and noise-free simulated VCGs (right) are shown. Each point on the figure is
calculated from 50 simulated VCG records of 5 min length each. At a HR of
70 ± 5 beats/min, this results in roughly 10 TWA amplitude measurements per
record, and thus, a total of 500 estimates. Represented in each figure are the
lower 5%, median, and the upper 95% of the estimated TWA amplitude, as
well as, the line y = x (representing ideal detection). The gray-color error bars
represent the percentage of indeterminate cases (%indet.). Note that at the SNR
of 10 dB, application of surrogate testing resulted in rejection of approximately
99% of episodes around 0 μV simulated TWA amplitude, and simultaneously,
the percentage of missed detections (or indeterminate cases) at higher TWA
amplitudes is notably smaller than the SM method (see Fig. 5).

Fig. 5. Performance of (top) MMA method and (bottom) SM using a k thresh-
old value of 3. Note that such choice of k results in rejection of almost 98% ± 2%
of false estimates at 0 μV TWA amplitudes and rejection of 50% ± 20% of esti-
mated values at the largest simulated TWA amplitude and SNR of 10. See Fig. 4
for explanation of legend.

Note that the SM yielded a substantial rejection rate even at
higher TWA amplitudes (e.g., 50% ± 20% at the largest simu-
lated TWA amplitude and SNR of 10). Also note that the SM
underestimated the TWA amplitude by a constant factor.
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TABLE I
PERFORMANCE SUMMERY OF THREE TWA DETECTION ALGORITHMS

DISCUSSED IN THIS PAPER AT LOW SNR OF 10 DB, BASED ON FIGS.
4(BOTTOM-LEFT) AND 5(BOTTOM-LEFT)

3) Performance of the MMA Method: Fig. 5(top) illustrates
the performance of the MMA method on the simulated ECG.
Comparing with the Fig. 4(top), it can be seen that the modified
averaging method employed by the MMA method tended to
amplify the noise. For instance at the SNR of 10 dB, and in the
absence of TWA, the median of the MMA estimates was 40 μV
compared with 30 μV in the case of the SAM. This observa-
tion affirms and complements the observations made by Cox
et al. [30], who conclude that: “MMA amplifies TWA com-
pared to traditional spectral analysis, but both likely reflect sim-
ilar pathophysiology.” However, our simulations indicate that
MMA amplifies both TWA as well as the effect of the recording
noise. Due to the nonlinear nature of the MMA method, we were
not able to single out a unique cause for this behavior.

Table I summarizes the performance of the two TWA detec-
tion algorithms discussed in this paper.

4) Effect of Window Size: Although we fixed the number of
beats in our analysis to 64 beats, to allow direct comparison
between different detection techniques for noise rejection, dif-
ferent studies have employed varying analysis window lengths,
ranging from 16 beats [29] for the MMA method to 128 beats for
the SM [27]. To determine the influence of the analysis window
length on the results reported in this paper, we repeated all the
simulation studies with a 32 beats and a 128 beats window. De-
creasing the analysis window length led to a raising of the noise
floor and an increase in the percentage of indeterminate cases,
since the noise-reduction effect of averaging was less marked
when using fewer beats, but did not influence the trend observed
in our results. On the other hand, increasing the number of beats
in a qualitatively similar way decreased the NIAP level across
all the methods.

B. Real ECG Recordings

In this section, we present results of a comparative TWA anal-
ysis of three publicly available databases using the SAM and
the SDA methods. Our goal was to investigate the effects of the
proposed statistical test to facilitate analysis of the data (in terms
of separability of patient populations according to their level of
TWA activity) independent of the particular method of estima-
tion of the TWA amplitude. To this end, we applied the SAM
(the simplest estimation method) without and with significance
testing to the three databases. To facilitate comparison, we also
present the performance of the SM and the MMA method on
the same databases.

Fig. 6. Comparison of the NSRDB, the CHFDB, and the SCDDB patient
populations (at matched HRs) using (top) SAM and (bottom) SDA method.
The small numbers by the open blue circles indicate the number of detected
episodes of TWA for the given HR range. The gray error bars signify the
percentage of indeterminate cases at each HR range over the entire population.
Note that in the top panels, the indeterminate cases are caused by preprocessing
failure of associated analysis windows, while in the indeterminate cases in the
bottom panels are an aggregate result of preprocessing failure and application
of the SDA method (α = 0.05). In comparison to the top panels, the number
of detected episodes of TWA in the bottom panels are greatly reduced (see
numbers by the open blue circles), and the margin of separability among patient
populations is increased (see Table II).

Fig. 6 compares the effects of significance testing on three
different patient populations. The top panels show the esti-
mated TWA amplitude on the Normal Sinus Rhythm Database
(NSRDB), Chronic Heart Failure Database (CHFDB), and SCD
Database (SCDDB) patient populations at matched HR decades
using the SAM with no surrogate testing. We chose to break
down the data into HR decades because TWA is hypothesized
to be an HR-dependent phenomenon [19]. By doing so, we avoid
any bias due to the expected differences in HRs between each
population or for any differences in the noise-rejection abili-
ties of each TWA method, which may be HR-dependent. Note
that in the case of real data, the definition of indeterminate is
further extended to include preprocessing failure (due to mis-
alignments, excessive ectopic beats within the analysis window,
etc.). Fig. 6(bottom) present results of applying the proposed
SDA method. Setting α = 0.05 resulted in rejection of a large
number of alternans-like episodes that did not pass the test of
significance.

Table II summarizes the differences between the NSRDB,
CHFDB, and SCDDB populations, as depicted in Fig. 6. For the
purpose of comparison, Tables III and IV summarize the perfor-
mance of the MMA method and the SM to the same databases.

Fig. 6 and Tables II–IV demonstrate that the SDA method
is effective in separating the three patient populations accord-
ing to the median of their TWA activity. For instance, before
significance testing, the difference of median TWA amplitude
between the NSRDB and SCDDB populations for HR band of
110–120 was −1.35 μV (see the fourth column of Table III).
However, after removing episodes of false positive—using the



1362 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 58, NO. 5, MAY 2011

TABLE II
COMPARISON OF TWA ACTIVITY AT DIFFERENT HR IN NSRDB, CHFDB, AND

SCDDB POPULATIONS USING SAM (TOP) WITHOUT SIGNIFICANCE TESTING

AND (BOTTOM) AFTER SIGNIFICANCE TESTING WITH α = 0.05

TABLE III
COMPARISON OF NSRDB, CHFDB, AND SCDDB USING SM WITH A

SPECTRAL RATIO THRESHOLD VALUE OF k = 3

TABLE IV
COMPARISON OF NSRDB, CHFDB, AND SCDDB USING MMA METHOD

SDA method–this difference was 41.51 μV, thus indicating a
much higher level of TWA activity among the SCDDB patient
population.

IV. DISCUSSION

TWA analysis generally leads to a large number of indeter-
minate cases [4], [6], [7]. Furthermore, “natural” TWA activity
of normal subjects of up to 10 μV has been reported in healthy
subjects [19]. The results of our study suggest that these obser-
vations may be explained by the high number of false-positive

TWA events, particularly during periods of higher noise (such
as during exercise/stress test when the signal quality is qualita-
tively similar to the 10 dB simulated records studied here). In
addition, our simulation study indicates that in the absence of
appropriate (adaptive nonparametric) significance testing, even
a relatively small amount of noise (due to muscle artifact, base-
line wander, or electrode motion) can lead to the raising of the
noise floor to clinically significant levels (10 μV or much more).

Our results on artificial data indicate that the SDA method
produces a more accurate detection of TWA patterns in noise,
when compared to other standard or more advanced techniques
of noise rejection at both low and high values of TWA and noise.
Since our technique assumes nothing concerning the noise dis-
tribution, we expect (and observe) a lower error rate. The inverse
relationship between the false-alarm rate and missed detection
rate is well known; reducing one results in increasing the other
and vice versa. Thus, to facilitate comparison of the three detec-
tion algorithms discussed in this paper, we fixed their false-alarm
rates at the simulated TWA amplitude of 0 μV to approximately
1%–2% and studied their missed detection rates. As summarized
in Table I, the SDA method resulted in a statistically significant
reduction in the percentage of missed detections (or indeter-
minate cases) at every simulated TWA amplitude from 50 to
100 μV (Wilcoxon rank-sum test, p < 0.001).

The SAM method is utilized in this paper as a baseline
amplitude-estimation technique to demonstrate the applicability
of the SDA method for reducing false detections (false alarms)
and simultaneously reducing missed detections. Our rational for
choosing the SAM method was its ease of interpretation, as that
it is based on simple averaging in time domain. Logically, we
can expect that more sophisticated TWA amplitude-estimation
techniques, in association with the SDA method, will result in
further improvements.

When testing the effect of window size, we found that de-
creasing the window length from 128 to 64–32 beats simply
raised the noise floor, but did not affect the trend in our result.
These observations are consistent with the previously reported
results concerning the influence of window size on the per-
formance of the SM and the MMA method [9]. Nevertheless,
increasing the window size is not always practical, since one
might wish to decrease the window length to mitigate the non-
stationary effects, such as phase changes due to ectopy and HR
perturbations and to be able to more rapidly track changes in
TWA amplitude. We also demonstrate that the SM technique
produces an estimate of the TWA amplitude that is biased to-
ward values lower than simulated values. (This observation can
be explained mathematically and is beyond the scope of this
paper [31].)

Studies on both artificial data and three different patient pop-
ulations (using the NSRDB, the CHFDB, and the SCCDB) in-
dicate that our new detection algorithm provides enhanced dis-
criminatory power between patient populations. (The median
difference between healthy and unhealthy patients is signifi-
cantly larger than the other standard techniques at almost all
HRs (p < 0.0001).) The most marked differences are found at
higher HRs, although HRs below standard thresholds [110 beats
per minute (BPM)] also allow differentiation of normal and
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abnormal subjects. Note that, in each case, the application of sig-
nificance testing increased the margin of separability between
the patient populations (see Tables II and III). This improve-
ment can be explained as follows: Before significance testing,
the number of reported alternans-like episodes with relatively
small amplitudes were much larger, and thus, the quantiles were
biased toward zero. After significance testing, a large number of
such episodes were marked as indeterminate, and thus, were re-
moved from the quantile calculations, and therefore, each quan-
tile took on a larger value. Therefore, the application of signifi-
cance testing improved the margin of separability by removing
false detections that were negatively weighting the calculations.
Furthermore, on average, the surrogate test maintained a lower
percentage of indeterminate case than a comparable test (the
SM). This observation may be explained by the lower missed
detection rate of our surrogate test method.

Note that the SM does include a test of significance (designed
under assumption of Gaussianity of the spectral coefficients),
while in contrast, the MMA method relies on the preprocess-
ing steps (such as exclusion of beats with abnormal fluctuations
in the TP complex) to reduce noise artifacts [28], [29]. We re-
peated the TWA analysis on the real data using the SM and
MMA methods. In the case of the NSRDB–CHFDB, applica-
tion of the SM resulted in an improvement in interpopulation
separability over both the SAM (with no significance testing)
and the MMA method. However, in the case of the NSRDB–
SCDDB, only the SAM with the surrogate testing method was
able to improve the interpopulation margin of separability. The
MMA method produced similar results to the SAM (with no
significance testing), although with a positive offset at all HRs,
as we would expect from our experience on artificial data.

It is worth noting that the SDA method is not computationally
more expensive than the standard methods, since the bulk of the
computation of TWA algorithms is devoted to preprocessing and
alignment of beats, with generation of surrogate data through
beat index reshuffling and reestimation of TWA amplitude being
only a small portion of the overall computational cost.

Finally, we note that we employed the same preprocessing
for all the methods, using the best-available open-source al-
gorithms [25], since this paper focuses on significance test-
ing. The commercial implementations of the MMA and the
SM may include additional or alternative preprocessing and
noise-reduction steps that are not considered here. However, it
is unlikely that even extremely sophisticated preprocessing or
estimation methods (such as complex demodulation or time-
frequency approaches) would obviate the need for significance
testing, since there exits no known technique that completely
removes all noise in the ECG.

V. CONCLUSION

We have described a new application of a nonparametric sur-
rogate test to reject false TWA-like activity (which could have
been due to artifacts or noise). The new technique was evaluated
on both real and artificial data. Tests on the artificial data demon-
strate the superiority of our method over existing TWA detection
methods, both at low and high levels of TWA amplitude.

In the absence of background physiological noise, a lower
noise floor of 5–10 μV was found, below which the measured
TWA is unreliable and could be due to noise alone. This noise
floor may account for some reports of TWA in normal patients
below 10 μV. Results also demonstrate that the higher the back-
ground noise, the more likely it is that a given technique will
falsely detect TWA and overestimate the magnitude of the TWA.

When evaluated on three public databases (the NSRDB, the
CHFDB, and the SCDDB), our new approach demonstrated sig-
nificant differences in TWA amplitudes between each database
at all HRs intervals between 40 and 120 BPM. The most-marked
differences were generally found at higher HRs, and the new
technique provided a larger margin of separability between pa-
tient populations than the standard methods. Our results also
indicate that population separation is possible at lower HRs
than current clinically recommended.
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