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A B S T R A C T

Meshless methods for in silico modeling and simulation of cardiac electrophysiology are gaining more and more
popularity. These methods do not require a mesh and are more suitable than the Finite Element Method (FEM)
to simulate the activity of complex geometrical structures like the human heart. However, challenges such as
numerical integration accuracy and time efficiency remain, which limit their applicability. Recently, the Fragile
Points Method (FPM) has been introduced in the meshless methods family. It uses local, simple, polynomial,
discontinuous functions to construct trial and test functions in the Galerkin weak form. This allows for accurate
integration and improved efficiency while enabling the imposition of essential and natural boundary conditions
as in FEM. In this work, we consider the application of FPM for cardiac electrophysiology simulation. We derive
the cardiac monodomain model using the FPM formulation and we solve several benchmark problems in 2D
and 3D. We show that FPM leads to solutions of accuracy and efficiency similar to FEM while alleviating
the need for a mesh. Additionally, FPM demonstrates comparable convergence to FEM in the considered
benchmarks.
1. Introduction

The Finite Element Method (FEM) is widely used for simulating car-
diac electrophysiology mainly due to its robustness and accuracy [1].
However, accuracy is substantially deteriorated when the mesh under-
goes a large deformation or if it does not satisfy specific quality crite-
ria [2]. For this reason, in recent years there has been growing interest
in alternative meshless methods that partially or completely alleviate
the mesh-related limitations of FEM. Several meshless methods have
been investigated so far in the context of cardiac electrophysiology.

The element-free Galerkin (EFG) method offers high convergence
rate [3] and it has been used successfully in several applications [4,5].
It has been used in cardiac electrophysiology to solve the cardiac
monodomain equation using a meshless representation of the Auckland
heart model [6]. EFG employs the Moving Least Squares (MLS) approx-
imation [7] for the solution of the Galerkin weak form. Therefore, the
imposition of essential boundary conditions requires special treatment
due to the lack of the Kronecker delta property in MLS. To solve
this issue, Maximum Entropy (MaxEnt) approximants [8,9] have been
proposed as an alternative to MLS in EFG [10]. Due to the weak
Kronecker delta property of MaxEnt, the influence of internal nodes
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on the boundary of the domain of interest is eliminated and essential
boundary conditions can be imposed directly as in FEM. However, the
MaxEnt approximation functions are significantly more complex than
MLS. As a result, a large number of quadrature points is required to deal
with the quadrature accuracy problem of meshless methods [11,12].

On the other hand, the Mixed Collocation Method (MCM) [13,14] is
a purely meshless method that avoids the quadrature accuracy problem.
It has been used for the simulation of the cardiac monodomain model
demonstrating results in good agreement with FEM [15,16]. MCM is
a variation of the Meshless Local Petrov–Galerkin method [17] where
the Dirac delta distribution is used as test function and interpolation
is applied both on the field function and its gradient [17–19]. As a
result, the integrals in the Petrov–Galerkin weak form are replaced
with nodal summation. In addition, essential boundary conditions are
imposed directly through collocation. However, being a collocation
method, it usually requires the construction of support domains with
a large number of collocation points to avoid inaccuracy during the
imposition of natural boundary conditions [20] and may not be as
efficient as FEM in large-scale 3D problems.
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Table 1
Characteristics of FPM and other numerical methods as in [24].

Method Trial function Weak/strong form Numerical integration

FEM element-based Galerkin weak form Gauss integration,
inaccurate for highly
distorted elements

EFG point-based
continuous

Galerkin weak form numerical integration
with many points

MLPG point-based
continuous

local
Petrov–Galerkin
weak form

numerical integration
with many points in
local support domain

FPM point-based
discontinuous

Galerkin weak form
with numerical flux
corrections

exact integration with
one-point-integral for
linear trial functions

Very recently, a novel meshless technique going by the name of
ragile Points Method (FPM) has been added to the artillery of mesh-
ess methods [21]. FPM uses local, simple, polynomial, discontinuous
unctions [22] as trial and test functions for the solution of the Galerkin
eak form. Using these polynomial trial and test functions, the integra-

ion in the Galerkin weak form becomes trivial. Due to the simplicity
f the test and trial functions, single-point integration is sufficient to
ompute integrals with high accuracy in FPM. We refer to Table 1
or a comparison of integration in FPM and other meshless methods.
oreover, both essential and natural boundary conditions can be im-

osed as in FEM. However, due to the discontinuity of the trial and
est functions, the assembly of the FPM point stiffness matrices leads
o an inconsistent global stiffness matrix. To remedy this issue, the
umerical flux corrections, which are widely used in Discontinuous
alerkin methods [23], are employed in FPM to obtain a consistent,

parse and symmetric global stiffness matrix.
Despite being only recently introduced, FPM has been demonstrated

o be an accurate and efficient method with many desired properties
i.e. accurate integration, exact imposition of boundary conditions)
nd has been already employed to solve linear elasticity [24], heat
onduction [25,26] and flexoelectric problems with crack propaga-
ion [27]. In the following, we use the abbreviation FPM to exclusively
efer to the Fragile Points Method, which should not be confused with
ther methods previously introduced in the literature that used the
PM abbreviation, like the Finite Point Method [28], Finite Pointset
ethod [29] and Finite Particle Method [30].

In the present study, we employ FPM for the solution of the cardiac
onodomain model. Our motivation is to provide a meshless alterna-

ive to FEM for cardiac electrophysiology simulation, while maintaining
ccuracy and efficiency. The paper is structured as follows. In Section 2,
e describe the theoretical aspects of FPM and the derivation of the car-
iac monodomain models. In Section 3, we present several numerical
xamples where FPM is applied to simulate electrophysiology in both
D and 3D benchmark problems, as well as in a large scale biventricular
eometry under myocardial infarction conditions. Finally, in Section 4,
e provide our concluding remarks.

. Cardiac monodomain model FPM formulation

.1. The cardiac monodomain equation

We consider the cardiac monodomain model for the simulation
f electrical impulse propagation in the human heart, which is gov-
rned by the following reaction–diffusion partial differential equation
PDE) [31]:

𝜕𝑉 (𝑡)∕𝜕𝑡 = −(𝐼𝑖𝑜𝑛(𝑉 (𝑡)) + 𝐼𝑠𝑡𝑖𝑚(𝑡))∕𝐶 + 𝛁 ⋅ (𝑫𝛁𝑉 (𝑡)) in 𝛺
𝒏 ⋅ (𝑫𝛁𝑉 (𝑡)) = 0 in 𝜕𝛺

(1)

where 𝜕𝑉 ∕𝜕𝑡 denotes the transmembrane voltage time derivative,
𝐼𝑖𝑜𝑛(𝑉 (𝑡)) the total ionic current, 𝐼𝑠𝑡𝑖𝑚(𝑡) the external stimulus current,
2

𝐶 the cell capacitance per unit surface area and 𝑫 the diffusion tensor. 𝑉
𝛺 and 𝜕𝛺 are the domain of interest and its boundary and 𝒏 is the
outward unit vector normal to the boundary.

The diffusion tensor 𝑫 is given by:

𝑫 = 𝑑0 [(1 − 𝜌)𝒇 ⊗ 𝒇 + 𝜌𝑰] (2)

where 𝑑0 denotes the diffusion coefficient along the cardiac fiber
direction, 𝒇 the cardiac fiber direction vector, 𝜌 ≤ 1 the transverse-to-
longitudinal conductivity ratio, 𝑰 the identity matrix and ⊗ the tensor
product operator.

We employ the operator splitting technique to obtain the decoupled
system of Eq. (1):

𝜕𝑉 (𝑡)∕𝜕𝑡 = −(𝐼𝑖𝑜𝑛(𝑉 (𝑡)) + 𝐼𝑠𝑡𝑖𝑚(𝑡))∕𝐶 in 𝛺
𝜕𝑉 (𝑡)∕𝜕𝑡 = 𝛁 ⋅ (𝑫𝛁𝑉 (𝑡)) in 𝛺
𝒏 ⋅ (𝑫𝛁𝑉 (𝑡)) = 0 on 𝜕𝛺

(3)

he decoupled system can be solved efficiently by applying either the
odunov (first-order) or Strang (second-order) methods [32]. In the

ollowing, we consider the total ionic current 𝐼𝑖𝑜𝑛 of Eq. (3) normalized
y the capacitance 𝐶.

.2. Computation of trial and test functions in FPM

FPM is a meshless method where trial and test functions are es-
ablished on arbitrarily distributed points in the domain of interest
. Unlike mesh-based methods, such as FEM, connectivity information

s not required. Simple, local, polynomial trial functions are defined
n compact support domains, formed by partitioning the domain in
onforming and nonoverlapping subdomains around each point. The
artition is not unique and can include subdomains of arbitrary shape,
uch as polygons that can be obtained by the Voronoi diagram partition.

We define the trial functions at each subdomain in terms of the
ransmembrane voltage 𝑉 and its gradient ∇𝑉 . The trial function 𝑉ℎ
or subdomain 𝐸0 that contains the point 𝑃0 is given by:

ℎ(𝒙) = 𝑉0 + (𝒙 − 𝒙0) ⋅ ∇𝑉
|

|

|𝑃0
, (4)

here 𝒙 is the coordinate vector of a point in 𝐸0, 𝑉0 is the value of 𝑉ℎ at
0, 𝒙0 is the coordinate vector of 𝑃0 and ∇𝑉 |

|

|𝑃0
(i.e. the voltage gradient

t 𝑃0) is unknown. To compute ∇𝑉 |

|

|𝑃0
, we employ the Generalized

inite Difference (GFD) method [22] to minimize the weighted discrete
2 norm:

=
𝑚
∑

𝑖=1
𝑤𝑖

[

(𝒙𝑖 − 𝒙0) ⋅ ∇𝑉
|

|

|𝑃0
− (𝑉𝑖 − 𝑉0)

]2
, (5)

here 𝒙𝑖 denotes the coordinate vector of 𝑃𝑖 ∈ 𝐸0, 𝑉𝑖 denotes the
alue of 𝑉ℎ at 𝑃𝑖 and 𝑤𝑖 denotes the value of the weight function at
𝑖 (𝑖 = 1, 2,… , 𝑚), with 𝑚 being the number of points in the support
omain of 𝑃0. We should note that a compact support domain for 𝑃0
s defined by the points in the first ring of adjacent subdomains to
he subdomain of 𝑃0 (Fig. 1). Assuming constant weight functions, we
btain the transmembrane voltage gradient at 𝑃0 by:

𝑉 |

|

|𝑃0
= 𝑩𝑽 𝐸 , (6)

here

𝑽 𝐸 =
[

𝑉0 𝑉1 𝑉2 … 𝑉𝑚
]𝑇 ,

𝑩 = (𝑨𝑇𝑨)−1𝑨𝑇 [

𝑰1 𝑰2
]

,

1 =

⎡

⎢

⎢

⎢

⎢

⎣

−1
−1
⋮
−1

⎤

⎥

⎥

⎥

⎥

⎦𝑚×1

, 𝑰2 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 … 0
0 1 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … 0 1

⎤

⎥

⎥

⎥

⎥

⎦𝑚×𝑚

, 𝑨 =

⎡

⎢

⎢

⎢

⎢

⎣

𝒙1 − 𝒙0
𝒙2 − 𝒙0

⋮
𝒙𝑚 − 𝒙0

⎤

⎥

⎥

⎥

⎥

⎦

.

(7)

Using Eq. (6), the trial function 𝑉ℎ(𝒙) can be obtained by:
ℎ(𝒙) = 𝑵𝑽 𝐸 , 𝒙 ∈ 𝐸0 (8)
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Fig. 1. (a) Partition of 2D domain with randomly distributed points inside and on its boundary (points 𝑃 ∈ 𝛺 ∪ 𝜕𝛺). (b) Partition of 3D domain with randomly distributed points
inside it (points 𝑃 ∈ 𝛺).
where 𝑵 denotes the shape function of 𝑉ℎ in 𝐸0:

𝑵 = [𝒙 − 𝒙0]𝑩 +
[

1 0 … 0
]

1×(𝑚+1) . (9)

Since the shape function is defined in each subdomain indepen-
dently, it can be discontinuous at the internal boundaries. The Galerkin
weak form in FPM is established by constructing both the trial and test
functions using Eq. (8). It should be noted that due to the discontinuity
of the trial and test functions, the Galerkin weak form will lead to
an inconsistent matrix and inaccurate results. Therefore, numerical
flux corrections, which are common in Discontinuous Galerkin Finite
Element Method [23], are introduced in FPM to remedy this issue.

2.3. Numerical flux corrections to remedy the inconsistency

We address the inconsistency issue by employing the Interior
Penalty (IP) numerical flux corrections [33]. We start by writing the
Galerkin weak form of Eq. (3) for each subdomain 𝐸 ∈ 𝛺, which is
given by:

∫𝐸
𝑣
𝜕𝑉ℎ
𝜕𝑡

𝑑𝛺 + ∫𝐸
∇𝑣𝑇𝑫∇𝑉ℎ𝑑𝛺 = ∫𝜕𝐸

𝑣𝒏𝑇𝑫∇𝑉ℎ𝑑𝛤 , (10)

where 𝑣 and 𝑉ℎ are the test and trial functions, respectively, 𝜕𝐸 is the
boundary of the subdomain 𝐸, 𝒏 denotes the outward normal vector
to 𝜕𝐸, and 𝛤 denotes the set of internal and external boundaries,
i.e., 𝛤 = 𝛤ℎ + 𝜕𝛺 = 𝛤ℎ +𝛤𝑁 , where 𝛤ℎ is the set of internal boundaries.

Next, the jump operator [[ ]] and average operator { } are used to
sum Eq. (10) over all subdomains [26]:
∑

𝐸∈𝛺
∫𝐸

𝑣
𝜕𝑉ℎ
𝜕𝑡

𝑑𝛺 + ∫𝐸
∇𝑣𝑇𝑫∇𝑉ℎ𝑑𝛺 =

∑

𝑒∈𝛤𝑁
∫𝑒
[[𝑣]]{𝒏𝑇𝑫∇𝑉ℎ}𝑑𝛤 +

∑

𝑒∈𝛤ℎ
∫𝑒
{𝑣}[[𝒏𝑇𝑫∇𝑉ℎ]]𝑑𝛤 +

∑

𝑒∈𝛤ℎ
∫𝑒
[[𝑣]]{𝒏𝑇𝑫∇𝑉ℎ}𝑑𝛤 , (11)

where the jump operator [ ] and average operator { } are given, ∀𝑤 ∈ R,
by:

[[𝑤]] =

{

𝑤|

𝐸1
𝑒 −𝑤|

𝐸2
𝑒 𝑒 ∈ 𝛤ℎ

𝑤|𝑒 𝑒 ∈ 𝜕𝛺,
{𝑤} =

{

1
2

(

𝑤|

𝐸1
𝑒 +𝑤|

𝐸2
𝑒

)

𝑒 ∈ 𝛤ℎ

𝑤|𝑒 𝑒 ∈ 𝜕𝛺.

(12)

When 𝑒 ∈ 𝛤ℎ
(

𝑒 ∈ 𝜕𝐸1 ∩ 𝜕𝐸2
)

, 𝒏 is a unit vector normal to 𝑒 ∈ 𝛤ℎ and
pointing outward from 𝐸.

Substituting the boundary conditions (Eq. (3)) into Eq. (11), we
obtain:
∑

𝑒∈𝛤𝑁
∫𝑒
[[𝑣]]{𝒏𝑇𝑫∇𝑉ℎ}𝑑𝛤 = 0. (13)

Additionally, [[𝒏𝑇𝑫∇𝑉ℎ]] = 0 and [[𝑉ℎ]] = 0 when 𝑉ℎ is the exact
solution since there is no jump in the internal boundaries. As a re-
sult, {𝒏𝑇𝑫∇𝑣}[[𝑉ℎ]] = 0 and we can replace the term {𝑣}[[𝒏𝑇𝑫∇𝑉ℎ]]
in Eq. (11) with {𝒏𝑇𝑫∇𝑣}[[𝑉ℎ]] without affecting the accuracy of the
formula.
3

Finally, the internal penalty numerical flux is applied on 𝛤ℎ with
penalty parameter 𝜂 to obtain the consistent FPM formula [25]:
∑

𝐸∈𝛺
∫𝐸

𝑣
𝜕𝑉ℎ
𝜕𝑡

𝑑𝛺 + ∫𝐸
∇𝑣𝑇𝑫∇𝑉ℎ𝑑𝛺 −

∑

𝑒∈𝛤ℎ
∫𝑒
{𝒏𝑇𝑫∇𝑉ℎ}[[𝑣]]𝑑𝛤 −

∑

𝑒∈𝛤ℎ
∫𝑒
{𝒏𝑇𝑫∇𝑣}[[𝑉ℎ]]𝑑𝛤 +

∑

𝑒∈𝛤ℎ

𝜂
ℎ𝑒 ∫𝑒

[[𝑉ℎ]][[𝑣]]𝑑𝛤 = 0, (14)

where ℎ𝑒 is a boundary-dependent parameter with the unit of length.
In this work, we define ℎ𝑒 as the distance between points 𝑖, 𝑗 when
𝑒 ∈ 𝜕𝐸𝑖 ∩ 𝜕𝐸𝑗 . The penalty parameter 𝜂, 𝜂 > 0, has the same units
as 𝑫 and is independent of the boundary size. It should be noted that
the penalty parameter should be large enough to ensure stability, but
excessively large values should be avoided since they may cause a
condition number problem. An extensive discussion on recommended
values for the penalty parameter can be found in [25]. In this work, we
use 𝜂 given by:

𝜂 = 𝑝 ∗
∑𝑚

𝑖 𝐸𝑖
𝑑𝑖

∑𝑚
𝑖 𝐸𝑖

, (15)

where 𝑝 is a penalty coefficient, 𝐸𝑖
denotes the volume of the cell

containing the 𝑖th of the 𝑚 points in the support domain, and 𝑑𝑖 is the
mean value of the diagonal entries in the diffusion tensor 𝑫𝑖 of the 𝑖th
point.

2.4. Numerical implementation

The formula of FPM can be written in matrix form:

𝑪�̇� +𝑲𝑽 = 𝟎, (16)

where 𝑪 and 𝑲 denote the global normalized capacity and diffusion
matrices, respectively, and 𝑉 is the unknown vector collecting the
nodal values of the transmembrane potential.

To assemble the global matrices 𝑪 and 𝑲 , we substitute the shape
function 𝑵 for 𝑉ℎ and 𝑣 and matrix 𝑩 for ∇𝑉ℎ and ∇𝑣 in Eq. (14) to
obtain the point normalized capacity matrix 𝑪𝐸 , the point diffusion
matrix 𝑲𝐸 , and the internal boundary diffusion matrix 𝑲ℎ:

𝑪𝐸 =∫𝐸
𝑵𝑇𝑵𝑑𝛺, 𝐸 ∈ 𝛺,

𝑲𝐸 =∫𝐸
𝑩𝑇𝑫𝑩𝑑𝛺, 𝐸 ∈ 𝛺,

𝑲ℎ = − 1
2 ∫𝑒

(𝑵𝑇
1 𝒏

𝑇
1 𝑫1𝑩1 + 𝑩𝑇

1 𝑫
𝑇
1 𝒏1𝑵1)𝑑𝛤 +

𝜂
ℎ𝑒 ∫𝑒

𝑵𝑇
1 𝑵1𝑑𝛤

− 1
2 ∫𝑒

(𝑵𝑇
2 𝒏

𝑇
2 𝑫2𝑩2 + 𝑩𝑇

2 𝑫
𝑇
2 𝒏2𝑵2)𝑑𝛤 +

𝜂
ℎ𝑒 ∫𝑒

𝑵𝑇
2 𝑵2𝑑𝛤

− 1
2 ∫𝑒

(𝑵𝑇
1 𝒏

𝑇
1 𝑫2𝑩2 + 𝑩𝑇

1 𝑫
𝑇
1 𝒏2𝑵2)𝑑𝛤 −

𝜂
ℎ𝑒 ∫𝑒

𝑵𝑇
1 𝑵2𝑑𝛤

− 1
2 ∫𝑒

(𝑵𝑇
2 𝒏

𝑇
2 𝑫1𝑩1 + 𝑩𝑇

2 𝑫
𝑇
2 𝒏1𝑵1)𝑑𝛤 −

𝜂
ℎ𝑒 ∫𝑒

𝑵𝑇
2 𝑵1𝑑𝛤 ,

𝑒 ∈ 𝜕𝐸1 ∩ 𝜕𝐸2.

(17)

The assembly of global matrices 𝑪 and 𝑲 is performed as in FEM,
where 𝑪 is obtained by assembling all the individual capacity point ma-
trices 𝑪 , and 𝑲 is obtained by assembling all the point diffusion 𝑲
𝐸 𝐸
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Table 2
Required execution time for FPM and FEM solutions for the numerical examples in Section 3.

Electrical propagation in a 2D ventricular tissue (Section 3.1)

𝓁 (mm) 𝑡𝐹𝐸𝑀 (min) 𝑡𝐹𝑃𝑀 (min)

𝑝 = 1 𝑝 = 2 𝑝 = 5 𝑝 = 10

2 0.87 0.90 0.95 0.88 0.84
1 1.52 1.59 1.63 1.51 1.51
0.5 3.7 3.65 3.77 3.76 4.21
0.25 12.33 12.46 12.47 14.98 17.26

Acetylcholine-induced effects in human atrial electrical activity (Section 3.2)

𝐴𝐶ℎ (μM) 𝑡𝐹𝐸𝑀 (min) 𝑡𝐹𝑃𝑀 (min)

0.00 13.04 15.21
0.02 13.82 15.49
0.04 13.26 15.42
0.06 13.62 14.67
0.08 14.62 15.93
0.10 13.26 14.61

Electrical propagation in a benchmark 3D cuboid geometry (Section 3.3)

𝓁 (mm) 𝑡𝐹𝐸𝑀 (min) 𝑡𝐹𝑃𝑀 (min)

0.5 0.35 0.38
0.2 2.94 3.26
0.1 27.9 29.25

Simulation of electrical activation in 3D biventricular infarction model (Section 3.4)

pacing 𝑡𝐹𝐸𝑀 (min) 𝑡𝐹𝑃𝑀 (min)
basal 9.37 11.52
apical 9.15 11.46
t

w
(

and internal boundary diffusion matrices 𝑲ℎ. It should be noted that
the resulting global diffusion matrix is symmetric, sparse, and positive
definite. Finally, Eq. (16) can be solved with a time discretization based
on a 𝜃-rule. Assuming that the current solution 𝑽 𝑛 = 𝑽 (𝑡𝑛) is known,
we can compute the solution at the next time step 𝑽 𝑛+1 from the 𝜃-rule
as given below:

𝑪 𝑽 𝑛+1 − 𝑽 𝑛

𝑑𝑡
+ 𝜃𝑲𝑽 𝑛+1 + (1 − 𝜃)𝑲𝑽 𝑛 = 𝟎, (18)

where 𝑽 𝑛+1−𝑽 𝑛

𝑑𝑡 is the forward finite difference form of �̇� , 𝑑𝑡 is the time
step, and 𝜃 ∈ [0, 1]. Eq. (18) is written in the form 𝑨𝒙 = 𝒃 to obtain:

(𝑪 + 𝑑𝑡𝜃𝑲)𝑽 𝑛+1 = [𝑪 − 𝑑𝑡(1 − 𝜃)𝑲]𝑽 𝑛. (19)

In what follows, we solve Eq. (19) using the standard Forward Euler
scheme (𝜃 = 0). We employ the dual adaptive explicit time integration
algorithm (DAETI) to ensure the solution’s stability [34].

3. Numerical examples

Simulations for the numerical examples that are presented in the
following were performed on a laptop with Intel® Core™i7-4720HQ
CPU and 16 GB of RAM. The efficiency of FPM was evaluated by
comparing the execution time of FPM simulations with the execution
time of FEM using linear elements. The execution time for both FPM
and FEM for the considered numerical examples is summarized in
Table 2. In all the examples, time integration is performed using the
DAETI method [34], which employs the forward Euler method to solve
explicitly both the diffusion and reaction operators with an adaptive
time step. Solving the diffusion operator explicitly imposes a limit to
the critical stable time step due to the conditional stability condition,
which becomes smaller as the mesh resolution is increased. Applying a
different adaptive scheme for the decoupled integration of the diffusion
and reaction operators allows to perform the integration efficiently. For
further details on the implementation of DAETI we refer the reader to
the work in [34].

3.1. Electrical propagation in a 2D ventricular tissue

We considered a 4 × 4 cm human ventricular tissue with fibers
4

aligned parallel to the 𝑥-axis. The longitudinal diffusion coefficient was
𝑑0 = 0.0013 cm2∕ms and the transverse-to-longitudinal conductivity
ratio was 𝜌 = 0.15. Electrophysiology was modeled by the O’Hara
et al. [35] human ventricle action potential (AP) model for epicardial
cells. Periodic stimuli of duration 𝑡𝑑 = 1 ms and amplitude 𝐴 equal to
twice the diastolic threshold were applied on the left side of the tissue
(𝑥 = 0 cm) at a frequency 𝑓 = 1 Hz. AP propagation was simulated for
a total time 𝑡 = 3 s, after achievement of steady-state, using the DAETI
method with time step 𝑑𝑡 = 0.1 ms.

Solutions obtained by FPM with different penalty coefficients, 𝑝 =
{1, 2, 5, 10}, were compared to a solution obtained by FEM with bilinear
isoparametric elements (Fig. 2). For both FPM and FEM simulations,
we considered four different nodal discretizations with spacing 𝓁 =
{0.25, 0.5, 1, 2} mm, each of which is presented in one of the panels
of Fig. 2. Differences between FEM and FPM solutions for each nodal
discretization were evaluated in terms of conduction velocity (𝐶𝑉 ) and
AP duration (APD) at 90% repolarization.

The maximum percentage difference between FPM and FEM in
terms of 𝐶𝑉 was 116.9%, while in terms of 𝐴𝑃𝐷90 it was 2.7% for
nodal spacing 𝓁 = 2 mm and 𝑝 = 10. The minimum percentage
difference between FPM and FEM in terms of 𝐶𝑉 was 7.1%, while in
erms of 𝐴𝑃𝐷90 it was 0.0% for nodal spacing 𝓁 = 0.25 mm and 𝑝 = 1.

For a given nodal discretization, the best agreement between FEM and
FPM solutions was always obtained for 𝑝 = 1. For penalty factor values
𝑝 = 5 and 𝑝 = 10, the 𝐶𝑉 values obtained by FPM with coarse nodal
discretizations 𝓁 = 2 mm and 𝓁 = 1 mm were in better agreement

ith the 𝐶𝑉 value obtained by FEM for a dense nodal discretization
𝓁 = 0.25 mm).

To evaluate the effect of the penalty coefficient, we performed a
convergence analysis where we evaluated the relative error (𝜖𝑟) in 𝐶𝑉
for the solutions obtained by FPM with 𝑝 = {1, 2, 5, 10} with respect to
the FEM solution for nodal spacing 𝓁 = {0.25, 0.5, 1, 2} mm:

𝜖𝑟 =
𝐶𝑉𝑎 − 𝐶𝑉𝑒

𝐶𝑉𝑒
, (20)

where 𝐶𝑉𝑎 is the 𝐶𝑉 value obtained by FPM or FEM for each of the
tested nodal discretizations and 𝐶𝑉𝑒 is the value obtained by FEM for
a dense nodal discretization with 𝓁 = 0.1 mm. The relative error, 𝜖𝑟,
for FPM with 𝑝 = 10 and 𝑝 = 5 was smaller than for FEM for coarse
discretizations, but it was larger for finer discretizations (Fig. 3). For
FPM with 𝑝 = 2 and 𝑝 = 1, 𝜖 decreased monotonically and its values
𝑟
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Fig. 2. AP propagation in 2D human ventricular tissue for FEM (black), FPM with penalty coefficient 𝑝 = 1 (blue dashed), 𝑝 = 2 (red dotted), 𝑝 = 5 (magenta dashed) and 𝑝 = 10
(green dotted). The four panels correspond to nodal discretizations with spacing 𝓁 of 0.25 mm (a), 0.5 mm (b), 1 mm (c) and 2 mm (d).
Fig. 3. Convergence analysis in terms of 𝐶𝑉 for FEM (black), FPM with penalty
coefficient 𝑝 = 1 (blue dashed), 𝑝 = 2 (red dotted), 𝑝 = 5 (magenta dashed) and 𝑝 = 10
(green dotted).

were smaller than for FEM for practically all nodal spacing values. In
the following numerical examples, we used 𝑝 = [1, 2].

3.2. Acetylcholine-induced effects in human atrial electrical activity

Acetylcholine-induced APD shortening in atrial myocytes facilitates
the initiation and perpetuation of atrial fibrillation [36,37], which is
a major risk factor for ischemic stroke. The parasympathetic neuro-
transmitter acetylcholine (ACh) shortens APD by activating the ACh-
sensitive inward rectifier potassium current, I𝐾𝐴𝐶ℎ. Simulation of ACh-
induced alterations in atrial electrophysiology is of interest in atrial
fibrillation research [38].

Here, we considered a 2D atrial tissue of 4 × 4 cm with fibers
aligned parallel to the 𝑋-axis in which ACh was distributed homo-
geneously throughout the tissue. The atrial myocyte electrophysiology
was described using the Maleckar et al. model [39]. The longitudinal
diffusion coefficient was set to 𝑑0 = 0.0035 cm2∕ms and the transverse-
to-longitudinal conductivity ratio was set to 𝜌 = 0.5. The same periodic
stimulation protocol as in Section 3.1 was simulated for 𝑡𝑠 = 3 s and
the DAETI method with time step 𝑑𝑡 = 0.05 ms was used to numerically
solve AP propagation.

Simulations were performed using FPM with penalty coefficient 𝑝 =
1 considering a regular nodal distribution with 𝓁 = 0.25 mm and were
compared with FEM simulations using bilinear isoparametric elements.
The induced APD shortening was recorded at the center of the tissue
for different ACh concentrations, 𝐶𝐴𝐶ℎ = {0.02, 0.04, 0.06, 0.08, 0.1} μM
(Fig. 4). APD shortening was found to range from 19 ms for the lowest
ACh concentration to 38 ms for the highest ACh concentration. FPM
results were found in good agreement with FEM, with differences of
up to 2 ms. These results are in line with previous studies reporting
APD shortening of up to 40 ms for 𝐶 𝐶ℎ = 0.1 μM [36,40,41].
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𝐴

Table 3
Activation times at the corners (P1–P8) and the center (C) of the 3D cuboid benchmark
problem.

h (mm) P1 P2 P3 P4 P5 P6 P7 P8 C

FPM activation time (ms)

0.5 1 40 10 40 33 53 36 54 25
0.2 1 30 8 31 22 39 25 40 19
0.1 1 29 7 30 22 37 24 38 18

FEM activation time (ms) as in [34]

0.5 1 49 22 58 94 109 98 111 54
0.2 1 31 11 35 35 51 39 54 25
0.1 1 29 8 31 27 41 29 43 20

3.3. Electrical propagation in a benchmark 3D cuboid geometry

In this example, we solved the standard benchmark problem for
verification of cardiac tissue electrophysiology simulators described
in [42]. The problem’s protocol considered the electrical stimulation of
a 3D cuboid of human ventricular tissue with dimensions 3×7×20 mm
and cardiac fibers parallel to the Z axis. Epicardial cell electrophysiol-
ogy was described by the Ten Tusscher et al. model [43] as in [42].
The longitudinal diffusion coefficient was set to 𝑑0 = 0.00115 cm2∕ms
and the transverse-to-longitudinal ratio was set to 𝜌 = 0.12. A periodic
stimulus with frequency 𝑓 = 1 Hz, amplitude 𝐴 = 50 mA and duration
𝑡𝑑 = 2 ms was delivered at a cubic region with dimensions 1.5 × 1.5 ×
1.5 mm located at corner P1 (Fig. 5).

The activation time at the corners (P1–P8) and the center (C) of
the cuboid were recorded for three different nodal discretizations, 𝓁 =
{0.1, 0.2, 0.5} mm, for a simulation using FPM with penalty coefficient
𝑝 = 1. Integration was performed using the DAETI method with time
step 𝑑𝑡 = 0.1 ms. The activation times obtained by FPM were compared
with those of FEM ( Table 3) previously reported in [34] and validated
with the reported activation times in [42].

The activation times for FPM and FEM for nodal spacing 𝓁 = 0.1 mm
were found to be in good agreement. For coarse nodal discretizations,
the FEM solution led to larger activation times as compared to FPM,
especially at points P5–P8. Activation times at P7 for FEM simulations
were found to be ×2.37 larger for the spacing 𝓁 = 0.5 mm than for the
spacing 𝓁 = 0.1 mm. On the other hand, this difference was found to be
×1.5 for FPM simulations. For a nodal spacing 𝓁 = 0.2 mm, activation
times were notably closer to those of 𝓁 = 0.1 mm when using FPM
than when using FEM. These results illustrate the improved accuracy
of FPM for coarse nodal discretizations and are in good agreement with
the findings in Section 3.1.
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Fig. 4. APs at the center of a 4 × 4 cm atrial tissue for different ACh concentrations obtained from (a) FEM and (b) FPM simulations. (c) APD shortening induced by acetylcholine

concentration for FEM (blue) and FPM (yellow) simulations.
Fig. 5. Local activation time (LAT) map for the 3D cuboid benchmark geometry described in [42] with space discretization 𝓁 = 0.5 mm.
3.4. Simulation of electrical activation in a 3D biventricular infarction
model

We employed the FPM method to simulate AP propagation in a
3D biventricular model under myocardial infarction conditions and
we compared the activation pattern obtained by FPM with the one
obtained by FEM. We considered a simplified model where zero con-
duction was assumed for the scar tissue, while border zone effects were
not taken into account.

The biventricular anatomy was constructed using ex vivo diffusion
weighted imaging (DWI) of a porcine heart. The two ventricles of the
heart were manually segmented and a scar was introduced at the septal-
anterior wall of the left ventricle (Fig. 6). A tetrahedral mesh (nodes:
70521, elements: 311150) was generated from the segmented data us-
ing iso2mesh [44]. FPM cells were generated for the nodes of the tetra-
hedral mesh using a dual polyhedral mesh generation algorithm [45,
46]. Fiber direction was determined by computing the diffusion tensors
using an algorithm based on Riemannian distances [47].

Cell electrophysiology was modeled by the O’Hara et al. model [35]
considering endocardium:midmyocardium:epicardium with 50:20:30
ratio. Pacing was performed by applying a periodic stimulus with
amplitude equal to twice the diastolic threshold and frequency 𝑓 = 1 Hz
at two tested stimulation regions: one at the base of the model located
at the anterior wall of the right ventricular base near the septum and
the other one at the apex of the left ventricle (Fig. 6).

The local activation time (LAT) at each node of the model was
computed using FPM with penalty coefficient 𝑝 = 1.5 and it was
compared with the LAT value obtained from a FEM simulation. Mean
LAT for basal pacing was 170 ms for FPM and 173 ms for FEM, while
6

Fig. 6. Biventricular model depicting the infarcted region (yellow), the basal pacing
region (blue) and the apical pacing region (red).

mean LAT for apical pacing was 151 ms for FPM and 148 ms for
FEM. The LAT histograms presented in Fig. 7 demonstrate the good
agreement between FPM and FEM simulations, with FPM rendering a
valuable alternative to FEM for large scale cardiac electrophysiology
simulations.

4. Concluding remarks

In this work, we presented the Fragile Points Method (FPM) for in
silico cardiac electrophysiology applications. Despite being common for
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Fig. 7. LAT for (a) basal pacing using FEM, (b) basal pacing using FPM with 𝑝 = 1.5, (d) apical pacing using FEM, (e) apical pacing using FPM with 𝑝 = 1.5. Comparisons of LAT
histograms are shown for basal pacing in (c) and for apical pacing in (f).
meshless methods to sacrifice efficiency for accuracy or vice versa, FPM
was proven to achieve similar accuracy and efficiency to FEM (Table 2).

We found that solutions obtained by FPM were in good agreement
with FEM for both 2D and 3D scenarios, allowing to simulate action
potential propagation with high accuracy under different physiological
and pathological conditions. FPM demonstrated comparable conver-
gence to FEM (Table 3), in line with previous findings. This may have
an important role in large scale applications where FPM could increase
time efficiency without losing accuracy by alleviating the requirement
for a good quality mesh. By adjusting the penalty coefficient, improved
solutions could be obtained even for coarse discretizations. However,
for large values of the penalty coefficient (𝑝) accuracy could be deteri-
orated for fine discretizations. We found 𝑝 = [1, 2] to lead to accurate
results for all discretizations.

It should be noted that here we compared FPM with FEM for
the decoupled monodomain model after using the operator splitting
technique. We used an in-house solver based on the DAETI method [34]
for explicit time integration, in which we used either FPM or FEM
to construct the diffusion operator. While the decoupled monodomain
model has been widely used in cardiac electrophysiology due to its high
efficiency and ease of implementation, it has been reported to lead to
less accurate results than the fully coupled model [48]. Sophisticated
solvers that employ execution parallelism and provide optimal memory
usage [49] have been proposed to enable solving the coupled problem
efficiently [50]. Such solutions allow simulating electrophysiology with
higher accuracy while maintaining efficiency by solving FEM-based
algebraic systems using preconditioning techniques. We expect FPM to
be a promising alternative to FEM for coupled solvers too. We base this
claim on the fact that FPM leads to sparse and symmetric matrices as in
FEM. Therefore, solvers and preconditioners that have been developed
for FEM could be used directly to solve FPM-based algebraic systems.

Finally, the ability of FPM to provide similar accuracy and efficiency
to FEM without requiring mesh connectivity information renders the
method an interesting alternative to FEM, particularly for personalized
image-based modeling applications.
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