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Abstract
This article presents a review of signals used for measuring physiology and
activity during sleep and techniques for extracting information from these
signals. We examine both clinical needs and biomedical signal processing
approaches across a range of sensor types. Issues with recording and analysing
the signals are discussed, together with their applicability to various clinical
disorders. Both univariate and data fusion (exploiting the diverse characteristics
of the primary recorded signals) approaches are discussed, together with a
comparison of automated methods for analysing sleep.
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Glossary
AARC-APT American Association of Respiratory Care–Association of Polysomnography

Technologists
AASM American Academy of Sleep Medicine
AC Alternating current, pulsatile waveform
ACC Accuracy
AHI Apnoea hypopnoea index, the average number of apnoeas and hypopnoeas

per hour of sleep
AIS Athens insomnia scale
APAP Autopositive airway pressure
AR Autoregression
ASPS Advanced sleep phase syndrome
BiPAP Bilevel positive airway pressure
BMI Body mass index, a proxy for measuring body fat based on an individual’s

height and weight
BP Blood pressure
BQ Berlin questionnaire
CAP Cyclic alternating pattern
CBT Core body temperature
CNS Central nervous system
CPAP Continuous positive airway pressure
CPC Cardiopulmonary coupling
CRC Cardiorespiratory coupling
CRDs Circadian rhythm disorders
CSA Central sleep apnoea
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DAP Decreases in the amplitude of the photoplethysmogram signal during
polysomnography

DC Direct current
DIST Distal skin temperature
DSPS Delayed sleep phase syndrome
ECG Electrocardiogram.
EDR Electrocardiogram derived respiration
EDS Excessive daytime sleepiness
EEG Electroencephalogram
EMG Electromyogram
EOG Electrooculogram
ESS Epworth sleepiness scale
HMM Hidden Markov model
HR Heart rate
HRV Heart rate variability
HST Home sleep test
IP Impedance pneumography
ICSD International classification of sleep disorders
MAD Mandibular advancement devices, tongue trusses
NCAP Non-cyclic alternating pattern
NPV Negative predictive value
NREM Non-rapid eye movement
OA Oral appliance
ODI Oxygen desaturation index, the average number of oxygen desaturations per

hour of sleep
OHS Obesity hypoventilation syndrome
OSA Obstructive sleep apnoea
OSAS Obstructive sleep apnoea syndrome
PAT Peripheral arterial tonometry
PPG Photoplethysmogram
PPV Positive predictive value
PROX Proximal skin temperature
PR Photoplethysmogram-derived heart rate
PSG Polysomnogram, overnight sleep study
PTT Pulse transit time
RDI Respiratory disturbance index
REM Rapid eye movement
RIP Respiratory inductance plethysmography
RMS Root mean square
RSA Respiratory sinus arrhythmia
SAS Sleep apnoea syndrome
SDB Sleep disordered breathing
SN Sensitivity
SP Specificity
SpO2 indirect measure of blood oxygen saturation from pulse oximetry
STOP BANG A questionnaire used to identify the presence of obstructive sleep apnoea
SWS Slow wave sleep
SWSD Shift work sleep disorder
TRDs Tongue retaining devices
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TST Total sleep time
UA Upper airway
UARS Upper airway resistance syndrome
US United States

1. Introduction

The ICSD has identified over 80 different sleep disorders, all of which have associated
treatments (Thorpy 1990, AASM 2005). The effects of sleep disorders are extensive, impacting
sufferers physically, psychologically and financially. Up to 40% of the US adult population
experience problems with falling asleep or daytime sleepiness, which are largely assumed to be
due to disturbed sleep patterns (Hossain and Shapiro 2002). It is difficult to quantify the impact
of poor sleep structure in a broad sense as it is often considered a symptom of other diseases,
although it is intricately connected to many of the dominant burdens of disease (Üstün et al
1996). In fact, the health effects of sleep disorders span a wide range: from the apparently
simple daytime sleepiness, which is a non-specific symptom common to other disorders (Pagel
2009), to the more severe effects of increased risk of cardiovascular disease and stroke (Young
et al 2002). Daytime sleepiness is the cause of hundreds of road traffic accidents, and has even
been linked to catastrophes such as Chernobyl (Hossain and Shapiro 2002). Moreover, poor
sleep affects one’s mental status, leading to poor mental function, reduced compliance which
compounds chronic disease treatment, and exacerbates mental conditions such as depression
and schizophrenia (Cho et al 2008, Wulff et al 2012).

Currently, the gold standard in terms of sleep disorder diagnosis is a sleep study, or an
overnight PSG. However, PSGs are expensive and are limited by the number of beds available
in the study centre and the number of specialists available to read the data. There are many
home sleep recording systems on the market which aim to reduce the financial cost per patient
and reach a larger population by reducing the number of parameters recorded. However,
without the guidance of a specialist, the patient, who has no medical or technical training,
has to place the sensors in the correct positions. If placed incorrectly, the results may be
inconclusive or misleading. Even if done correctly there may not be a trained specialist readily
available to analyse the data. There is therefore a need to increase the quality of automatic sleep
analysis, particularly for low-cost systems. This work reviews the physiology and treatment
of sleep disorders, focusing particularly on sleep apnoea, the monitoring modalities and most
commonly used signal processing techniques applied to signals which are useful for sleep
assessment.

2. Physiological and clinical background

2.1. The phenomenology of sleep

Loomis et al (1936, 1937) provided the earliest detailed description of various stages of
sleep, based on EEG, in the mid-1930s. In the early 1950s, Aserinsky and Kleitman (1953)
identified REM sleep, which is related to dreaming. Sleep has been traditionally divided into
two broad types: NREM and REM sleep. The sleep staging criteria were standardized in 1968
by Rechtschaffen and Kales (1968) (or R&K rules), based on EEG changes, dividing NREM
sleep into a four further stages (stage I, stage II, stage III, stage IV). (It should be noted that
some dreaming has been observed during NREM sleep.)

In 2004, the AASM standards commissioned the AASM Visual Scoring Task Force to
review the R&K scoring system. This document resulted in several minor changes, with
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the most significant being the combining of stages III and IV into stage N3. Arousals and
respiratory, cardiac, and movement events were also added to the scoring. The revised scoring
was published in 2007 as The AASM Manual for the Scoring of Sleep and Associated Events
(Iber et al 2007).

NREM and REM sleep occur in alternating cycles, each lasting approximately
90–110 minutes (min) in adults, with approximately 4–6 cycles during the course of a normal
6–8 hour (h) sleep period. However, these timings change depending on the length of time
asleep, age, medication, physical health and mental health. Furthermore, brief micro-arousals
can occur, lasting (by definition) from 1.5–3 seconds (s) and short awakenings (defined to be
longer 15 s) (Martin et al 1997).

Generally, in a healthy young adult, NREM sleep accounts for 75–90% of TST 6. NREM
sleep comprises approximately 3–5% in stage I, 50–60% stage II, and 10–20% stages III and
IV. REM sleep accounts for 10–25% of sleep time. Furthermore, stages I and II are known
as light sleep and III and IV as deep sleep, or SWS. In deep sleep, BP and HR are generally
at a 24 h low, and the sympathovagal balance shifts towards sympathetic withdrawal and
parasympathetic activation (Otzenberger et al 1998). In terms of cardiovascular activity, there
is little difference between REM sleep and wakefulness.

Sleep stages are often interrupted by brief arousals, lasting from less than a second to
several seconds. The mechanisms that lead to arousals are manifold, and the frequency of
arousal is a useful indicator of sleep health. The CAP is a physiological component of normal
NREM sleep, functionally associated with long-lasting arousal oscillations. This periodic
activity, which manifests as cycles on the EEG, is organized in sequences of two or more deca-
second cycles. It is also detectable in coma and neurologic disorders, appearing as a general
modality of arousal organization. Within NREM sleep, the fluctuations of CAP alternate with
sustained homogeneous EEG patterns, characterized by a greater stability of arousal and
so-called NCAP (Terzano et al 1988, 2000).

2.1.1. The role of light. In humans, the circadian rhythm for the release of melatonin from
the pineal gland is closely synchronized with the habitual hours of sleep. Alterations in
synchronization due to phase shifts (resulting from transmeridian airline flights across time
zones or unusual working hours) or blindness are correlated with sleep disturbances. Ingestion
of melatonin affects sleep propensity (the speed of falling asleep), as well as the duration and
quality of sleep, and has hypnotic effects (Brzezinski 1997).

Bright light and ingestion of melatonin may alter the normal circadian rhythm of melatonin
secretion, but the reports on this effect are inconsistent, probably because of variations in the
timing of the exposure to bright light or the administration of melatonin in relation to the
light–dark cycle. The onset of nocturnal melatonin secretion begins earlier when subjects
are exposed to bright light in the morning and later when they are exposed to bright light in
the evening. The administration of melatonin in the early evening results in an earlier increase
in endogenous night-time secretion (Brzezinski 1997).

Abnormal circadian rhythms have been implicated in affective disorders, particularly
in those characterized by diurnal or seasonal patterns, such as endogenous depression
and seasonal affective disorder (winter depression). Low night-time serum melatonin
concentrations have been reported in patients with depression, and patients with seasonal
affective disorder have phase-delayed melatonin secretion. Although bright-light therapy

6 Amount of actual sleep time in a sleep attempt (or sleep period); equal to total sleep period less movement and
awake time. TST is the total of all REM and NREM sleep in a sleep period.
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reduced the depression scores of such patients in one study, a direct association with the
phase-shifting effect of light on melatonin secretion was not substantiated (Brzezinski 1997).

2.2. Sleep disorders

The ICSD divides sleep disorders into eight categories (AASM 2005).

(i) Insomnias: difficulty falling asleep, difficulty staying asleep, early awakening or poor
sleep quality.

(ii) Sleep-related breathing disorders.
(iii) Hypersomnias of central origin not due to a circadian rhythm sleep disorder, sleep-related

breathing disorder or other cause of disturbed nocturnal sleep.
(iv) Circadian rhythm sleep disorders.
(v) Parasomnias: disorders that intrude into the sleep process and are manifestations of central

nervous system activation.
(vi) Sleep-related movement disorders.

(vii) Isolated symptoms, apparent normal variants and unresolved issues.
(viii) Other sleep disorders.

Hossain and Shapiro (2002) divide sleep disorders according to three major symptoms:
(1) insomnia or difficulty initiating or maintaining sleep; (2) hypersomnia or excessive
sleepiness; and (3) parasomnia or abnormal events during sleep. The authors found that
approximately 35–40% of the US adult population have problems with falling asleep or
daytime sleepiness annually, based on a self-reported survey. In addition, 20% of the general
population in the US have had a serious problem with insomnia. Psychological disturbances,
psychiatric problems, divorce, advancing age, poverty, unemployment, cigarette smoking, and
drug and alcohol abuse are all factors which increase the risk of insomnia. EDS and fatigue
have been shown to be the second largest group of sleep disorders, with approximately 5%
of the US adult population complaining of EDS. The problem with fatigue, sleepiness and
lethargy is that there are no clear objective metrics to distinguish between these three commonly
occurring symptoms. It has been suggested that fatigue contributes to poor work performance,
personal injury and disability, and is a symptom in conditions as diverse as multiple sclerosis
and cancer, as well as sleep disorders (Shapiro 1998). Hossain and Shapiro (2002) studied a
variety of sleep disorders which have fatigue as a symptom.

• Sleep-related breathing disorders. This is a group of conditions that may be associated
with alterations in the structure of sleep, in sleep quality and in gas exchange during
sleep (Iber 2005), and includes chronic snoring, UARS, OSA and obesity OHS. OSA is
the most common of these disorders, affecting 4% of middle-aged US males and 2% of
middle-aged US females (Young et al 1993). This condition has non-specific symptoms
and causes chronic sleep disruption. An estimated 80–90% of the US adult population
with OSA are undiagnosed (Young et al 1997) due to lack of self-referral or physician
awareness. A detailed description of the physiology of OSA can be found in Pepperell
et al (2002).

• Restless leg syndrome. This is a neurological disorder and causes an irresistible urge to
move the legs to relieve an uncomfortable sensation deep within the legs (Earley 2003).
This appears to be an age-related disorder affecting approximately 5% of 30–50 year olds;
30% of people over 50 and 45% of people over 65 in the US.

• CRDs. These are disruptions of the circadian time-keeping system that regulates the
(approximately) 24 h cycle of biological processes. (The circadian pacemaker in humans
is located mainly in the suprachiasmatic nucleus, which is a group of cells located in the
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hypothalamus.) Circadian rhythms are important in determining sleeping patterns and can
be (non-pathologically) disturbed by shift work, time zone changes (jet-lag), medications
and changes in routine. As such, CRDs can be subdivided into

– SWSD. People who frequently rotate shifts or work at night receive light stimulation at
the wrong time (relative to their behavioural patterns) and therefore find sleeping more
difficult. Approximately 25% of the US population is involved in shift work, and so it
is likely that these disorders have an impact on a healthcare system.

– Jet-lag or rapid time zone change syndrome. Similar to SWSD, jet-lag causes an
individual to be awake at inappropriate times relative to their body clock (until light
exposure eventually resets it). This syndrome consists of symptoms including insomnia,
excessive sleepiness and a lack of daytime alertness in people who travel across time
zones.

– DSPS. This is a disorder of sleep timing and environmental timing. People with DSPS
tend to fall asleep at very late times and have difficulty waking up in time for work,
school, or social engagements.

– ASPS. In this disorder the majority of sleep is advanced in relation to the desired clock
time. This syndrome results in symptoms of evening sleepiness, an early sleep onset,
and waking up earlier than desired.

– Non-24 h sleep–wake disorder. This condition is indicative of an individual
experiencing an abnormal sleep pattern where their sleep onset is delayed, i.e., they
go to bed and rise a bit later each day. This delay is independent of the light–dark
environment. They do not follow a 24 h day and so cannot follow the earth’s light–
dark cycle. Throughout time the person’s sleep cycle will be affected by inconsistent
insomnia that occurs at different times each night.

The variety of CRDs are further discussed in Sack et al (2007a, 2007b).
• Narcolepsy. This is characterized by EDS and abnormal REM sleep (Mignot 1998), and

affects 0.03–0.16% of the US population.
• Psychiatric disorders. There is a three- to four-fold increase in psychiatric disorders in

patients with sleep disruption (Ohayon et al 1997). Foster et al (Wulff et al 2012, 2010,
Foster and Wulff 2005) have written detailed papers regarding the connections between
sleep, circadian rhythm problems and psychiatric disorders.

• Alcohol abuse-related. Approximately 10% of the US adult population abuse alcohol,
which can cause sleep fragmentation and aggravate other coexisting or underlying sleep
disorders (Hossain and Shapiro 2002).

• Parasomnias. These are disruptive sleep-related disorders that can occur during arousals
from REM sleep or partial arousals from NREM sleep (see section 2.1). Parasomnias
include nightmares, night terrors, enuresis nocturna7, bruxism8, sleepwalking, confusional
arousals, and many others which have been described in Schenck et al (1996) and
Mahowald et al (1996). About 50% of adults have occasional nightmares, although these
events are particularly common in children with 10–50% of US 3–5 year olds experiencing
nightmares; up to 15% sleepwalk; and 30% of 4 year olds experience sleep enuresis,
although this condition may also be seen in older children (Hossain and Shapiro 2002).
5.3% of adults experience sleeptalking and 2.5% experience sleepwalking according to a
study carried out in the Los Angeles area (Bixler et al 1979), while 1.9% of adults in Hong
Kong have enuresis nocturna (Yeung et al 2004).

7 Bed wetting during the night. See Warrell et al (2003) for a full definition.
8 Teeth grinding. See Warrell et al (2003) for a full definition.
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Table 1. The economic costs of sleep disorders. Adapted from Hossain and Shapiro
(2002).

Direct costs Indirect costs Related costs Intangible costs

• Visits to health care • Illness-related loss or • Accident-related • Decreased quality
professionals reduction of productivity property damage of life

• Diagnostic tests • Ambulatory care • Travel costs to health • Impaired schooling
care providers

• Treatment • Industrial and motor • Costs to family of • Loss of activities
vehicle accidents additional care of daily living

• Hospital services • Increased comorbid condition
condition

Hossain and Shapiro (2002) also estimated both the financial and wider costs incurred by
society due to sleep disorders (see table 1). The authors found that the direct financial costs of
insomnia were $13.9bn in 1995 in the USA and $2bn in France for the same period, including
medication and health care services. Furthermore, an estimated $84m is spent annually on
over the counter sleep aids and a further $700m on hospital visits in each country. There are
no data available on the direct costs of EDS; however, the authors estimated it to be billions
of dollars in the US.

Indirect costs cover ambulatory care, absenteeism, disability, reduction or loss of
productivity, industrial and motor vehicle accidents, hospitalization, increased medical costs,
and increased alcohol consumption. Stoller (1994) estimated that reduced productivity cost
the US $41.1bn annually. An estimated $574.6m is spent annually on alcohol as a sleep aid in
the US in 1995 (Hossain and Shapiro 2002). Fatigue plays a huge part in industrial and motor
vehicle accidents. According to Aldrich (1989), people with sleep disorders are 1.5–4 times
more likely to be involved in accidents.

Related costs are difficult to determine as they involve property damage costs, travel
costs, general errors at work, and costs of other medical conditions resulting from the sleep
disorder. Intangible costs such as grief, pain and suffering, cannot be quantified financially but
are important in determining the effects of sleep disorders (Hossain and Shapiro 2002).

In 2002, a study was carried out by Soldatos et al (2005) which determined differences
regarding the prevalence and type of sleep disorders in different countries. Participants were
provided with a standardized questionnaire, and graded with the AIS (Soldatos et al 2000) and
the ESS (Johns 1991). The 35 327 subjects in the study were adults from 10 different countries.
The results were as follows: 24% did not sleep well; 31.6% had ‘insomnia’ (using the AIS);
an additional 17.5% may have ‘sub-threshold insomnia’; while a further 11.6% were either
‘very sleepy’ or ‘dangerously sleepy’ during the day (using the ESS). The report concluded
that sleep problems may even be underestimated in the general population. However, overall
sleep habits and total sleep durations were similar around the world although bedtimes and
waking times were different.

2.3. Categorical surveys and demographics

Questionnaires are commonly used as a first screening layer for sleep disorders, for example
the ESS (Johns 1991), the BQ (Netzer et al 1999), or the STOP BANG questionnaire9 (Chung
et al 2008). All scales have demonstrated variable results.

9 Named after the eight questions which comprise the test: Snoring, Tired, Observed, Blood pressure, BMI, Age,
Neck circumference, Gender.
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The ESS (Johns 1991) is a clinical tool used for assessing daytime sleepiness. The
maximum ESS is 24. ESS < 11, 11 < ESS < 14, 15 < ESS < 18 and ESS > 18 are classified
as normal, mild subjective daytime sleepiness, moderate subjective daytime sleepiness and
severe subjective daytime sleepiness respectively (Parkes et al 1998). The association between
ESS and OSA severity has been demonstrated to be relatively weak (Kingshott et al 1998,
Network 2003). Ahmadi et al (2008) obtained the results from the BQ on 130 sleep clinic
patients and reported 62% SN and 43% SP at the RDI 10 > 10 level obtained from full
PSG. The authors concluded that the BQ was not an appropriate instrument for identifying
patients with sleep apnoea in a sleep clinic population (Ahmadi et al 2008). Chung et al (2008)
developed the STOP BANG questionnaire for OSA screening in surgical patients (i.e., patients
about to undergo any surgical operation). Undiagnosed OSA in surgical patients can have a
serious impact on postoperative outcomes. Identifying patients with a high risk of OSA can
help to prevent adverse health events and perioperative outcomes. This questionnaire requires
information on snoring, tiredness during the day, existence of observed apnoea, high BP,
BMI 11, age, neck circumference and gender. The STOP BANG questionnaire was completed
by 2974 patients in the preoperative clinics of Toronto Western Hospital and Mount Sinai
Hospital, Toronto, Ontario, Canada. Of all patients who were invited, 211 patients agreed to
undergo polysomnography, 34 for the pilot study test and 177 for validation. Respective SN
of 83.6%, 92.9% and 100% with corresponding SP of 56.4%, 43% and 37% were found for
AHIs (the average number of apnoeas and hypopnoeas per hour) greater than 5, 15, and 30.
The Calgary sleep apnea quality of life index, also called the Flemons questionnaire (Flemons
and Reimer 1998), is a non-clinical questionnaire that evaluates health-related quality of life
in patients with sleep apnoea. The AIS consists of eight questions relating to difficulty falling
asleep, problems with awakening during the night, early awakening, sleep duration, overall
sleep quality and assessing how well you function during the day (Soldatos et al 2000).
Soldatos et al (2003) had the AIS completed by 299 subjects and found that it predicted the
likelihood of having insomnia with 93% SN and 85% SP.

Demographics have also been used to screen/predict OSA, including age, gender, height
and weight. Stradling and Crosby (1991) found that neck size (r2 = 7.9%, p < 0.0001) and
alcohol consumption (r2 = 3.7%, p < 0.0001) correlated best with OSA, and less well with
age (r2 = 1%, p = 0.009) and general obesity (r2 = 1%, p = 0.01). Chung et al developed
the STOP BANG questionnaire in two stages: firstly looking at STOP and then seeing the
improvement that could be obtained by including demographic information. The authors found
that SN (SP) went from 65.6% (60.0%) to 83.6% (56.4%) when demographics were included
for an AHI > 5, indicating that demographics may be useful. It unclear whether demographics
improve OSA diagnosis which may be because subjects are asked to fill in the information
themselves, and could therefore be reporting inaccurate figures.

2.4. Sleep apnoea

Between 1960 and 1980 SAS was identified and classified (Dalmasso and Prota 1996), with a
detailed paper written in 1976 by Guilleminault et al (1976). This is when the terms SAS and
OSA first appeared. Guilleminault et al (1976) defined an apnoea as the cessation of airflow
at the nose and mouth lasting at least 10 s and SAS is diagnosed when at least 30 apnoeic
episodes are observed in both REM and NREM sleep over a 7 h period. A hypopnoea is defined
as reduced airflow for at least 10 s and a fall in oxygen saturation (SpO2) of at least 4%. Now,

10 The respiratory disturbance index which is comprised of the AHI (the average number of apnoeas and hypopnoeas
per hour (see section 2.4 for more details)) plus any other occurrence that may disrupt sleep.
11 A proxy for measuring body fat based on an individual’s height and weight.
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Table 2. Prevalence of OSA around the world, m = male, f = female, N/A = not
applicable.

Age OSA rate
Study Location Ethnicity Gender (years) (%)

Bearpark et al (1995) Australia Caucasian m 40–65 3
Bixler et al (2001) USA Caucasian m, f 20–100 3.9 (m)

1.2 (f)
Ip et al (2001) Hong Kong Chinese m 30–60 4.1
Ip et al (2004) Hong Kong Chinese f 30–60 2.1
Kim et al (2004) Korea Korean m, f 40–69 4.5 (m)

3.2 (f)
Lam et al (2007) Asia Asian m, f middle 4.1–7.5 (m)

aged 2.1–3.2 (f)
Sharma et al (2006) India Indian m, f N/A 4.9 (m)

2.1 (f)
Udwadia et al (2004) India Indian m 25–65 7.5
Young et al (1993) USA Caucasian m, f 30–60 4 (m)

2 (f)

the ICSD defines OSAS as the combination of an AHI of at least five per hour combined with
EDS (Pevernagie et al 2010). There are two forms of SAS: CSA and OSA with the latter being
more common (Thalhofer and Dorow 1997), although a subject can experience both OSA and
CSA throughout the night. According to Thalhofer and Dorow (1997) CSA is characterized
by repeated apnoeas during sleep resulting from loss of respiratory effort.

OSA has been shown to increase the risk of motor vehicle accidents, hypertension and
possibly stroke and heart failure (Antic et al 2009) and is prevalent around the world (table 2).
The three most common symptoms of OSA are excessive sleepiness, impaired concentration
and snoring and certain factors (increasing age, male gender, obesity, sedative drugs, smoking
and alcohol consumption) increase the likelihood of apnoeas and hypopnoeas (Network 2003).

2.4.1. Background physiology. OSA is characterized by periods of breathing cessation
(apnoea) and periods of reduced breathing effort (hypopnoea) during sleep due to the complete
or partial collapse of the UA. This leads to deoxygenation (as there is no air going into the lungs,
the arterial oxygen levels drop and carbon dioxide levels rise) and consequent arousals caused
by a surge of sympathetic nervous system activity. The UA lacks rigid support and contains a
collapsible portion that extends form the hard palate to the larynx which allows for functions
such as speech, swallowing (food/drink), and breathing. The ability of the UA to change shape
is extremely important, but it also means that collapse can occur when undesired. A narrow
UA is generally more prone to collapse than a larger one. Imaging confirm that OSA patients
generally have a narrower UA than those without OSA. The way the surrounding soft tissues
are arranged appears to be altered in OSA patients which may facilitate UA collapse. There
is also increased closing pressure in OSA patients compared with control subjects. Overall,
patients with OSA have an anatomic compromise which makes them more susceptible to
pharyngeal collapse during sleep (Eckert and Malhotra 2008).

Respiration during sleep is different to respiration while awake. McNicholas (1997)
found that the overall trend is a reduction in ventilation during sleep compared to wakefulness.
Snoring is an obvious respiratory disorder that occurs during sleep. It is a common ailment,
affecting approximately 20–40% of the general population. The ICSD defines primary snoring
as ‘loud UA breathing sounds in sleep, without episodes of apnoea or hypoventilation’ (Thorpy
1990). Regardless of the definition used, snoring remains a subjective phenomenon. Snoring is
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Table 3. Wait time for diagnosis and treatment with continuous positive airway pressure
in five different countries (Flemons et al 2004).

Country Wait time (months)

United Kingdom 7–60
Belgium 2
Australia 3–16
United States 2–10
Canada 4–36

produced when the structures of the UA vibrate. Any membranous part of the airway lacking
cartilaginous support may vibrate. This diffuse involvement of the UA makes snoring difficult
to treat, as well as making theoretical models very complex. The spectral characteristics of
snoring depend on the properties of the segment responsible for the generation of snoring.
Snoring may be produced at several sites along the airway, and sometimes at multiple sites
simultaneously, so the power spectrum of snoring is wide, encompassing frequencies up to
10 000 Hz. The spectral characteristics of snoring depend on the route of breathing, stage
of sleep, posture, weight, airway wall mass and elasticity, and other factors affecting UA
properties (Kryger et al 2000). It is now known that snoring is an audible sign of increased
UA resistance and is a clinical hallmark of OSA (Thorpy 1990, Network 2003), although
there is no data giving the percentage of OSA patients who snore. Pevernagie et al (2010)
postulate that acoustic analysis of snoring will enable discrimination between ‘simple snorers’
and patients with OSA.

Cheyne–Stokes respiration, or the apnoea-respiration cycle, occurs when breathing is
characterized by rhythmic waxing and waning of the depth of respiration; the patient breathes
deeply for a short time and then breathes very slightly or stops breathing altogether. The
pattern occurs over and over, every 45 s to 3 min (Dorland 2003).

2.4.2. Current diagnostics. A PSG is the main tool used currently to diagnose sleep disorders,
and usually involves recording the EEG, the EOG, the EMG, the ECG, air flow, thoracic and
abdominal movements, and oximetry. Other parameters that may be monitored include body
position, video and audio surveillance. As well as all of the specialized equipment, a trained
technician is required to attach the sensors in the correct positions. There are controversies
surrounding the efficacy of sleep labs; it is thought that patients in a sleep lab do not sleep as
well as they do at home. However, such claims have been questioned by Portier et al (2000),
who provided evidence that sleep architecture and evaluation of sleep quality were no different
between either home or lab setting. Flemons et al (2004) focused on determining the wait time
for diagnosis and treatment in five different countries (table 3).

The authors postulated that the wait times resulted from the limited beds available for
sleep studies in each country, as well as a lack of sleep specialists to score the data.

The cost of monitoring a person overnight, the scarcity of beds available and the
uncertainty of whether the results are representative of a normal nights’ sleep means that
a move to home diagnostics is likely to be advantageous.

2.4.3. Treatments for sleep apnoea. The available treatments for OSA can be categorized
as follows (Guilleminault and Abad 2004).

• Diet and lifestyle: losing weight, avoiding tobacco, alcohol and sleeping tablets, and
modifying the usual sleeping body position can all aid in reducing the number of apnoea
and hypopnoea events that occur throughout the night.
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• Pharmacological treatments: avoiding benzodiazepines and barbiturates in particular, and
minimizing the use of narcotics in general, will help as they worsen apnoeas, hypopnoeas
and UA functionality. Some research has been carried out with limited success on drug
treatments which stimulate the neurotransmitters which contract the UA dilator muscles
in an effort to maintain UA patency (Hanzel et al 1991, Smith and Quinnell 2004, Heinzer
et al 2008).

• Therapeutic devices: these are OAs that physically modify the UA whilst being worn.
They are usually MAD or tongue trusses which hold the lower jaw and tongue forward.
The efficacy of OAs in the treatment of OSA is questionable as, on average, only 52%
of patients treated with OAs had some success in controlling OSA. Effects on sleepiness
and quality of life were demonstrated but improvement in other neurocognitive outcomes
were not consistent (Ferguson et al 2006). TRDs are another possibility which were
originally designed to combat snoring. They are mouthpieces which are worn while asleep
fitting over both upper and lower dental arches with a compartment to hold the tongue
in a forward position by suction. Cartwright et al (1988) found that TRDs can improve
nocturnal respiration for a wide range of apnoea severity, provided that the disorder is
more severe in the supine position and that the body weight is not greater than 50% above
the ideal. Although these devices have been shown to be effective, patient tolerance of the
device has appeared to be lower than MAD (McGown et al 2001). This might explain why
they are prescribed so infrequently (Hoffstein 2007).

• Surgery: there are a number of options for surgery on the UA. The area to be operated
on depends on where the obstruction occurs in the individual patient. Some of the
surgical treatments available include: nasal reconstruction—to improve normal respiration;
tonsillectomy and adenoidectomy—usually used for children with OSA in order to enlarge
the nasal inferior turbinates; mandibular osteotomy with genioglossus advancement—to
enlarge the retrolingual (posterior to the tongue) airway.

• Assistive devices: positive airway pressure devices are the most commonly used therapy
for OSA and include (CPAP, BiPAP and APAP. A device like an oxygen mask is worn over
the mouth and/or nose and pressurized air if forced down the airway thereby keeping it
open. They are extremely effective when used correctly; however, approximately 30–35%
of patients are intolerant or non-compliant due to the side effects of use, which include
skin abrasions, bruising, chaffing from the mask, nasal congestion or dryness, abdominal
cramping (Guilleminault and Abad 2004).

• Electrical stimulation: electrical stimulation of the lingual musculature is another form
of treatment. Fine wire electrodes are implanted into either the genioglossus or the
hypoglossal nerve. By stimulating the nerves, UA patency is improved and it is possible to
maintain airflow without arousing patients from sleep (Oliven et al 2001, 2003, Schwartz
et al 1996).

The list above comprises typical treatments available to sufferers of OSA in the
developed world. Although the same treatments can also be used in developing countries,
cost considerations and supply infrastructure limitations severely restrict their availability.
Lam et al (2007) conclude that while CPAP is available in many parts of Asia it may not be a
financially viable option. They also suggest that OAs may be a more suitable treatment as it is
likely that there are more modifiable factors in the craniofacial structure of Asian patients.
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3. Monitoring modalities

In 1994, the AASM published a classification scheme that categorized out-of-centre sleep
monitors into four types: (1) standard attended PSG; (2) comprehensive portable PSG
(unattended); (3) modified portable sleep apnoea testing (unattended, minimum of four
channels including ventilation, HR or ECG, and SpO2); and (4) continuous single or dual
bioparameter recording (unattended) (Ferber et al 1994). Since then, continuous technological
advances have produced monitoring systems which do not fit in these four categories, and
new classification schemes have been proposed (Collop et al 2011). Traditional modalities
included in PSG systems include EEG, oximetry, cardiovascular measures and respiration.
Non-traditional modalities, such as audio, actigraphy, video or temperature, are receiving
increasing interest due to their potential utility for reduced PSG systems and home sleep
monitors.

3.1. Non-cardiac electropotentials

The traditional recording of EEG information for sleep analysis is through the standard 10–20
system, which describes the method and application of scalp electrodes (Niedermeyer and
Da Silva 2005). The method was designed to ensure standardization and reproducibility on
an inter- and intra-subject basis. The 10–20 system is based on the relationship between the
location of an electrode and the underlying area of cerebral cortex12. The frequency content of
the EEG, relevant to sleep, is mostly in the 0–12 Hz region. However, it is typical to record the
EEG and other electrical signals at 100–500 Hz. Since the signals are in the microvolt range,
relatively high quality amplifiers and good quality analogue-to-digital converters with wide
dynamic ranges (16–24 bit) are required. In general, EOG is used to identify eye movements
and EMG is used to identify the drop in muscle tone seen during REM sleep.

3.2. Oximetry

Monitoring of peripheral oxygen saturation (SpO2) allows for the identification of drops in
oxygen supply during respiratory-related events, such as apnoeas. SpO2 is most commonly
measured by using pulse oximetry, which is said to represent one of the most important
technological advances in patient monitoring in the last decades (Webster 1997). Pulse
oximetry is based on the PPG, which is an optical measurement technique that can be used to
detect blood volume changes in the microvascular bed of tissue (Challoner 1979). An excellent
review on photoplethysmography and its clinical uses can be found in Allen (2007).

The PPG waveform comprises two components: a pulsatile (‘ac’) physiological waveform
(commonly referred to as PPG signal), which reflects cardiac synchronous changes in the blood
volume with every heart beat, and a slowly varying (dc) component that relates to the tissues and
to the average blood volume. Variations in the DC component are due to respiration, vasomotor
activity and vasoconstrictor waves, among other causes. Pulse oximeters use electronic filtering
and amplification to separate the ac and dc components for estimating the peripheral SpO2

and for extracting the PPG signal. Figure 1 presents synchronous excerpts of physiological
signals during an apnoeic event, including SpO2 and PPG.

The PPG waveform can be severely corrupted by artefacts, noise and missing values, which
would produce erroneous SpO2 readings, leading to false desaturation alarms. Additionally, the

12 The ‘10’ and ‘20’ refer to the fact that the actual distances between adjacent electrodes are either 10% or 20% of
the total front–back or right–left distance of the skull.
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Figure 1. Excerpt of synchronous oxygen saturation (SpO2), HR, ECG, PPG and IP
tracings during an apnoeic event from a neonatal subject from the MIMIC II database
(Saeed et al 2011, Goldberger et al 2000). A cessation of respiration can be observed in
IP at t = 10 s, followed by bradycardia (drop in HR) around 20 s later and by an abrupt
drop in oxygen saturation starting around t = 36 s.

pulsatile component of the PPG waveform is highly susceptible to motion artefacts. Different
ways to address these problems are described in section 4.3.

3.3. Cardiovascular measures

HR is an important physiological parameter to measure for sleep monitoring. Episodes of
OSA are accompanied by a characteristic HR pattern consisting of bradycardia during apnoea
followed by abrupt tachycardia on its cessation (Guilleminault et al 1984), which can be used
to detect OSA. HR can be derived directly from the ECG, or indirectly from other physiological
waveforms, such as the PPG signal (Allen 2007).

Arterial BP is another important clinical parameter to track during sleep. The standard
method for automated BP measurement is oscillometry. Oscillometric devices use a cuff
with a pressure sensor. The cuff is inflated to a pressure in excess of the systolic arterial
pressure, and then the pressure reduces to below diastolic pressure. Once the blood flow is
present, but restricted, the cuff pressure varies in synchrony with the cyclic expansion and
contraction of the blood vessel. The values of systolic and diastolic pressure are then computed
from the sensor readings. However, since oscillometric BP measurement involves temporary
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constriction of blood supply to an arm (or leg), it is deemed unsuitable for use in sleep
because it can arouse the patient. Therefore, non-invasive approaches have been proposed for
BP monitoring in sleep studies, since surrogate measures of BP can be obtained from ECG
and PPG signals (see section 4.4). Commercial equipments such as FinapresTM (no longer
commercially available), the Portapres and Finometer systems (Finapres Medical Systems
BV, Holland), and the Task Force Monitor system (CNSystems Medizintechnik, GmbH) are
less disturbing than oscillometric devices, but can still be uncomfortable for the patients.

Arousals from sleep are associated with increased sympathetic activation, which produces
peripheral vasoconstriction. Autonomic arousals or central nervous activations can thus be
recognized by means of PAT (Schnall et al 1999). The PAT signal is measured with a finger
plethysmograph coupled to a constant volume, variable pressure, pneumatic system, which
records pulsatile volume changes in the finger tip (Schnall et al 1999). The PAT signal reflects
the vascular tone at the finger which is influenced by BP, peripheral vascular resistance, blood
volume in the finger, and activation of the autonomic nervous system, and therefore can serve
as a single non-invasive correlate for sympathetic activity (Penzel et al 2004).

3.4. Respiration

A common method to detect breathing events during sleep is by detecting reductions in
airflow or tidal volume. Pneumotachography and body plethysmography have traditionally
been considered the gold standards for assessment of these measures. In the case of
pneumotachography, the patient’s nose and mouth must be covered (leak free) by a face
mask with a pneumotachometer attached to it, which can be obtrusive and cumbersome and
may not be tolerated by the patient (AARC-APT 1995). During body plethysmography, the
patient must be enclosed in a chamber equipped to measure pressure, flow, or volume changes.
Therefore, neither technique is suitable for routine PSG (Redline et al 2007).

Alternative methods to measure airflow include thermistors and nasal cannula pressure
transducers. Thermistors measure temperature differences. As the subject breathes, cooler
ambient air is inspired from the room and passes the thermistor, which is typically placed
near the subject’s nose and/or mouth. On expiration, the subject’s breath is warmer than
ambient. The thermistor therefore produces a sinusoidal wave representing inspiration and
expiration, but there is no direct correlation between the amount of air inspired and the size
of the waveform. These sensors are commonly included as a component of PSG and are
recognized as a reliable method to detect complete airflow cessation, but, since they do not
provide quantitative measures of airflow, they are not adequate to detect hypopnoeas. On the
other hand, nasal pressure transducers provide a linear approximation of airflow, but it may be
not as accurate in distinguishing an apnoea from a hypopnoea (Flemons et al 2003).

RIP measures the changes in thoracic cross-sectional area to provide an indirect measure
of ventilation. An approximate measure of the cross-sectional area is obtained by measuring
the self-inductance of elastic belts containing insulated wires which are wrapped around the
abdomen (Cohn et al 1982). In this way, RIP can provide a measure of tidal volume when it
is calibrated to a known volume measure. RIP is considered appropriate for obtaining both
qualitative and quantitative indices of breath volume, including identification of the time
components of the respiratory cycle (Flemons et al 2003).

Another way of measuring respiratory effort is by IP, which is based on the principle
that volume changes within an induced electrical field are accompanied by changes in
electrical resistance. IP monitors insert a high-frequency (HF), low-amperage current through
electrodes placed on the chest of the patient, and then the small changes in electrical
resistance accompanying each breath are measured electronically (Stein and Shannon 1975).
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Figure 2. Excerpt of audio for an apnoeic patient over 4 min. There are corresponding
reductions in airflow, changes in HR and PPG as well as oxygen desaturations that are
out of phase with the cessation of breathing. AU = arbitrary units.

An advantage of IP is that the same electrodes can be used for recording the ECG
signal, so electrodes are usually placed on standard ECG locations. Nevertheless, electrode
configurations for IP are still subject to research (Seppa et al 2010). An example of IP signal
during an apnoeic event can be observed in figure 1.

Respiratory effort can also be measured with alternative methods such as chest-wall
and abdominal movement via strain gauges, piezoelectric belts, inductance pneumography,
endoesophageal pressure, or by intercostal EMG (AARC-APT 1995, Folke et al 2003).

3.5. Audio

Audio recording is a useful method for monitoring sleep as it is inexpensive and does not
disturb the natural sleep environment as the microphone does not need to touch the subject.
Audio recordings are used to identify snoring, normal breathing or obstructive events (see
figure 2).

Although there are no data available regarding the prevalence of snoring in the OSA
population, it is common enough to be considered a common symptom of the disorder
(Thorpy 1990, Eckert and Malhotra 2008). It is likely that analysing snoring will be helpful
in identifying subjects with OSA. The analysis of snoring sounds involves the use of speech
analysis techniques. Similar to the production of speech, snoring can be seen as the conversion
of an air-stream to audible sound which is modified by the UA. In speech, in order to generate
different phonemes (the elements of speech), the vocal tract changes shape. These changes
occur relatively slowly compared to the detailed time variation of the speech signal. The sounds
created in the vocal tract are shaped in the frequency domain by the frequency response of
the vocal tract. This process can be modelled using the source-filter model (Titze 2000). This
separates the initial source at the glottis and interprets the vocal tract as a filter which acts
upon the original source. The major assumption is that the source and filter are independent
of each other, which has been shown to be untrue by recent studies (Titze and Story 1997).
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Figure 3. Excerpt of body movement over the course of three days, with corresponding
light levels.

3.6. Body movement

3.6.1. Actigraphy. Accelerometry, also called actigraphy or actimetry, is an inexpensive, non-
invasive and easy-to-use modality, often used for sleep and circadian research. Actigraphy
measures movements, typically with piezo-electric wearable sensors, and then extracts
information regarding periods of sleep and wake from those movements. A simplified view
of actigraphic sleep–wake segmentation is based on assumption of scoring non-movement
episodes as sleep and movement as wake (see figure 3); although many algorithms have
been developed to distinguish wake from sleep using the rest-activity pattern from actigraphy.
Plotting the rest-activity patterns as in figure 4 allows for the visualization of different disorders,
in this case the subject experiences early morning awakenings. Actigraphy gained a central
role as a tool for long-term sleep monitoring, despite relatively low (<50% (Paquet et al
2007)) specificity in detecting wakefulness in certain experimental conditions, compared to
standard PSG sleep analysis (Sadeh 2011): although actigraphy is complimentary to PSG as it
can record movements over 24 h for extended periods. Use of actigraphy may be preferred to
PSG in situations where long-term sleep/wake monitoring is required as compliance with PSG
is low, or in some special cases, for example in infants under one year, when EEG patterns are
not yet stable (So et al 2007). Established areas of actigraphy usage include:

• sleep–wake segmentation and sleep analysis derived from physical activity
• circadian rhythms analysis
• analysis of physical activity in the context of sports and rehabilitation.

3.6.2. Body position. OSA severity is known to vary with sleep position and the estimated
severity will vary depending on the ACC with which sleep time can be estimated (Collop et al
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Figure 4. Simultaneous rest-activity and ambient light exposure (yellow, in lux) patterns
derived from three weeks wrist activity monitoring of a 35 year old woman during
ordinary home/work conditions. The actogram shows clear entrainment to the day-night
cycle but with early morning awakenings. Actigraphic data are 48 h double plotted with
successive days on vertical axis. Activity recorded with a 1 min epoch using Actiwatch-L
with integrated light sensor. (Unpublished data of K Wulff.)

2007). Body position can be measured using an accelerometer, at the same time as recording
body movements.

3.7. Video

Video recording is a powerful non-contact method for monitoring sleep in adults and children
as it is relatively cheap and does not disturb the natural sleep environment. Video recordings
have been widely used to correlate PSG signals with patient’s sleeping behaviour and
respiratory and body movements in sleep (Anders and Sostek 1976, Griffiths et al 1991,
Sivan et al 1996, Banno and Kryger 2005, Silvestri et al 2009). Simpler PSG systems
including video recording with or without recordings of a number of physiological signals
have been proposed for low-cost portable/home sleep screening (Sivan et al 1996). In
recent years, video recordings have been used to automatically detect and monitor respiratory
movements and body position during sleep with the aim of aiding the diagnosis of sleep
disturbances or assisting the evaluation of quality of sleep (Nakai et al 2000, Nakajima
et al 2001, Wang et al 2006, Liao and Yang 2008, Liao and Kuo 2011). Video analysis for
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body position is quite rare, although it is often a preferred clinical tool. It is particularly
useful as a gold standard for assessing if a suspected apnoeic event was real or not,
and for identifying body position at any given point in the recording. Limb movement is
also relatively easy to detect. One caveat, however, is that a subject is often under bed
covers, and so much of the body can be obscured. Moreover, the recording environment
has extremely low light levels in general and therefore infra-red lights and infra-red-
sensitive cameras are usually employed, together with patterned bed sheets (Wang et al
2007).

3.8. Temperature

Human body thermoregulation is well known to be regulated by the circadian system and
contribute to the sleep process (Cagnacci et al 1997, Kräuchi et al 2006, Kräuchi and
Wirz-Justice 2001). There are several indicators of body temperature, in particular CBT,
PROX and DIST linked together within a core-shell thermoregulatory model (Aschoff 1983)
and influenced by the hormone melatonin.

CBT is well known to be correlated with the sleep process and circadian system status
(the circadian system regulates both CBT and sleep), decreasing during sleep and increasing
during arousal (CBT is lowest in the second half of the night and highest the late afternoon).
This pattern of CBT regulation does not depend on arousal state and is present during sleep
deprivation (Kräuchi and Wirz-Justice 2001). Thus, monitoring of CBT is one method for
the evaluation of circadian system status (Cagnacci et al 1997, Kräuchi et al 2006, Klerman
et al 2002). However, in estimation of circadian system phase, CBT shows the lowest ACC
compared to cortisol and melatonin data (with standard deviations of 0.78, 0.65 and 0.23–0.35 h
respectively) (Klerman et al 2002); however, when compared to melatonin and cortisol, CBT
is coupled most strongly to the pacemaker rhythm if it is measured under constant conditions.
CBT is well correlated with PROX, but is in anti-phase with DIST (Cagnacci et al 1997).
However, PROX tends to be significantly affected by the placement of the sensor, physical
movement, artefact, ambient temperature and vasomotor activity.

Unlike CBT, DIST increases during the sleep and this effect can be masked by sleep
deprivation (Kräuchi and Wirz-Justice 2001). Within the core-shell thermoregulatory concept,
DIST is linked with heat loss regulation (Aschoff 1983). DIST increase is correlated with
decreased sleep onset latency (Kräuchi and Wirz-Justice 2001, Kräuchi et al 2006), however
this finding does not seem to be valid for elderly subjects with sleep problems (Raymann et al
2007).

In practice, measurements of CBT are both invasive and complicated in the case of
long-term circadian cycle monitoring. Therefore new measures of the circadian system are
introduced, based on multiple factors. Sarabia et al (2008) suggested the use of wrist skin
temperature to evaluate circadian rhythms in normal-living subjects and showed that it is
correlated with oral temperature recordings. Although it is possible to find the circadian
periods, and hence, determine the phase of this variable; however, wrist skin temperature
cannot be used to estimate the circadian rhythmicity and phase of the entire circadian
system. Ortiz-Tudela et al (2010) suggested an integrated variable, based on thermometry,
actimetry and body position to reduce individual recording artefacts and showed that it is
well correlated with rest-activity logs. Kolodyazhniy et al (2011) evaluated circadian phase
estimation using standard least squares algorithmic regression techniques on skin temperatures,
accelerometry and ambient light level in the blue spectral band and showed a statistically
significant improvement of variance of prediction error over traditional single predictor
methods.
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4. Signal processing

4.1. EEG

As described earlier (in section 2.1), stages I and II are known as light sleep and III and IV
as deep sleep, or SWS. In general, deeper sleep is associated with a shifting of power from
higher to lower frequencies (see below) but transient chirp-like phenomena are also present.

For example, the K-complex is a brief negative high-voltage (>100 μV ) peak, followed
by a slower positive oscillation lasting around 350 to 900 ms, ending in a final negative peak.
K-complexes occur13 roughly every 1.0 to 1.7 min and are often followed by bursts of sleep
spindles. Sleep spindles (sometimes referred to as sigma bands or sigma waves) may reflect
the inhibiting of processing to enable the sleeper to remain in an unaroused state. Along with
K-complexes, sleep spindles define the onset of stage II sleep.

In general, it is not possible to differentiate wakefulness from REM sleep using the EEG
alone, since the spectral and morphological content is highly similar in both states. Therefore,
the EOG and EMG are also recorded. The EOG allows the identification of the periodic flicking
of the eye muscles during the REMs of REM sleep. The EMG records the muscle movements
as the subject’s muscle tone drops during the same phase of sleep.

As stated earlier, the AASM Visual Scoring Task Force updated the R&K scoring system,
and the revised scoring was published in 2007 as The AASM Manual for the Scoring of Sleep
and Associated Events (Iber et al 2007). The redefined criteria are now:

• Stage N1: the transition of the brain from alpha waves (8–13 Hz), which are commonly
observed during wakefulness, to theta waves (4–7 Hz). (This stage is also sometimes
referred to as somnolence or drowsy sleep.)

• Stage N2: is characterized by sleep spindles ranging from 11–16 Hz and K-complexes.
Muscular activity and conscious awareness vanishes.

• Stage N3: (SWS) is characterized by a minimum of 20% of the epoch duration (30 s) being
delta waves (0.5–2 Hz), when exceeding a peak-to-peak amplitude >75 μV.

4.1.1. CAP and NCAP sleep. Although the topic of much debate, CAP is the cyclic
alternating pattern, defined by Terzano et al (1988, 2000). They distinguish sleep as phases
with CAP and phases without CAP, which they like to call NCAP. The cyclic alternating pattern
is defined according to signal content in various types and these types are called phases. It is
being used in the sense of ‘epoch’ rather than phase in the sense of offsets in rise times or
frequency patterns between two or more oscillators. Each CAP cycle consists of a phase A
and a phase B, lasting 2–60 s. All CAP sequences start with a phase A and stop with a phase
B. In NREM sleep, the phase A patterns are characterized by single or clustered phasic events,
peculiar of each sleep stage (Terzano et al 1988, 2000, Ferri et al 2002).

During sleep stage 1:

• intermittent alpha rhythms (EEG synchronization) and
• sequences of vertex sharp waves (EEG synchronization).

During sleep stage 2:

• sequences of two or more K-complexes alone (EEG synchronization) or
• followed by alpha-like components (EEG desynchronization) and
• beta rhythms (EEG desynchronization).

13 Both spontaneously and in response to both internal and external stimuli such as respiratory, tactile and audio
events.
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During SWS:

• delta bursts (EEG synchronization) which exceed by at least 1/3 the amplitude of the
background activity.

During all sleep stages:

• transient activation phases (EEG desynchronization) and
• EEG arousals (EEG desynchronization).

The period between two successive A phases separated by an interval longer than 60 s is scored
as NCAP (non-CAP).

4.1.2. Issues with manual sleep staging from the EEG. Manual staging is based upon visual
inspection of the EEG as well as the EOG and EMG traces. Originally the R&K rules
(Rechtschaffen and Kales 1968) recommended dividing the PSG record of sleep into 30 s
epochs, commencing at the start of the study. The 30 s interval was chosen because at a paper
speed of 10 mm s−1, ideal for viewing alpha and spindles, one page equated to 30 s of the
recording. A stage was then assigned to each epoch and if two or more stages coexist during a
single epoch, the stage comprising the greatest portion of the epoch was used. This introduces
significant problems for teaching algorithms to perform automated sleep scoring, since almost
50% of the data used for training can therefore be of the wrong class. (In practice, sleep stages
often persist from one epoch to the next, and the number of ‘mixed’ stage epochs is much less
than 50%. However, it only takes a small number of mixed stages to substantially affect the
training of an automated classifier.)

Inter-rater reliability/agreement has been shown to vary between 0.6 and 0.9 (using
Cohen’s κ value14 (Crowell et al 1997, Stepnowsky et al 2004, Ferri et al 2005, Rosa et al
2006). In particular, abnormal conditions can reduce the agreement level. Although this does
not always directly impact on the eventual diagnosis, it has a particularly problematic impact
on automated classification systems, which can disproportionately weight incorrectly labelled
examples during training.

4.1.3. EEG-based automatic sleep staging. Automated sleep analysis has been around for
almost thirty years (Crawford 1986). Since an exhaustive review of automated EEG-based
sleep staging approaches is outside the scope of this review, we present a brief overview of
the general approaches, and some key results and issues.

Automatic sleep staging should follow a number of well-defined steps: artefact rejection;
decomposition into background waves and specific patterns (such as vertex waves, sleep
spindles, K-complexes); decide whether to mimic sleep stages according to the R&K rules or
the new revised classification prepared by the AASM; cluster into sleep stages (a classification
task); map the clustered sleep stages to the definitions of visual sleep stages. EEG segments
were characterized by a set of parameters. Within the parameter space it was checked whether
EEG segments which belong to the same sleep stage would cluster is space. As this was
the case, it was possible to define clusters in the parameter space where were specific to a
sleep stage. It should be noted that the algorithms used for the different steps may consist of
a variety of methods. Finally, the difference between a computer assisted sleep staging and
a reference sleep staging cannot be smaller than the difference between different clinicians
visually scoring sleep stages. The difference between sleep scorers heavily depends on the
training of the scorers. It is likely that scorers attending a common or comparative methods

14 A statistical measure of inter-rater agreement or inter-annotator agreement for categorical items.
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course (such as the AASM Internet based sleep scoring comparison (Penzel et al 2013)) will
have quite similar scoring results, whereas sleep scorers who have no contact or are from
different parts of the world will have remarkable differences in scoring.

In general, most approaches to automated sleep analysis using the EEG consist of a
feature extraction approach, followed by a classification step. The features are almost always
based on frequency-domain parameters such as an AR model (Roberts and Tarassenko 1992),
Fourier or bispectral analysis (Wang et al 2009), or wavelet approaches (Ahmed et al 2009).
Occasionally, time-domain features are used instead, or as well, such as entropy (Jiayi et al
2007). The classifier then takes the features and maps them to one of several classes (such
as a sleep stage, or an event such as an apnoea). Numerous classifiers have been used,
ranging from neural networks (Roberts and Tarassenko 1992) to support vector machines,
K-means clustering approaches (Gudmundsson et al 2005), and fuzzy logic (Liang et al
2011). Alternative approaches have included the use of time delay embedding, Kalman filters
and HMMs (Rossow et al 2011).

An early, yet successful approach was described by Roberts et al (Roberts and Tarassenko
1992, Pardey et al 1996). The approach introduced a neural network-based sleep staging system
which gave a probability that the subject was awake, in light sleep or deep sleep every second.
The system did not differentiate between REM and NREM sleep and was partially sensitive
to the electrode location (although could be trained for any give electrode configuration).
Their system was initially assessed on six normal subjects who experienced a wide range
of sleep stages and they showed that it was possible to derive an automated hypnogram
although they believed that it was not the best format for detailed investigation of the sleep
process. The system was later commercialized by Oxford Instruments (Oxford, UK) and then
later Oxford Biosignals (Oxford, UK) as the software system BioSleep, and a Holter device,
BioSomnia.

Since then, many automated sleep classification algorithms have become commercially
available, including QUISI (Axon GmbH, Schmalkalden, Germany), a single channel, self-
applicable ambulatory EEG recording device. Fischer et al (2004) found that the QUISI system
gives an impression of sleep architecture and objective verification of a sleep disturbance in
an ambulant setting but cannot replace conventional PSG. Both BioSomnia and QUISI used
just three electrodes placed on the head, producing a signal that was a mixture of EEG, EOG
and EMG. Both systems attempted to split the signal into the different component signals and
then derive a sleep parameter. As expected, the systems differ somewhat in their algorithms
and thus, the results provided to the user. Rather than providing sleep stages in 30 s epochs,
the BioSomnia system presented an almost continuous (1 Hz) sleep depth trace with values
between ±1, where +1 indicates a strong probability of being fully awake (or in REM sleep)
and −1 indicates a high probability of being in SWS. When comparing the system to R&K sleep
staging, stage 1 sleep as well as REM sleep and sometimes even drowsiness can sometimes be
observed to have values close to 0. Therefore an approximate time course of the sleep could
be discerned, but conventional sleep staging was not possible. (Comparing 30 s epochs with
1 s epochs is non-trivial though.) However, the BioSleep algorithm did produce standard sleep
metrics such as TST, sleep offset, SE, microarousal indices, etc, allowing for assessment of
overall sleep quality. The QUISI system used 12 features based on power spectral analysis
(without further information provided by the developers) from the three electrodes attached
to the forehead and a neural network (Ehlert et al 1998). The neural network outputted a
seven class sleep hypnogram for each 30 s epoch (movement time, wake, REM, and stages 1
though 4).

The limitations of these machine learning approaches may well be related to the key issues
when training a piece of software to reproduce human observations, namely:
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(i) having enough training and testing data (i.e., enough for the required free parameters of
the classifier, as well as enough patients to be representative of the population to which
the system may be applied), and

(ii) assuming that the new unseen dataset will have similar characteristics to those used in the
first place to train the model (often out-of-sample patients exhibit unusual characteristics),
the performance on an unseen test set should be similar to a training set. Large differences
in performances in folds of a cross-fold validation can indicate that test set performance
reduction can be due to a lack of enough representative events in the training data, and
that further data collection is required. It may be non-normal subjects exhibit a higher
heterogeneity of features relevant to the disease, and therefore larger numbers of non-
normal subjects are required to achieve similar classification accuracies as for normal
subjects, and

(iii) having a high enough Cohen’s κ coefficient between experts to avoid class confusion
when presenting the data to the classifier (since experts often disagree of sleep stage
classification and such ambiguities can reduce classifier performance).

In both systems mentioned above, the neural networks were trained and tested on relatively
small numbers of patients. Moreover, the number of annotators used to ensure an accurate class
label (sleep stage) were low (often only two). This causes two key problems. First, there is a
small but non-negligible possibility two annotators can (incorrectly) agree on a class, either
through fatigue-related errors, or because the signal is rather difficult to classify. Even small
amounts of incorrectly labelled data can lead to large training errors in a nonlinear classifier
(such as a neural network). The second major issue caused by the low number of experts is
that epochs where experts disagree are not used in training and testing. (In general at least
three, but often more experts are needed, depending on the number of classes, training of the
annotators, their independence and the quality and type of data (Reidsma and Carletta 2008,
Artstein and Poesio 2005, Neamatullah et al 2008).) This leads to a bias in classification ACC
towards epochs that are clear cut in terms of classification, which turns out to be the extreme
values of very deep sleep or wakefulness.

The other key issue related to labelling is that temporal majority voting is used in the
R&K scoring. This means that almost half the 30 s epoch (14.9 s) can be a different class to
the actual label given, and yet still the entire segment is given the same label. (Arousals and
micro-arousals, as well as other events may be annotated, but this information is not always
made available or used during training.) When training BioSomina/BioSleep the entire segment
was used (and broken down into 1 s segments, all with the same label as the epoch from which
they were taken), since the intra-segment stage changes are not recorded by the annotator.
This is particularly problematic for stages where the signal is less stable, and explains why the
lighter stages of sleep are more confusing to the classifier. Classifying an entire epoch, such
as in the QUISI system, may therefore make more sense (if trying to completely replicate the
human classification approach), although it will still be partially susceptible to the problem
of intra-epoch transient stage changes. However, the 30 s epoch was chosen (in the 1960s)
to reduce the human computational burden and break the tasks of reviewing the PSG down
into a set of chunks with which a human could cope. Changes in sleep stage happen much
more rapidly that this though, and with the appearance of extremely powerful computing, it
may make sense to reduce the 30 s epoch in length, although comparability to current clinical
norms would be reduced.

Apart from the issues mentioned above, related to the inter-rater agreement levels and
coarseness of the temporal resolution of scoring, some of the key issues related to sleep
staging include contamination by artefacts (Anderer et al 1999), and the similarity between
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wakefulness and REM sleep on the EEG. REM sleep can sometimes be discerned if the
EOG and/or EMG is used to identify REMs and mastication respectively. However, since such
activity does not always manifest during REM sleep, it is by no means definitive. Finally, many
studies indicate that sleep staging or event classification in pathological subjects (or subjects
under the influence of certain medications) is far more difficult that in normals (Jensen et al
2010, Fraiwan et al 2011). It should be noted that some progress has been made on abnormal
patients. The method of Roberts and Tarassenko (1992) was later extended by Tarassenko
et al (2001) to score the sleep of OSA subjects. It should be noted that there is a lot of sleep
fragmentation in patients with OSA which makes any classification task difficult. There is also
a lot of movement and sweating artefacts in the EEG in OSA patients. The authors showed
that a network trained on normal sleep data could be used to score the sleep of patients with
OSA. Although the EEG patterns are the same, there was heavy fragmentation of sleep and
the sequence in which the patterns occur is different, with the subject falling into light sleep
during the apnoea, then waking up at the cessation of the apnoea. This pattern can repeat many
times during the night.

Automated sleep staging algorithms do offer the potential for low-cost screening, with
reduced EEG lead sets, and less intensive human training required. However, since most
algorithms have not been designed to replicate the clinical sleep stages exactly (partially
because of the problems detailed above), there is not a general trust of automated sleep staging
in the clinical setting.

Moreover, the variation in automated sleep staging algorithm outputs and sensor placement
means that it is hard to validate commercial devices in terms of matching sleep stages.
Despite this, several groups have tried. Schweitzer et al (2004) evaluated BioSomnia in a
population of 36 subjects with OSA, and an average SE of 79%. The authors reported that
BioSomnia had a bias of +4.1% for estimation of SE compared with PSG, and over-estimated
TST by approximately 11 min (3.3%) above the average of 330 min. Caffarel et al (2006)
subsequently showed a per-epoch agreement with expert annotation of κ = 0.47 (overall
epoch ACC of 82.2%) and a bias of +6.9 min for TST in a population of 114 patients with
suspected OSA, exhibiting an average SE of 77.8%. Fischer et al (2004) reported on a study
on the QUISI system in a mixed population of 40 patients with average SE of 91.2%. The
QUISI system underestimated TST by 19.2 min, and 4.6% in SE. Berthomier et al (2007)
assessed another single-channel EEG device (ASEEGA, Physip, Paris, France) by scoring
sleep in 15 healthy volunteers (average SE 85.3%), and reported κ = 0.82, and an ACC
for sleep stage classification of 96.0%. Wright et al (2008) studied the now unavailable Zeo
(Newton, MA, USA) on ten normal adults (average sleep efficiencies of 83%) and reported
per-epoch classification accuracies of between 88% and 91%. Popovic et al (2008) analysed a
combined single-lead EEG plus a forehead mounted actigraph, with a reported ACC of 79% and
κ = 0.54. This highlights how it is generally easier to classify healthy patients.

4.2. ECG

Analysis of the ECG recorded during sleep is useful for more than simply HR and rhythm
measurements. Respiration can be derived from the ECG and respiratory patterns are useful
for detecting apnoea and phenotyping sleep sections.

4.2.1. ECG-derived respiration. In general EDR can be obtained from two effects. The first
method relies on the fact that the cardiac electrical axis changes as the air filling the lungs
pushes the heart off axis compared to the electrode positions (Moody et al 1985, 1986). The
general effect is a periodic attenuation of the ECG amplitude (most obviously on the QRS
height) in time with respiratory effort.
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Figure 5. Excerpt of the ECG of a healthy subject over 25 s. The R peaks have been
calculated, along with the corresponding HR and EDR.

Another method of calculating EDR relies on a physiological modulation of the HR, or
beat-to-beat (RR) interval which can be observed in many patients. The periodic changes in
the RR interval manifests as a shortening with inspiration and lengthening with expiration,
which generally lags respiratory effort with a variable phase. This phenomenon, known as RSA
is partly due to the Bainbridge reflex15, the expansion and contraction of the lungs and the
cardiac filling volume caused by variations of intra-thoracic pressure (Guyton and Hall 2001).
During inspiration, the pressure within the thorax decreases and venous return increases which
stretches the right atrium resulting in a reflex which increases the local HR (i.e., shortens the
RR intervals). During expiration, the reverse of this process results in a slowing of the local
HR. Resampling the RR interval time series can therefore reveal a respiratory signal, if the
average Nyquist frequency condition is met. (Note the data are irregularly sampled in time, so
an average Nyquist condition is appropriate.) In subjects with rapid breathing (faster than half
the average HR) the average Nyquist criterion is not met (Clifford et al 2006). It should also
be noted that the RR interval time series (or tachogram) contains more than just a respiratory
frequency, and therefore caution must be taken in interpreting a given frequency as respiratory
in origin (Nemati et al 2010). An example of EDR with the actual ECG can be seen in
figure 5.

The phase between the respiratory RR interval oscillations and respiratory-related changes
in ECG morphology is not static. The reason for this is that the mechanisms which alter
amplitude and timing on the ECG are not exactly the same (although they are coupled either
mechanically or neurally with a phase delay which may change from beat-to-beat). These
phase changes turn out to provide information concerning sleep physiology, as we will discuss
in section 4.2.3.

4.2.2. Heart rate variability and sleep. Bernardi et al (2000) demonstrated that HRV in
conscious patients as measured by the low-frequency (LF) to HF ratio ( LF

HF -ratio) changes
markedly depending on a subject’s activity. (The LF and HF bands are generally defined to
be [0.04 : 0.15) Hz and [0.15 : 0.40) Hz respectively.) Their analysis involved measuring the
ECG, respiration and BP of 12 healthy subjects, all aged around 29 years (yr), for 5 min during
a series of simple physical (verbal) and mental activities. Despite the similarity in subject
physiology and physical activity, (all remained in the supine position for at least 20 min prior

15 The acceleration of the HR resulting from increased BP in, or increased distension of, the large systemic veins and
the right upper chamber of the heart which prevents the pooling of blood in the venous system (Dorland 2003).
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Table 4. LF
HF -ratios during wakefulness, NREM and REM sleep. N/A = not available,

post-MI = a few days after myocardial infarction, CNS = non-cardiac related problem.
Results quoted from Otzenberger et al (1998), Vanoli et al (1995) and Lavie et al (1999).

Activity → Population REM NREM
Condition ↓ Size Awake Sleep Sleep

Normal (Otzenberger et al 1998) 15 N/A [2 : 2.5] [0.5 : 1]
Normal (Vanoli et al 1995) 16 4.0 ± 1.4 3.1 ± 0.7 1.2 ± 0.4
CNS Problem (Lavie et al 1999) 22 N/A [3.5 : 5.5] [2 : 3.5]
Post-MI (Vanoli et al 1995) 16 2.4 ± 0.7 8.9 ± 1.6 5.1 ± 1.4

to, and during the recording), the daytime LF
HF -ratio had a strong dependence on mental activity,

ranging from 0.7 for controlled breathing to 3.6 for free talking. It may be argued that the
changes in these values are simply an effect of changing breathing patterns (that modify the
HF component). However, significant changes in both the LF component and BP readings
were also observed, indicating that the feedback loop to the CNS was definitely affected. The
resultant change in HRV is therefore likely to be more than just a respiratory phenomenon. The
HF contribution is often dominated by respiratory modulation on the beat-to-beat intervals
(RSA) but is not the only component of the HF activity. Moreover, respiration can dip below
0.15 Hz into the LF region.

Differences in mental, as well as physical activity should therefore be minimized when
comparing HRV metrics on an inter- or intra-patient basis. Since it is probably impossible to
be entirely confident whether a subject is controlling their thought processes for a few minutes
(the shortest time window for traditional HRV metrics (Malik 1996)), this would imply that
HRV is best monitored while the subject is asleep, during which the level of mental activity
can be more easily assessed.

Furthermore, artefacts in the ECG are significantly reduced during sleep (because there is
less physical movement by the subject) and the variation in LF

HF -ratio with respect to the mean
value is reduced within a sleep state (Clifford and Tarassenko 2004, 2005, Clifford 2002).
Sleep stages usually last more than 5 min (Lavie 1996), which is larger than the minimum
required for spectral analysis of HRV (Malik and Camm 1995). Segmenting the RR time series
according to sleep state basis therefore often provide data segments of sufficient length with
minimal data corruption and departures from stationarity (which otherwise invalidate the use
of Fourier techniques) (Clifford and Tarassenko 2004).

When loss of consciousness occurs, the parasympathetic nervous system begins to
dominate with an associated rise in HF and decrease in LF

HF -ratio. This trend is more marked for
deeper levels of sleep (Otzenberger et al 1998, Vanoli et al 1995). The power spectral densities
calculated from 5 min of RR interval data during wakefulness and REM sleep reveal similar
spectral components and LF

HF -ratios (Otzenberger et al 1998). However, stage II sleep and
SWS exhibit a shift towards an increase in percentage contributions from the HF components
(above 0.15 Hz) with LF

HF -ratio values around 0.5 to 1 in NREM sleep and 2 to 2.5 in REM
sleep (Otzenberger et al 1998). In patients suffering from a simple CNS but non-cardiac related
problem, Lavie et al (1999) found slightly elevated NREM LF

HF -ratio values of between 2 and 3.5
and between 3.5 and 5.5 for REM sleep. Vanoli et al (1995) report that myocardial infarction
generally results in a raised overall LF

HF -ratio during REM and NREM sleep with elevated LF
and LF

HF -ratio (as high as 8.9) and lower HF. Values for all subjects during wakefulness in these
studies (2.4–4.0) lie well within the range of values found during sleep (0.5–8.9) for the same
patient population (see table 4). This demonstrates that comparisons of HRV between subjects
should be performed on a sleep-stage specific basis.
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Some studies in the literature have shown that the segmentation of the ECG into sleep
states and the comparison of HRV metrics between patients on a per-sleep stage basis increases
the sensitivity sufficiently to allow the separation of subtly different patient groups (normals
and sleep apnoeics16), as long as a suitable spectral estimation technique (such as the Lomb–
Scargle periodogram (LSP)) is also employed. In particular, it was found that SWS gave
the lowest variance in the LF

HF -ratio both in an intra- and inter-patient basis, with the fewest
artefacts, confirming that SWS is the most stable of all the sleep stages. However, since certain
populations do not experience much SWS, it was found that REM sleep is an alternative
(although slightly more noisy) state in which to compare HRV metrics (Clifford and Tarassenko
2004, 2005). The HR or RR time series can be considered to be a series of states, connected by
transitions (McSharry and Clifford 2005). Each state can be described by an interval length,
a LF/HF-ratio, mean and variance (of the HR). The inter-state interval lengths are described
by scaling laws which differ considerably depending on whether a subject is asleep or not.
Specifically, they were modelled according to the findings of Lo et al (2004), who observed
that duration of brief wake episodes during the sleep period exhibit a scale-free power-law
behaviour with an exponent that remained the same (approximately equal to 2.2) across a
diverse range of species, while sleep episode durations followed exponential distributions with
characteristic time scales, which change across species in relation to body mass and metabolic
rate. This indicates that the cardiovascular dynamics that govern sleep and wakefulness are
very different and that the use of these dynamics is likely to reveal differences between sleep
and wakefulness, rather than specific sleep stages, as observed in the published literature.

4.2.3. Coupling between HRV and respiration. The changes in the sequence of RR intervals
during RSA are also heavily correlated with respiration through neurological modulation of the
sino-atrial node. However, as noted earlier, since the QRS morphology shifts due to respiration
are mostly mechanically mediated, the phase difference between the two signals is not always
constant. Thomas et al (2005) demonstrated that by tracking changes in this coupling through
cross-spectral analysis of the EDR and RSA time series, they were able to quantify the type and
depth of sleep that humans experience into CAP and NCAP sleep (rather than the traditional
R&K scoring).

Following Thomas et al (2005), frequency coupling can be measured using the cross-
spectral density between RSA and EDR. Two slightly different measures are noted: (a) the
coupling frequency with respect to magnitude of the sinusoidal oscillations A( f ) and (b) the
consistency in phase of the oscillations �( f ). These are calculated separately such that

A( f ) = E
[∣∣Pi

xy( f )
∣∣2]

(1)

and

�( f ) = ∣∣E[
Pi

xy( f )
]∣∣2

(2)

where E[.] is the expectation operator across all the i = 1, . . . , N segments and Pi
xy( f ) is the

cross-periodogram of the ith segment.
In general, Pxy( f ) is complex even if X (t) and Y (t) are real. Since A( f ) is calculated by

taking the magnitude squared of Pxy( f ) in each block followed by averaging, it corresponds to
the frequency coupling of the two signals due to the oscillations in amplitude only. Similarly,
since �( f ) is computed by first averaging the real and imaginary parts of Pxy( f ) across
all blocks followed by magnitude squaring, it measures the consistency in phase of the
oscillations across all blocks. A( f ) and �( f ) are normalized and multiplied together to

16 Even when all data associated with the apnoeic episodes were excluded.
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obtain the cardiorespiratory coupling (CRC), a measure of the strength of coupling between
RSA and EDR as follows:

CRC( f ) = A( f )

max[A( f )]
∗ �( f )

max[�( f )]
. (3)

CRC lies in the range between 0 and 1 with a low CRC indicating poor coupling and therefore
increased activity. A high CRC (>0.4) indicates decreased activity that can be interpreted
as sleep or sometimes sedation (Clifford et al 2005). A value closer to 1 means strong
coupling of RSA and EDR at a given frequency. It should be noted that this method is a
slight modification of the one described in Thomas et al (2005) (called CPC), where the
squaring of the phase is taken before the averaging. This difference does not lead to significant
differences in the metric as a predictor of stable (coupled HF) activity however. Furthermore,
in CPC, the cross-power is thresholded at different frequencies to produce an output of
wakefulness/REM sleep (WR), unstable/CAP sleep, or stable/NCAP sleep. NCAP sleep is
correlated with low sedation/agitation (Riker) levels (Clifford et al 2005, Riker et al 1999)
and WR is correlated with medium to high agitation (Riker) scores. Figure 6 illustrates the
application of this technique to a patient in Physionet’s Chronic Heart Failure database (Baim
et al 1986, Goldberger et al 2000). The upper plot is a cross-spectrogram; a time series of the
cross spectral density between the EDR and RSA.

Coupling between RSA and EDR is more evident or easily obtainable when the subject
is at rest (or in stable sleep, or perhaps, deep sleep) where there are fewer factors that may
significantly influence changes in the respiratory rate or HR. Therefore, this technique has also
been employed to detect changes in activity or stationarity in patients (Clifford et al 2005).
Furthermore, the strongest coupling frequency is directly correlated with respiration, which
is also a good index of activity, as well as an estimate of the prevailing respiratory rate. A
sensitivity analysis of this technique also shows that the CPC metric is extremely robust to
noise (Clifford et al 2005), since presence of noise on the ECG is correlated with changes in
activity (Clifford et al 2002).

It should be noted that the analysis of synchronization between the cardiac cycle and the
respiratory frequency has been an area of interest for a few years now (Hoyer et al 2001),
with promising results for determining the health of a certain patient groups. More recent
(unpublished) work by the authors of this paper shows that a wavelet approach can produce
similar results (see figure 6, lower plot). A wavelet-based approach leads to a higher temporal
resolution than a Fourier approach, and may therefore enable an identification of transient
events such as short term arousals, which are known to be associated with changes in HR and
respiratory patterns.

Subsequently, Redmond and Heneghan (2006) derived cardiorespiratory features from
the ECG recorded from 37 subjects being evaluated for the presence of OSA. They trained a
quadratic discriminant classifier to select between wakefulness, REM sleep, NREM sleep and
‘sleep (REM and NREM). For subject-independent training they achieved a κ of 0.32 and a
classification ACC of 67%. (By comparison, the same authors managed to achieve an ACC of
84%, and a κ of 0.68 using EEG-derived features from the same population.) This illustrates
the difficulty in actually classifying sleep states, and more focus has been given to identifying
consequent conditions (such as OSA). In 2000, the first PhysioNet/Computing in Cardiology
Challenge was ‘Detecting and quantifying apnoea based on the ECG (Moody et al 2000). A
training set of 35 ECG recordings was made available for algorithm development, and results
from a test set of 35 different ECG recordings were made available for independent scoring.
Of the 13 algorithms in the competition, the best made use of frequency-domain features
to estimate changes in HR and the effect of respiration on the ECG waveform. Four of the
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Figure 6. Spectrogram of EDR-RSA coherence (upper plot), and equivalent wavelet
cross spectral coherence (lower plot) for the same overnight RR tachogram for a chronic
heart failure patient. Note both signals are normalized to the interval [0 1] and frequencies
�0.5 Hz are not considered because the average HR is ∼60 bpm (1 Hz). The wavelet
approach also includes a bounding region inside which significant coupling is detected,
and arrows to indicate phase of the coupling, with EDR leading RSA for right pointing
arrows.

algorithms achieved perfect scores of 100% on the training set, and two achieved an ACC of
over 90% on the independent test set. Penzel et al (2002a) present an excellent summary of
the entrants to the competition and an analysis of the issues involved. However, it is clear that
the interplay between HR and respiration have a significant role to play in both identifying
changes in sleep stages, and classifying sleep-related disorders.
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4.3. The photoplethysmogram and oxygen saturation

Together with ECG, PPG is the most widely used technique for at-home sleep monitoring and
in simplified PSG systems. The main use of PPG in sleep studies is the measurement of SpO2,
either for sleep apnoea alarm systems or for OSAS diagnosis.

Apnoea alarm systems usually derive the SpO2 from the PPG signal and provide an alarm
trigger when the SpO2 falls below a predefined value, or when it drops by a certain amount
from baseline. Acceptable SpO2 levels may vary with the type of patient; target values ranging
from 85–95% have been considered acceptable for infants (Finer and Leone 2009), while
desaturations of more than 2–5% have been considered indicative of OSAS in adults (Flemons
et al 2003). However, an important limitation of pulse oximetry monitors is the high rate of
false alarms, produced by motion artefacts and poor sensor contact (Chambrin 2001). False
alarm rates between 70% and 80% have been reported in the literature (Petterson et al 2007,
Monasterio et al 2012), mainly due to movement artefacts.

Most pulse oximeters deal with this problem by averaging SpO2 measures to provide a
smooth output and to reduce the impact of artefacts. Usual averaging time windows range
from 5–12 s (Barker 2002). Furthermore, several manufacturers have included motion tolerant
algorithms in their systems (Petterson et al 2007, Barker 2002). Since these algorithms are
proprietary, the details of such technologies are not generally available, and their performance
is not well documented.

Rather than incorporating sophisticated algorithms into pulse oximeter systems, an
alternative approach is to pass the output of pulse oximeters through a postprocessing step
for artefact rejection (Lee et al 2010, Krishnan et al 2010, Sukor et al 2011). For example,
Gil et al (2005) proposed an artefact rejection algorithm based on the Hjorth parameters
(which represent an estimate of the spectral characteristics of the PPG signal) (Sornmo and
Laguna 2005), and applied it to detect decreases in the amplitude of the PPG signal during
polysomnography (DAP events) robustly, obtaining a sensitivity and positive predictive value
over 70% in real signals; the number of DAP events per hour during sleep was found to be
significantly higher in children with OSAS than in healthy controls (Gil et al 2008). In Li and
Clifford (2012) a dynamic time warping approach and a neural network were used to classify
each PPG pulse as good or bad quality. Using separate training and testing sets a 95% ACC was
achieved on independent test data. In Monasterio et al (2012), the quality of the PPG signal
was assessed using a characteristic feature called spectral purity (Sornmo and Laguna 2005),
and the resulting quality indices were incorporated into a false alarm detection algorithm
for SpO2 monitors. The resulting algorithm was able to differentiate between apnoea-related
desaturations and false alarms with 90% ACC on independent test data from 27 neonatal
patients.

Various quantitative indices have been derived from overnight pulse oximetry for the
diagnosis of OSA. One of them is the ODI which is the average number of oxygen desaturations
per hour of sleep. In order to mirror the definition of an abnormal AHI, cut-off points for an
abnormal ODI have been proposed (either 5, 10 or 15 desaturations per hour), but there is
little evidence of one definition having greater validity than the others (Netzer et al 2001).
Another index is the cumulative time spent below a threshold of 90% (Martinez et al 2005).
Furthermore, more sophisticated signal processing techniques have been proposed in order
to increase the sensitivity and specificity of conventional time-domain screening techniques.
Hornero et al (2007) analysed the SpO2 signal from 187 subjects (111 with OSA, 76 without
OSA). They found that OSA patients had a significant increase in approximate entropy
(ApEn) values, leading to SN = 82% and SP = 86% on the test set using a threshold of
0.77 for the mean ApEn. Morillo et al (2009) studied 117 subjects (87 males, 30 females;
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mean age = 58.4 yr; BMI = 31.4 ± 5.3 kg m−2) using Poincaré quantitative descriptors and
achieved SN = 90% and SP = 84% on the test set. Alvarez et al (2010) analysed 148 subjects
(116 males, 32 females; age = 52.9 ± 14.1 yr; BMI = 29.8 ± 5.6 kg m−2) with suspected
OSA. Sixteen time and frequency PPG features were used to characterize changes in the SpO2

profile during the night which achieved SN = 92%, SP = 85.4% and ACC = 89.7% using
mulitvariate analysis.

In addition to SpO2, PPG also provides information on HR and respiration rate. The
pulsatile component of the PPG is synchronous with the beating heart, and therefore can
be a source of HR information. There has been extensive research on the derivation of HR
from PPG signals. Existing methods usually compute HR by upsampling the PPG signal and
detecting peaks or zero crossings, and sometimes they incorporate artefact-rejection algorithms
(Allen 2007). A still open question is whether the variability of the PPG-derived HR (PR)
accurately reflects the HRV as measured with ECG signals in sleep studies. Recent studies
indicate that PR variability and HRV indices could be significantly different during OSA
(Khandoker et al 2011). The authors recorded ECG and PPG measurements simultaneously
from 29 healthy subjects and 22 OSA patients. The HR and PR were significantly correlated
(correlation coefficient r > 0, 95, p < 0.01). Comparing 2 min recording epochs demonstrated
significant differences (p < 0.01) between normal and OSA events using PR variability and
HRV measures.

A number of signal processing algorithms have been proposed to estimate the respiration
rate from the PPG. This is possible because respiration causes variation in the peripheral
circulation, which is reflected in the PPG as a LF component (Allen 2007). Reported mean
estimation errors range from 0.04 to 3 breaths min−1 (Fleming and Tarassenko 2007). Most
existing methods, however, have only been validated in normal-breathing populations, which
may preclude their use on sleep disorder breathing (SDB) patients (Allen 2007).

In summary, new developments on signal processing have greatly improved the usefulness
of PPG. Traditionally, the main use of PPG was to detect desaturations by setting a threshold
for the SpO2 time series. Recent signal processing techniques expand the utility of PPG in
three ways. First, they reduce the influence of movement artefacts, thus decreasing the rate of
false desaturation alarms; second, new quantitative indices can be computed from the SpO2

time series to improve the diagnosis of OSAS; and third, indirect information on HR and
respiration can be extracted from the PPG waveform, which opens interesting possibilities for
reduced PSG systems.

4.4. Blood pressure and arterial tonometry

There is a growing interest in non-invasive BP measurement techniques for ambulatory sleep
monitoring (Gesche et al 2012, Chen et al 2012). A widely used surrogate measure of BP is
the evaluation of the PTT, which gives a quantitative measure of the time that the pulse wave
needs for passing from one artery, typically the aorta, to another, typically in the periphery,
and is approximated as the interval between the ECG R peak and the corresponding PPG
wave (this approximation is usually called the pulse arrival time) (Naschitz et al 2004). On
the other hand, Chua et al (2010) compared the peak-to-trough amplitude of the PPG signal
and the pulse arrival time as surrogate measures of systolic BP in 18 young, healthy subjects
(14 males, 4 females; age = 24 ± 5 yr; BMI = 23.8 ± 4.0 kg m−2). The authors found that the
pulse amplitude showed stronger correlation with continuous systolic BP than pulse arrival
time.

The correlation between attenuations in the PAT signal, declines in the PTT, and arousals
has also been a subject of interest (Penzel et al 2002b, Katz et al 2003, O’Brien and Gozal
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2005). O’Brien and Gozal (2007) analysed data from ten healthy children and found that
declines of at least 15 ms in the PTT and PAT amplitude attenuations from baseline of at least
20% were very sensitive for arousal recognition (SN of 96% and 92% respectively), although
poorly specific (SP of 30% and 19% respectively). Also, a wrist-worn device based on the PAT
signal, the WatchPAT 100 (Itamar Medical; Caesarea, Israel) has been designed for unattended
home sleep studies. The scores for apnoea/hypopnoea computed by the WatchPAT 100 (using
proprietary algorithms) have been found to strongly correlate with standard polysomnographic
indices of respiratory disturbance (r = 0.88, p < 0.0001) when the data for 102 subjects were
analysed (78 males, 24 females; 69 with OSAS, 33 normal volunteers; age = 41.1 ± 15.2 yr;
BMI = 26.8 ± 5.5 kg m−2) (Bar et al 2003).

4.5. Respiration

In the analysis of respiration for SDB diagnosis, the automatic differentiation of obstructive
and central respiratory events remains a major challenge (Morgenstern et al 2010). The most
reliable technique to differentiate these events is oesophageal pressure (Quan et al 1999),
which is a complex and invasive technique. Non-invasive alternatives have been proposed
which make use of different techniques: wavelet analysis of the airflow signal (Fontenla-
Romero et al 2005), which achieved an ACC of 84% in the classification of an independent
test set with 120 obstructive and central apnoeas; forced-oscillation technique (Yen et al
1997), with an ACC of 100% in a small independent test set with 50 obstructive and central
apnoeas; and automatic classifiers of nasal airflow measures (Morgenstern et al 2010), with a
cross-validation ACC of 90% in a set of 769 central and obstructive hypopnoeas.

As explained in sections 4.2.1 and 4.3, respiratory estimations can also be obtained from
ECG and PPG, which is specially interesting for reduced PSG systems. Recently, Nemati
et al (2010) and Li et al (2008) developed a data fusion framework that combines respiratory
estimations from different sources and computes a robust and more accurate estimate of the
respiration rate. Results from 30 patients showed that the root mean square (RMS) error of
the fused respiration rate estimation is between 1 and 4 breaths min−1 lower than the error of
ECG and PPG-derived respiration rate estimations.

There is increased interest in the incorporation of automated respiratory detection
algorithms into CPAP therapeutic devices for the follow-up of OSAS patients after diagnosis.
Examples of this technology are the REMstar Pro II and the C-Flex systems (Philips
Respironics, PA, USA). However, the utility of such systems for assessment of therapeutic
effectiveness requires further outcome data (Prasad et al 2010).

4.6. Audio

Due to the physiological similarities between speech and snoring, and the availability of
common methods for digital processing and analysis, audio analysis of snoring has been
approached from the perspective of speech analysis. It should be noted that the literature is
replete with small population studies of snoring, with sensitivities and specificities ranging
from 70 to 90% and accuracies for apnoea detection from 70 to 80%. However, not only have
small populations been used (generally between 5 and 60 subjects), results on training (and
not independent test sets) have been reported.

4.6.1. Snoring and choke formants. Linear predictive coding (LPC), developed in the late
1960s by Atal and Hanauer (1971), attempts to model each new speech sample as a linear
combination of previous samples. LPC is a model of an all pole filter; the vocal tract can be
approximated by LPC due to its resonant chambers, except for nasal sounds which introduce
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zeros. Ng et al (2008a) analysed the snoring sounds of 30 apnoeic snorers (24 males, 6 females;
age = 44 ± 13 yr; BMI = 29.3 ± 6.9 kg m−2; AHI = 46.9 ± 25.7 events h−1) and 10 benign
snorers (6 males, 4 females; age = 41 ± 12 yr; BMI = 26.9 ± 5.6 kg m−2; AHI = 4.6 ± 3.4
events h−1). The first three formant frequencies17 (f1, f2, f3) were calculated using LPC and
used to classify apnoeic snorers from benign snorers with SN = 88%, SP = 82%. Sola-Soler
et al (2003) analysed 447 snores of 8 simple snorers (6 males, 2 females; age = 46.0 ±
8.15 yr; BMI = 27.93 ± 3.01 kg m−2; AHI = 8.78 ± 2.64 events h−1) and 236 normal and
429 post-apnoeic snores of 8 OSA patients (8 males; age = 50.75 ± 8.01 yr; BMI = 28.96
± 2.32 kg m−2; AHI = 34.04 ± 25.1 events h−1) (total sample size = 1112 snores). They
calculated the formant frequencies of the spectral envelope and found that all snores have 2–6
marked formants in some common frequency ranges. On average, OSA patients had a lower
mean formant in each band, regardless of whether normal snores or post-apnoeic snores are
considered. Yadollahi and Moussavi (2009) analysed the formant frequencies of breath and
snore sounds for 15 subjects (12 males, 3 females; age = 52.3 ± 15.2 yr; BMI = 35.1 ±
4.6 kg m−2; AHI = 33.9 ± 42.3 events h−1). A total of 1636 snore segments and 3059 breath
segments at different sleeping positions were selected from all subjects (total sample size =
4695) and the authors found that f1 and f3 were significantly different between breath and
snore segments (p = 0.003 and p = 0.0244 respectively).

4.6.2. Frequency analysis. A lot of work has been done on frequency/spectral analysis. Fiz
et al (1996) studied 17 male snorers: 10 with OSA (BMI = 32.9 ± 7.6 kg m−2; AHI = 26.2
events h−1) and 7 simple snorers (BMI = 29.7 ± 7.2 kg m−2; AHI = 3.8 events h−1). There was
a significant negative correlation between AHI and peak and mean frequencies of the snoring
power spectrum (p � 0.0016 and p � 0.0089, respectively). McCombe et al (1995) studied 9
OSA patients (8 males, 1 female; BMI = 28.7 ± 4.1 kg m−2; AHI > 15 events h−1) and 18
simple snorers (16 males, 2 females; BMI = 28.6 ± 3.9 kg m−2; AHI � 15 events h−1) and
developed their own acoustic measure which classified subjects with SN = 67%, SP = 100%,
PPV = 100% and NPV = 86%. Perez-Padilla et al (1993) analysed ten heavy snorers and
nine OSA patients using the fast Fourier transform (FFT) and found that most of the snoring
noise power occurred below 2 kHz with a peak power less than 500 Hz. OSA patients showed
a sequence of snores with spectral characteristics that varied markedly through an apnoea-
respiration cycle. OSA patients exhibited residual energy at 1 kHz while heavy snorers did not.
Hara et al (2006) analysed 46 OSA patients (40 males, mean BMI = 25.8 kg m−2; 6 females,
mean BMI = 26.1 kg m−2; AHI � 20 events h−1) and 12 simple snorers (8 males, mean BMI =
24.5 kg m−2; 4 females, mean BMI = 24.8 kg m−2; AHI � 5 events h−1). The parameters used
were peak frequency, soft phonation index (SPI), noise to harmonics ratio (NHR), and power
ratio. SPI is the average ratio of lower frequency harmonic energy in the 70–1600 Hz range
to higher frequency harmonic energy in the 1600–4500 Hz range. NHR is the average ratio of
the inharmoic spectral energy in the 1500–4500 Hz range to the harmonic spectral energy in
the 70–4500 Hz range. The power ratio is the ratio of the power spectrum below 800 Hz to the
power spectrum above 800 Hz. The authors found that simple snorers had a high SPI value,
while OSA snores had a high NHR and a low power ratio. Herzog et al (2008) studied the
peak intensity of the power spectrum. There were 60 patients included in this study (60 males;
mean age = 50 yr; mean BMI = 29.6 kg m−2; 18 patients had an AHI � 10 events h−1).
A raised AHI correlated significantly with an increase in peak intensity of the FFT curve (p <

0.001). A number of acoustic properties have been used to try to classify OSA including noise

17 Formant frequencies appear where there is a concentration of acoustic energy around a particular frequency in the
acoustic wave.
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to harmonics ratio (Hara et al 2006), peak intensity (Herzog et al 2008), formant frequencies
(Lee et al 2001, Ng et al 2008a) and phase coupling relations (Lee et al 2001, Abeyratne et al
2007, Ng et al 2007).

It should be noted that the above techniques assume stationarity; an assumption which is
likely to be broken. Wavelet analysis is a suitable method for analysing non-stationary signals
such as speech/snoring signals. Ng et al (2008b) used the snoring sounds of 30 snorers with
OSA (24 males, 6 females; age = 44 ± 13 yr; BMI = 29.3 ± 6.9 kg m−2; AHI = 46.9 ±
25.7 events h−1), and 10 snorers without OSA (6 males, 4 females; age = 41 ± 12 yr;
BMI = 26.9 ± 5.6 kg m−2; AHI = 4.6 ± 3.4 events h−1). A snore activity detector based
on the translation-invariant discrete wavelet transform was applied in order to find the snore
signals, which was 10% more accurate than the conventional energy and zero crossing rate
approach.

4.6.3. Hidden Markov models. Duckitt et al (2006) recorded the sounds of six subjects
(four males, two females; age range = 43–75 yr) sleeping in their own homes. None of
the participants had been clinically diagnosed with OSA, but were self-reported snorers. The
recordings were manually classified into epochs of snoring, breathing, duvet noise, silence, and
other noise. The data were parametrized with mel-frequency cepstral coefficients18 (MFCCs)
(Davis and Mermelstein 1980) calculated for time n̂ as follows:

m f ccn̂[m] = 1

R

R∑
r=1

log(MFn̂[r])cos

[
2π

R

(
r + 1

2

)
m

]
.

HMMs were used to model the different types of sounds. The audio data were both manually
segmented as well as using the HMMs to segment the data into periods of snoring, silence,
breathing, duvet noise and other noise. The authors found that the SN = 89% when the HMMs
were trained on the training data from all six subjects and tested on the training data of all
six subjects; when the HMMs were trained on three subjects and tested on the other three
subjects the system had SN = 82% when comparing the results with the manually produced
transcription of the same data.

4.6.4. Energy distribution. Cavusoglu et al (2007) analysed the energy distribution in order
to distinguish between snoring and non-snoring events. The study used 30 subjects: 12 OSA
patients (12 males; age = 53.26 (range 44.87–61.65) yr; BMI = 32.76 (range 27.47–38.05)
kg m−2; AHI = 39.21 (range 22.17–56.25) events h−1) and 18 simple snorers (16 males,
2 females; age = 46.92 (range 40.21–53.63) yr; BMI = 27.66 (range 23.41–31.91) kg m−2;
AHI = 4.29 (range 3.03–5.55) events h−1). Snoring episodes exhibited a regular pattern in
the spectrogram and could be easily distinguished from other sounds. The algorithm had a
SN = 90.2% and a PPV = 98.7% for simple snorers, and a SN = 86.8% and a PPV = 93.8%
for OSA patients. Jones et al (2005, 2006a, 2006b) studied a number of acoustic features:
snore duration, snore loudness, snore periodicity and sub-band energy distribution. There were
20 patients involved in this study (18 males, 2 females; age = 46 (33–65) yr; BMI = 31.6
(26.9–44.1) kg m−2). The results were used to determine whether palatal surgery had been
successful. The Pringle and Croft grading (using objective methods) had 62.5% SP, 50% SN,
66.6% PPV and 45.5% NPV; the Camilleri et al grading (using objective methods) had 37.5%
SP, 91.7% SN, 68.7% PPV and 75% NPV.

18 MFCCs make up a Mel-frequency cepstrum which is a representation of the short-term power spectrum of a sound,
based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency.
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4.6.5. Pitch. Pitch is associated with the vibration frequency of the vocal cords and is the
psycho-acoustic equivalent of the fundamental frequency. Because speech changes over time,
the pitch will change as well, therefore it is common to track the pitch over time (Pevernagie
et al 2010). Abeyratne et al (2005) divided snore-related sounds into pure breathing, silence
and voiced/unvoiced snores. Voiced components, ssv(n), were separated from unvoiced ones,
ssuv(n), using pitch information particular to ssv(n). A number of parameters in the pitch
information could be changed, and when applied to a clinical database of 16 patients (8
males, 8 females; age = 52 (36–71) yr; AHI = 30.3 (3.3–85.7) events h−1), the SN ranged
from 86% to 100%, with SP remaining between 50% and 80%. Abeyratne et al (2001)
divided snore-related sounds into three main classes: benign snoring (BS), apnoeic snoring
(AS) and speech. The authors analysed snoring sounds from 14 patients, of which half were
classed as AS and the other half as BS. Using a decision boundary of T = 1.85σ + 10.0
the authors found that the data could be separated into AS class with 92% ACC and
into BS with 90% ACC, while the separation of speech from the rest of the data was
100% accurate.

4.6.6. Higher order statistics. Higher order statistics, also known as cumulants, and their
associated Fourier transforms, also known as polyspectra, reveal both amplitude and phase
information about a process (Mendel 1991). Ng et al (2007) studied nine OSA patients (age
47 ± 18 yr; BMI= 29 ± 7 kg m−2; AHI = 41 ± 19 events h−1), and seven simple snorers
(age 38 ± 11 yr; BMI = 27 ± 6 kg m−2; AHI = 4 ± 3 events h−1). They looked at the
non-Gaussian and non-linear behaviour of snore signals using bispectral analysis. The raw
snore signals were denoised using a modified level-wavelet-dependent thresholding scheme
under an undecimated wavelet environment. Nonlinear properties in the noise-suppressed
snore signals were extracted to discriminate between apnoeic and simple snorers. The authors
found that apnoeic snores exhibited a higher degree of phase coupling phenomena than simple
snores (77% of benign snores indicated the presence of self-coupling, compared to only 49%
of apnoeic snores).

4.6.7. Other methods. Roebuck and Clifford (2012) analysed 240 min of audio data from
146 subjects, 72 with OSA (55 males, 17 females; age = 51.4 ± 11.9 yr, BMI = 37.9 ±
17.1 kg m−2) and 74 non-OSA (45 males, 29 females; age = 48.6 ± 14.7 yr, BMI = 32.6
± 8.6 kg m−2). The regularity of patterns between the audio signals of subjects with OSA
and without OSA was characterized by multiscale entropy coefficients (Costa et al 2003)
calculated over 40 scales (1–40 s). Using three scales (scales 6, 21 and 30) and a linear SVM
to classify the patients into OSA and non-OSA, SP = 90.5% and PPV = 83.5% was found on
the unseen test data.

It is thought that the diagnosis of OSA may be more accurate if any structural and/or
functional abnormalities of the UA are known (Shepard Jr et al 1991). The SNAP Testing
System (SNAP Laboratories, Glenview, IL) is a reflective acoustic device that is to be used
for screening and analysis of OSA to locate the source of snoring and detect sleep apnoea
conditions. A number of studies have been carried out comparing the SNAP testing system
to conventional PSG. Liesching et al (2004) found that SNAP did not assess the severity of
OSA correctly; Michaelson et al (2006) found that for an AHI � 15 SNAP was 100% SN,
88.5% SP, 57% PPV and 100% NPV whereas Su et al (2004) found that 20% of patients
were classified incorrectly using the SNAP system. Galer et al (2007) focused on the audio
channel, and found that analysing snoring has limited use in the evaluation of patients with
sleep apnoea although standard linear signal processing approaches were used.
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An effort has been made recently to use snoring to estimate the AHI. Solà-Soler et al
(2012) analysed the sounds of 36 subjects (25 males, 11 females; age range = 23–69 yr; AHI
range = 0–90.8 events h−1). Snoring sounds were automatically identified and both time and
frequency-domain features were computed. The authors found that they could classify into
AHI<5, 5 � AHI < 30 and AHI � 30 with 83.3% ACC using these features. Ben-Israel et al
(2012) automatically identified the snoring sounds from 90 subjects (57 males, 33 females;
age = 53 ± 13 yr; BMI = 31 ± 5 kg m−2) and calculated a variety of features (MFCCs,
pitch density, etc). These features correlated well with the AHI calculated from the PSG
(r2 = 0.81, p < 0.001) and an AUC of 85% and 92% for thresholds of 10 and 20 events h−1,
respectively, were obtained for OSA detection. Fiz et al (2010) automatically identified the
snores of 37 snoring subjects (25 males, 12 females; age range = 40–65 yr; BMI = 29.65 ± 4.7
kg m−2). The number of snores, average intensity and power spectral density parameters were
calculated for each subject, who were then classified with AHI = 5 and AHI = 15 thresholds
giving a SN (SP) of 87% (71%) and 80% (90%), respectively.

4.7. Accelerometry

Actigraphy hardware is constantly evolving. Modern actimeters may include micro-electro-
mechanical systems sensors for three-dimensional acceleration measurement, light sensing in
different spectral bands, body temperature, humidity, noise level and the capability to collect
user-provided information, such as subjective mood scores. Three-dimensional actigraphs
allow for a very precise automated classification of activity (Zhang et al 2012).

However, a significant number of actimeters on the market are from the older generation,
usually offering non-directional measurement of acceleration in arbitrary units (counts) rather
than g. Such devices suffer from technological limitations, including limited amount of
memory, low sampling rates (below 0.1 Hz) and nonlinearity of acceleration measurements.
Results of activity measurements in such devices are usually collected in epochs of several
seconds or minutes. Activity data are often post-processed and available as zero-crossing
timestamps (frequency of movement), time-above-threshold (duration of movement) or
periodic integration information (intensity of movement) (Hersen 2006).

Actigraphic analysis results may depend not only on the type of actimeter used, but also on
the selected device location on a human body. For sleep and circadian rhythms analysis, non-
dominant wrist is usually selected as the preferred location of actimeter (Berger et al 2008), but
no significant difference in analysis results is reported between dominant and non-dominant
wrists as well as waist (Sadeh et al 1994, Paavonen et al 2002). However, for certain scenarios
waist or hip location may be chosen, for example to benefit from orientation information,
available from three-dimensional accelerometry sensors. Swartz et al (2000) demonstrated
that energy expenditure variations are explained mostly by hip positioned accelerometer and
Pärkkä et al (2007) found a strong correlation (r = 0.86) between energy cost of physical
activities and ankle positioned accelerometer.

4.7.1. Body position. It has been shown that there exists a correlation between severity of
sleep apnoeic events and body position (Oksenberg et al 2000). Studies regarding the effect of
body posture on OSA have shown that the severity of sleep apnoea increases when sleeping
in the supine posture (Lloyd and Cartwright 1987, Kavey et al 1985, Cartwright 1984). For
this reason, patient position (typically left side, right side, prone, supine, and sitting up) can be
recorded overnight and used as an adjunct to other signals for diagnosis. For instance, Yoshiba
(2001) found that the effectiveness of therapeutic devices was influenced by body posture
and that body position recorded by PSG may be useful in predicting whether that treatment
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Figure 7. Three axis measuring tilt. Adapted from Tuck (2007).

would be successful or not for a given subject. Many systems such as Grey Flash (Stowood
Scientific Instruments, Oxford, England), the Embla Embletta (Natus Medical Incorporated,
San Carlos, USA) or SOMNOwatch (SOMNOmedics, Randersacker, Germany) have a body
position sensor incorporated. van Kesteren et al (2011) studied the effects of trunk and head
position on the AHI in OSA. To differentiate the effect of the trunk supine position and head
supine position, they used two position sensors one placed on the mid-forehead and the other
one placed on the trunk of the subject. From the 199 patients in the study, the AHI was not
position dependent in 41.2% of cases, the AHI was dependent on the supine position based on
the trunk sensor alone in 52.3% of cases, while the AHI was supine position dependent based
on the head sensor alone in 6.5% of cases. In 46.2% of the trunk supine position-dependent
group, head position was of considerable influence on the AHI (AHI was more than five times
higher when the head was also in supine position compared to when the head was turned to
the side). The authors therefore suggest that for patients with suspected OSA two position
sensors placed on the head and trunk should be considered for sleep recordings. Ozeke et al
(2011) studied 131 patients who were referred for suspected OSA. The subjects spent the same
amount of time on left side and right side sleeping position and the authors showed that while
the supine sleeping position caused the highest AHI score, the left side sleeping position had a
statistically higher AHI score than right side sleeping position (30.2 ± 32.6 events h−1 versus
23.6 ± 30.1 events h−1, p < 0.001).

Body position can be derived from the accelerometer sensor together with a magnetometer
or using a gyroscope. The accelerometer is primarily used to create an actogram (for describing
physical motion) in the context of sleep analysis. The form of the actigraph depends largely
on the sensor, which range from piezo-electric sensors, to gyroscopes and HEMP. However, to
identify position a frame of reference relative to the gravitational field is needed. The force of
the gravitational field is used as an input to determine the orientation of an object by calculating
the degree of tilt (tilt is a static measurement) (Tuck 2007). For an internal accelerometer the
dc component allows for the assessment of slow motion and change in position referring to
the gravitational axis. The ac component of the raw signal represents acceleration along the
sensitive axis of the sensor (Fahrenberg et al 1997). By band-pass filtering the raw acceleration
signal, it is possible to separate the dc and ac components, which approximate acceleration
due to gravity and acceleration due to movement respectively. For the three dimensional
accelerometer the pitch and roll angles can be computed: pitch (ρ) is defined as the angle of
rotation around the X-axis relative to ground; roll (φ) is defined as the angle of rotation around
the Y-axis relative to the ground; (θ ) is the angle of the Z-axis relative to the gravity line (see
figure 7) and are calculated as follows (Tuck 2007):
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where a = (ax, ay, az) is the acceleration along the three orthogonal axes of the accelerometer.
The yaw angle requires the use of a magnetometer.
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Thus an estimate of the orientation of the sensor can be derived from the force of gravity
and a magnetometer. Note that a gyroscope can be used as an alternative to derive the pitch, roll
and yaw angles. The mapping between sensor orientation and the body position then depends
on where the sensor is worn and its ‘default’ orientation with respect to the anatomical
planes.

4.7.2. Sleep–wake segmentation and sleep analysis. The use of actigraphy for sleep–wake
assessment was first proposed by Webster et al (1982). As an extension of Webster’s work for
the commercially available Motionlogger (Ambulatory Monitoring Inc., Ardsley, NY, USA)
actigraph, Cole et al (1992) proposed a metric, D, based on weighted sum of preceding and
subsequent epochs, which was shown to distinguish wakefulness 88% of the time:

D = 0.00001 × (404 × A−4 + 598 × A−3

+ 326 × A−2 + 441 × A−1 + 1408 × A0 + 508 × A+1 + 350 × A+2) (4)

where D < 1 indicates sleep and D � 1 indicates wakefulness, Ai is an activity score for
current, previous or subsequent minutes. Sadeh et al (1994) proposed an algorithm for the
AMA-32 actigraph (Ambulatory Monitoring Inc., Ardsley, NY, USA), robust to changes in
activity levels and device placement (dominant or non-dominant wrist). Overall agreement
with PSG analysis was 91–93%. The algorithm performs sleep–wake segmentation using the
four most predictive activity features (identified using stepwise discriminate analysis):

PS = 7.601 − 0.065 × MW5 − 1.08 × NAT − 0.056 × SDL6 − 0.703 × LOGA (5)

where PS � 0 is sleep and PS < 0 is wake, MW5 is an average number of activity counts
of the current and five preceding and following minutes, NAT is the number of minutes with
activity � 50 but <100 in an 11 min window, SDL6 is the standard deviation of the activity
counts during current and preceding 5 min, LOGA is the natural logarithm of the number of
activity counts in the current and next minute.

The fundamental assumption of sleep identification as the absence of movement
introduces a significant problem in the detection of quiet wakefulness by actigraphy. A
wakefulness detection specificity of 35–50% is often reported, especially with increased
subject wakefulness (Sadeh 2011, Paquet et al 2007) and this affects all derived sleep
characteristics. Therefore special care needs to be taken when using actigraphy for sleep
analysis in subjects with limited mobility and serious sleep disturbances. However, it
is necessary to note that most of these results are obtained with older generation uni-
directional actigraphs whereas newer devices may allow development of more sensitive
algorithms.

The role of actigraphy in diagnosing insomnia is well documented and it has been
consistently reported that actigraphy overestimates sleep time due to individuals lying
motionless for extended periods. Natale et al (2009) analysed the actograms of 126 insomnia
patients (68 males, 58 females; age = 40.39 ± 14.28) and 282 normal controls (117 males,
165 females; age = 38.51 ± 14.06), where the actigraph was worn on the non-dominant wrist.
There were significant differences between the groups: light off, sleep end, sleep onset latency
(SOL), TST, mean motor activity (number of movement in one minute) (MA), the number of
awakenings longer than 5 min, wake after sleep onset (WASO) and SE all differentiated the
two groups significantly (p < 0.00001) while time in bed (TIB) did not. Sivertsen et al (2006)
looked at the clinical utility of actigraphy in 34 chronic insomniacs (17 males, 17 females;
age = 60.5 ± 4.5) where the placement of the actigraph is not specified. The sensitivity of
the actigraphic epoch-by-epoch sleep–wake scoring was 95.2% when compared with PSG but
specificity was only 36.3% (i.e. poor ability to detect wakefulness). However, Lichstein et al
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(2006) studied the differences between PSG and actigraphy based on one night’s sleep in a
laboratory for 57 subjects with insomnia (26 males, 31 females; age range = 21–87) where
the actigraph was placed on the dominant wrist. Unlike other studies, the authors found no
significant differences between PSG and actigraphy means of TST, WASO, SE, number of
night-wakings (p < 0.01 for all four metrics) and SOL (p > 0.01).

Actigraphy has also been used to detect PLMS. Sforza et al (2005) used a device
specifically tailored to detect limb movements. 43 patients (33 males, 10 females; age =
57.6 ± 3.7) referred for insomnia and/or EDS underwent one or two nights of PSG with
simultaneous bilateral recording of limb activity. The authors found that actigraphy-PLMS
correlated highly with PGS-PLMS (r = 0.87) and found that actigraphy-PLMS had SN =
88% and SP = 76% for detecting PLMS index > 10. King et al (2005) fixed an actigraphy
to the big toe of five patients with known PLMS. For a PLMS index > 25, the Actiwatch had
100% SN and 97% SP.

Sadeh et al (Sadeh and Acebo 2002, Sadeh 2011) found that actigraphy is not considered
a valid tool for assessing SDB. Elbaz et al (2002) analysed 20 subjects (15 males, 5 females;
age = 52 ± 15; BMI = 28 ± 5) with suspected OSAS using an actimeter worn on the
non-dominant wrist as well as computerized PSG. The authors found that an actigraphy-
based estimate of TST improved the validity of the AHI estimate based on simple respiratory
polygraphy (SN went from 50% to 88% while NPV increased from 75% to 92.5%).

Despite the widespread use of actigraphy for sleep assessment, there is no standard
in actigraphic sleep–wake scoring rules comparable to the R&K rules (Tilmanne et al
2009). Sleep–wake scoring algorithms for newer devices may not be developed yet or may
need to be validated against PSG standard scores. Due to differences in hardware, most
actigraphs implement their own sleep detection algorithms, and manufacturer differences in
data sampling, processing and analysis makes it difficult to compare actigraphic studies (Berger
et al 2008).

4.7.3. Circadian rhythm analysis. Another important area of actigraphy usage is the analysis
of circadian rhythm abnormalities (Ancoli-Israel et al 2003), often linked with psychiatric and
neurodegenerative diseases (Wirz-Justice 2007, Wulff et al 2010). It has been suggested that
circadian rhythm and sleep disruptions could initiate further worsening of mental conditions
(Wulff and Joyce 2011). Reported evidence includes sleep and activity disruptions in conditions
such as bipolar disorder (Indic et al 2011), depression (Hauge et al 2011), schizophrenia (Wulff
et al 2006, 2012, Waters et al 2011, Hauge et al 2011, Walther et al 2009, Wirz-Justice et al
2001), Korsakoff psychosis (Wirz-Justice et al 2010), Alzheimer’s disease (Wirz-Justice 2007,
Van Someren et al 1999), Huntington’s disease and multiple sclerosis (see review (Wulff et al
2010)).

Analysis of circadian rhythms mostly includes methods for detection of activity
rhythmicity, such as Fourier analysis (Refinetti et al 2007), Cosinor and cosine fit (Teicher and
Barber 1990), Enright periodogram (Enright 1965), Chi square periodogram (Sokolove and
Bushell 1978), LSP (Scargle 1982, Van Dongen et al 1999) and various methods for estimation
of rhythm characteristics, such as frequency, amplitude, etc (Refinetti et al 2007). Among these
methods, the Cosinor method and LSP (Scargle 1982) are the most widely accepted and used
in research (see for example Wulff et al 2006, Wirz-Justice et al 2001) as they are suited to
unevenly sampled and missing data, and hence can be applied in a wide range of settings. The
LSP and its tolerance of missing data has been well documented in HRV analysis (Clifford
and Tarassenko 2005).

To characterise 24 h activity variability, Witting et al (1990) proposed non-parametrical
activity metrics, including levels of activity during five least active hours (L5), ten most active
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hours (M10), relative amplitude (RA = (M10 − L5)/(M10 + L5)), interdaily stability (IS)

IS = n
∑p

h=1(xh − x)2

p
∑n

i=1(xi − x)2
(6)

where n is the total number of data, p is the number of data per day, x̄h are hourly means, x̄
is the mean of all data, and xi represents the individual data points (Van Someren et al 1999),
and intradaily variability (IV) (Witting et al 1990, Van Someren et al 1999)

IV = n
∑n

i=2(xi − xi−1)
2

(n − 1)
∑n

i=1(xi − x)2
(7)

where definition of variables is the same as for equation (6).
Actigraphy is also often used in multiparametric methods of circadian system status

evaluation together with other signals, such as light, body temperature or hormones levels.
Sarabia et al (2008) proposed to use wrist temperature for evaluation of circadian rhythmicity
while Ortiz-Tudela et al (2010) suggested an integrated index based on thermometry, actimetry
and body position.

In summary, actigraphy is actively used for both for sleep and circadian rhythms analysis.
The sensitivity of actigraphy in wakefulness detection can be as high as 95%, but specificity as
low as 35% in certain patient’s populations. However, availability and simplicity of actigraphic
analysis tools makes it a preferred choice for ambulatory sleep monitoring scenarios.

4.8. Video

Video recordings, despite being widely available in sleep laboratories for research and clinical
purposes, have mainly been used as an aide for the observation of sleep behaviour rather than
a source of data for automated analysis. Research on automated analysis of sleep video is
relatively young and sparse. In recent years, with the improvements in the video technology
and image processing techniques, computation of video data has been used for the analysis of
sleep–wake patterns, monitoring breathing rhythm, detecting sleep posture, and diagnosis of
sleep disorders.

4.8.1. Sleep activity and sleep–wake analysis. The use of video recordings to manually
analyse sleep activity and correlate it with sleep parameters goes back before 1980. In one
of the earliest studies, Anders and Sostek (1976) used time-lapse video recordings of sleep–
wake behaviour in human infants. They collected both polygraphic and video recordings of
six normal full term infants (four male and two female) at two weeks and eight weeks of
age. They concluded that the inter-rater reliability of the video recordings were high at 0.92
and the sleep–wake state proportions correspond relatively well with judgements based on
polygraphic recordings with a 0.79 correlation between the two methods for all states and ages
(p < 0.05 ).

Later in 1982, Aaronson et al (1982) carried out a study to understand the relationship
of activity during sleep with sleep cycle phase and to understand the power of activity data
to quantify sleep parameters. Two men aged 21 and 29 and two women aged 28 and 37 yr
participated in the study. The subjects slept in a specially designed sleep room in Boston
Museum of Science and a video camera sensitive to low levels of light and a time-lapse video
recorder with a sampling frequency of 1 frame min−1 were used to record the data. Polygraphic
data, including EEG, EMG, EOG and ECG were also acquired from each subject. Video
recordings were manually analysed frame by frame independent of polygraphic recordings to
detect different degrees of movements during sleep. The polygraphic data were analysed using
the R&K criteria. Movement patterns from sleep videos were used for estimating sleep latency
and prediction of sleep cycles. It was found that in all four subjects, 85.4% of sleep cycle phase
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transitions were marked by a major movement. 60% of all major movements were observed
at the two minute epochs centred between the end of descending NREM and termination of
REM phases. The periods of inactivity lasting for more than 35 min were assumed to be a
descending NREM episode, and out of 66 such periods, 86.4% were verified as NREM sleep
by EEG, the remaining 13.6% were identified as REM. Movements longer than 75 min were
assumed to include a REM episode as well as NREM and 75% of such periods were verified
to include REM. Smaller movements were seen more frequently during ascending NREM,
REM and awake periods.

Balzamo et al (1998) analysed sleep and wakefulness by scoring video recordings of
rhesus monkeys and comparing them with conventional EEG analysis. Simultaneous PSGs
and video recordings at 1 frame s−1 were performed on six adult rhesus monkeys (Macaca
mulatta) during a 24 h period. Wakefulness, NREM sleep and REM sleep were scored by
manual analysis of animal behaviour from video data, using characteristic criteria for each
state of vigilance. Results were then compared with those of conventional EEG scoring. Values
of the total amount for each state obtained by the two scoring methods during the light and the
dark periods were significantly closely related (p � 0.001) with a high correlation coefficient
for wakefulness (r1 = 0.999), for NREM sleep (r1 = 0.996) and for REM sleep (r1 = 0.987).
Moreover, the epoch by epoch analysis between both methods showed a high concordance with
percent agreement values of 95.68% for wakefulness, 93.52% for NREM sleep and 94.02%
for REM sleep. The number of REM sleep episodes was similarly defined. The patterns of
successive sleep–wake cycles determined from both scorings were superimposable, as were the
frequent state changes for the same time segments. The main limitation of the video method
was that the four stages of NREM sleep could not be differentiated. These results suggest
that the video methodology is relevant as a non-invasive technique and complementary to
conventional EEG analysis for sleep studies in rhesus monkeys.

In recent years, with the improvements in the digital video technology, researchers have
used computational (automated) video analysis methods to extract sleep activity. Liao and
Yang (2008) presented a near-infra-red video-based system to estimate sleep–wake status
by detecting human movements and posture. Their method is based on thresholded frame
differencing prior to which the video frames are modified to remove the effect of distance
from the near-infra-red light source in the changes in the image intensity. Additionally, the
motion history image technique (Bradski and Davis 2002) was adopted for finding the direction
of the movement. The method is tested on 10 video recordings of subjects with simultaneous
PSG studies and acti-watch recordings (only available for eight of the total ten studies). PSG
assessments of sleep–wake episodes were assumed to be the ground truth. The results showed
that the average recognition ACC using video recordings (92.13%) was slightly higher than
recognition ACC using acti-watch (91.24%).

Cuppens et al (2010) used optical flow computations (Horn and Schunck 1981) from
nocturnal video recordings of paediatric patients with epilepsy to discriminate periods of
movement versus non-movement. Their aim was to find an alternative method of monitoring
epileptic seizures to video-EEG which is difficult to use for home monitoring over long
periods of time. Their study was performed on nocturnal video recordings of patients from the
Child Neurology Department of University Hospital Leven (Belgium). All movements in the
video data including epileptic seizures were labelled by an expert and these labels were used
for the validation of the proposed method. From the two approaches of having either a
global or a variable threshold for distinguishing between movement and non-movements
periods, the authors concluded that a variable threshold resulted in improved performance
with a SN of 100% and a PPV between 86.21% and 100% on test data using three-fold
cross-validation.
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Scatena et al (2012) used an integrated video-analysis system to detect and quantify
movements during sleep. The aim of movement detection in their study was to evaluate
sleep–wake periods. They used ZoneMinder (www.zoneminder.com), an open source video-
surveillance application, to get information about each motion event such as the start and end
times and the amount of movement (the amount of movement was proportional to changes
in pixel values during the event). Video recordings were obtained from 25 healthy volunteers
(13 males, 12 females; age = 44.3 ± 18.4 yr). All subjects underwent laboratory-based
video-PSG in the sleep lab of the Department of Neurosciences, Catholic University (Rome,
Italy) and wore wrist actigraphs. They first compared four parameters including sleep latency,
sleep duration, number of awakenings, and SE derived from video data to those derived
from actigraphy and PSG recordings using Kendall’s coefficient of concordance (Kendall
and Smith 1939). Next, they used the following statistical methods to analyse the agreement
between video, actigraphy, and PSG: the Bland–Altman method (Bland and Altman 1986)
showed that video derived parameters had a substantial overlap with those obtained from PSG
and actigraphy, however, video derived information had a slight tendency to overestimate
nocturnal awakenings; an epoch by epoch analysis using Cohen’s κ coefficient (Cohen et al
1960) showed a moderate amount of agreement between video versus actigraphy and video
versus PSG (κ = 0.654 and κ = 0.478 respectively); the ACC, SN, and SP of the video
derived parameters compared to actigraphy were 83.1%, 89.5%, and 65.4% respectively and
the ACC, SN, and SP of the video derived parameters compared to PSG were 79.9%, 90.4%,
and 42.3% respectively.

4.8.2. Respiration analysis. Aside from sleep activity analysis, the use of video recordings
for monitoring sleep breathing rhythm has been a key area of focus. Nakajima et al (2001)
developed a real-time monocular vision analysis technique to monitor respiration rate and
posture change of a subject in bed without any direct contact. The chest or blanket movement
was tracked by using an optical flow method. Their database consisted of one 23 year old male
volunteer and five patients at a nursing home (3 males, 2 females) in 7 h monitoring periods.
The patients motions were classified into five categories: respiration, cessation of breath, full
posture change, limb movement, and out of the view. This monitoring system included a CCD
camera and a personal computer equipped with a high-speed image processor. The results
were compared with a thermistor in a nasal cavity but no PSG data was available for the
study, therefore the authors were not able to diagnose whether the subjects had any abnormal
breathing events during the study. The results showed that the system could detect 99.4% of
the movements during the period the subjects are monitored.

Takemura et al (2005) designed a non-contact system to monitor respiratory movements
using a fibre grating vision sensor to diagnose and discriminate between OSA and CSA. By
measuring the vertical motion of 100 or more sample points of the upper half of the body
a respiratory volume change was computed. Apnoea and hypopnoea events were considered
to follow two criteria: (1) a more than 50% decrease in the amplitude of a valid measure of
breathing from the baseline, where baseline is defined as the mean amplitude of breathing in
the two min preceding onset of the event or the mean amplitude of the three largest breaths
in two min preceding onset of the event in individuals without a stable breathing pattern; (2)
the event lasts more than 10 s. Their automatic classification technique using the respiratory
movement was validated on three patients (two males and one female) for all apnoeic events
and was validated on two male patients for central apnoea events. The results showed that the
error rate of the classification for CSA events was 14.5% and for OSA was 7.6%.

Wang et al (2006) proposed a method to detect abnormal breathing activities for diagnosis
of sleep apnoea. Their method aimed to distinguish respiratory movements from the general
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body movements of a patient. They made two main assumptions: (1) respiration is a LF activity
compared to general body movements and (2) the entire surface of the upper frontal body moves
in the vertical plane during respiratory movements. Initially, movement shapes which were the
differences between the current frame and a reference background frame were created. Then
the total number of pixels that were different between the current frame and the background
frame was calculated as the degree of motion. By comparing to the old scenes, they determined
if the surface had moved back to its original position and detected breathing movements which
happen at a slower pace. The technique was tested on two subjects sleeping with three main
postures and simulating general breath, obstructive apnoea and body movements, however, no
quantification of the test results or the ACC of the method is presented in the paper.

4.8.3. Body posture. Several generalized models to detect and track articulations of people
from a video sequence have been proposed in the literature (Ramanan et al 2007, Ferrari
et al 2009), however, monitoring body posture during sleep is particularly challenging since
different body parts may be completely occluded or partially visible. Wang et al (2010)
described an automated monocular video monitoring method to recover the posture (head,
torso, and upper legs) of a person during sleep and their aim was to specifically tailor
their algorithms for sleep monitoring scenarios where head, torso and upper legs may be
occluded. Their method was tested on video clips of eight subjects with different skin colour,
height, weight, and gender. From these individuals, 32 video clips were filmed with different
environment settings such as different illuminations, camera angles, and various occlusion
levels. From the 32 video clips, 18 were randomly chosen. The frames were sampled at
0.3 s intervals and 555 frames were randomly selected from these frames for evaluation.
The results were compared with a method by Ramanan et al (2007) designed to identify and
track individuals and recover in case the person leaves the view. McNemars statistical test
was applied on the outcome of both methods to analyse whether there was a statistically
significant difference between the results. The presented results showed that Wang et al ’s
method outperformed Ramanan’s in detecting head, torso, and lower body, however, the full
analyses tables are ambiguous due to missing title and labels.

4.8.4. Analysis of sleep disorders. Classification of sleep disorders based on differences
between normal sleep activity versus sleep activity which is typically associated with certain
sleep disturbances may be the new and next step to the automated analysis of sleep video
data. Gederi and Clifford (2012) studied a technique to use low-cost off-body cameras for
the automated screening of OSA. They used the video recordings of 21 PSG studies, 11 from
patients with OSA at different severity levels (9 males, 2 females; age = 52.7 ± 11.2 yr; neck
size = 17.7 ± 2.0 inches; BMI = 35.2 ± 8.0 kg m−2) and 10 from patients who were referred
to the hospital with suspected OSA but were diagnosed as normal (8 males, 2 females; age =
46.7 ± 10.6 yr; neck size = 16.4 ± 2.1 inches; BMI = 29.6 ± 9.0 kg m−2). The activity signal
of each patient was derived from the video recordings using a consecutive frame differencing
technique. To investigate the regularity of patterns of movement between patients with and
without OSA, the complexity of the activity signals were scored using multi-scale entropy
analysis. A five-fold cross validation technique was used to train a SVM with the calculated
complexity scores and validate the classifier. Their results showed that patients with OSA can
be differentiated from non-OSA patients with 90% ACC (SN 80%, SP 100%). Moreover, an
OSA severity score was derived from the probability estimates of the SVM classifier and was
compared to the ODI taken from PSG studies. The comparison showed that the severity scores
from SVM probability are better indicators of OSA severity for patients with moderate and
severe OSA than ODI.
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4.9. mHealth and mobile phone-based systems

The recent widespread adoption of ‘smart’ mobile phones, with multiple built-in sensors,
has led to an explosion of applications to monitor sleep quality on the phone. Most of the
available smart phone applications (or ‘apps’) for OSA detection use some combination of a
screening questionnaire, actigraphy from the in-built accelerometer or a wrist actigram, and
an analysis of the audio signal recorded from the phone’s in-built microphone or hands-free
kit. This is with the exception of Zeo (Newton, MA, USA) app which makes use of an external
EEG head band to carry out sleep staging. However, none of the current apps that use the
smartphone’s built-in sensors, and thus do not require the purchase of additional hardware, are
based on any published scientific evidence (Behar et al 2013b). Second, the placement of the
accelerometer (and hence phone) is crucial (as discussed in section 4.7). Third, the location
of the microphone and its characteristic acoustic recording properties will cause enormous
variations in the quality of the analysis. Moreover, the varying quality of audio processing
cards on phones can lead to significant distortions in the recordings. Therefore, to-date, only
one standardised system (Zeo) has been developed for a mobile phone which can produce
scientifically validated output (Wright et al 2008). However, the company has recently gone
out of business. A review of the apps currently available can be found in Behar et al (2013b)
and a prototype for an OSA screening app can be found in Behar and Clifford (2011) and Behar
et al (2013a), which uses features derived from audio, accelerometry and pulse oximetry and
a support vector machine to generate a probability that a patient has OSA. They have used
questionnaires, audio, on-body actigraphy and oxygen saturation from a large clinical database
(856 patients) to validate the approach. The results on the clinical data have been promising,
and once applied to data collected using the phone, will provide the first clinically validated
phone app for OSA screening.

5. Discussion and conclusions

The field of sleep analysis is complex and multi-faceted, with monitoring applications almost
always involving several different sensor types, depending on the suspected conditions and
to some extent, the local culture. Although EEG monitoring (along with EOG and EMG)
is considered the gold standard approach for monitoring brain activity during sleep, it is
insufficient on its own for many sleep conditions, and measurements of respiration, HR, and
oxygen saturation are often required.

However, modern signal processing tools, coupled with faster and cheaper processing
hardware, are opening up opportunities to provide rapid first-level screening using equipment
and signals that were once considered only as adjuncts to sleep analysis (such as ECG and audio
recordings). Furthermore, improved video processing software and hardware is beginning to
allow automation of a monitoring paradigm that was once the exclusive purview of clinical
experts (i.e. visual review). In particular, modern data fusion and machine learning techniques
provide the possibility to combine disparate measures of physiology into a coherent global
picture of sleep health. It should be noted that the scientific literature is mostly comprised of
almost anecdotal studies with patient class sizes ranging from single digits to less than 10 or
20. Systematic studies on larger cohorts of patients are needed to evaluate properly many of
the now automated analysis modalities.

Debate has occurred over the years regarding which signals are crucial to monitor for
the adequate assessment of patients with sleep complaints. In general the addition of more
channels/signals provides more data but adds to the burden of the patient particularly if the
equipment is cumbersome. A trend has occurred in Europe and more recently in the US
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whereby home sleep testing (HST) is being performed rather than in-laboratory PSG. The
potential advantages of HST include reduced cost (compared to the requirement to bring
the patient into an inpatient facility), the familiarity of the surroundings for the patient who
may sleep poorly in an unfamiliar environment, and the possibility of recording multiple
consecutive nights to provide more representative data than from a single night recording.
However, critics of the HST suggest that the extra data provided by in-laboratory PSG (which
includes the EEG) may justify the extra cost/burden to the patient. A general consensus has
emerged that HST is acceptable for most patients, although the pros and cons of EEG continue
to be discussed. The EEG has limitations beyond the inconvenience and expense required to
obtain the data. Some studies suggest that the reproducibility of the findings from EEG may
be modest compared to signals such as pulse oximetry which can be quantified objectively
(Kuna et al 2013). In addition, EEG measures such as the arousal frequency are relatively
poor predictors of clinical outcomes such as sleepiness or cardiovascular risk. As a result,
some have advocated for simpler measures without the need for EEG (Bennett et al 1998).
On the other hand, some data suggest that the optimal metrics might depend on the outcome
of interest. That is, for the myriad of complications which have been attributed to OSA, one
might not expect a single variable to predict all the various complications (e.g. hypertension,
diabetes, myocardial infarction, cardiovascular risk, memory impairment, etc). Thus, it has
been suggested that the optimal definition of sleep apnoea might depend on the outcome of
interest. For example, desaturations of 4% or greater may be predictive of cardiovascular
risk, whereas desaturations of 2% or greater might the optimal predictor of insulin resistance
(Punjabi et al 2008, Stamatakis et al 2008). Djonlagic et al (2012) have recently shown that
the frequency of arousal (as determined by the EEG) may be a better predictor of memory
consolidation than measures of desaturation. Thus, the optimal variable(s) to record during
sleep remain unclear despite substantial ongoing research; the ultimate answer might depend
on the clinical outcome of interest. Cost considerations and improvements in technology (e.g.
simplified EEG recorders) may also help to define the future standard of care.

The use of home testing has been compared with PSG and tested favourably with regards to
clinical outcome for sleep aponea, but its utility with other sleep disorders such as insomnia or
other movement disorders is less clear. We also note the surge of recreational sleep monitoring
(e.g. the ‘quantified self’ movement) due to the proliferation of cheap devices. In particular,
the rapid adoption of smartphones has led to a proliferation of apps which allow a general user
to have easy access to some form of self-applied monitoring. Great caution should be taken
with such approaches, as there is no regulation or quality control of such apps and devices,
and relatively little scientific evaluation of their performances, particularly with respect to the
enormous heterogeneity of hardware and possible methods of use. However, their existence,
if calibrated appropriately and used in conjunction with proper decision support, these new
developments may spur cost-effective large-scale data collection and screening, and lead to a
deeper understanding of society’s sleep-related problems.
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