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Aims Left ventricular hypertrophy (LVH) is an established, independent predictor of cardiovascular disease. Indices derived from the 
electrocardiogram (ECG) have been used to infer the presence of LVH with limited sensitivity. This study aimed to classify LVH 
defined by cardiovascular magnetic resonance (CMR) imaging using the 12-lead ECG for cost-effective patient stratification.

Methods 
and results

We extracted ECG biomarkers with a known physiological association with LVH from the 12-lead ECG of 37 534 partici
pants in the UK Biobank imaging study. Classification models integrating ECG biomarkers and clinical variables were built 
using logistic regression, support vector machine (SVM) and random forest (RF). The dataset was split into 80% training 
and 20% test sets for performance evaluation. Ten-fold cross validation was applied with further validation testing per
formed by separating data based on UK Biobank imaging centres. QRS amplitude and blood pressure (P < 0.001) were 
the features most strongly associated with LVH. Classification with logistic regression had an accuracy of 81% [sensitivity 
70%, specificity 81%, Area under the receiver operator curve (AUC) 0.86], SVM 81% accuracy (sensitivity 72%, specificity 
81%, AUC 0.85) and RF 72% accuracy (sensitivity 74%, specificity 72%, AUC 0.83). ECG biomarkers enhanced model per
formance of all classifiers, compared to using clinical variables alone. Validation testing by UK Biobank imaging centres de
monstrated robustness of our models.

Conclusion A combination of ECG biomarkers and clinical variables were able to predict LVH defined by CMR. Our findings provide 
support for the ECG as an inexpensive screening tool to risk stratify patients with LVH as a prelude to advanced imaging.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Lay summary In this study, we found that measurements from the electrocardiogram (ECG) and specific health data can predict heart 
muscle thickening seen on specialised heart scan.

Certain conditions can cause the heart muscle to grow and become thicker. This process increases the risk of having fatal 
events such as a heart attack. The most accurate way of identifying heart muscle thickening is by a specialised heart scan but 
this can be expensive and is not available in every hospital. In contrast, the ECG is a simple, inexpensive bedside test which  
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records the electrical activity within the heart and displays it as a waveform for each heartbeat. The ECG can also detect 
whether heart muscle thickening is present but the ECG measures used thus far do not provide a totally robust prediction.

We analysed the ECG of 37 534 individuals and used the ECG and health data to predict whether they had evidence of 
heart muscle thickening as observed on their heart scan. We found that information from the ECG improved the prediction 
power compared to using health data alone. Our findings provide support for the ECG as a cost-effective way to identify 
patients with heart muscle thickening. This could help identify people with heart muscle thickening who may benefit from 
having a specialised heart scan therefore avoiding unnecessary tests in individuals with a normal heart.
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Introduction
Left ventricular hypertrophy (LVH) is pathologically increased LV mass 
and an established, independent predictor of cardiovascular morbidity 
and mortality.1–4 Two-dimensional echocardiography is used for the 
evaluation of LV mass, however, it remains operator dependent and 
poor acoustic windows limit its use.5 Cardiovascular magnetic reson
ance (CMR) imaging is considered the gold standard imaging modality 
in the assessment of LVH as it is accurate, reproducible and non- 
invasive. CMR imaging enables comprehensive assessment of LVH by 
obtaining precise measurements of chamber size and advanced techni
ques such as late gadolinium enhancement. In addition, parametric 

mapping, diffusion tensor imaging and myocardial strain can help to dif
ferentiate key aetiologies of LVH for prognostication.6 Individuals with 
CMR evidence of LVH are at greater risk of cardiovascular events com
pared with normal LV geometry.7 However, CMR is limited in our 
healthcare system due to cost and availability, therefore a cost-effective 
approach would be beneficial to identify individuals with LVH.

In contrast to CMR imaging, the electrocardiogram (ECG) is an inex
pensive screening tool to detect LVH at the bedside, ubiquitous and 
technically easy to perform. Despite its high specificity for LVH detec
tion, studies have consistently highlighted its limited sensitivity, ranging 
15–30%.8,9 To address this, recent work has demonstrated LVH detec
tion using deep learning on 12-lead ECG, showing correlation with 

Predicting LVH from the 12-lead ECG using machine learning                                                                                                                           317



CMR-derived LV mass.10–12 However, a study comparing supervised 
machine learning techniques using a combination of selected ECG bio
markers to classify LVH is lacking. Deep learning algorithms use agnostic 
approaches for LVH detection and don’t allow the identification of spe
cific ECG biomarkers contributing to LVH for potential mechanistic 
insights.

This study aims to assess the discriminative potential of a combin
ation of automatically extracted ECG biomarkers, together with clinical 
variables, to optimally classify LVH defined by CMR imaging in a large 
community population using supervised machine learning techniques. 
Our overall goal is to explore the potential of the ECG to be used as 
a screening tool for LVH detection, offering a cost-effective approach 
identify LVH for risk stratification as a prelude to advanced imaging.

Methods
Study population
The UK Biobank is a large prospective population study where demo
graphics, medication history, electronic health records, biomarkers and 
genomics were collected in half a million participants aged 40–69 years 
when recruited between 2006 and 2010 from across the United 
Kingdom. The UK Biobank imaging study was launched in 2015, with 
the aim of scanning 20% of the original cohort, that is 100 000 partici
pants.13 The details of the UK Biobank CMR protocol have been de
scribed elsewhere.14

A total of 44 817 participants had completed the UK Biobank imaging 
study. Accounting for incomplete CMR and ECG data, a total of 37 534 par
ticipants were categorised into normal LV and LVH using CMR parameters, 
which have been derived using a fully automated quality-controlled image 
analysis pipeline previously developed and validated in a large subset of 
the UK Biobank.15,16 LVH was defined as indexed LV mass >70 g/m2 

(men) and >55 g/m2 (women) with respect to normal ranges published 
in the group.15 Indexing for body surface area was performed using the 
Mosteller formula.17 The proportion of UK Biobank participants in each 
category is shown in Table 1. Figure 1 illustrates the sample selection process 
and subsequent steps in the methodology.

ECG biomarker extraction
In the UK Biobank imaging study, participants underwent acquisition of 
both 12-lead ECG and CMR imaging during the same assessment visit. 
We analysed the raw 15 s 12-lead ECG signals of each of the 37 534 par
ticipants using MATLAB version 2021a to derive biomarkers with a 
known physiological association with LVH.18 A total of 23 ECG biomar
kers were extracted (Table 1) and only the independent ECG leads (I, II, 
V1–6) were analysed. Butterworth filter (1–45 Hz) was applied to at
tenuate baseline wander and high frequency noise. Following R wave de
tection, signal-averaging of the ECG waveform was derived for each lead 
and each participant by calculating the median of the available heartbeat 
waveforms with the same morphology. The Hilbert’s envelope method 
was used to identify QRS onset and QRS offset (see Supplementary 
material online, Figure S1).19 Marker location was obtained from the en
velope by taking the tangent from the first derivative before (QRS onset) 
and after (QRS offset) the R-peak to the isoelectric baseline. Starting at 
QRS onset, the algorithm finds the points at which the ECG signal 
crosses the baseline within each complex and labels accordingly. 
Amplitudes of significant waves within the QRS complex were measured 
with respect to the QRS onset. There were no participants who had 
ventricular pacing and no participants were excluded based on bundle 
branch morphology.

Calculation of interval-based ECG indices
We also sought to include interval-based ECG indices: QT duration, P wave 
amplitude, P wave duration, P wave terminal force in V1, T wave duration, 
and ventricular rate. Classical LVH indices such as Sokolow–Lyon, Cornell 
voltage, and QT dispersion were calculated from the ECG biomarkers ex
tracted.20,21 The tangent method was used to identify T wave end as the 
tangent from the minimum of the first derivative of the T-wave slope, to 

the isoelectric line.22 Definitions of all ECG biomarkers used in the model 
can be found in the supplementary material. ECG biomarkers from each in
dependent lead were treated as individual features. In addition, global ECG 
features were calculated as the median value across the independent leads.

Ascertainment of clinical variables
In addition to including ECG biomarkers, we also sought to include clinical 
variables known to be associated with LVH in the classification models 
(Table 1). Each clinical variable was defined by either self-reported question
naire at the initial assessment visit or biochemistry results. Participants with 
serum total cholesterol of ≥5 mmol/L and Haemoglobin A1c (HbA1c) ≥  
48 mmol/mol at the baseline visit were considered to have hypercholester
olaemia and diabetes mellitus, respectively. Hypertension was defined ac
cording to the ‘high normal’ blood pressure (BP) grade of ≥130/ 
85 mmHg from the latest European Society of Cardiology/European 
Society of Hypertension guidelines to reflect the demographic of the UK 
Biobank population.23 BP measurements were averaged from two readings 
taken at the imaging visit. After calculating the average BP values, we ad
justed for medication use by adding 15 and 10 mmHg to systolic and diastol
ic BP, respectively, for participants reported to be taking BP-lowering 
medication.24 We corrected total and non-HDL cholesterol values for par
ticipants on cholesterol lowering medication by dividing the total choles
terol by 0.73 and non-HDL cholesterol by 0.66.25 The presence of 
tobacco use was ascertained using self-reported questionnaires at the initial 
assessment visit, with smoking status classified categorically as current, pre
vious or never. Similarly, alcohol consumption was classified as current or 
never. To ascertain the approximate number of individuals with hyper
trophic cardiomyopathy in our dataset, we reviewed exome sequence 
data for eight genes implicated in hypertrophic cardiomyopathy.26 We re
port the number of individuals who have rare coding variants with a minor 
allele frequency of <0.00004 in these genes.26 Individuals with potential 
phenocopies (Fabry disease, amyloidosis, glycogen storage diseases, and 
RSAopathies) are indicated.27

Supervised machine learning techniques
In order to perform classification, several representative features were ex
tracted from the signal to compose a feature vector (see Supplementary 
material online, Table S1). A selection of three supervised machine learning 
algorithms were used for classification: logistic regression, support vector 
machine (SVM) and random forest (RF). The algorithms were implemented 
in MATLAB and the fit multiclass models for SVMs or other classifiers (fit
cecoc) function was used to build the logistic regression and SVM classi
fiers.28 The fit ensemble of learners for classification (fitcensemble) was 
used to build the RF classifier.29 In our experiments, the dataset was split 
into a training set (80%) for learning and a testing set (20%) for performance 
evaluation. The parameters we used to assess classifier performance in
cluded: accuracy, sensitivity, specificity, and area under the receiver oper
ator curve (AUC). In addition, we applied 10-fold cross validation to the 
training set. To suitably train the models, all features were standardised 
using z-score standardisation to eliminate scale differences during subse
quent classification.

For the SVM classifier, Gaussian kernel function was applied to deal with 
potential non-linear data.30 This transforms a two-dimensional dataset onto 
a new higher feature space where the classes become separable. For the RF 
classifier, a number of key parameters were thoroughly optimised in the 
training set, including the maximal number of branches, as well as the num
ber of features used to split each new node. We also applied bootstrap ag
gregating, referred to as ‘bagging’, which is a method for generating multiple 
versions of a predictor and using these to get an aggregated predictor.31

The multiple versions of the classification models are formed by making 
bootstrap replicates of the training set and using these as new training 
sets. This approach reduces variance and helps avoid overfitting.

Validation by UK Biobank imaging centre
In addition to applying 10-fold cross validation to the training set, we further 
assessed robustness of our findings by performing validation according to 
UK Biobank imaging centres located at different geographical regions. 
There were four imaging centres that participated in the initial UK 
Biobank imaging visit located in Cheadle, Newcastle, Reading, and Bristol 
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Table 1 UK Biobank participant characteristics

Overall Normal LV mass LVH P-value
(n = 37 534) (n = 36 956) (n = 578)

Age (years) 64 [58, 70] 64 [58, 70] 64 [57, 70] 0.1
Sex (%) 0.1

Female 19 529 (52.0) 19 252 (52.1) 277 (47.9)
BMI (kg/m2) 26.0 [23.6, 28.8] 26.0 [23.6, 28.7] 26.2 [24.0, 29.7] 0.01
Ethnicity (%) 0.6

White European 36 342 (96.8) 35 784 (96.8) 558 (96.5)
Other 1192 (3.2) 1172 (3.2) 20 (3.5)

Potential causes of LVH
Hypertension (%) 27 946 (74.5) 27 431 (74.2) 515 (89.1) <0.001
Hypertrophic cardiomyopathy (%) 4034 (10.7) 3967 (10.7) 67 (11.6) 0.6
Phenocopies 31 (0.1) 30 (0.1) 1 (0.1) 0.4

Systolic BP (mmHg) 141 [128, 157] 141 [128, 156] 156 [142, 174] <0.001
Diastolic BP (mmHg) 81 [74, 89] 81[74, 89] 87 [77, 96] <0.001
High cholesterol (%) 18 981 (50.4) 22 705 (61.4) 343 (59.3) 0.3

Total cholesterol (mmol/L) 4.6 [4.0, 5.2] 4.6 [4.0, 5.2] 4.6 [4.0, 5.2] 0.5
Non-HDL cholesterol (mmol/L) 3.2 [2.7, 3.8] 3.2 [2.7, 3.8] 3.3 [2.7, 3.8] 0.9

Medication use
Anti-hypertensive medication (%) 9208 (24.5) 8982 (24.3) 226 (39.1) <0.001
Lipid lowering medication (%) 9454 (25.2) 9302 (25.2) 152 (26.3) 0.5

Diabetes (%) 2064 (5.5) 2016 (5.5) 48 (8.3%) 0.006
Smoking status (%) 0.01

Never 22 737 (60.6) 22 408 (60.6) 329 (56.9)
Previous 12 450 (33.2) 12 254 (33.2) 196 (33.9)
Current 2347 (6.3) 2294 (6.2) 53 (9.2)

Alcohol intake (%) 0.3
Never 1731 (4.6) 1710 (4.6) 21 (3.6)
Current 35 803 (95.4) 35 246 (95.4) 557 (96.4)

Global ECG indices
Sokolow–Lyon (%) 595 (1.6) 558 (1.5) 37 (6.4) <0.001
Cornell Voltage (%) 2689 (7.2) 2644 (7.2) 45 (7.8) 0.6
Pathological Q waves (%) 693 (1.8) 665 (1.8) 28 (4.8) <0.001
ST segment deviation (mV) 0.012 [0.002, 0.030] 0.013 [0.002, 0.030] 0.010 [0.001, 0.024] <0.001
QT dispersion (ms) 56.9 [37.1, 84.2] 56.6 [37.0, 84.0] 71.7 [48.7, 96.5] <0.001
Corrected QT duration (ms) 384.0 [369.2, 384.9] 384.0 [369.2, 399.2] 388.0 [370.5, 405.4] <0.001
Positive deflection P wave amplitude (mV) 0.045 [0.026, 0.070] 0.045 [0.026, 0.070] 0.065 [0.034, 0.091] <0.001
Positive deflection P duration (ms) 52.0 [42.0, 68.0] 52.0 [42.0, 68.0] 48.0 [38.0, 62.0] <0.001
Negative terminal P amplitude (mV) -0.038 [-0.061, -0.017] -0.038 [-0.061, -0.017] -0.036 [-0.064, -0.012] 0.4
Negative terminal P duration (ms) 56.0 [46.0, 66.0] 56.0 [46.0, 66.0] 60.0 [48.0, 70.0] <0.001
P wave terminal force in V1 (mV/ms) -2.34 [-3.62, -0.80] -2.04 [-3.62, -0.80] -2.05 [-3.88, -0.61] 0.1
P wave duration (ms) 112.0 [100.0, 124.0] 112.0 [100.0, 124.0] 112.0 [98.0, 122.0] 0.1
Q wave amplitude (mV) -0.08 [-0.10, -0.06] -0.08 [-0.10, -0.06] -0.09 [-0.12, -0.06] <0.001
Q wave duration (ms) 23.0 [21.0, 25.0] 23.0 [21.0, 25.0] 24.0 [22.0, 27.0] <0.001
R wave amplitude (mV) 0.45 [0.37, 0.60] 0.48 [0.37, 0.60] 0.57 [0.41, 0.71] <0.001
S wave amplitude (mV) -0.29 [-0.39, -0.21] -0.29 [-0.39, -0.21] -0.39 [-0.54, -0.28] <0.001
QRS amplitude (mV) 0.90 [0.76, 1.07] 0.91 [0.76, 1.06] 1.14 [0.94, 2.82] <0.001
QRS duration (ms) 89.0 [82.0, 97.0] 89.0 [81.0, 97.0] 97.0 [89.0, 105.0] <0.001
QRS ascending slope (mV/s) 34.2 [27.1, 42.6] 34.2 [27.1, 42.5] 37.1 [29.0, 47.5] <0.001
QRS descending slope (mV/s) -53.4 [-63.4, -54.6] -53.3 [-63.2, -44.4] -64.7 [-75.5, -52.3] <0.001
T wave amplitude (mV) 0.15 [0.11, 0.19] 0.15 [0.11, 0.19] 0.14 [0.10, 0.18] <0.001
T wave duration (ms) 106.0 [100.0, 114.0] 106.0 [100.0, 114.0] 110.0 [102.0, 120.0] <0.001
Ventricular rate (beats/min) 61 [56, 68] 62 [56, 68] 58 [52, 64] <0.001

Counts variables are presented as number (percentage), continuous variables as median [interquartile range]. To assess for associations between participants with LVH and normal LV 
mass, the Wilcoxon signed-rank test was used for continuous data and Fisher’s exact test for categorical data. Global ECG indices are the median values calculated from the independent 
leads of the 12-lead ECG. Blood pressure and cholesterol values are adjusted for medication use. Hypertrophic cardiomyopathy and phenocopies (see Methods for further details). BMI: 
body mass index, BP: blood pressure, LV: left ventricle, LVH: left ventricular hypertrophy, mmHg: millimetres mercury, mmol/L: millimoles per litre, ms: milliseconds, mV: millivolts, s: 
seconds.
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(Table 3). Three sets of validation experiments were performed with rotat
ing training and test sets using different combinations of the imaging centres. 
This approach was used as we did not currently have access to external da
tasets for validation.

Statistical analysis
Statistical analysis was performed using R version 4.0.3 and RStudio 
Version 1.3.1093.32 After excluding missing or extreme outlying ECG va
lues (outside the range defined by the quartiles +/- 1.5× interquartile 
range) the Classification And REgression Training (CARET) package in 
R was used for correlation analysis and highly correlated ECG biomar
kers were omitted (correlation coefficient threshold of +/- 0.9).33 ECG 
biomarkers with less than 10% of missing data were imputed using the 
Multivariate Imputation by Chained Equations package in R.34 In order 
to address the imbalance in the dataset, down-sampling was applied using 
the CARET package in the training set to match the proportion of parti
cipants in the minority LVH group. Chi-square test was used to rank the 
features in terms of feature importance score. To assess for associations, 
the Wilcoxon signed-rank test was used for continuous data and Fisher’s 
exact test for categorical data. Normality of continuous data was as
sessed by visual inspection of histograms and confirmed by the 
Shapiro–Wilk test. For all analyses, a two-tailed P < 0.05 was deemed 
statistically significant. We included all UK Biobank participants with 
quality-controlled CMR data available.

Results
Study population
Table 1 summarises clinical and ECG characteristics of the total cohort, 
normal LV mass and LVH subgroups defined by CMR imaging. Overall, 
the cohort had a median age of 64 [58, 70] years old and 52% (n = 19 529) 
were female. The proportion of participants with hypertension, high chol
esterol, diabetes, and smoking was 74.5%, 50.4%, 5.5%, and 6.3%, respect
ively. In the total cohort the frequency of participants with criteria for 
Sokolow–Lyon, Cornell voltage and pathological Q waves on the ECG 
was 1.6%, 7.2%, and 1.8%, respectively.

Determinants of LVH
Participants with LVH had higher systolic and diastolic BP (P < 0.001). 
Of these, systolic and diastolic BP were also among the top 40 fea
tures from chi-squared feature selection. The highest-ranking ECG 
predictors of LVH were global QRS amplitude and QRS amplitude 
in V5 (Figure 2).

Machine learning model performance
Overall, the three supervised machine learning models were compar
able in classifying LVH. Classification of LVH with logistic regression 
had an accuracy of 81% (sensitivity 70%, specificity 81%, AUC 0.86), 
SVM 81% accuracy (sensitivity 72%, specificity 81%, AUC 0.85), and 
RF 72% accuracy (sensitivity 74%, specificity 72%, AUC 0.83). ECG bio
markers enhanced model performance of all classifiers compared to 
using clinical variables alone, for example for SVM AUC was 0.85 using 
both ECG and clinical variables and 0.65 using only clinical data 
(Table 2). Table 3 shows the validation testing using the UK Biobank im
aging centres in rotation for training and test sets including the propor
tion of participants with LVH. It showed that the three validation tests 
had similar performance metrics with 0.87, 0.85, and 0.86 AUC values.

Discussion
Summary of findings
In this large, prospective population study, we found that a combination 
of ECG biomarkers and clinical variables were able to discriminate be
tween participants with normal LV mass and LVH defined by CMR im
aging (Table 2). We found that the three supervised machine learning 
classifiers had similar performance in discriminating LVH from normal 
LV mass. We also demonstrated the incremental value of using the 
12-lead ECG compared to clinical variables alone for LVH detection. 
Validation testing using a rotation of the UK Biobank imaging centres 
demonstrated robustness of our models with reproducibility of AUC 
values at different sites (Table 3).

ECG and clinical predictors of LVH
QRS amplitude and interval-based indices were chosen in the feature 
selection step as being the best classifiers. It is common knowledge 
that changes in the QRS complex is a marker of electrical remodelling 
seen in LVH. This is due to the increase in the muscle mass of the LV 
increasing the forces of the LV potential. However, the increased 
QRS voltage is seen only in a minority of LVH cases in both clinical 
and animal studies and consequently voltage criteria suffer from a 
high number of false negative results and low sensitivity.35 The classical 
LVH criteria such as Sokolow–Lyon, Cornell voltage, and QT disper
sion did not appear in the top 40 features. Systolic and diastolic BP 
were in the top 40 ranking clinical predictors during the feature selec
tion process. This is perhaps expected given that hypertension is the 
commonest cause of LVH. Despite this, the addition of ECG 

Figure 1 Flow diagram illustrating the steps involved in UK Biobank participant selection, ECG biomarker extraction and machine learning. 
Abbreviations: ECG: electrocardiogram, LV: left ventricle, LVH: left ventricular hypertrophy.
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biomarkers improved model performance of all three classifiers com
pared to using clinical variables alone. Historically, ECG predictors of 
LVH have suffered low sensitivity, ranging 15–30%. Using a combination 
of ECG and clinical variables our sensitivity values were at least 70% 
without compromising on specificity.

Comparison of supervised machine 
learning techniques
The UK Biobank cohort is a relatively healthy, homogenous population, 
hence the low prevalence of LVH. Class imbalance is a common chal
lenge in machine learning, with different techniques proposed to ad
dress this issue. Imbalanced datasets degrade the performance of the 
classifier with the overall accuracy biased to the majority class.36 We 
applied down-sampling in the training set to minimise this risk. 

Overall, the three supervised machine learning classifiers were equiva
lent in performance metrics.

SVMs were initially proposed by Boser, Guyon, and Vapnik in 1992.37

In practical classification tasks, logistic regression and linear SVMs often 
yield very similar results. Logistic regression tries to maximize the con
ditional likelihoods of the training data, which makes it more prone to 
outliers than SVMs, which mostly prioritises the points that are closest 
to the decision boundary (support vectors). On the other hand, logistic 
regression has the advantage that it is a simpler model and can be im
plemented more easily. Furthermore, logistic regression models can 
be easily updated, which is appealing when working with streaming 
data.38 RF is a machine learning algorithm initially introduced by 
Breiman in 2001.39 RF is a classification algorithm using an ensemble 
of decision trees and its main advantage over SVM is that its less com
putationally intensive therefore take less time to construct. However, 

Figure 2 Ranking of the top 40 features using Chi-square feature selection.
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Table 2 Performance metrics of supervised machine learning classifiers using clinical features only to using both ECG 
and clinical features

Logistic Regression Support Vector Machine Random Forest

Clinical ECG + clinical Clinical ECG + clinical Clinical ECG + clinical

Accuracy (%) 69 81 55 81 64 72

Sensitivity (%) 64 70 66 72 57 74

Specificity (%) 69 81 55 81 64 72
AUC 0.71 0.86 0.65 0.85 0.64 0.83

AUC: area under the receiver operator curve, ECG: electrocardiogram.
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SVMs generally have a higher classification accuracy than RF models as 
also demonstrated in our experiments.40

Comparison with contemporary research
In our study, we selected ECG features with known physiological asso
ciation with LVH, hence the supervised machine learning approach. A 
contemporary study has used deep learning to explore the discrimina
tive power of ECG indices in LVH. Khurshid and colleagues (2021) de
veloped a deep learning model to predict CMR derived LV mass using 
12-lead ECG from the UK Biobank cohort.10 Khurshid et al. used ‘con
cordance’ statistic or c-statistic to measure model performance, 
which is comparable to AUC. The authors reported a c-statistic of 
0.63 using the deep learning model to predict LV mass. In our study, 
we demonstrated an AUC of 0.83–0.86. However, we aimed to clas
sify LVH based on a binary classification of normal LV mass vs. LVH, 
whereas Khurshid and colleagues aimed to estimate the CMR derived 
LV mass using a regression model, therefore the outcome measure is 
not comparable. In addition, our supervised machine learning ap
proach also informs about the features contributing to LVH.

Clinical utility
Machine learning models based on ECG predictors offer new oppor
tunities for improved and cost-effective disease detection, therefore 
enhancing capabilities of non-specialists. As Angelaki and colleagues 
(2021) demonstrated, machine learning techniques can be used to pre
dict subclinical disease and therefore has the potential to be used for 
disease testing, assessing disease progression and thus advance perso
nalised medicine at a lower cost.41 This will optimise the use of cardio
vascular imaging, ensuring that advanced imaging tests are used for 
those who need it most, therefore reducing unnecessary testing. 
Cost-effective and accurate risk prediction of LVH may facilitate popu
lation screening and timely treatment in individuals with subclinical dis
ease and could serve as surrogate markers for predicting outcomes. In 
our study we extracted biomarkers from the 12-lead resting ECG, 
known to have a physiological association with LVH. As data from 
the use of wearable devices increases, this offers opportunities to ex
plore ECG biomarkers derived from smartwatches as these become 
more commonplace. Our study is a first step to explore how well su
pervised machine learning algorithms work and any implementation of 
these models for clinical utility would potentially be down the line fol
lowing independent validation and cost-benefit analyses.

Strengths and limitations
A strength of our study is the population size, and the UK Biobank im
aging study using CMR, as this is the gold standard approach to LVH im
aging diagnosis. Access to resting 12-lead ECG of each participant 
allowed extraction of a number of different ECG biomarkers with a 
known association with LVH. There are a number of LVH classification 
systems which are disease specific, most commonly for aortic stenosis 
and hypertension.42,43 We decided upon a binary classification ap
proach to initially predict LVH diagnosis before exploring disease spe
cific cases. In addition to Sokolow–Lyon and Cornell voltage, there are 
also other ECG criteria proposed for LVH detection such as the 
Romhilt–Estes score.44 However, we focused on the more commonly 
used scoring systems and, furthermore, the numerous ECG markers 
we have extracted include many of the components of the aforemen
tioned criteria. The UK Biobank population has low prevalence of LVH. 
Although we have shown robustness of our algorithm with validation 
using a rotation of the UK Biobank imaging centres, the next step would 
be to test our models in an independent dataset for external validation 
to assess model performance in a population with a higher prevalence 
of LVH. Another important limitation is that the UK Biobank cohort is 
predominantly White European, therefore our findings cannot be gen
eralized to other ethnicities, reemphasising the need for external valid
ation. The goal of this study was to predict LVH as a binary variable. We 
have included the prevalence of the more common causes of LVH such 
as hypertension and hypertrophic cardiomyopathy (Table 1) but there 
are also rarer causes such as infiltrative conditions which have not been 
fully classified in the UK Biobank cohort.

Conclusions
A combination of automatically extracted ECG biomarkers and clinical 
variables were able to classify LVH defined by CMR. Our findings provide 
support for the ECG as an inexpensive screening tool to risk stratify pa
tient with LVH, thereby acting as a gatekeeper to advanced imaging.
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