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Abstract: We present the meshfree mixed collocation method (MCM) for cardiac electrophysiology
simulation. Capitalizing on the meshfree property of MCM, we introduce an immersed grid approach
for automated generation of meshfree node grids from medical image data. This approach allows
us to avoid the time-consuming mesh generation and processing that mesh-based methods like the
finite element method (FEM) require. We employ the MCM to solve the cardiac monodomain model
considering electrical propagation in 2D tissue sheets, 3D tissue slabs, and a realistic biventricular
anatomy. We demonstrate that the solutions obtained by the MCM are in good agreement with the
FEM, particularly when immersed grid is used. These findings confirm the suitability of the MCM
for cardiac electrophysiology simulation and make the MCM a promising alternative to the FEM for
cardiac electrical investigations.

Keywords: meshfree; mixed collocation method (MCM); cardiac electrophysiology; monodomain
model

1. Introduction

In the last decades, computational modeling and simulation has taken a growing role
as a method to deepen the understanding of cardiac function in health and disease [1,2].
Novel in silico models of increasing complexity are continuously being developed to
simulate the electrophysiology [3] and mechanics of the heart [4] from the cell [5] to the
whole-organ level [6]. At the tissue and organ levels, electrophysiology is simulated by
using the well-known bidomain [7] and monodomain [8] models. The latter is a simplified
version of the former under the assumption of equal anisotropy ratios for the intracellular
and extracellular spaces. The monodomain model is more computationally efficient than
its bidomain counterpart and is able to produce accurate transmembrane potential values
in the absence of extracellularly applied currents [9]. Commonly, state-of-the-art simula-
tors [10,11] employ the finite element method (FEM) to solve either the bidomain or the
monodomain model for the simulation of cardiac electrophysiology. FEM is a mature and
robust numerical method, but its requirement for a good-quality mesh may pose challenges
to generate realistic heart models with reasonable computational cost [12].

Alternative meshfree methods can alleviate the mesh requirement and have been
proposed for both cardiac electrophysiological [13–15] and mechanical [12,16] simulations,
as well as brain biomechanics [17]. Among the different proposed meshfree solutions,
models based on the element-free Galerkin (EFG) method offer high convergence rate and
high resolution of localized steep gradients [18]. Nevertheless, special treatment for the
imposition of essential boundary conditions is required since the approximation functions
do not possess the Kronecker delta property. Recently, cell-based maximum entropy (CME)
approximants were used in the EFG method to alleviate this limitation [19].
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CME possesses the weak Kronecker delta property where approximation functions
of internal nodes vanish on the boundaries. Therefore, essential boundary conditions can
be imposed directly, as in the FEM. However, the CME approximants give rise to com-
plex integrals requiring a large number of quadrature points for accurate integration that
may lead to increased computational cost. Similarly, the computational cost of methods
based on smoothed particle hydrodynamics (SPH) may be significantly higher than that of
mesh-based methods. Furthermore, the standard SPH formulation may imply inaccurate
computation of gradients of constant and linear fields (first-order incomplete approxima-
tion) [20]. To overcome these problems, the total Lagrangian formulation of SPH [21] and
gradient normalization [20] were applied in [12,13] to accurately simulate the propagation
of the electrical impulse in the heart and cope with large deformations in the context of
cardiac mechanics.

In the present study, we propose the mixed collocation method (MCM) as an alternative
to mesh-based and previously mentioned meshfree methods for cardiac electrophysiology
simulation. Our main motivation is the purely meshfree property of MCM that allows
us to completely alleviate the time-consuming mesh-generation process of mesh-based
methods like the FEM. The MCM is based on the meshfree local Petrov–Galerkin (MLPG)
method [22,23]. MLPG implies quadrature over locally-defined domains, providing the
flexibility to select the trial and test functions from different spaces. In the mixed col-
location variant of the MLPG method, the Dirac function is used as test function, and
both the field function and its gradient are interpolated by the trial function. As a result,
the computational cost is decreased since the local integration is reduced to nodal summa-
tion. Moreover, while collocation methods suffer from inaccurate imposition of Neumann
boundary conditions [24], the accuracy is ameliorated in the MCM due to the interpolation
of the field function’s gradient. In the seminal work on the MCM [25], the moving least
squares (MLS) approximation [26] was used as the trial function. Recently, the radial point
interpolation (RPI) [27] was proposed as an alternative to MLS in the MCM [28]. It was
demonstrated that accuracy is improved when RPI trial functions replace MLS. This was
mainly attributed to the delta Kronecker property of RPI that allows the direct imposition
of essential boundary conditions in contrast to MLS.

Here, we investigate the application of the MCM with interpolating trial functions
for the solution of the monodomain equation in a series of cardiac electrophysiology
simulations in 2D and 3D domains. We evaluate RPI as well as moving kriging interpolation
(MKI) [29] and we compare the obtained solutions with the state-of-the-art FEM solution.
Moreover, we propose an immersed grid generation approach to automatically obtain nodal
distributions from segmentated data of medical images. The structure of the paper is the
following. In Section 2, we derive the form of the cardiac monodomain equation using the
MCM method and describe the mathematical formulation of RPI and MKI interpolations.
In Section 3, we evaluate the solution of the monodomain model with the MCM method in
several 2D and 3D problems and we report on the accuracy and efficiency of the method in
comparison to FEM. Finally, in Section 4, we discuss some concluding remarks.

2. Materials and Methods
2.1. Mixed Collocation Form of the Monodomain Equation

The propagation of an electrical impulse in the heart is modeled through the mon-
odomain model by the reaction–diffusion equation:

∂V
∂t = ∇ · (D∇V)− 1

C Iion(s, V, t) in Ω
∂s
∂t = f (s, V, t) in Ω
n · (D∇V) = 0 on ∂Ω

(1)

where ∂V/∂t is the time derivative of the transmembrane potential V = V(t) and s is the
vector of cellular gating variables and ionic concentrations. The function f (s, V, t) describes
the nonlinear cellular dynamics. Iion(s, V, t) denotes the ionic current per cell membrane
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area and C the capacitance of the cell membrane per unit area. Ω represents the domain
of interest and ∂Ω its boundary, while n is the outward unit vector normal to ∂Ω. D is the
diffusion tensor given by

D = d0[(1− ρ)l ⊗ l + ρI] (2)

where d0 denotes the diffusion coefficient along the cardiac fibers, ρ ≤ 1 is the transverse-to-
longitudinal conductivity ratio, l denotes the cardiac fiber direction vector, I is the identity
matrix, and ⊗ is the tensor product operation.

The nonlinear cellular dynamics involved in the computation of Iion make the solution
of the coupled model in Equation (1) cumbersome. For large-scale tissue simulations, it is
common to solve a decoupled model where the nonlinear term containing Iion is solved
separately from the linear diffusion term. The operator-splitting method described in [30]
is used here to solve two subsystems in each time step. On the one hand, the nonlinear
ODE system that describes the cellular reactions and the ionic current is solved:

∂s
∂t = f (s, V, t) in Ω
∂V
∂t = − 1

C Iion(s, V) in Ω
(3)

and, on the other hand, the linear PDE system that describes the electric signal propagation
is solved:

∂V
∂t = ∇ · (D∇V) in Ω

n · (D∇V) = 0 on ∂Ω
(4)

Applying the second-order Strang splitting method [31], the solution is advanced from
time tn to time tn+1 = tn + dt with a time step dt in three phases:

1. Equation (4) is solved for tn < t ≤ tn + dt/2, using the solution at tn as initial
condition.

2. Equation (3) is solved for tn < t ≤ tn + dt, using the solution from phase 1 as initial
condition.

3. Equation (4) is solved for tn + dt/2 < t ≤ tn + dt, using the solution from phase 2 as
initial condition.

2.1.1. Deriving the Mixed Collocation Form

To derive the mixed collocation form of the decoupled cardiac monodomain model,
only the diffusion term is considered, since the cellular reaction term is solved indepen-
dently. We consider the discretization of the domain into a cloud of N arbitrarily distributed
field nodes. We write the diffusion term from Equation (4) for each field node I as

∂VI
∂t

= ∇ · qI in Ω, I ∈ N (5)

where
qI = DI∇VI (6)

denotes the transmembrane potential flux at the field node I. Interpolating the transmem-
brane potential and the transmembrane potential flux, we obtain

VI =
n

∑
i=1

φi
IV

i
I (7)

qI =
n

∑
i=1

φi
Iq

i
I (8)

where n is the number of field nodes in the local support domain of the node I. φi
I is the ith

component of φI . The vector φI contains the evaluation of the meshfree basis function of I
at the n points of its local support domain, with I included as part of these points. Vi

I is
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the transmembrane potential at node i and qi
I the corresponding transmembrane potential

flux vector.
By introducing Equation (7) into Equation (6), we can express the transmembrane

potential flux in terms of the nodal transmembrane potential as follows:

qI = DI

n

∑
i=1
∇φi

IV
i
I , I = 1, 2, . . . , N (9)

or given in matrix form as

qI = K I
aVI , I = 1, 2, . . . , N. (10)

where K I
a is built based on the evaluation of the gradient of the meshfree basis function at

the nodes in the local support domain of I scaled by DI . Assembling the matrices K I
a for

the N field nodes, I = 1, 2, . . . , N, the following equation in matrix form is obtained:

q = KaV . (11)

Finally, introducing Equations (7)–(9) into Equation (5), the mixed collocation formula-
tion of the monodomain model’s diffusion term is obtained in terms of the transmembrane
potential:

n

∑
i=1

φi
I
∂Vi

I
∂t
−

n

∑
i=1
∇ · (DI∇φi

IV
i
I ) = 0, I ∈ N. (12)

Assembling the contribution of all field nodes N, as above, we write Equation (12) in
the equivalent matrix form:

MV̇ + KV = 0, K = KsKa (13)

where M is the sparse matrix collecting the basis functions, Ks is a sparse matrix collect-
ing the evaluation of the divergence of the meshfree basis functions, and K denotes the
stiffness matrix.

2.1.2. Boundary Conditions Imposition

For the monodomain model, the domain Ω is assumed to be isolated in the sense that
no current can flow in or out of the boundary ∂Ω. To model electrical isolation, we enforce
the Neumann boundary conditions (BCs) in mixed collocation using the penalty method
described in [32]. From Equations (1) and (6), the Neumann BC imposition on the γbc nodes
of the Neumann boundary ∂Ω at a given time t, where γbc ⊂ {1, · · · , N}, can be written in
matrix form as follows:

Nbcqbc = 0, (14)

where qbc is the vector collecting the transmembrane potential fluxes at γbc nodes and Nbc
is the matrix containing the normal vectors given by

Nbc =

n1 0
. . .

0 nγbc

 (15)

The Neumann BCs are enforced at the γbc nodes by multiplying Equation (14) with
the penalty factor αNT

bc and adding it to Equation (11) to obtain

qbc + αNT
bcNbcqbc = Kbc

a V bc. (16)

By rearranging terms, Equation (16) can be written as

qbc = {I + αNT
bcNbc}−1{Kbc

a V bc} = Q−1{Kbc
a V bc}, (17)
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where I is the identity matrix and Q = I + αNT
bcNbc. Combining Equations (13) and (17),

the matrix form of the monodomain model’s diffusion term is given by

MV̇ + K
′
V = 0, (18)

where K
′
=
[
Kbc

s Q−1Kbc
a , Kin

s Kin
a
]
. Here, the superscripts bc and in connote the

row entries of the matrices Ks and Ka that correspond to the γbc nodes on ∂Ω and the γin
nodes in Ω, respectively, such that γbc ∪ γin = {1, · · · , N}. The value of the penalty factor
α should be sufficiently large to ensure accurate imposition of the boundary condition.
Instability issues may arise if α is too large. In this study, we used α = 106 as it was found
to be the optimal value in [28].

2.2. Interpolating Meshfree Approximants

One of the advantages of the MCM, being a meshfree method, is the flexibility that it
offers on the choice of the trial function φ. In this work, we consider only trial functions
that possess the delta Kronecker property, namely, the radial point interpolation (RPI) [27]
and the moving kriging interpolation (MKI) [29].

2.2.1. Radial Point Interpolation

The RPI trial function φI for a field node I is obtained by

φI = {rI pI}G−1, (19)

where rI is the radial basis function (RBF) for node I. For a node i in the support domain of
I (with I included in its support domain), ri is given by

ri = [ri1 ri2 . . . rin]. (20)

Different RBFs, such as multiquadric, Gaussian, etc., can be used. In this work, we used
the multiquadric RBF (MQ-RBF). The value of the MQ-RBF for the 3D case, is calculated as

rIi =
(

di2
I + r2

c

)q
=
[
(xI − xi)

2 + (yI − yi)
2 + (zI − zi)

2 + r2
c

]q
(21)

where di
I denotes the Euclidean distance between nodes i and I, i = 1, . . . , n and rc and

q are positive-valued shape parameters of the MQ-RBF. For spherical support domains,
the shape parameter rc is given by

rc = αcdc (22)

where dc denotes the radius of the support domain of node I and αc is a dimensionless
constant. RBF fails to reconstruct exactly a linear polynomial field; therefore, the RPI is
enriched with the linear polynomial basis pI to ensure C1 continuity. For 3D problems, pI
is given by

pI = [1 xI yI zI ]. (23)

Finally, the matrix G is given by

G =

[
R P

PT 0

]
(n+m)×(n+m)

, (24)

where m is the number of components of the polynomial basis (m = 4 for linear pI in 3D).
R and P denote the RBF and polynomial basis moment matrices:

R =


r11 r12 . . . r1n
r21 r22 . . . r2n
. . . . . . . . . . . .
rn1 rn2 . . . rnn


(n×n)

, P =


1 x1 y1 z1
1 x2 y2 z2

. . . . . . . . . . . .
1 xn yn zn


(n×m)

. (25)
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2.2.2. Moving Kriging Interpolation

The moving Kriging interpolation (MKI) has similar interpolation properties to RPI
but it does not require polynomial enrichment to ensure C1 continuity. The trial function φ
at node I is given by

φI = pI A + cI B (26)

where pI is the linear polynomial basis defined in Equation (23) and cI denotes the correla-
tion function for node I. For a node i in the support domain of I, ci is given by

ci = [ci1 ci2 . . . cin] (27)

where cij is the value of the correlation function ci at the jth node of the support domain.
In this work, we use the MQ-RBF as the correlation function (Equation (21)). The matrices
A and B are obtained by

A = (PTC−1P)−1PTC−1

B = C−1(I − PA)
(28)

where I is the n× n identity matrix, P is the n×m moment matrix of the linear polynomial
basis given by Equation (25), and C is the n× n correlation matrix for the n nodes in the
support domain of I given by

C =


c11 c12 . . . c1n
c21 c22 . . . c2n
. . . . . . . . . . . .
cn1 cn2 . . . cnn


(n×n)

. (29)

3. Results

In this section, we investigate the accuracy and efficiency of the MCM using both
RPI and MKI as trial functions. We considered regular and irregular nodal distributions
in 2D tissue sheets and 3D tissue slabs as well as in a realistic anatomical model and
we compared MCM simulation results with FEM. MQ-RBFs for both RPI and MKI trial
functions were constructed using αc = 1.03 and q = 1.42 in 2D simulations. In 3D, they were
constructed using αc = 1.03 and q = 1.82, as these combinations of parameters are found to
minimize the difference with the FEM. In all examples, time integration was performed
explicitly using the dual adaptive explicit time integration (DAETI) algorithm [33], where
the decoupled reaction and diffusion terms were both integrated adaptively. In this work,
we used an adaptive time step dt = 0.1 ms. Human ventricular cellular electrophysiology
was represented by the O’Hara et al. cell model [34], which defines the nonlinear cell
reactions and is used to compute the ionic current term. Simulations were performed on a
laptop with Intel® Core™i7-4720HQ CPU and 16 GB of RAM.

3.1. Electrical Propagation in a 2D Tissue Sheet

We considered a 5× 5 cm human ventricular tissue sheet, where transmural hetero-
geneity was included by defining endocardial, midmyocardial, and epicardial regions in a
50:20:30 ratio. The cardiac fiber direction vector l was considered parallel to the x-axis. We
used diffusion coefficient d0 = 0.0013 cm2/ms and transversal-to-longitudinal conductivity
ratio ρ = 0.2. Stimuli with amplitude twice the diastolic threshold, period tT = 1 s, and
duration td = 1 ms were applied on the left side of the tissue (x = 0 cm). The propagation
of the action potential (AP) was simulated for a total time ts = 3 s.

We compared the MCM solution with RPI and MKI trial functions against FEM
simulation results using bilinear isoparametric elements. We considered regular nodal
discretizations and quadrilateral meshes with nodal spacing h = {0.2, 0.1, 0.05, 0.025}
cm. The considered support domains in the meshfree approximation had size sd = αsdh,
with αsd = 2.8. The generated APs at the center of the tissue sheet (x = 2.5 cm, y = 2.5 cm)
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in the time interval t = [0 − 3] s for the different nodal spacing values are shown in
Figure 1. We quantified the differences between MCM and FEM solutions in terms of mean
transmembrane potential difference (TPD). Mean TPD between the FEM and the MCM with
MKI trial functions was TPD = {3.111, 0.339, 0.401, 0.583} mV while mean TPD between
the FEM and the MCM with RPI trial functions was TPD = {3.112, 0.340, 0.400, 0.582} mV
for nodal spacing h = {0.2, 0.1, 0.05, 0.025} cm. The efficiency of each simulation was
evaluated in terms of execution time in Figure 2a.

Figure 1. Voltage traces at the center (x = 2.5 cm, y = 2.5 cm) of a 5× 5 cm ventricular tissue sheet
calculated using the FEM (continuous black), the MCM with MKI (dotted green), and the MCM with
RPI (dashed red). The nodal discretization spacing is (a) h = 0.2 cm, (b) h = 0.1 cm, (c) h = 0.05 cm,
and (d) h = 0.025 cm.

Figure 2. Execution time for (a) varying spacing in a 5× 5 cm tissue sheet and (b) varying support
dilatation coefficient in a 3× 3× 3 cm tissue slab. Execution time is reported for the FEM (black), the
MCM with MKI trial functions (blue), and the MCM with RPI trial functions (red).

3.2. Electrical Propagation in a 3D Tissue Slab

We investigated the effect of the support domain’s dilatation coefficient αsd by com-
puting the normalized root mean square (NRMS) error between MCM and FEM solu-
tions for a 3× 3× 3 cm tissue slab. The tissue was assumed to be composed of epicar-
dial ventricular cells. Stimuli of amplitude twice diastolic threshold, period tT = 1 s,
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and duration td = 1 ms were applied onto the left side of the tissue slab (x = 0 cm).
The tissue slab was discretized with h = 0.05 cm and varying dilatation coefficient
αsd ∈= {2.25, 2.50, 2.75, 3.00, 3.25, 3.50}. The NRMS error was computed using
the formula

NRMS =

√√√√√ N

∑
I=1

(
VMCMI −VFEMI

)2

N
max

I
VFEMI −min

I
VFEMI

(30)

where VMCMI and VFEMI denote the transmembrane potential value at node I computed
with the MCM and the FEM, respectively. The NRMS error convergence plot is given in
Figure 3.

Figure 3. Convergence rate for varying support domain’s dilatation coefficient αsd ∈
{2.25, 2.50, 2.75, 3.00, 3.25, 3.50} for the MCM with MKI (continuous blue) and RPI (slashed
red) trial functions. Convergence is evaluated by computing the NRMS error with respect to an
FEM simulation.

The maximum NRMS error of the MCM solutions with RPI or MKI trial functions
was obtained for αsd = 2.25 and was equal to 0.262 and 0.263, respectively. The minimum
NRMS error was obtained for αsd = 3.5 and it was equal to 0.056 for RPI and 0.057 for MKI
trial functions. The execution time for the simulations with varying dilatation coefficient is
summarized in Figure 2b.

3.3. Electrical Propagation in the Niederer Benchmark Geometry

In this example, we evaluate our proposed method by solving the benchmark problem
defined by Niederer et al., which is the standard, accepted approach to verify cardiac
tissue electrophysiology simulators [35]. The benchmark problem considers a 3D cuboid of
human ventricular tissue (3× 7× 20 mm). Cardiac fiber orientation is parallel to the Z axis
and electrophysiology is described by the Ten Tusscher et al. model [36]. The longitudinal
diffusion coefficient is set to d0 = 0.00115 cm2/ms and the transverse-to-longitudinal ratio
is ρ = 0.12. Periodic stimulation with frequency f = 1 Hz, amplitude A = 50 mA and
duration td = 2 ms is applied at a cubic region with dimensions 1.5× 1.5× 1.5 mm located
at corner P1 (Figure 4).
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Figure 4. Local activation time (LAT) map for the MCM-MKI solution of the Niederer benchmark [35]
with space discretization h = 0.1 mm.

The activation time at the corners (P1 – P8) and the center (C) of the cuboid were
computed for various nodal spacings, h = {0.1, 0.2, 0.5}mm, using MCM-RPI and MCM-
MKI with support domain sd = αsdh, with αsd = 2.8. Integration was performed using the
DAETI method with time step dt = 0.1 ms. The activation times obtained by MCM-RPI
and MCM-MKI were compared with those of the FEM (Table 1) previously reported in [33]
and validated with the reported activation times in [35].

Table 1. Activation times at the corners (P1–P8) and the center (C) of the 3D cuboid benchmark problem.

h
(mm) P1 P2 P3 P4 P5 P6 P7 P8 C

MCM-RPI activation time (ms)
0.5 1 51 23 59 99 115 107 120 56
0.2 1 34 11 36 37 53 42 58 26
0.1 1 30 8 33 29 42 31 44 2

MCM-MKI activation time (ms)

0.5 1 49 24 60 99 111 101 119 58
0.2 1 33 12 36 36 55 39 55 26
0.1 1 30 8 32 29 42 31 42 2

FEM activation time (ms)

0.5 1 49 22 58 94 109 98 111 54
0.2 1 31 11 35 35 51 39 54 25
0.1 1 29 8 31 27 41 29 41 20

3.4. Electrical Propagation in 3D Biventricular Geometry with Irregular Nodal Distribution

We simulated electrical propagation in a porcine cardiac biventricular model under
healthy conditions. The biventricular model was generated from the segmentation of a diffu-
sion weighted-magnetic resonance image (DW-MRI) with dimensions 128× 128× 83 mm3

and voxel size 1.09× 1.09× 1.2 mm3. Three labels were included in the segmentation
to partition the ventricular wall in endocardial, midmyocardial, and epicardial regions
with a 45:25:30 ratio. Median filter smoothing with 2 mm kernel size was applied on
the segmentated data to ensure a smooth boundary. A tetrahedral mesh (69,621 nodes
and 380,299 elements) was generated using the iso2mesh toolkit [37]. An irregular nodal
distribution was obtained from the tetrahedral mesh of the DW-MRI segmentation.

The direction of myocardial fibers was obtained by computing the diffusion tensor
(DT) field for each voxel of the DW-MRI. In brief, a linear minimum mean squared error
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(LMMSE) filter was applied to reduce Rician noise before computing the DT fields [38].
DT fields were computed by minimizing the Riemannian distance between an evaluated
tensor spline and the DW-MRI data [39]. The principal eigenvector, which was obtained by
solving the eigenvalue problem for the DT of each voxel, was considered as the myocardial
fiber orientation of the corresponding voxel. The myocardial fiber orientations at the nodes
of the tetrahedral mesh were obtained by interpolating the orientations of the image voxels
using the MKI approximants.

Electrical propagation was simulated using a value for the diffusion coefficient of
d0 = 0.002 cm2/ms in the longitudinal direction of the myocardial fibers and a transverse-to-
longitudinal conductivity ratio value of ρ = 0.15. The electrophysiology of the ventricular
myocardial tissue was represented by the O’Hara et al. model, as in previous examples.
The points of earliest activation across the ventricles were identified by coupling the biven-
tricular model with a network of Purkinje fibers generated using a fractal-tree generation
algorithm [40]. We applied stimuli with td = 1 ms, tT = 1 s, and amplitude twice the dias-
tolic threshold onto the Purkinje–myocardial junctions (PMJs) which were identified from
the terminal nodes of the Purkinje network. Electrical impulse propagation was simulated
using the MCM with RPI and MKI approximants as well as the FEM for a simulation time
ts = 150 ms.

Rather than constructing dilated support domains, we chose to construct support
domains using the nearest-neighbor approach due to the irregular distribution of the
nodes in the tetrahedral mesh. For such distributions, dilated support domains require the
inclusion of a very large number of neighboring nodes to ensure numerical stability. In the
nearest-neighbor approach, we used the 150 nearest nodes to accurately capture the steep
voltage gradients of the monodomain model. The MCM solution with RPI approximants
(MCM-RPI) and MKI approximants (MCM-MKI) was compared with the FEM in terms
of local activation time (LAT) (see Figure 5). The mean local activation time was found
to be 35.9 ms for MCM-RPI and 35.3 ms for MCM-MKI, while the mean LAT for FEM
was 30.3 ms. To further evaluate LAT differences, we constructed the LAT normalized
histogram (Figure 6a). We measured the normalized histogram intersection (NHI) as a
metric of histogram similarity, which is given by the equation below:

NHI =

n

∑
i=1

min(Xi, Yi)

n

∑
i=1

Yi

, (31)

where i is the histogram bin index, n is the number of histogram bins, and Xi and Yi
denote the entry at the ith bin of the normalized LAT histogram for the MCM and the
FEM, respectively. NHI was found to be 0.937 for MCM-RPI and 0.939 for MCM-MKI.
The execution time was 4.7 min for MCM-RPI, 4.6 min for MCM-MKI, and 6.1 min for FEM.

3.5. Electrical Propagation in 3D Biventricular Geometry with Immersed Grid Nodal Distribution

In this section, we simulate electrical propagation in the biventricular geometry using
the same protocol as in Section 3.4. However, we perform the simulation with the MCM
considering an immersed grid nodal distribution [41]. The immersed grid (70,027 nodes)
was generated automatically by assigning field nodes at the center of the DW-MRI voxels.
Field nodes were assigned only to the voxels that belonged to the segmentation of the
biventricular anatomy. A point containment test algorithm [42] was used to discard nodes
outside a triangular surface mesh representing the smooth boundary of the segmented
biventricular anatomy. Consequently, the final immersed grid was composed of the nodes
inside the biventricular model and the nodes on the boundary surface mesh of the model
(Figure 7).
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Figure 5. Local activation time maps for FEM (left), MCM-RPI (center), and MCM-MKI (right)
simulations in a biventricular model with irregular nodal distribution.

Figure 6. Local activation time histogram comparison for MCM simulation with RPI approximants
(MCM-RPI) or MKI approximants (MCM-MKI) and FEM. (a) Irregular nodal distribution. (b) Im-
mersed grid nodal distribution.

The mean LAT for the solution obtained by MCM-RPI was found to be 31.6 ms,
while the mean LAT for MCM-MKI was 31.5 ms, both of them being very close to the
mean LAT for FEM, which was 30.3 ms. The LAT maps are shown in Figure 8. As in
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Section 3.4, the normalized LAT histograms were computed for MCM-RPI and MCM-MKI.
NHI was found to be 0.935 for MCM-RPI, and 0.936 for MCM-MKI. The normalized LAT
histograms are given in Figure 6b. The execution time was 4.6 min for MCM-RPI and
4.4 min for MCM-MKI.

Figure 7. Immersed grid model generation. (a) The boundary surface mesh is extracted from the
tetrahedral biventricular mesh. (b) Nodes are assigned at the image data voxels. (c) Nodes located
outside the surface mesh are discarded using a point containment test.

Figure 8. Local activation time maps for FEM (left), MCM-RPI (center), and MCM-MKI (right)
simulations on an immersed grid of the biventricular model. Nonconductive connective tissue is
represented in yellow.
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4. Discussion

In this study, we derived the mixed collocation method (MCM) to solve the mon-
odomain model for the numerical simulation of cardiac electrophysiology. We considered
two different interpolating trial functions, the radial point interpolation (RPI) and the
moving kriging interpolation (MKI). We solved several numerical examples in 2D and 3D
domains, comparing the MCM solution with a solution obtained by the FEM. The accuracy
of MCM solutions was found to be similar for both RPI and MKI approximants. However,
MKI was more efficient since, in contrast to RPI, it does not require polynomial enrichment.
It should be noted that the optimal values of the parameters for the RPI and MKI approxi-
mations were obtained manually in this study. However, optimization techniques such as
those based on minimizing a predictor function could be applied to obtain the values of
these parameters automatically. For further details on the topic we refer the reader to [43].

In all the numerical examples in 2D tissue sheets and 3D tissue slabs, good agreement
was found between MCM and FEM solutions. The convergence analysis in 3D tissue slabs
demonstrated that the MCM solution improved for larger support domains as the number
of included collocation points was increased (see Figure 3). However, as expected, as the
size of the support domain increased, the execution time was also increased, as can be seen
in Figure 2. Therefore, a compromise between accuracy and execution time must be made.
The value αsd = 2.8 represents a good compromise. In the case of the biventricular anatomy
model, including the 150 nearest neighbors of each field node in its support domain was
found to be an optimal choice balancing accuracy and memory footprint. Local activation
time (LAT) maps generated with the MCM were shown to be in good agreement with
those obtained by the FEM. The mean LAT difference between the MCM and the FEM
was reduced from 18% for irregular nodal distribution to 4% for immersed grid nodal
distribution. Normalized histogram intersection with the FEM solution remained similar
for both nodal distributions (over 0.93). These results, in combination with the simplicity
of field nodes generation with the immersed grid approach, demonstrate an important
advantage of the MCM over the FEM, especially for clinical applications where clinical
image data could be treated directly as a meshfree model by the MCM, while the FEM
requires the generation of a mesh. In addition, the FEM requires mesh preprocessing prior to
the simulation to define parameters such as ventricular tissue partition and myocardial fiber
orientation. The MCM with the immersed grid approach does not require any preprocessing
since there is a one-to-one relationship between image voxels and field nodes. Anatomic
partition data and myocardial fiber orientation defined on the voxels of the image are
assigned directly to the corresponding immersed grid nodes. The flexibility of the MCM
renders it a useful numerical method that could be extended to other applications, such as
the investigation of soft tissue mechanical response [17].

In terms of execution efficiency, the simulation time for the MCM was comparable to
the FEM for the 2D tissue sheet simulations. In the simulation of the biventricular anatomy
model, the MCM presented better performance, with reductions in computational time of
up to 28% compared to the FEM for both irregular and immersed grid nodal distributions.
This was due to the size of the critical time step that was used during the adaptive explicit
integration using the DAETI algorithm. In realistic models of complex geometry, such as
the biventricular anatomy, small mesh elements restricting the size of the critical time step
may arise. This limitation is relaxed when meshfree approximants are used. Therefore,
the MCM presents higher efficiency despite the higher number of support domain nodes.
For more information regarding the choice of the critical time step in DAETI, we refer the
reader to [33].

The findings of this study support considering the MCM as a promising alternative to
the FEM for cardiac electrophysiology simulation since its meshfree nature alleviates the
need for the generation of a mesh and can, thus, allow fast model generation in a clinical
setting together with an efficient simulation.
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