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Abstract
The application of Poincaré plot analysis to characterize inter-beat interval dynamics has been successfully proposed in the
scientific literature for the assessment of humans’ physiological states and related aberrations. In this study, we proposed
novel descriptors to trace the evolution of Poincaré plot shape over the lags. Their reliability in ultra-short cardiovascular
series analysis was validated on synthetic inter-beat series generated through a physiologically plausible integral pulse
frequency modulation model. Furthermore, we used the proposed approach for the investigation of the direct relationship
between autonomic nervous system (ANS) dynamics and hedonic olfactory elicitation, in a group of 30 healthy subjects.
Participants with a similar olfactory threshold were selected, and were asked to score 5-s stimuli in terms of arousal and
valence levels according to the Russell’s circumflex model of affect. Their ANS response was investigated in 35-s windows
after the elicitation. Experimental results showed a gender-specific, high discriminant power of the proposed approach,
discerning between pleasant and unpleasant odorants with an accuracy of 83.33% and 73.33% for men and for women,
respectively.
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1 Introduction

Many human sensory functions are related to emotional
regulation and memory formation, which involve the
olfactory system. Previous studies showed that olfaction
can be impaired in conditions of chronic stress [1], clinical
depression [2], mood disturbances [3], and panic disorder
[4]. A decrease in healthy neuronal density of the habenula
was recognized in rats presenting depressive symptoms,
suggesting that olfactory disorders might be considered
one of the possible causes of neuropsychiatric disorders
[5]. Odor perception is dominated by smell hedonic tone,
and its influence on mood is also due to the anatomical
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overlap of the olfactory and limbic systems in the brain
[6]. Limbic regions are also involved in the regulation of
autonomic nervous system (ANS), and significant changes
in peripheral physiological dynamics were already reported
during olfactory elicitation [7–9].

Heart rate variability (HRV) analysis has emerged as
an accessible tool for the objective measure of ANS
emotion regulation [10]. Previous literature highlighted
an important relationship among HRV, prefrontal neural
function, cognitive performances, and emotional response,
that has important implications for both mental and physical
health [11–13]. Especially in last decades, many algorithms
taken from nonlinear theory have been used to study
changes in HRV, in relation with pathological moods [14–
16]. Moreover, several approaches to nonlinear theory
have been applied to characterize cardiovascular dynamics
during sympatho-vagal unbalancing [17] and to investigate
the physiological response during experimental protocols
of emotion elicitation using affective images [18, 19], film
clips [20, 21], sounds [22, 23], and haptic stimuli [24, 25].

Poincaré plot, or return map, is a geometrical repre-
sentation of a chaotic system’s dynamics. The theoretical
background of this approach is Takens’ theorem regarding
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the construction of phase space [26]. Poincaré plot analy-
sis can be applied to inter-beat (RR) series derived from the
electrocardiogram (ECG), plotting each RR interval against
the previous one. Qualitative analysis of Poincaré plot (i.e.,
visual inspection of its shape) can help in discriminating
RR series generated under different cardiovascular diseases
[27–29]. Over the past years, several studies have been done
with the aim of finding a method to quantify the shape of the
Poincaré plot through standard mathematical parameters,
regardless the observer’s subjectiveness. One of the most
used quantitative approaches is the ellipse-fitting method
[30, 31], which consists in fitting an imaginary ellipse on the
scatterplot. Through this method, some quantifiers can be
extracted: the area of the ellipse (S), the lengths of the axes
(SD1 and SD2), and the ratio between them (SD12). Bren-
nan et al. found the mathematical relationship between SD1
and SD2 and linear parameters extracted from RR series in
the time domain [32]. Other studies in the literature demon-
strated that ellipse-fitting parameters correlate with other
time-domain indexes, e.g., RMSSD and pNN50 [43, 76].

In the lagged Poincaré plot (LPP) technique, RRn+M

values are plotted against RRn values, being M the lag.
Concerning the LPP technique, the ratio between the lengths
of the two LPP axes, i.e., SD12, was proposed as an index
of the nonlinear structure of the time series [33, 34]. The
reliability of LPP ellipse-fitting quantifiers in ultra-short RR
series was already investigated using synthetic and real data
in our previous studies [31, 35].

However, there are several limitations in ellipse-fitting
quantifiers, such as the lack of information due to the
points not included in the area of the ellipse [36–39].
Concerning the LPP ellipse-fitting, even if we demonstrated
its reliability in 35-s series using 10 lags, the percentage
absolute errors increase with the lag value. This limitation
can be more relevant when a large range of lags is used, e.g.,
going up to M = 20, since relevant information might be
hidden not only in the shape of Poincaré plot but also on the
way it evolves with the lag, as we demonstrated in [35, 40].

Here, we propose to augment the information obtained by
LPPs using additional quantifiers of the points distribution
in the Poincaré plot which take into account all the points in
the plot [41], and novel descriptors of the trends of the LPP
quantifiers as a function of the lag. These LPP descriptors
could allow indexing the trends over the whole range of
20 lags reducing the percentage errors related to ultra-short
series at high lags.

First, the reliability of the proposed quantifiers and
descriptors of LPP derived from 35-s series is evaluated on
synthetic signals generated by means of the integral pulse
frequency modulation (IPFM) model. Then, the usefulness
of the proposed LPP analysis of HRV in the paradigm
of hedonic smell recognition is studied. The aim of the
experimental study was to investigate if the ANS response

to pleasant and unpleasant odorants can be discerned using
only the information inside the heartbeat dynamics. Gender
differences in ANS response to olfactory elicitation, already
found in a previous study on functional magnetic resonance
imaging [42], have been explored in our study.

Paper is organized as follows. First, we describe novel
LPP quantifiers and descriptors, and data used in the study
(synthetic and real series). Experimental results obtained
through statistical analysis and pattern recognition, and
Section 4 follows below.

2Materials andmethods

2.1 Lagged Poincaré plot

2.1.1 Traditional LPP quantifiers

Traditional Poincaré plot quantitative analysis is based on
the ellipse-fitting method (see Fig. 1) [30]. When this
method is applied to LPP, the lagged series RRn+M (where
M is the lag) is plotted against RRn. The parameters
extracted for each lag are the following:

– SD1: the standard deviation of the points calculated
along the direction perpendicular to the line-of-identity
RRn+M = RRn, which describes the short-term
dynamics of HRV in the analyzed time interval.

– SD2: the standard deviation of the points along the
line-of-identity RRn+M = RRn, that describes the
long-term variability in HRV dynamics.

– SD12 (SD12 = SD1/SD2): the ratio between SD1 and
SD2.

Fig. 1 Scheme of the ellipse-fitting approach to quantify the LPP
shape
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– S (S = π × SD1 × SD2): the area of an imaginary
ellipse with axes SD1 and SD2 [43, 44].

2.1.2 New LPP approach

The ellipse-fitting method shows some limitations due to the
loss of information when the points lying outside the ellipse
are not involved in the quantification. For this reason, we
proposed to describe LPP with additional quantifiers which
take into account the contribution of all of the points.

For each lag in the LPP method, we identified the
position of the centroid Cd , whose coordinates were
calculated as the mean values of the two series used to
construct the plot:

Cdx = 1

N − M

∑N−M

n=1
RRn

Cdy = 1

N − M

∑N

n=M+1
RRn (1)

where N is the total number of RR intervals in the series.
Then, we calculated the geometrical distances dPn

between all the points of the Poincaré plot and the centroid,
as it is shown in Fig. 2. Afterwards, we computed the mean
value and the standard deviation of the distribution of these
distances, as described in the following equations:

Md = 1

N − M

∑N−M

n=1
dPn

Sd =
√∑N−M

n=1 (dPn − Md)2

N − M − 1
. (2)

For each series, we considered 20 LPPs (1 ≤ M ≤
20). In order to evaluate the changes in the trends of the
LPP quantifiers as a function of M, we used the following
descriptors: (i) the values of the quantifiers at the first lag
(M = 1, the traditional descriptor), (ii) the maximum values
of each quantifier along the lags, and iii) the area under the

Pn

Cd

dPn

Fig. 2 Scheme of the new approach to quantify the LPP shape.
Cd(Cdx, Cdy) indicates the centroid (in blue) and dPn is the distance
between one point, Pn, and the centroid

curve described by the LPP quantifiers, as a function of the
lag M. We employed the following notation for these novel
descriptors (for example, considering Md): max(Md) for the
maximum, and auc(Md) for the area under the Md curve.

2.2 Data used in the study

In this study, we used two datasets, the first of synthetic RR
series and the second of real data (see Sections 2.2.1 and
2.2.2). Synthetic series were used to test the reliability of
new LPP quantifiers and descriptors in ultra-short RR series.
The experimental dataset consisted in the ECG signals
recorded during a protocol of olfactory elicitation.

2.2.1 Synthetic series

We generated 1200 synthetic RR series through the time-
invariant version of IPFMmodel [45]. This model simulates
the heartbeat occurrence times from a modulating signal
m(t), which describes the oscillations of ANS drive.

The kth beat trigger impulse is generated when the
integral of 1+m(t), reaches a threshold T, which represents
the mean RR:

k =
∫ tk

0

1 + m(t)

T
dt (3)

where k is an integer that represents the kth beat and tk is
the occurrence time of the kth beat. Modulating signal m(t)

is realized by means of an autoregressive moving average
model, using both the frequency of the dominant peak and
the power in the LF and HF bands as input parameters [46].
In this study, the frequencies of the peaks were randomly
chosen in the range of the two main bands (LF and HF)
and their power values were within the normal range for
healthy people reported in literature [47, 48]. Half of the
series were generated fixing a value of LF power and
varying HF power (20 different values). For each couple of
frequency parameters (LF power and HF power), 30 series
were generated. Then, the process is repeated keeping HF
power constant and varying LF power. The parameter T was
set to 1 s for all the realizations. A total amount of 1200
realizations of the modulating signal m(t) were generated.
The duration of each RR series was of 1 h.

2.2.2 Experimental data acquired during olfactory
elicitation

Thirty-two participants aged 26 ± 2 (16 females) took
part in the study. They gave their informed consent before
the experiment and self-reported no history of clinical
and sub-clinical cardiovascular diseases. No participants
reported physical limitations or any experience of mental
or personality disorder in their life that would affect the
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experimental outcomes. Before starting the experimental
procedure, participants were asked to fill out some
questionnaires to evaluate the level of subjectively perceived
anxiety (STAI-Y, [74] and the mood (PANAS, [75].
Participants whose scores were not within the normative
ranges of PANAS and STAI-Y (e.g., STAI-Y scores >

45, and PANAS: Negative affect NA>30 e Positive affect
PA<18) were not included in the study, thus indicating the
possible presence of affective disorders. This study was
approved by the Ethical Committee of the University of
Pisa.

During the experimental protocol, the participants were
comfortably seated and they wore earplugs in order to
prevent any auditory cues.

Two odorants, normally considered pleasant and unpleas-
ant, already reported in previous studies in the literature
[49], were used in the experimental protocol:

– Od1: Benzaldehyde C6H5CHO, concentration 106,12
g/mol;

– Od2: Isovaleric acid (CH3)2CHCH2COOH , concen-
tration 102,13 g/mol.

Benzaldehyde odor is a pleasant bitter almond smell, whereas
isovaleric acid smells like an unpleasant sweat odor. The
concentrations of the two odorants were selected in order
to obtain stimuli of a comparable intensity. We recruited a
group of volunteers exhibiting a similar olfactory threshold
to N-butanol (CH3CH2CH2CH2OH, 74.12 g/mol) [50].
This odorant is suggested from the literature as the most
suitable neutral smell, in order to identify the olfactory
threshold level. The procedure of selection was as follows:

– Ten solutions of N-butanol at different concentration
were prepared, by diluting a mother solution (4.05 g/L)
with dilution factor chosen as powers of two, from 8 to
4096.

– The subject was asked to recognize N-butanol solution
from distilled water; we started from the lowest
concentration, increasing until the subject was able to
clearly discern the odorant.

– If the dilution factor of the solution recognized was in
the range 256–1024, the subject was selected for the
experiment.

During the experiment, the order of the stimuli was random-
ized and after each olfactory stimulus, the participants were
asked to assess their sensation with two numbers, in terms
of arousal (i.e., the intensity of the evoked emotion, ranged
from 1 to 5) and valence (i.e., pleasantness/unpleasantness
of the stimulus, ranged from − 2 to + 2), following the bidi-
mensional circumplex model of affect (CMA) of Russell
[51]. In order to help the subjects to express the values of
arousal and valence, we used the Self Assessment Manikin
(SAM), a graphical interpretation of Russell’s model [52].
This self assessment was used to verify that the two odorants
chosen for the experimental protocol had effectively stimu-
lated the emotion response of subjects. The two dimensions
of CMA allowed us to understand if the two odorants
have been perceived with the same intensity (arousal) and
opposed levels of valence, as we expected in the design
of the experimental protocol. The timeline of the whole
experiment is displayed in Fig. 3. Two resting state ses-
sions of 3 min were at the beginning and at the end. The
two olfactory stimuli lasted 5 s and were presented between
two 1-min rest periods (pre-stimulus and post-stimulus rest
sessions). The self assessment with SAM was after the
post-stimulus rest and lasted 20 s.

The ECG was continuously acquired following the
Einthoven triangle configuration, using the ECG100C
Electrocardiogram Amplifier from BIOPAC inc. with a
sampling rate of 500 Hz. The RR series were extracted from
ECG signals, using a QRS complex detection algorithm, i.e.,
the automatic algorithm developed by Pan-Tompkins [53].
Artifacts and ectopic beats were corrected through the use
of Kubios HRV software [54].

2.3 HRV feature extraction

LPP quantifiers (traditional and new) have been extracted
from 1200 synthetic series. We calculated the quantifiers

Fig. 3 Timeline of the experimental protocol for olfactory stimulation. REST PRE, resting state session before olfactory elicitation; STIM,
olfactory stimulus presentation; REST POST, resting state session after olfactory elicitation; SAM, Self Assessment Manikin test
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described in Section 2.1 for all of the lags from 1 to 20, then
we extracted the values of the auc and max from each LPP
trend as a function of M lag. For each LPP quantifier (SD1,
SD2, SD12, S, Md, and Sd), three descriptor values were
studied: the value at the first lag (M = 1), the value of auc,
and max (for lags from 1 to 20).

The RR synthetic series have been analyzed in 50%
overlapped windows of 35 s. The LPP parameters’ value
was estimated as the median in all the windows of the same
length and considering the total length of synthetic series (1
hour), in order to test their reliability.

RR series acquired during the olfactory stimulation were
analyzed during the pre-stimulus and post-stimulus rest
stimulus lasting 1 min. As in the processing of synthetic
RR series, we computed the HRV analysis considering 50%
overlapped windows of 35 s, two windows for each 1-
min experimental session. In order to investigate if LPP
technique adds relevant information to linear HRV indices
(time and frequency domain), these later parameters were
also estimated. We calculated two parameters in the time
domain: the mean value of the durations of all RR intervals
(RR mean) and their standard deviation (RR std).

The smoothness priors approach was applied to each
RR series as detrending method [73], operating a time-
varying finite-impulse response high-pass filter with a
cutoff frequency of 0.035 Hz. The HRV signals were
derived by applying the IPFM model, which also accounts
for the presence of ectopic beats [55], and then resampled
at 4 Hz, using spline interpolation. Then, we estimated
the power spectral density (PSD) in each 35-s rectangular
window, with a 50% overlap. From the PSD related to each
time window, we extracted six features. We computed the
power within the low frequency (LF), from 0.04 to 0.15 Hz
and the high frequency (HF), from 0.15 to 0.4 Hz (LF
power and HF power). The ratio between LF power and
HF power (LF/HF), the power in HF band normalized to
the sum of LF and HF power (HFn), and the values of the
frequencies having maximum magnitude (LF peak and HF
peak) were also calculated. Time and frequency features and
LPP descriptors and quantifiers were extracted from 35 s
windows and then the median of the two periods in each
1-min resting session was computed.

2.4 Statistical analysis and pattern recognition

2.4.1 Reliability of LPP parameters estimated 35 second
series

To test the reliability of novel LPP approach, we considered
the percentage absolute error (ε%) between the median
value of the parameters calculated in all the windows of 35 s
and the value of the parameter calculated on the total length

of synthetic series (1 h) [31, 35]. The median and median
absolute deviation (MAD) of the ε% values obtained for all
the 1200 synthetic RR series is then computed.

2.4.2 Discrimination of olfactory stimuli using LPP
parameters

To analyze real RR series in terms of statistical analysis
and pattern recognition, we considered the median values of
the LPP descriptors belonging to the two 35-s windows in
each pre- and post-stimuli session. Then, we subtracted the
values of the the pre-stimuli sessions to the values calculated
in the post-stimuli sessions, in order to check the impact
of olfactory elicitation on ANS dynamics. Given the non-
Gaussianity of data distributions, we applied non-parametric
Wilcoxon statistical test [56] between the values of post-pre
differences calculated for the two different stimuli.

The main aim was to test if the new descriptors (auc and
max), calculated from ellipse-fitting LPP quantifiers and
Md and Sd quantifiers, were able to discern the differences
between the physiological responses to hedonic olfactory
stimuli and to study the added value with respect to the classi-
cal Poincaré plot quantifiers. To reach this objective, we
implemented a Leave-One-Subject-Out (LOSO) procedure
[57] and a feature selection was performed by means of
a recursive feature elimination based on Support Vector
Machine (SVM-RFE) [58]. Then, we applied a C-Support
Vector Classifier (C-SVC) with a radial basis function kernel.

We applied the statistical and classification procedure
in three scenarios: all the subjects together, only men, and

Artefact  
removal 

and filtering 

Feature  
Extraction 

(standard and 
LPP)  

Differences 
POST-PRE for 
each feature 

ECG PRE-stimuli R-peak 
extraction 

 

RR 

Preprocessing 
Signals recording 

ECG POST-stimuli 

Leave-One-Subject-Out Procedure 

Training Set of N-1 subjects 
 

Features Selection through 
SVM-RFE 

 

Selection of the group of 
subjects: all participants, all 

men, all women 

Test Set of 
one subject 

through SVM 

Fig. 4 Block scheme of data analysis. Data acquisition (ECG signals
in pre and post-stimuli sessions), signal pre-processing (application
of Pan-Tompkins algorithm and artifact removal using Kubios HRV
software), feature extraction (time and frequency domains and LPP),
computation of differences between feature values in pre e and
post-stimuli sessions and machine learning procedure performed to
automatically characterize the hedonic olfactory stimulation
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Table 1 Values of ε% for LPP descriptors extracted from 35-s
windows with respect to those extracted from 1 h, among the 1200
synthetic series

auc max

SD1 8.14 ± 1.59 7.33 ± 2.16

SD2 8.75 ± 1.77 7.46 ± 2.15

S 17.38 ± 3.06 14.42 ± 3.56

SD12 0.86 ± 0.54 2.69 ± 1.65

Md 5.06 ± 1.78 4.19 ± 1.79

Sd 23.50 ± 3.20 18.47 ± 2.68

The errors are presented as median ± MAD

only women. In the statistical analysis and classification
procedure, we considered all the subjects with an RR mean
not higher than one second to compute the LPP parameters

at the 20th lag using at least 10 samples. For this reason,
two subjects (one man and one woman) were discarded from
the analyses. The overall scheme of the whole procedure of
processing of the ECG signals acquired during the olfactory
stimulation protocol is shown in Fig. 4. The results of the
pattern recognition algorithm are reported in this study as
percentage values of sensitivity, specificity, and accuracy
(Table 4) related to the best performances reached with the
three datasets.

3 Experimental results

3.1 Synthetic series

The median percentage absolute errors (ε%) extracted
from the 1200 series are displayed in Table 1. They

Fig. 5 Boxplots of arousal (left
column) and valence (right
column) values correspondent to
the two smells for the three
datasets. Whole subjects (a, b),
male subjects (c, d,) and female
subjects (e, f)
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were computed comparing the median value of novel LPP
descriptors and quantifiers in windows of 35 s with the
same parameters extracted from total length of synthetic
series, 1 h. ε% was calculated for the novel descriptors, i.e.,
auc and max. Even if the novel descriptors, auc and max,
took into account 20 values of lag, their errors remained
comparable with ε% obtained from the value of the
same quantifiers considering the first lag only (previously
shown in [31]). SD12 and Md resulted the most reliable
quantifiers for all the descriptors: the median value of ε%
was less than 0.9% and 2.7% when it was computed on
auc(SD12) and max(SD12), and it was less than 5.1% and
4.2% when it was computed on auc(Md) and max(Md),
respectively.

3.2 Experimental data during olfactory stimulation

3.2.1 Statistical results of SAM

For both arousal and valence dimensions of Russell’s model,
and for each group taken into account in our study (all
subject, only men, only women), we applied the Wilcoxon
statistical test to compare the two sub-samples of SAM
scores related to pleasant and unpleasant olfactory stimuli,
respectively.

No significant differences were found among the arousal
scores in the three groups (all subjects, all men, all women)
(see Fig. 5). When we applied Wilcoxon test to the valence
dimension, we found that valence scores were significantly
different in the three groups of participants (p < 10−6), Od1
was identified as pleasant odorant, whereas Od2 was scored
with a negative valence.

3.2.2 Statistical results of HRV parameters

Wilcoxon non-parametric statistical tests were applied to
the post−pre values of time and frequency parameters and
LPP parameters extracted from 35-s RR series, in order
to discern the features able to distinguish the stimuli. In
Table 2, the statistical results are reported in terms of p
values, for the three following groups: all 30 subjects, all
men (15 subjects), and all women (15 subjects). The lowest
p values considering all the subjects were obtained for
Md(M = 1) and (max)Md. As regards the men’s group, the
most significant features were for Md(M = 1) and LF power.
In the group of women, the only significant feature was RR
mean. The boxplots of the two most significant features in
the groups of all participants and all men are displayed in
Figs. 6 and 7. Figure 8 shows the boxplot related to RRmean
for the group of women. All the significant features showed

the same trend in the median values: a decrease during the
post-stimuli session after the pleasant smell and an increase
after the unpleasant stimulation (see Table 2).

It is worthwhile pointing out that 14 out of 17 features
which gave significant results in the statistical analysis,

Table 2 Wilcoxon statistical tests between the values of features
during pleasant (Od1) and unpleasant (Od2) olfactory stimulation

Parameter p val Od1 Od2

All subjects

Md(M = 1) 0.0028 − +

maxMd 0.0030 − +
LFpower 0.0034 − +
auc(Md) 0.0036 − +
SD2(M = 1) 0.0036 − +

max(SD2) 0.0041 − +
auc(SD2) 0.0064 − +
max(S) 0.0077 − +

max(SD1) 0.0087 − +
auc(S) 0.0093 − +

auc(SD1) 0.0117 − +
S(M=1) 0.0117 − +

Sd(M=1) 0.0175 − +

max(Sd) 0.0196 − +

RRstd 0.0256 − +
auc(Sd) 0.0285 − +

HFpower 0.0495 − +

Men

Md(M = 1) 0.0084 − +

LFpower 0.0125 − +
max(SD1) 0.0151 − +
auc(Md) 0.0151 − +
max(SD2) 0.0181 − +
auc(SD12) 0.0181 − +
max(Md) 0.0181 − +

SD2(M = 1) 0.0181 − +

max(S) 0.0215 − +

auc(SD1) 0.0302 − +

auc(S) 0.0302 − +

max(SD12) 0.0413 − +

auc(SD2) 0.0479 − +

Women

RRmean 0.0353 − +

For the two groups of subjects (all participants, all men), the p value of
the test is shown. Symbols + and − refer to the signs of the differences
post−pre in the parameters’ values
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Od1 Od2

-0.04

-0.02

0

0.02
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Md(M=1)

Od1 Od2
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-0.02

0

0.02

0.04
max(Md)

Fig. 6 Boxplots of parameters Md(M = 1) and max(Md) for all the
subjects. Values refer to the differences post−pre for the two different
odorants Od1 and Od2

considering all the subjects together, were extracted from
the LPP approach proposed in this study.

In Table 3, we reported the median and MAD computed
in both pre- and post-stimulus sessions, for each parameter
used in the study and for both odorants.

3.2.3 Pattern recognition

We used the differences post−pre, calculated for all the
features described, as input to a LOSO procedure in order
to classify the two olfactory stimuli. In Fig. 9, the accuracy
trends, as a function of the number of features considered as
input of the pattern recognition algorithm, are presented for
both male and female groups.

The best results in terms of accuracy in the classification
of the two smells are shown in Table 4, for each group (all
subjects, men, and women). Figure 9 and Table 4 are related
to pattern recognition results obtained when all the features
(time and frequency domains, and LPP descriptors) are used
as input of pattern recognition algorithm. Considering all
the subjects, the maximum level of accuracy was 71.67%
and was reached using one feature (auc(SD2) (see Table 4).
In the results related to men, the maximum value achieved
with the proposed algorithm was 83.33% with three

Od1 Od2

-0.04

-0.02

0

0.02

Md(M=1)

Od1 Od2
-4

-2

0

2

10-3 LFpower

Fig. 7 Boxplots of parameters Md(M = 1) and LF power for the group
of men. Values refer to the differences post−pre for the two different
odorants Od1 and Od2

Od1 Od2

-0.05

0

0.05

0.1
RRmean

Fig. 8 Boxplots of RR mean, the only statistically significant
parameter, for the group of women. Values refer to the differences
post−pre for the two different odorants Od1 and Od2

features: auc(Sd), max(Sd), and HFn. We found a maximum
of accuracy of 73.33% with three features (S(M = 1),
Md(M = 1) and HF power) when we restricted the analysis
to data recorded only from women (Table 4). As it can
be easily noticed, all the most frequently selected features
belonged to the novel LPP quantifiers and descriptors here
proposed.

Table 5 shows the comparison between the results
obtained with the pattern recognition algorithm using
different feature subsets. We considered the following input
subsets: time-domain HRV features, frequency-domain
HRV features, and LPP descriptors. The algorithm of
pattern recognition was computed considering the three
groups (all subjects, only men, and only women), for the
three feature subsets of HRV features. From the results
reported in Table 5, we noticed that using both time and
frequency domain datasets the maximum of accuracy did
not reach values upper than 70%. For both the groups of
all subjects and all men, the highest percentage of accuracy
was obtained using the LPP parameter subset (70.00%
and 76.67%, respectively), whereas for the female group,
we reached the maximum of accuracy using RR mean
(73.33%).

4 Discussion

In this study, we presented an ad hoc algorithm for pattern
recognition able to recognize different HRV responses
to two odorants, one pleasant and one unpleasant. A
novel approach to describe the trend of LPPs obtained
from ultra-short RR series is described and validated,
as an efficient complementary method that can produce
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Table 3 Median and MAD values related to each parameter in the pre and post-stimulus session for both odorants (Od1 and Od2)

Parameter Od1 Od2

Pre- Post- Pre- Post-

Median MAD Median MAD Median MAD Median MAD

RRmean 0.8250 0.1096 0.8243 0.0944 0.8136 0.0941 0.7923 0.0978

RRstd 0.0477 0.0163 0.0465 0.0141 0.0401 0.0098 0.0490 0.0093

LF peak 0.0743 0.0145 0.0764 0.0179 0.0911 0.0290 0.0886 0.0214

HF peak 0.2106 0.0333 0.2206 0.0448 0.2076 0.0318 0.1970 0.0331

LF power 0.0014 0.0009 0.0012 0.0006 0.0009 0.0005 0.0010 0.0005

HF power 0.0009 0.0005 0.0008 0.0003 0.0006 0.0004 0.0006 0.0004

HFn 0.3626 0.1646 0.3617 0.1575 0.4405 0.1358 0.3410 0.1182

LF/HF 1.9241 1.2505 2.2594 1.4919 1.2808 0.6497 2.0248 1.3648

auc(SD1) 0.8548 0.2110 0.7868 0.2422 0.7343 0.2078 0.8474 0.1407

auc(SD2) 0.8814 0.2709 0.7776 0.2282 0.7419 0.1533 0.8730 0.1454

auc(S) 0.1213 0.0617 0.0978 0.0607 0.0941 0.0435 0.1204 0.0355

max(SD1) 0.0568 0.0157 0.0521 0.0146 0.0499 0.0139 0.0550 0.0097

max(SD2) 0.0633 0.0189 0.0564 0.0162 0.0541 0.0115 0.0623 0.0111

max(S) 0.0075 0.0042 0.0059 0.0037 0.0056 0.0026 0.0073 0.0022

auc(Md) 1.1321 0.2865 0.9772 0.2952 0.9686 0.2284 1.1193 0.1678

auc(Sd) 0.5715 0.1360 0.5276 0.1362 0.4451 0.1216 0.5198 0.1016

auc(SD12) 20.2631 1.4814 19.8233 1.0470 19.6755 1.2315 20.3251 0.8403

max(SD12) 1.7313 0.2870 1.7265 0.2338 1.6315 0.1743 1.8039 0.2003

max(Md) 0.0623 0.0186 0.0559 0.0161 0.0536 0.0125 0.0628 0.0097

max(Sd) 0.0351 0.0112 0.0353 0.0095 0.0280 0.0074 0.0320 0.0063

SD1(M = 1) 0.0243 0.0058 0.0225 0.0072 0.0207 0.0056 0.0219 0.0058

SD2(M = 1) 0.0633 0.0204 0.0563 0.0159 0.0537 0.0113 0.0608 0.0121

SD12(M = 1) 0.3848 0.0607 0.4115 0.0922 0.4456 0.0973 0.3971 0.0875

S(M = 1) 0.0050 0.0022 0.0045 0.0017 0.0036 0.0017 0.0041 0.0021

Md(M = 1) 0.0590 0.0145 0.0520 0.0114 0.0484 0.0109 0.0569 0.0088

Sd(M = 1) 0.0348 0.0112 0.0349 0.0097 0.0265 0.0078 0.0315 0.0057

Values are reported in seconds, except for LF peak and HF peak reported in Hz, and LF power and HF power reported in s2

emotion-discriminant features. Specifically, we used 35-s
series to test our approach, in order to be easily implemented
in e-health and mobile applications using ultra-short
cardiovascular series, with a low computational cost.

Nonlinear methods were demonstrated to have a strong
discriminative power in the recognition of emotional states
[14, 15, 59] and affective response to external stimuli [22,
31]. However, one of the most important limitations of
nonlinear analysis, when it is applied to HRV series, is that
most nonlinear metrics present better performances in the
study of long-term monitoring acquisitions and result to
be less reliable than linear parameters in ultra-short series
analysis [60].

In our previous works, we studied the reliability of LPP
ellipse-fitting quantifiers in ultra-short RR series [35, 61],
using 1200 synthetic series generated through the IPFM
model [45]. Even if we showed that ellipse-fitting technique
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Fig. 9 Recognition accuracy for Od1 vs. Od2 classification obtained
through the LOSO SVM-RFE procedure, shown as a function of the
feature number, according to the gender
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Table 4 Best results obtained
for the classification of Od1
and Od2 through SVM, for the
three groups in the study (all
subjects, all men, and all
women)

All subjects Men Women

Most frequently auc(SD2) auc(Sd) S(M = 1)

selected features max(Sd) Md(M=1)

HFn HFpower

Sensitivity 70.00% 100.00% 86.67%

Specificity 73.33% 66.67% 60.00%

Accuracy 71.67% 83.33% 73.33%

For each dataset, the most frequently features selected by RFE and the values of sensitivity, specificity, and
accuracy are reported

produces low percentage errors in series lasting less than
1 min, this error increased according to the lag [31]. This
rise was even more evident in the case of SD12, which is
also the LPP quantifiers derived from ellipse-fitting theory
associated with nonlinear cardiac dynamics [34]. The new
LPP descriptors proposed here resulted to be reliable for
ultra-short series also considering 20 lags, as it is shown
in Table 1, through the results of percentage absolute error
between the values of LPP descriptors calculated in 35-s
segments, compared with 1-h synthetic series. As we can
see in Table 1, the median value of percentage absolute error
was always less than 5.1% and 4.2%, when auc(Md) and
max(Md) were considered.

Following these findings, we applied the proposed
approach in the analysis of ultra-short RR series, recorded
during a protocol of olfactory stimulation. The physiolog-
ical expression of emotions in response to odorants was
analyzed in several previous studies in the literature [49, 62–
64], and a strict link between odors perception and limbic
system activity was found, specifically amygdala and hip-
pocampus [65, 66]. These areas are known to be involved in
the control of crucial homeostatic functions in response to
external stimuli and especially the amygdala receives inte-
roceptive afferents and may play a role in ANS functions
[66, 67]. The effect of fragrances on ANS was discussed

by Van Toller, who recognized the power of the primitive
sense of smell measuring ANS response through the study
of electrodermal activity [68].

Statistical tests on SAM scores given by participants
confirmed the a priori considerations about the different
valence levels and the same intensity of the two smells
chosen for the stimulation.

From the results of statistical analysis on HRV features,
we observed that changes in ANS response, measured as
differences in the values of the parameters in post and
pre-stimulation sessions, were quantified especially from
the LPP descriptors (14 out of 17 statistically significant
features were extracted from LPP when we considered all
the subjects). A significant variation of LF power parameter
after the elicitation with the two odorants was reported in
men (see Table 2). The HRV power spectral density in
this frequency range is thought to be mixed sympathetic
and parasympathetic activity, and this outcome confirmed
the results obtained in [69], where a significant increase
of the power in the MF band (from 0.08 to 0.15 Hz) after
emotional stimulation was recorded, studying short-term
power spectrum analysis of HRV.

Gender differences had already been explored in the
evaluation of physiological responses to olfactory stimulation
[70–72]. Dijksterhuis et al. highlighted a more relevant

Table 5 Pattern recognition
results obtained using different
feature subsets for odorant
discrimination

All subjects Men Women

Time 61.67%
RRmean
RR std

66.67%
RRmean
RR std

73.33%
RRmean

Frequency 63.33%
LF peak
HF peak
HF power
HFn

60.00%
LF peak
HF peak
HF power

53.33%
HF power
LF/HF
LF peak

LPP 70.00%
max(Md)
auc(SD2)

76.67%
auc(Sd)

60.00%
S(M = 1)

For each classification, the maximum of the accuracy and the corresponding most frequently selected
features are reported
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lateralization of olfactory perception in men than in women,
expressed in higher hedonic scores following odorous
stimulation through the right nostril [71]. These differences,
already hypothesized in the literature, have been confirmed
in this study by the classification results. The results of the
recognition accuracy increased when we split the dataset
by gender and reached values of 83.33% and 73.33%, with
only three features, when we considered 35-s RR series
from men and women, respectively. Interestingly, when
we investigated which were the features most frequently
selected by the RFE procedure among LPP descriptors and
HRV features extracted in time and frequency domains, we
found that two out of three were LPP descriptors. In order
to compare the effectiveness of the three feature subsets in
valence recognition, we used each subset as a separate input
of the algorithm. We found that the maximum percentage of
accuracy was reached using the LPP feature subset for both
the groups of all subjects and men.

Our outcomes demonstrated that the hproposed LPP
approach can be a promising tool for the assessment of
odor hedonic tone perception, found to be strictly related to
emotion regulation and pathological moods.

One limitation of this study is the number of subjects
involved in the experimental protocol of olfactory stimula-
tion that can lead to a low statistical power. For this reason,
future works should consider a larger number of subjects.

The accuracy of the novel LPP approach could be applied
to other affective computing experimental protocols, in
order to define the relationship between the LPP descriptors
and the ANS activity and to promote the implementation of
this technique in all the fields which involve ultra-short time
series (e.g., telemedicine and e-health monitoring).
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heart rate variability series: application on affective sounds. IEEE
Journal of Biomedical and Health Informatics

32. Brennan M, Palaniswami M, Kamen P (2001) Do existing
measures of poincare plot geometry reflect nonlinear features of
heart rate variability? IEEE Trans Biomed Eng 48(11):1342–1347
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