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a b s t r a c t 

The Radial Point Interpolation Mixed Collocation (RPIMC) method is proposed in this paper for transient analy- 
sis of diffusion problems. RPIMC is an efficient purely meshfree method where the solution of the field variable 
is obtained through collocation. The field function and its gradient are both interpolated (mixed collocation 
approach) leading to reduced C -continuity requirement compared to strong-form collocation schemes. The ac- 
curacy of RPIMC was evaluated in heat conduction benchmark problems and compared against the Meshless 
Local Petrov–Galerkin Mixed Collocation (MLPG-MC) method and the Finite Element Method (FEM). These three 
methods were subsequently applied to solve electrical propagation in a cardiac tissue slab and a biventricular 
geometry. In benchmark problems, RPIMC achieved high accuracy, of the same order as FEM, and always higher 
than MLPG-MC due to the delta Kronecker property of RPIMC. In solving cardiac electrical propagation, RPIMC 
rendered activation time maps similar to those of FEM, with an improved performance compared to MLPG-MC. 
As a conclusion, RPIMC is shown to be a promising meshfree alternative to FEM for transient diffusion problems. 
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. Introduction 

The diffusion equation describes physical phenomena where motion
s driven by the gradient of the field variable. Time-dependent problems
ike heat and mass transport [1] , unsteady viscous fluid flow [2] and
agneto-hydrodynamics flow [3] can be solved by the transient diffu-

ion equation. Also, the diffusion equation appears in the description
f coupled phenomena, such as the transport of chemical or biologi-
al reactions by diffusive propagation in a medium (reaction-diffusion
henomena) [4] . Mathematically, reaction-diffusion problems are de-
cribed by a coupled set of ordinary differential equations (ODEs) that
escribes the reactive term and a partial differential equation (PDE) that
escribes the diffusive term. Usually, a much smaller time scale is re-
uired for the reactive term than for the diffusive term and operator
plitting techniques are used to decouple the problem and compute a
umerical solution efficiently [5,6] . Among the various available meth-
ds to solve the PDE of the diffusive term, of great interest are Meshless
ethods (MMs). 

MMs, in contrast to mesh-based methods, do not require connectiv-
ty information for the construction of basis functions. Therefore, do-
ains with irregular geometry, nonlinearity and discontinuity can be

reated efficiently. The use of MMs to solve both the steady and tran-
ient diffusion equation has been extensively reported. Steady-state heat
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onduction in isotropic and functionally graded materials has been
olved successfully by the Meshless Point Collocation (MPC) method
7] . In [8] , an explicit collocation method with local Radial Basis Func-
ions (RBFs) has been successfully applied to solve the transient diffu-
ion equation in two-dimensional (2D) domains. The collocation meth-
ds have demonstrated high efficiency due to the compact support and
he small bandwidth in linear algebraic systems [9] . However, accuracy
as been shown to deteriorate near the Neumann boundaries due to the
equirement for the approximation of spatial derivatives, which is signif-
cantly less accurate than the approximation of the field variable [10] . 

On the other hand, in the Element Free Galerkin (EFG) meshless
ethod [11] , which is based on the Galerkin weak formulation, the
eumann boundary conditions (BCs) are satisfied naturally, similarly to

he Finite Element Method (FEM). In EFG, the notion of a background
esh is introduced for the generation of quadrature points and the

valuation of the weak form’s spatial integrals. Application of EFG for
he solution of heat transfer problems has been rigorously explored
12–14] . Moreover, the improved Moving Least Squares (MLS) approx-
mants have been proposed to enhance the handling of Dirichlet BCs
nd the efficiency of EFG for three-dimensional (3D) heat conduction
roblems [15] . Maximum entropy approximants that possess the
eak-Kronecker delta property for direct imposition of Dirichlet BCs
ave also been proposed in the framework of EFG [16–19] . 
yo). 
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A different approach is considered in the Meshless Local Petrov–
alerkin (MLPG) method [20–22] , where quadrature points are gener-
ted in individual local quadrature domains centered at each field node
nd the trial and test functions can be selected from different spaces. The
exibility in the selection of the test functions offers the possibility to
onstruct different variations of the MLPG method [23] . By choosing the
irac function as the test function and interpolating both the field func-

ion and its gradient, the MLPG Mixed Collocation (MLPG-MC) method
s derived [24] . MLPG-MC has minimum computational cost since no
ntegration is performed. Compared to standard collocation methods,
LPG-MC demonstrates reduced deterioration at the Neumann bound-

ries, as the order of the spatial derivatives is reduced through the inter-
olation of the field function’s gradient. The MLPG-MC method has been
uccessfully applied to solve inverse Cauchy problems for steady-state
eat transfer [25] . 

Variations of the MLPG method using different trial functions have
een investigated extensively [26,27] . Since MLS basis functions do not
ossess the delta Dirac property, special treatment to impose the Dirich-
et BC is required. To address this issue, the Local Radial Point Interpo-
ation method has been proposed [28] , in which the MLS basis functions
re replaced with Radial Point Interpolation (RPI). The RPI basis func-
ions possess the Kronecker delta property and Dirichlet BC imposition
s straightforward as in FEM and maximum entropy approximants. The
ocal RPI method has been used to successfully solve problems in free
ibration analysis [29] , incompressible flow [28] , material non-linearity
30] and transient heat conduction [31] , among others. However, to our
nowledge, RPI has not been so far evaluated in the mixed collocation
ariant. 

The purpose of the present study is to investigate the performance of
he mixed collocation method using the RPI basis functions for the solu-
ion of transient diffusion problems. The method is subsequently applied
o solve the monodomain reaction-diffusion equation for electrical im-
ulse propagation in the heart [32] . The standard approach to solve the
onodomain model involves the use of the operator splitting method to
ecouple the reaction and diffusion parts and solve them separately. It
s for that reason that in this study pure transient diffusion problems are
nitially considered. Without loss of generality, the method is evaluated
n 2D and 3D benchmark problems of transient heat conduction. The
tructure of the paper is the following. In Section 2 , the theory of the
PI basis functions is reviewed. In Section 3 , the mathematical formula-

ion and implementation details of the Radial Point Interpolation Mixed
ollocation (RPIMC) method are presented. In Section 4 , the RPIMC
ethod is first evaluated in 2D and 3D heat conduction benchmark prob-

ems and subsequently applied to solve the monodomain model for a 3D
issue slab and a biventricular geometry. The time efficiency of RPIMC
ethod for the solution of the monodomain model is profiled. Finally,

n Section 5 some concluding remarks are provided. 

. Radial point interpolation review 

In RPI [33] , RBFs augmented with polynomials are used to approxi-
ate the field function. In contrast to MLS, RPI possesses the Kronecker
elta property, therefore essential boundary conditions are imposed di-
ectly. For any field function u ( x ), defined in the domain Ω ⊂ ℝ 

𝑑 , the
PI approximation u h ( x I ) at a point of interest 𝒙 𝑰 ∈ ℝ 

𝑑 is given by: 

 

ℎ ( 𝒙 𝑰 ) = 

𝑛 ∑
𝑖 =1 

𝑟 𝑖 ( 𝒙 𝑰 ) 𝑎 𝑖 ( 𝒙 𝑰 ) + 

𝑚 ∑
𝑗=1 

𝑝 𝑗 ( 𝒙 𝑰 ) 𝑏 𝑗 ( 𝒙 𝑰 ) = 𝒓 𝑇 ( 𝒙 𝑰 ) 𝒂 ( 𝒙 𝑰 ) + 𝒑 𝑇 ( 𝒙 𝑰 ) 𝒃 ( 𝒙 𝑰 ) 

(1)

here r i ( x I ) are the RBFs and p j ( x I ) are the polynomial basis functions,
 i ( x I ) and b j ( x I ) denote the corresponding coefficients, n is the number
f neighbor nodes in the local support domain of x I , and m is the number
f polynomial terms. In Eq. (1) , different forms of RBFs can be used to
epresent r i ( x I ). In this study, we used the Multi-Quadric RBFs (MQ-
BFs) due to their satisfactory performance reported in previous studies
208 
27,34] . In 2D, the MQ-RBFs are given by: 

 𝑖 ( 𝒙 𝑰 ) = 

(
𝑑 2 

𝐼 𝑖 
+ 𝑟 2 

𝑐 

)𝑞 = 

[
( 𝑥 𝐼 − 𝑥 𝑖 ) 2 + ( 𝑦 𝐼 − 𝑦 𝑖 ) 2 + 𝑟 2 

𝑐 

]𝑞 
(2)

here r c and q are positive-valued shape parameters of the MQ-RBF and
 Ii is the Euclidean norm between the point of interest 𝒙 𝑰 = ( 𝑥 𝐼 , 𝑦 𝐼 ) and
he i th neighbor node 𝒙 𝒊 = ( 𝑥 𝑖 , 𝑦 𝑖 ) . Analogous MQ-RBFs are defined in 3D.
ectangular and cuboid local support domains for 2D and 3D problems,
espectively, were constructed in this study. Following the notation in
34] , the shape parameter r c is given by: 

 𝑐 = 𝛼𝑐 𝑑 𝑐 (3)

here 𝛼c is a dimensionless constant and d c denotes the average nodal
pacing in the proximity of the point of interest x . The effect of the
hoice of 𝛼c and q on the approximation accuracy has been investigated
n [28,35] . In this study, parameter values 𝛼𝑐 = 1 . 5 and 𝑞 = 1 . 03 were
sed in all the problems of Section 4 . 

The k th order polynomial basis function p ( x ) in Eq. (1) is given, in
D (analogously for 3D), by: 

 ( 𝒙 ) = 𝒑 ( 𝑥, 𝑦 ) = {1 , 𝑥, 𝑦, 𝑥𝑦, 𝑥 

2 , 𝑦 2 , ⋯ , 𝑥 

𝑘 , 𝑦 𝑘 } 𝑇 . (4)

n this work, we used the linear polynomial basis functions ( 𝑘 = 1) . The
oefficients a i ( x I ), b j ( x I ) are obtained by requiring the field function to
ass through all the n field nodes in the local support domain, expressed
n matrix form: 

 𝒔 = 𝑹 𝒂 ( 𝒙 𝑰 ) + 𝑷 𝒃 ( 𝒙 𝑰 ) (5)

here 𝒖 𝑠 = { 𝑢 1 , 𝑢 2 , ⋯ , 𝑢 𝑛 } 𝑇 is the vector of the field function parameters
t the nodes of the local support domain, R is the RBF moment matrix
f size n × n , and P is the polynomial moment matrix of size n × m . A
nique solution to Eq. (5) is obtained by applying the following con-
traint condition [36] : 

 

𝑇 𝒂 ( 𝒙 𝑰 ) ≡
𝑛 ∑

𝑖 =1 
𝑝 𝑗 ( 𝒙 𝑖 ) 𝑎 𝑖 ( 𝒙 𝑰 ) = 0 , 𝑗 = 1 , 2 , ⋯ , 𝑚. (6)

y combining Eqs. (5) and (6) the following equations are obtained: 

̃ 𝒔 = 

[ 

𝒖 𝒔 

𝟎 

] 

= 

[ 

𝑹 𝑷 

𝑷 𝑇 𝟎 

] [ 

𝒂 ( 𝒙 𝑰 ) 

𝒃 ( 𝒙 𝑰 ) 

] 

= 𝑮 𝒂 𝟎 ( 𝒙 𝑰 ) (7)

nd the unique solution is given by: 

 𝟎 ( 𝒙 𝑰 ) = 

{ 

𝒂 ( 𝒙 𝑰 ) 

𝒃 ( 𝒙 𝑰 ) 

} 

= 𝑮 

−1 𝒖̃ 𝒔 . (8)

o ensure that 𝑮 

−1 is not singular, 𝑹 

−1 should exist. The existence
equirement is usually satisfied, even for arbitrarily scattered nodes
37,38] , rendering RPI a stable approximation method. Finally, the RPI
pproximation u h ( x I ) at x I as a function of the RPI basis function: 

( 𝒙 𝑰 ) = { 𝜙1 ( 𝒙 𝑰 ) 𝜙2 ( 𝒙 𝑰 ) ⋯ 𝜙𝑛 ( 𝒙 𝑰 )} 𝑇 (9)

s obtained from Eqs. (1) and (8) as follows: 

 

ℎ ( 𝒙 𝑰 ) = 

{
𝒓 𝑇 ( 𝒙 𝑰 ) 𝒑 𝑇 ( 𝒙 𝑰 ) 

}
𝑮 

−1 𝒖̃ 𝒔 = 𝝓𝑇 ( 𝒙 𝑰 ) 𝒖 𝒔 = 

𝑛 ∑
𝑖 =1 

𝜙𝑖 ( 𝒙 𝑰 ) 𝑢 𝑖 . (10)

he derivatives of u h ( x ) can be computed as: 

 

ℎ 
,𝐽 
( 𝒙 𝑰 ) = 𝝓𝑇 

,𝐽 
( 𝒙 𝑰 ) 𝒖 𝒔 . (11)

here J denotes spatial coordinate and the comma symbol designates
artial differentiation with respect to J . 

. Radial point interpolation mixed collocation method 

In this section the theoretical aspects of RPIMC and its computer im-
lementation are described. The RPIMC theoretical formulation is based
n the principles of MLPG-MC [24,25] . However, the RPI basis function
s used as trial function instead of the MLS. The Dirac function is selected
s the test function, thus reducing the integration over local domains to
ollocation. Without loss of generality, the field variable u is used to
epresent the temperature field in the following. 



K.A. Mountris and E. Pueyo Engineering Analysis with Boundary Elements 121 (2020) 207–216 

3

w

𝑐  

 

 

w  

i  

o  

t  

v  

u
 

d

𝒒  

T  

u

𝑢  

𝑞  

w
 

n  

s

𝒒  

w  

Ω  

a

𝒒

w  

K  

f  

(  

v
 

n

𝑐  

w

𝑐

E

𝑴  

𝑴  

w  

f

3

 

t  

D  

t∑
 

w  

t  

r  

a  

c  

K
 

s  

t
n  

n  

t  

b  

o

𝑵

w  

t  

p

𝑵  

T  

E  

𝒒  

B

𝒒

w
 

t

𝑴  

w  

s  

B  

I  

r  

p

3

 

d  

𝛼  

e  

w  

u  

i  

m  
.1. Theoretical aspects 

Let’s consider the balance equation of heat transfer in a domain Ω
ith boundary 𝜕Ω = 𝜕 Ω𝑢 ∪ 𝜕 Ω𝑞 given by: 

𝜌
𝜕𝑢 ( 𝒙 , 𝑡 ) 

𝜕𝑡 
+ ∇ ⋅ 𝒒 ( 𝒙 , 𝑡 ) = 𝑓 ( 𝒙 , 𝑡 ) in Ω (12)

𝑢 ( 𝒙 , 𝑡 ) = 𝑢̄ ( 𝒙 , 𝑡 ) at 𝜕 Ω𝑢 (13)

− 𝒏 ⋅ 𝑘 ∇ 𝑢 ( 𝒙 , 𝑡 ) = 𝑞 ( 𝒙 , 𝑡 ) at 𝜕 Ω𝑞 (14)

here c is the specific heat capacity, 𝜌 is the material density, u ( x , t )
s the temperature field, q ( x , t ) is the heat flux, f ( x , t ) denotes the sum
f any heat sources acting in the domain Ω, 𝑢̄ is the prescribed value of
he temperature field on the Dirichlet boundary 𝜕Ωu , 𝑞 is the prescribed
alue of the heat flux on the Neumann boundary 𝜕Ωq , n is the outward
nit vector normal to 𝜕Ωq and k is the thermal diffusivity coefficient. 

The heat flux q can be expressed by the heat flux - temperature gra-
ient relation as: 

 ( 𝒙 , 𝑡 ) = − 𝑘 ∇ 𝑢 ( 𝒙 , 𝑡 ) . (15)

he RPI basis functions are used to interpolate the temperature field
 ( x , t ) and the heat flux fields q J ( x , t ), thus obtaining: 

 ( 𝒙 , 𝑡 ) = 

𝑛 ∑
𝑖 =1 

𝜙𝑖 ( 𝒙 ) 𝑢 𝑖 ( 𝑡 ) (16)

 𝐽 ( 𝒙 , 𝑡 ) = 

𝑛 ∑
𝑖 =1 

𝜙𝑖 ( 𝒙 ) 𝑞 𝑖 
𝐽 
( 𝑡 ) (17)

here n is the number of field nodes in the local support domain of x . 
From Eqs. (15) and (16) , the relationship of the nodal heat fluxes to

odal temperatures is obtained. The heat flux-to-temperature relation-
hip at a node x I for time t is given by: 

 ( 𝒙 𝑰 , 𝑡 ) = − 𝑘 

𝑛 ∑
𝑖 =1 

∇ 𝜙𝑖 ( 𝒙 𝑰 ) 𝑢 𝑖 ( 𝑡 ) , 𝐼 = 1 , 2 , ⋯ , 𝑁 (18)

here N is the number of field nodes in the discretization of the domain
. In matrix form, the heat flux to temperature relationship is written
s: 

 = 𝑲 𝒂 𝒖 (19) 

here q is a vector containing the heat fluxes at each field node x I ,
 a is a sparse matrix containing the partial derivatives of the RPI basis

unctions at the nodes in the local support of each field node scaled by
− 𝑘 ) and u is a time-dependent vector containing the nodal temperature
alues. 

Introducing Eqs. (16) –(18) in Eq. (12) , the RPIMC formulation for a
ode x I at time t is given by: 

𝜌

𝑛 ∑
𝑖 =1 

𝜙𝑖 ( 𝒙 𝑰 ) 
𝜕𝑢 𝑖 ( 𝑡 ) 

𝜕𝑡 
+ 

𝑛 ∑
𝑖 =1 

∇ 𝜙𝑖 ( 𝒙 𝑰 ) 𝒒 𝑖 ( 𝑡 ) = 𝑓 ( 𝒙 𝑰 , 𝑡 ) , 𝐼 = 1 , 2 , ⋯ , 𝑁 (20)

hich can be expressed in terms of the temperature field as: 

𝜌

𝑛 ∑
𝑖 =1 

𝜙𝑖 ( 𝒙 𝑰 ) 
𝜕𝑢 𝑖 ( 𝑡 ) 

𝜕𝑡 
− 𝑘 

𝑛 ∑
𝑖 =1 

∇ ⋅ (∇ 𝜙𝑖 ( 𝒙 𝑰 ) 𝑢 𝑖 ( 𝑡 )) = 𝑓 ( 𝒙 𝑰 , 𝑡 ) , 𝐼 = 1 , 2 , ⋯ , 𝑁 

(21) 

qs. (20) and (21) can be written in the equivalent matrix form as: 

 ̇𝒖 + 𝑲 𝒔 𝒒 = 𝒇 (22)

 ̇𝒖 + 𝑲 𝒖 = 𝒇 , 𝑲 = 𝑲 𝒔 𝑲 𝒂 (23)

here f is a N × 1 time-dependent vector containing the values of
 ( x , t ) for all field nodes x , 𝐼 = 1 , 2 , ⋯ , 𝑁 . 
I I 
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.2. Boundary conditions imposition 

To impose Dirichlet BCs ( Eq. (13) ) in the mixed collocation method,
he prescribed temperature values at field nodes x I belonging to the
irichlet boundary 𝜕Ωu are considered. The collocation method is used

o enforce them: 

𝑛 

𝑖 =1 
𝜙𝑖 ( 𝒙 𝑰 ) 𝑢 𝑖 ( 𝑡 ) = 𝑢̄ ( 𝒙 𝑰 , 𝑡 ) , (24)

here n is the number of field nodes in the support domain of x I . Due
o the Kronecker delta property of the RPI basis functions, Eq. (24) is
educed to strong imposition in the RPIMC method and Dirichlet BCs
re satisfied exactly. This is in contrast to the MLPG-MC, in which spe-
ial treatment for the Dirichlet BCs is required due to the lack of the
ronecker delta property of the MLS basis functions. 

Neumann BCs ( Eq. (14) ) are enforced using the penalty method de-
cribed in [39] . The rows of the matrices K s and K a are reordered such
hat 𝑲 

𝑇 
𝑠 
= [ 𝑲 

1 
𝑠 

𝑲 

2 
𝑠 
] and 𝑲 

𝑇 
𝑎 
= [ 𝑲 

1 
𝑎 

𝑲 

2 
𝑎 
] . Superscript 1 denotes the 𝛾r 

odes on the 𝜕Ωq boundary (Neumann nodes) and superscript 2 de-
otes the 𝛾 u nodes on the 𝜕Ωu boundary (Dirichlet nodes). 𝛾 in denotes
he nodes in the interior of the domain Ω, such that the total num-
er of nodes is 𝑁 = 𝛾𝑟 + 𝛾𝑢 + 𝛾𝑖𝑛 . For a given time t , the matrix form
f Eq. (14) is given by: 

 𝒓 𝒒 
1 = 𝒒̄ 𝒓 , (25) 

here q 1 is the vector of the nodal heat fluxes for the 𝛾r nodes. N r is
he matrix containing the normal vectors and 𝒒̄ 𝒓 is the vector of the
rescribed heat fluxes for the 𝛾r nodes, given by: 

 𝒓 = 

⎡ ⎢ ⎢ ⎣ 
𝒏 1 0 

⋱ 

0 𝒏 𝛾𝑟 

⎤ ⎥ ⎥ ⎦ and 𝒒̄ 𝒓 = 

⎡ ⎢ ⎢ ⎣ 
𝑞 1 

⋮ 
𝑞 𝛾𝑟 

⎤ ⎥ ⎥ ⎦ . (26)

he Neumann BCs are enforced at the nodes 𝛾r by multiplying
q. (25) with the penalty factor 𝛼N r 

T and adding it to Eq. (19) to obtain:

 

1 + 𝛼𝑵 

𝑇 
𝒓 
𝑵 𝒓 𝒒 

1 = 𝑲 

1 
𝒂 
𝒖 + 𝛼𝑵 

𝑇 
𝒓 
𝒒̄ 𝒓 . (27)

y rearranging terms, Eq. (27) can be written as: 

 

1 = 

{
𝑰 + 𝛼𝑵 

𝑇 
𝒓 
𝑵 𝒓 

}−1 {
𝑲 

1 
𝒂 
𝒖 + 𝛼𝑵 

𝑇 
𝒓 
𝒒̄ 𝒓 
}

= 𝑸 

−1 {𝑲 

1 
𝑎 
𝒖 + 𝛼𝑵 

𝑇 
𝒓 
𝒒̄ 𝒓 
}

, (28) 

here I is the identity matrix and 𝑸 = 𝑰 + 𝛼𝑵 

𝑇 
𝒓 
𝑵 𝒓 . 

Combining Eqs. (22) and (28) , the matrix form of the modified heat
ransfer balance equation is given by: 

 ̇𝒖 + 𝑲 

′𝒖 = 𝒇 − 𝛼𝑲 

𝟏 
𝒔 
𝑸 

−1 𝑵 

𝑇 
𝒓 
𝒒̄ 𝒓 , (29)

here 𝑲 

′ = 𝑲 

𝟏 
𝒔 
𝑸 

−𝟏 𝑲 

𝟏 
𝒂 
+ 𝑲 

𝟐 
𝒔 
𝑲 

𝟐 
𝒂 
. In the penalty method a large value

hould be selected for the penalty factor 𝛼 to ensure the accuracy of the
C enforcement. However, if 𝛼 is too large, stability issues may arise.
n our study, we found that 𝛼 in the range [10 4 , 10 7 ] led to satisfactory
esults, with the best ones (lowest approximation errors in benchmark
roblems) obtained for 𝛼 = 10 6 . 

.3. Computer implementation 

Regularly distributed nodes with equidistant spacing h in all coor-
inates were considered. The RPI shape parameters were selected as

𝑐 = 1 . 5 , 𝑑 𝑐 = ℎ and 𝑞 = 1 . 03 . The penalty factor 𝛼 = 10 6 was chosen to
nforce Neumann BCs through the penalty method. The standard for-
ard finite difference scheme (forward Euler) with mass lumping was
sed to approximate partial differentiation with respect to time explic-
tly. The forward Euler method is well-known as a conditionally stable
ethod. To ensure stability, an adequately small time step must be used.
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n estimation of the stable time step was computed by applying the Ger-
chgörin theorem [40] : 

𝑡 𝑠 = min 
𝑖 =1 , …,𝑛 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑚 𝑖𝑖 

𝑘 𝑖𝑖 + 

𝑛 ∑
𝑗=1 
𝑗≠𝑖 

|||𝑘 𝑖𝑗 
|||

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (30)

here m ii , k ii are the diagonal entries in M and K ′ matrices, respec-
ively. The selected time step 𝑑 𝑡 = (0 . 9) 𝑑 𝑡 𝑠 was chosen after applying a
0% reduction to the stable time step to ensure the stability of the time
ntegration. The pseudo-code of the RPIMC method’s computer imple-
entation is given in Algorithm 1 . 

lgorithm 1 Radial Point Interpolation Mixed Collocation (RPIMC)
lgorithm. 

1: procedure RPIMC ( Ω, 𝑡 𝑓 ) ⊳ The RPIMC solution in domain Ω for
time [0, 𝑡 𝑓 ] 

2: initialize field variable: 𝒖 = 𝟎 
3: distribute field nodes in domain Ω
4: compute normals for boundary field nodes 
5: for < each field node 𝑖> do 

6: find field nodes in the local support domain of 𝑖 

7: compute basis functions and derivatives 
8: assemble matrices: 𝑲 

𝟏 
𝒔 
, 𝑲 

𝟐 
𝒔 
, 𝑲 

𝟏 
𝒂 
, 𝑲 

𝟐 
𝒂 
, 𝑴 

9: if <𝑖 is on Neumann boundary > then 

10: assemble matrices: 𝑵 𝒓 , 𝑸 

11: end if 

12: end for 

13: assemble matrix: 𝑲 

′

14: compute 𝑑 𝑡 ⊳ Using Gerschgörin Theorem, Equation (30)
15: while <𝑡 < = 𝑡 𝑓 > do 

16: update body source: 𝒇 
17: update field variable: 𝒖 ⊳ Using Forward Euler scheme
18: 𝑡 = 𝑡 + 𝑑 𝑡 

19: end while 

20: end procedure 

. Numerical benchmarks and cardiac electrophysiology problem 

The performance of the RPIMC method is presented for several 2D
nd 3D heat transfer benchmark problems for which an analytical so-
ution is available. Convergence analysis for the numerical solution u h 

gainst the analytical solution u an was performed in terms of the E 2 and
RMS error metrics given by: 

𝐸 2 = 

( ∑
𝒙 𝑖 ∈Ω( 𝑢 

ℎ ( 𝒙 𝑖 ) − 𝑢 𝑎𝑛 ( 𝒙 𝒊 )) 2 ∑
𝒙 𝑖 ∈Ω 𝑢 𝑎𝑛 ( 𝒙 𝑖 ) 2 

) 1∕2 

, 

 𝑅𝑀 𝑆 = 

(∑
𝒙 𝑖 ∈Ω

(
𝑢 ℎ ( 𝒙 𝑖 ) − 𝑢 𝑎𝑛 ( 𝒙 𝑖 ) 

)2 )1∕2 

𝑚𝑎𝑥 

||𝑢 𝑎𝑛 ( 𝒙 𝑖 ) || − 𝑚𝑖𝑛 ||𝑢 𝑎𝑛 ( 𝒙 𝑖 ) || . (31)

For comparison, the benchmark problems were additionally solved
ith the MLPG-MC and FEM methods and convergence analysis was
erformed. The convergence rate ( ̄𝜌) for the E 2 and NRMS error metrics
t successive refinements was calculated at the final simulation time
 = 𝑡 𝑓 using Eq. (32) , as proposed in [41] : 

̄ = 

log 
(

𝐸 𝑎 

𝐸 𝑏 

)
log 

(
ℎ 𝑎 

ℎ 𝑏 

) (32)

here E a , E b denote the error and h a , h b the nodal spacing at two suc-
essive refinements. For the MLPG-MC method, the MLS basis function
210 
ith linear polynomial basis was used as trial function and the quar-
ic spline function as test function. FEM simulations were performed by
sing linear triangle and tetrahedral elements in 2D and 3D problems,
espectively. 

The RPI and MLS approximation schemes used in this work were
mplemented using MATLAB and are available in an open-source repos-
tory [42] . 

.1. Lateral heat loss in 2D with Dirichlet boundary conditions 

A heat conduction problem with lateral heat loss was solved in a 2D
quare domain Ω with edge length 𝑙 = 1 . The problem is described by
he PDE: 

 , 0 = 𝑢 ,𝑥𝑥 + 𝑢 ,𝑦𝑦 + (1 + 𝑡 2 ) 𝑢 + (2 𝜋2 − 𝑡 2 − 2) × sin ( 𝜋𝑥 ) cos ( 𝜋𝑦 ) , 

( 𝑥, 𝑦 ) ∈ Ω, 𝑡 > 0 (33) 

ith Dirichlet BCs on 𝜕Ω: 

𝑢 (0 , 𝑦, 𝑡 ) = 𝑢 (1 , 𝑦, 𝑡 ) = 0 , 

 ( 𝑥, 0 , 𝑡 ) = 𝑢 ( 𝑥, 1 , 𝑡 ) = 𝑒 − 𝑡 sin ( 𝜋𝑥 ) , (34) 

he initial condition was obtained by the analytical solution for 𝑡 = 0 : 

 ( 𝑥, 𝑦, 𝑡 ) = 𝑒 − 𝑡 sin ( 𝜋𝑥 ) cos ( 𝜋𝑦 ) . (35)

The problem was solved for the time interval 𝑡 = [0 , 1] for 11 × 11 reg-
larly distributed nodes in Ω with spatial spacing ℎ = 0 . 1 . Fig. 1 shows
he profiles of the solution for 𝑦 = 1 and for 𝑥 = 0 . 5 , respectively. Con-
ergence analysis was performed for successive refinements with ℎ =
0 . 1 , 0 . 05 , 0 . 025 , 0 . 0125] . The convergence analysis results for the E 2 and
RMS error metrics are presented in Fig. 2 . A summary of the conver-
ence rates for E 2 and NRMS error metrics is provided in Tables 1 and 2 .

.2. Heat conduction in 3D with insulated borders 

A heat conduction problem with insulated borders was solved in a
D cubic domain Ω with edge length 𝑙 = 𝜋. The problem is governed by
he PDE: 

 , 0 = 𝑢 ,𝑥𝑥 + 𝑢 ,𝑦𝑦 + 𝑢 ,𝑧𝑧 ; ( 𝑥, 𝑦, 𝑧 ) ∈ Ω, 𝑡 > 0 , (36)

ith Neumann BCs on 𝜕Ω: 

 ,𝑥 |𝑥 =0 = 𝑢 ,𝑥 |𝑥 = 𝜋 = 𝑢 ,𝑦 |𝑦 =0 = 𝑢 ,𝑦 |𝑦 = 𝜋 = 𝑢 ,𝑧 |𝑧 =0 = 𝑢 ,𝑧 |𝑧 = 𝜋 = 0 , (37)

he initial condition was obtained by the analytical solution for 𝑡 = 0 : 

 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 1 + 2 𝑒 −3 𝑡 cos ( 𝑥 ) cos ( 𝑦 ) cos ( 𝑧 ) + 3 𝑒 −29 𝑡 cos (2 𝑥 ) cos (3 𝑦 ) cos (4 𝑧 ) . 

(38) 

The problem was solved for the time interval 𝑡 = [0 , 1] for 11 × 11
egularly distributed nodes in Ω with spatial spacing ℎ = 𝜋∕10 . Fig. 3
hows the profiles of the solution for 𝑦 = 𝑧 = 𝜋∕5 and 𝑥 = 𝑦 = 𝜋∕5 .
onvergence analysis was performed for successive refinements with
 = [ 𝜋∕10 , 𝜋∕20 , 𝜋∕30 , 𝜋∕40] . The convergence analysis results for the E 2 
nd NRMS error metrics are presented in Fig. 4 . A summary of the con-
ergence rates for E 2 and NRMS error metrics is provided in Tables 1
nd 2 . 

.3. Inhomogeneous heat conduction in 3D with Dirichlet boundary 

onditions 

An inhomogeneous heat conduction problem with Dirichlet BCs was
olved in a 3D cubic domain with edge length 𝑙 = 𝜋. The problem is
escribed by the following PDE: 

 , 0 = 𝑢 ,𝑥𝑥 + 𝑢 ,𝑦𝑦 + 𝑢 ,𝑧𝑧 + sin ( 𝑧 ); 0 < 𝑥, 𝑦, 𝑧 < 𝜋, 𝑡 > 0 , (39)

ith the following Dirichlet BCs: 

 (0 , 𝑦, 𝑧, 𝑡 ) = sin ( 𝑧 ) + 𝑒 −2 𝑡 sin ( 𝑦 ) (40)
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Fig. 1. Solution for heat conduction with lateral heat loss in 2D for 𝑡 = [0 , 1] using RPIMC ( ◊), MLPG-MC ( □), FEM ( ◯). Plotted lines correspond to the analytical 
solution. (a) Solution profile for 𝑦 = 1 . (b) Solution profile for 𝑥 = 0 . 5 . 

Fig. 2. Convergence for heat conduction with 
lateral heat loss in 2D at 𝑡 = 1 using RPIMC ( ◊), 
MLPG-MC ( □), FEM ( ◯). (a) Convergence in 
E 2 error metric. (b) Convergence in NRMS error 
metric. 

Table 1 

Summary of E 2 error metrics and convergence rates for all benchmark problems. 

h E 2 error Convergence rate ( ̄𝜌) 

RPIMC MLPG-MC FEM RPIMC MLPG-MC FEM 

Benchmark 4.1: Lateral heat loss in 2D with Dirichlet boundary conditions 

0.1 1.10 × 10 −2 2.90 × 10 −2 1.29 × 10 −2 - - - 

0.05 3.14 × 10 −3 7.37 × 10 −3 3.40 × 10 −3 1.82 1.96 1.91 

0.025 8.19 × 10 −4 1.87 × 10 −3 9.00 × 10 −4 1.94 1.97 1.96 

0.0125 2.07 × 10 −4 4.73 × 10 −4 2.00 × 10 −4 1.98 1.98 1.98 

Benchmark 4.2: Heat conduction in 3D with insulated borders 

0.314 2.17 × 10 −3 3.43 × 10 −3 2.60 × 10 −3 - - - 

0.157 4.21 × 10 −4 8.95 × 10 −4 6.00 × 10 −4 2.37 1.94 2.02 

0.108 1.85 × 10 −4 4.10 ×10 −4 3.00 × 10 −4 2.03 1.93 2.02 

0.079 1.05 × 10 −4 2.33 × 10 −4 2.00 × 10 −4 1.97 1.96 2.01 

Benchmark 4.3: Inhomogeneous heat conduction in 3D with Dirichlet boundary conditions 

0.314 5.20 × 10 −3 7.00 × 10 −3 2.80 × 10 −3 - - - 

0.157 1.60 × 10 −3 1.90 × 10 −3 8.00 × 10 −4 1.73 1.91 1.90 

0.108 7.40 × 10 −4 8.50 × 10 −4 3.00 × 10 −4 1.88 1.95 1.95 

0.079 4.20 × 10 −4 4.80 × 10 −4 2.00 × 10 −4 1.93 1.96 1.97 

𝑢  

𝑢  

𝑢  

𝑢  
 ( 𝜋, 𝑦, 𝑧, 𝑡 ) = sin ( 𝑧 ) − 𝑒 −2 𝑡 sin ( 𝑦 ) (41)

 ( 𝑥, 0 , 𝑧, 𝑡 ) = sin ( 𝑧 ) + 𝑒 −2 𝑡 sin ( 𝑥 ) (42)
211 
 ( 𝑥, 𝜋, 𝑧, 𝑡 ) = sin ( 𝑧 ) − 𝑒 −2 𝑡 sin ( 𝑥 ) (43)

 ( 𝑥, 𝑦, 0 , 𝑡 ) = 𝑢 ( 𝑥, 𝑦, 𝜋, 𝑡 ) = 𝑒 −2 𝑡 sin ( 𝑥 + 𝑦 ) (44)
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Table 2 

Summary of NRMS error metrics and convergence rates for all benchmark problems. 

h NRMS error Convergence rate ( ̄𝜌) 

RPIMC MLPG-MC FEM RPIMC MLPG-MC FEM 

Benchmark 4.1: Lateral heat loss in 2D with Dirichlet boundary conditions 

0.1 2.76 × 10 −3 7.22 × 10 −3 3.20 × 10 −3 - - - 

0.05 7.83 × 10 −4 1.84 × 10 −3 8.58 × 10 −4 1.82 1.94 1.90 

0.025 2.04 × 10 −4 4.68 × 10 −4 2.21 × 10 −4 1.94 1.97 1.96 

0.0125 5.19 × 10 −5 1.18 × 10 −4 5.60 × 10 −5 1.98 1.98 1.98 

Benchmark 4.2: Heat conduction in 3D with insulated borders 

0.314 1.10 × 10 −2 1.75 × 10 −2 1.31 × 10 −2 - - - 

0.157 2.11 × 10 −3 4.55 × 10 −3 3.21 × 10 −3 2.37 1.94 2.03 

0.108 9.30 × 10 −4 2.07 × 10 −3 1.42 × 10 −3 2.03 1.94 2.02 

0.079 5.28 × 10 −4 1.17 × 10 −3 7.95 × 10 −4 1.96 1.97 2.01 

Benchmark 4.3: Inhomogeneous heat conduction in 3D with Dirichlet boundary conditions 

0.314 2.80 × 10 −3 3.76 × 10 −3 1.50 × 10 −3 - - - 

0.157 8.65 × 10 −4 1.02 × 10 −4 4.12 × 10 −4 1.70 1.88 1.87 

0.108 4.10 × 10 −4 4.69 × 10 −4 1.88 × 10 −4 1.86 1.93 1.93 

0.079 2.30 × 10 −4 2.68 × 10 −4 21.07 × 10 −4 1.92 1.95 1.95 

Fig. 3. Solution for heat conduction with insulated borders in 3D for 𝑡 = [0 , 1] using RPIMC ( ◊), MLPG-MC ( □), FEM ( ◯). Plotted lines correspond to the analytical 
solution. (a) Solution profile for 𝑦 = 𝑧 = 𝜋∕5 . (b) Solution profile for 𝑥 = 𝑦 = 𝜋∕5 . 

Fig. 4. Convergence for heat conduction with 
insulated borders in 3D at 𝑡 = 1 using RPIMC 
( ◊), MLPG-MC ( □), FEM ( ◯). (a) Convergence 
in E 2 error metric. (b) Convergence in NRMS 

error metric. 
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a

he initial condition was obtained by the analytical solution for 𝑡 = 0 : 

 ( 𝑥, 𝑦, 𝑧, 0) = sin ( 𝑧 ) + 𝑒 −2 𝑡 sin ( 𝑥 + 𝑦 ) . (45)

The problem was solved for the time interval 𝑡 = [0 , 1] for 11 × 11
egularly distributed nodes in Ω with spatial spacing ℎ = 𝜋∕10 . Fig. 5
212 
hows the profiles of the solution for 𝑦 = 𝑧 = 𝜋∕2 and for 𝑥 = 𝑦 = 3 𝜋∕5 .
onvergence analysis was performed for successive refinements with
 = [ 𝜋∕10 , 𝜋∕20 , 𝜋∕30 , 𝜋∕40] . The convergence analysis results for the E 2 
nd NRMS error metrics are presented in Fig. 6 . A summary of the con-
ergence rates for E 2 and NRMS error metrics is provided in Tables 1
nd 2 . 
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Fig. 5. Solution for inhomogeneous heat conduction in 3D with Dirichlet boundary conditions for 𝑡 = [0 , 1] RPIMC ( ◊), MLPG-MC ( □), FEM ( ◯). Plotted lines 
correspond to the analytical solution. (a) Solution profile for 𝑦 = 𝑧 = 𝜋∕2 . (b) Solution profile for 𝑥 = 𝑦 = 3 𝜋∕5 . 

Fig. 6. Convergence for inhomogeneous heat conduction in 3D with Dirichlet boundary conditions at 𝑡 = 1 using RPIMC ( ◊), MLPG-MC ( □), FEM ( ◯). (a) Conver- 
gence in E 2 error metric. (b) Convergence in NRMS error metric. 
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.4. Electrical propagation in a cardiac biventricular model 

The propagation of an electrical stimulus in a cardiac biventricular
eometry was simulated by solving the decoupled monodomain model
fter application of the operator splitting method [43] given by: 

 𝑉 ∕ 𝜕 𝑡 = − 𝐼 𝑖𝑜𝑛 ( 𝑉 )∕ 𝐶 in Ω

 𝑉 ∕ 𝜕 𝑡 = 𝛁 ⋅ ( 𝑫 𝛁 𝑉 ) in Ω

 ⋅ ( 𝑫 𝛁 𝑉 ) = 0 in 𝜕Ω

(46) 

here Ω and 𝜕Ω denote the domain of interest and its boundary, respec-
ively, and n is the outward unit vector normal to the boundary. 𝜕 V / 𝜕 t is
he time derivative of the transmembrane voltage, I ion is the total ionic
urrent and C is the cell capacitance per unit surface area. D denotes the
iffusion tensor calculated as: 

 = 𝑑 0 [(1 − 𝜌) 𝒇 ⊗ 𝒇 + 𝜌𝑰 ] , (47)

here d 0 denotes the diffusion coefficient along the myocardial fiber
irection, 𝜌 is the transverse-to-longitudinal ratio of conductivity, f is
he myocardial fiber direction vector, I is the identity matrix and ⊗

enotes the tensor product operation. 
The biventricular anatomy was discretized in a tetrahedral mesh

ith 273,919 nodes and 1,334,218 elements. The myocardial fiber di-
213 
ection vectors were computed using a rule-based method [44] . The
alue for the diffusion coefficient in the fiber direction was set to
 0 = 0 . 002 cm 

2 /ms and the value for the transverse-to-longitudinal ra-
io of conductivity was set to 𝜌 = 0 . 25 . The fast conduction system in
he biventricular model was generated using a fractal-tree generation
lgorithm [45] . Electrical stimulation was applied at the terminal nodes
f the fast conduction system, so called Purkinje-Myocardial Junctions
PMJs). Stimuli of 1-ms duration and twice the diastolic threshold in
mplitude were applied onto the PMJs at a cycle length of 1 s. A full
ycle (t = 1 s) was simulated using the RPIMC and MLPG-MC methods
o solve the diffusion term of Eq. (46) according to Eq. (21) with zero
eumann BC. The reaction term was defined by using the O’Hara cell
odel [46] to represent human ventricular cellular electrophysiology. 

A dilatation coefficient set to 𝑎 𝑐 = 2 . 85 was used for the construc-
ion of support domains for both RPIMC and MLPG-MC, leading to sup-
ort domains containing 51–149 nodes. The RPIMC and MLPG-MC sim-
lation results were compared in terms of local activation time (LAT)
ith a FEM simulation ( Fig. 7 ). Time integration was performed with

he forward Euler method. The critical diffusion step was found to be
 𝑡 𝑅𝑃 𝐼 𝑀 𝐶 = 0 . 064 ms, 𝑑 𝑡 𝑀 𝐿𝑃 𝐺− 𝑀 𝐶 = 0 . 065 ms, 𝑑 𝑡 𝐹 𝐸 𝑀 

= 0 . 035 ms using
he Gerschgörin theorem [40] . 

Simulations were performed on a laptop with Intel R ○ Core TM i7-
720HQ CPU and 16 GB of RAM. The execution time for a full cycle
as 99.6 mins for RPIMC, 100.8 mins for MLPG-MC, and 60.6 mins
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Fig. 7. Local activation time maps for a FEM 

(left), RPIMC (center), and MLPG-MC (right) 
simulation on a biventricular model. Non- 
conductive connective tissue is represented in 
yellow. 

Fig. 8. Time profiling for simulation of electrical propagation in a 5 cm 

3 slab of cardiac epicardial tissue using FEM (blue), RPIMC with 𝑎 𝑐 = 2 . 1 (red), RPIMC with 
𝑎 𝑐 = 2 . 5 (red dashed), MLPG-MC with 𝑎 𝑐 = 2 . 1 (black) and MLPG-MC with 𝑎 𝑐 = 2 . 5 (black dashed). (a) Time for stiffness matrix assembly versus nodal spacing h . (b) 
Time for solving the monodomain model versus nodal spacing h . 
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or FEM. From the total execution time, 6.5 mins and 4.4 mins were
equired for the calculation of the basis functions and their gradients
n RPIMC and MLPG-MC, respectively. The mean LAT was found to be
2.4 ms for FEM, 23.3 ms for RPIMC, and 24.0 ms for MLPG-MC. The
ean relative difference for the interior nodes LAT was 3.9% for RPIMC

nd 7.6% for MLPG-MC compared to FEM. For the nodes located at the
oundary the mean relative difference was 20.4% for RPIMC and 22.2%
or MLPG-MC. 

.5. Computational efficiency in electrical propagation simulation 

We evaluated the computational efficiency of the RPIMC method,
ompared to FEM and MLPG-MC, in a simulation of electrical propa-
ation in a 5 cm 

3 slab of cardiac tissue composed of epicardial cells.
he O’Hara cell model was used to represent human ventricular cellular
lectrophysiology, as in Section 4.4 . Myocardial fiber direction was set
arallel to the Z- axis . The diffusion coefficient along the fibers was set
o 𝑑 0 = 0 . 001 𝑐 𝑚 

2 ∕ 𝑚𝑠, with a transverse-to-longitudinal ratio of 𝜌 = 0 . 25 .
lectrical propagation was simulated for 𝑡 = 100 ms by application of
 stimulus at the bottom of the tissue slab (Z = 0 cm) with amplitude
wice the diastolic threshold and duration of 1 ms. 
214 
Simulations were performed by using FEM, RPIMC and MLPG-MC for
our different resolution levels, corresponding to nodal spacing of ℎ =
0 . 5 , 0 . 25 , 0 . 125 , 0 . 075) mm, on a laptop with Intel R ○ Core TM i7-4720HQ
PU and 16 GB of RAM. The construction of the support domain in
PIMC and MPLPG-MC was performed by using values for the dilatation
oefficient of 𝑎 𝑐 = 2 . 1 and 𝑎 𝑐 = 2 . 5 to assess the effect of the support
omain size. 

The maximum time, corresponding to h = 0.075 mm, for stiffness ma-
rix assembly was 11 s for FEM, 264 s for RPIMC with 𝑎 𝑐 = 2 . 1 , 804 s
or RPIMC with 𝑎 𝑐 = 2 . 5 , 108 s for MLPG-MC with 𝑎 𝑐 = 2 . 1 and 312 s
or MLPG-MC with 𝑎 𝑐 = 2 . 5 . The maximum time for solving the mon-
domain model was 300 s for FEM, 270 s for RPIMC with 𝑎 𝑐 = 2 . 1 ,
30 s for RPIMC with 𝑎 𝑐 = 2 . 5 , 522 s for MLPG-MC with 𝑎 𝑐 = 2 . 1 and
90 s for MLPG-MC with 𝑎 𝑐 = 2 . 5 . The time required to assemble the
tiffness matrix and solve the monodomain model for each resolution
evel is reported in Fig. 8 . RPIMC required longer time than MLPG-MC
or stiffness matrix assembly. This was due to the inversion operation
f the enriched moment matrix G during the computation of the RPI
asis functions and their gradients. However, the time required for the
olution of the monodomain model with RPIMC was smaller for all res-
lution levels. 
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. Concluding remarks 

The RPIMC method was proposed and tested to solve transient dif-
usion problems. Since RPIMC uses RPI basis functions as trial functions
hat possess the delta Kronecker property, Dirichlet BCs were imposed
imilarly to FEM. The results obtained for a number of benchmark prob-
ems demonstrated that RPIMC can achieve high accuracy, similar to
hat of FEM, generally outperforming the MLPG-MC method. 

Furthermore, we showed that RPIMC can be used to solve the mon-
domain model for simulation of electrical propagation in the heart.
ocal activation time maps obtained by RPIMC were found to be in
ood agreement with those of FEM, being remarkably closer than those
btained by MLPG-MC. However, deterioration of the RPIMC solution
t the boundary nodes, where Neumann boundary conditions were im-
osed, was observed. Rough edges present on the biventricular model’s
urfaces led to discontinuities in normal vectors’ direction, which is
ostulated to have negatively affected the accuracy at the Neumann
oundary. 

In terms of computational efficiency, RPIMC and MLPG-MC methods
erformed similarly in simulations of electrical propagation in a cardiac
issue slab, being somewhat less efficient than FEM. As expected, the
ime for the assembly of the stiffness matrix was higher for RPIMC and
LPG-MC than for FEM due to the additional workload associated with

he computation of the meshfree basis functions and their gradients. Ad-
itionally, RPIMC was found to be 1.65 times slower than FEM in solving
he monodomain model in a large-scale biventricular model. Neverthe-
ess, it should be noted that RPIMC is more efficient than other meshfree
ethods such as SPH. In [47] , the execution time to run a simulation

n an SPH implementation of the monodomain model was reported to
e of 57 min for a ventricular model with 51,037 nodes and a simula-
ion time of 150 ms, while in this study RPIMC required 99.6 min for a
iventricular model of 273,919 nodes and a simulation time of 1000 ms.

In summary, the RPIMC method is shown to be a good alternative
o FEM with satisfactory accuracy for the solution of transient diffusion
roblems, such as heat conduction, and with good capabilities for the
olution of the monodomain model in cardiac electrophysiology sim-
lations. Importantly, RPIMC is expected to be a promising option to
olve coupled electromechanical problems in cardiology, where it could
utperform FEM in problems involving large displacements. 
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