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Abstract

Cardiac electrophysiological simulations are computationally intensive tasks. The growing

complexity of cardiac models, together with the increasing use of large ensembles of models

(known as populations of models), make extensive simulation studies unfeasible for regular

stand-alone computers. To address this problem, we developed DENIS, a cardiac electro-

physiology simulator based on the volunteer computing paradigm. We evaluated the perfor-

mance of DENIS by testing the effect of simulation length, task deadline, and batch size, on

the time to complete a batch of simulations. In the experiments, the time to complete a batch

of simulations did not increase with simulation length, and had little dependence on batch

size. In a test case involving the generation of a population of models, DENIS was able to

reduce the simulation time from years to a few days when compared to a stand-alone com-

puter. Such capacity makes it possible to undertake large cardiac simulation projects with-

out the need for high performance computing infrastructure.

Introduction

Mathematical models of the heart’s electrical activity are a valuable tool for improving our

understanding of cardiac electrophysiology. In particular, models of the electrical processes in

cardiac myocytes can be used to understand the cells’ functioning under normal conditions, or

under alterations such as those produced by diseases or drugs. Fig 1 depicts an example of the

typical voltage variation across the cell membrane of a ventricular myocyte (thick line), known

as the action potential (AP), simulated with the Carro et al. model [1].

Over the years, the complexity of cardiac electrophysiological models has increased consid-

erably. For example, the pioneer model by Noble (1962) [2] contained three electrical currents

and four state variables, while a recent model like Carro et al. (2011) [1] contains 14 currents

and 39 state variables. Consequently, the computational cost of cardiac electrophysiological

simulations has grown substantially.

Electrophysiological models are generally validated by predicting the results of live-cell

experiments. However, such experiments exhibit a great deal of variability between cells and

between subjects, while most current cell models only represent an “average” action potential.

Instead of using just a single model, a current trend is to create a population of models, that is,

an ensemble of models with different values of underlying parameters, with the purpose of
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reflecting such variability [3] (see Fig 1). A recent work following this approach is the study by

Gemmel et al. [4], where two populations of over 15000 models were generated in order to

investigate the sources of variability in cellular repolarization.

Both factors, the growth in model complexity and the use of model populations, make in sil-
ico cardiac research a computationally expensive endeavour, which can become too demand-

ing for regular stand-alone computers. Supercomputers or computer clusters can be employed

to solve such problems. Cardiac electrophysiological modelling tools that can run in multi-

core CPUs, GPUs and in high performance computing (HPC) infrastructures include CARP

[5], EMOS [6], Chaste [7], TOR [8] and Myokit [9]. Unfortunately, the economic cost of HPC

alternatives may not always be affordable for research projects.

In a previous work [10] we followed a different approach: to use Volunteer Computing

(VC) in order to gain access to vast amounts of computing power at a very low cost. We pre-

sented the DENIS project (Distributed computing, Electrophysiological models, Networking

collaboration, In silico research, Sharing knowledge) [11], which is based on the Berkeley Open
Infrastructure for Network Computing (BOINC) platform [12]. The VC paradigm has been

used in computational biology projects such as Rosetta@home [13], RNA World [14] or GPU-

Grid.net [15]. However, to our best knowledge, DENIS represents the first application of VC

to electrophysiological simulations.

The performance of BOINC projects cannot be predicted, but needs to be analysed empiri-

cally, due to the high levels of volatility, heterogeneity, and error rates in volunteer computing

[16, 17]. In our previous work we described the DENIS architecture and illustrated it with an

example of use. In the present work we extend [10] by analysing three major factors that affect

the performance of DENIS, with the objective of finding under what conditions it could be

Fig 1. Ventricular action potentials generated with the Carro et al. model [1]. The thick red line represents the

default output of the model. The grey lines represent 1000 variations of the model, generated by modifying 12

parameters.

https://doi.org/10.1371/journal.pone.0205568.g001
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most advantageous to use VC for the simulation of cardiac electrophysiological models. In par-

ticular, we evaluate the effect of the length of the simulations, the deadline for the tasks, and

the total number of simulations to be solved, on the completion time of simulation batches.

We also present a test-case simulation of a typical challenge in computational modelling, the

creation of a population of models, and we finally compare the performance obtained with

DENIS to that obtained with a regular stand-alone computer. Based on our results, we provide

recommendations on how to use DENIS to solve massive amounts of simulations accurately—

that is, with a numerical outcome equal to that obtained by a stand-alone computer—within

an acceptable time, since the ultimate goal of our work is to make DENIS freely available and

useful for the cardiac modelling community.

Background

DENIS uses the resources of a network of volunteers to perform computational operations

requiring a huge quantity of computing power. The problems to be solved by DENIS are

divided into small parts, and each part is sent to a volunteer’s computer (a host) to be carried

out. The reader is referred to our previous work [10] for a full description of the DENIS archi-

tecture. The remainder of this section summarizes the details necessary to understand the

experiments described in the following sections.

DENIS follows a client/server architecture. Volunteers need to install the BOINC client to

join the project. Once the BOINC client is installed, volunteers must select DENIS from the

list of BOINC projects provided by the client. The client then downloads and runs the DENIS

Simulator, which is an application that includes the electrophysiological models and a mathe-

matical solver. The current version of the DENIS Simulator includes 12 cardiac models and

can be expanded by importing models described in the CellML language [18].

Scientists send groups of simulations (simulation batches) to the DENIS server using a

cloud service. The server stores the scientists’ input data files, creates the corresponding tasks

and sends them to volunteers. Volunteers complete the tasks with the DENIS simulator and

send the results to the server. In the server, results are validated and sent back to the scientists’

cloud. If a result is deemed correct and arrives before a predefined deadline, the volunteer

receives credit. The BOINC credit is just a measure of how much work a volunteer host has

completed and has no monetary value, but it nevertheless represents an incentive to volun-

teers, who may even compete for it [19]. For the DENIS project, one unit of credit represents

1/200 day of CPU time on a reference computer that does 1,000 MFLOPS based on the Whet-

stone benchmark [20].

Fig 2 details the steps needed to complete a simulation. Simulations start with the scientist

filling an XML configuration file with the parameters necessary to run a simulation: the

model to be simulated, the duration of the simulation, the type of results to be stored in the

output file, and others. Each job consists of a configuration file and the DENIS Simulator

(Fig 2(a)). When a job is launched it generates a work unit (WU) (Fig 2(b)) that creates two

tasks with the same configuration file (Fig 2(c)). These identical tasks are sent to two different

volunteers.

Volunteers send back their results, which are compared in the validator (Fig 2(d)). This

step is essential to ensure that the numerical outcome of simulations does not contain compu-

tation errors by one of the hosts, or just random data sent to earn credit. Cross-platform

numerical inconsistencies, however, may not invalidate results if they are small enough. In the

validator, the results of the different volunteers are compared by checking the percentage of

error between the two files for each computed value. If all the errors are smaller than 0.1%, the

file is marked as valid, otherwise they are considered different.
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If the outcomes from the two tasks are not equal, an additional identical task is generated and

sent to another volunteer. An additional task will also be generated if one of the first tasks misses

the deadline, defined as the maximum allotted time between the reception of the task by the host

and the reception of results. The process of creating an additional task is repeated until at least

two tasks produce the same results timely, with a total limit of 10 additional tasks. If that limit is

reached without getting a successful result, the simulation is marked as “not valid” and reported

in a log file, so that it can be resent manually to volunteers or solved in a local computer.

Methods

Effect of the configuration parameters

Firstly, we carried out three experiments to evaluate the effects of the configuration parameters

on the performance of DENIS. During the period in which the experiments were carried out,

the number of volunteer hosts in the network ranged between 17000 and 25000. We launched

batches of simulations with the Carro et al. model and varied the duration of the simulations,

the task deadline, and the size of the simulation batch, as explained in the following

subsections.

The three experiments were performed sequentially. Simulation batches were fed consecu-

tively into the system for a total period of 39 days (13 days for each experiment). For each

experiment, all the input files were uploaded to the server at once, but only the WUs of the

first batch were created and dispatched initially. Then, a server daemon checked the amount of

WUs in the dispatch queue every five minutes. When this amount was smaller than 3000, the

following batch was automatically added to the queue. This dispatching policy prevented both

server overload and work shortage, and also helped to simulate the real behaviour of VC proj-

ects, where job batches from different projects may partially overlap in time.

( )
( ) ( )

( )

Fig 2. Workflow of a simulation.

https://doi.org/10.1371/journal.pone.0205568.g002
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After receiving the results from volunteers, we measured the time necessary to complete

each simulation from the moment a WU was created in the system until the corresponding

result was marked as valid. Such interval included both the time spent in the server, and the

CPU and idle time at the hosts. The idle time for every WU was defined as

idle time ð%Þ ¼
CPU time

completion time
� 100

where CPU time is the average CPU time of the two redundant tasks of the work unit.

In VC networks, computational throughput may decrease with time due to the tail problem

[21]. The completion of the last tasks in the batch may be delayed well after the majority of the

jobs have finished, producing what is termed the tail phase of the computation. For each simu-

lation batch, we measured the time elapsed until 80% and 100% of the simulations in the batch

were completed (denoted as “100% completion time” and “80% completion time” respec-

tively). in order to characterize the behaviour of the system both before and after the tail phase.

The time distributions resulting from the different experimental conditions were compared

with the Wilcoxon rank sum test.

Effect of the simulation length. In the first experiment, we launched consecutive batches

of 600, 1200, 1800 and 2400-s simulations, repeating the cycle for 13 days. The task deadline

was set to 10.5 days and the batch size was set to 10K simulations. In total, 120 batches were

fed into the system during the duration of the experiment.

Effect of the task deadline. In the second experiment we added batches of 10000 simula-

tions with a length of 1800 s. The task deadline was set from two days to six days in steps of

one day for consecutive batches. The cycle was repeated for 13 days, with a total of 141 batches

being sent.

Effect of the batch size. In the third experiment we consecutively added batches of 10000,

20000, 30000, 40000, 50000 and 60000 simulations. The cycle was repeated during for 13 days,

with a total of 73 batches being sent. All simulations were 1800 s long and had a deadline of

four days.

Test case: Population of models using a full-factorial design

When working with populations of models, the generation of a large pool of candidate models

is a computational challenge. We tested the performance of DENIS in such situation by repli-

cating the simulations carried out in a recent study [4]. Two populations of models were gen-

erated, one with the Shannon et al. model [22] and one with the Mahajan et al. model [23], by

introducing variability into ionic current conductances. For each model, variations were gen-

erated using a full factorial approach, that is, considering all possible combinations of values in

the range of 0%, ±15%, ±30% values of six model parameters (conductances), which resulted

in 15625 combinations. Each combination was stimulated with three different cycle lengths

(400 ms, 600 ms and 1000 ms) during 1000 s, which resulted in 93750 simulations in total. In

our experiment, we launched all simulations at the same time with a deadline of four days for a

first round. Also, in an attempt to accelerate the completion of the job by using the results

from the fastest volunteers, we launched the same simulations for a second round, and mea-

sured the time spent until the fastest result from the two rounds was validated.

Comparison with a stand-alone computer

Finally, we launched simulations with the Carro et al., Shannon et al., and Mahajan et al. mod-

els in a desktop computer with 4GB of RAM and an Intel Core i5 4-core processor at 2.67GHz,

running the stand-alone version of the 64-bit Linux DENIS executable.
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Results

Effect of the simulation length

The time to complete a whole batch of simulations did not significantly increase with the simu-

lations’ length (see Fig 3(a)). The median 100% completion time was between 21.7 and 21.8

days for all lengths. This means that, for any given length, in 50% of the batches there were

simulations that took more than 21 days to complete. Since the deadline was 10.5 days, this

indicates that in those simulations there was a task which was not completed by two consecu-

tive volunteers, and had to be completed by a third volunteer.

Notably, the median time to complete 80% of the simulations in a batch was significantly

higher for 600-s simulations than for the rest (16.6 hours for 600-s simulations vs. 12.7, 11.5,

and 13.0 hours for 1200-s, 1800-s and 2400-s simulations respectively) (see Fig 3(b)). The

median idle times ranged from 96.6 to 94.9% for the different simulation lengths.

In the stand-alone computer, the time to complete a single simulation ranged from 2509.1 s

(0.7 hours) for 600-s simulations to 8474.5 s (2.4 hours) for 2400-s simulations. Therefore, if

the four cores in the computer were used simultaneously, the time to complete a batch of 10K

simulations would range from 72.6 to 245.2 days. Using linear regression, the estimated time

to simulate 1 s of the model’s activity was 3.7 s.

Effect of the task deadline

Of the three studied factors, the task deadline had the strongest impact on completion time.

There were significant differences on the 100% completion time for all the deadlines except for

the pair of five vs. six days (see Fig 3(e)). When looking at 80% completion time, the 6-day

deadline group was the slowest to complete, with significant differences with all the rest.

Effect of the batch size

The median time to complete a batch was significantly higher for larger batches (� 40K simu-

lations) than for smaller batches (� 30K simulations) in most cases (see Fig 3(c)). However,

there were no significant differences among the smaller batches or among the larger batches.

In all cases the median completion time was below 10 days. When looking at 80% completion,

significant differences only appeared for comparisons with the largest size (60K simulations,

see Fig 3(d)).

In the stand-alone computer, the time to complete a single 1800-s simulation was 6694 s.

Therefore, if the four cores in the computer were used simultaneously, the time to complete

the batches in the experiment would range from 193.7 days for a batch of 10K simulations to

3.2 years for a batch of 60K simulations.

Test case

The completion times for the test case simulations are depicted in Fig 4 and summarized in

Table 1. Launching each simulation twice and waiting just for the fastest result decreased the

100% completion time by almost 41% (first round vs. fastest in Table 1). In the stand-alone

computer, the time to complete a single simulation was 3004.5 s (0.8 hours) for the Shannon

et al. model and 1945.9 s (0.5 hours) for the Mahajan et al. model. Therefore, if the four cores

in the computer were used simultaneously, the time to complete all the simulations in the full-

factorial design would be 671.4 days.

DENIS: Solving cardiac electrophysiological simulations with volunteer computing
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Discussion

With DENIS, the time to complete a batch of simulations was greatly reduced in comparison

with the stand-alone alternative. The 100% completion time was divided by a factor ranging

from three to 44, for the shortest (600-s long) and test-case simulations respectively, in

Fig 3. Boxplots of batch completion times for different experimental conditions. (a)–(b): effect of simulation length; (c)–(d): effect of task

deadline; (e)–(f): effect of batch size. Black lines indicate significant differences between pairs of boxes (p<0.05).

https://doi.org/10.1371/journal.pone.0205568.g003
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comparison with a stand-alone computer. Contrary to stand-alone computers, in which com-

pletion time increases proportionally to the length of the simulations, the completion time

with DENIS did not significantly increase for longer simulations, which poses a great

advantage.

In fact, when considering 80% completion times (Fig 3(b)), the shortest simulations took

longer to complete than the rest. This finding, perhaps counter intuitive, may reflect an intrin-

sic property of volunteer computing systems, which is the coexistence of slow and fast volun-

teers. Slow volunteers are hosts with tight hardware resources or hosts that allocate less

computing time to DENIS jobs. At the beginning of the experiment, all volunteers were idle

and waiting for jobs. The first batch to be launched contained 600-s simulations and it was dis-

tributed to both fast and slow volunteers. Subsequent batched were distributed to faster volun-

teers on average, since slow volunteers were still occupied with their first task. Since the time

to complete a whole batch is determined by the slowest volunteer, that “faster on average”

effect disappeared for 100% completion times. In all experiments, the last 20% simulations in a

batch took much longer to complete than the first 80%. For example, 80% of 600-s simulations

were completed in 0.7 days, while the remaining 20% took 21.5 days to complete.

In all cases, the computation time in the host was only a small fraction of the total time in

the system. In addition to computation time, factors such as the time spent in the dispatch

queue or in the validator, but specially the idle time in the host added significant delay to the

completion time. The main reason behind such a high idle time is that the execution of VC

tasks is usually suspended when the computer is in use, in order to be minimally obtrusive for

hosts. Also, hosts may be subscribed to other BOINC projects besides DENIS; in such cases the

BOINC client schedules jobs belonging to different projects according to several criteria, the

most important being the task deadline.

Fig 4. Percentage of completed simulations vs. time for the test case.

https://doi.org/10.1371/journal.pone.0205568.g004

Table 1. Completion times (in days) for the test case simulations.

1st round 2nd round fastest

80% completion 2.8 4.5 2.8

100% completion 15.1 15.2 9.0

https://doi.org/10.1371/journal.pone.0205568.t001
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Indeed, the deadline was the factor with the strongest influence in our experiments. Results

showed that 80% of simulations tended to be completed well before the deadline, while 100%

completion times tended to approach or even surpass twice that limit. In practice, however,

task deadlines should not be too tight, since a growing number of volunteers would not be able

to complete and report their tasks on time and would not receive credit for their work, which

may cause them to abandon the project. Collaborating with a large group of volunteers is

essential for the survival of VC projects.

The number of volunteers in a project limits the number of simulations that can be solved

simultaneously. Hosts can run multiple DENIS tasks concurrently, so the theoretical upper

limit would be determined by the number of available cores. In practice, however, the number

of simultaneous simulations will be lower due to the volatile nature of VC resources. Results

from the third experiment showed significantly different completion times for batch sizes

above and below 30K simulations, which is between one and two times the number of volun-

teer hosts. In the test case study, with a batch size higher than 90K simulations, the 100% com-

pletion time was around 3.75 times higher than the deadline for a single round. According to

our results, therefore, DENIS will offer the best performance when the batch size is similar or

moderately superior to the number of available hosts.

Results indicate that DENIS is well suited to problems requiring a large number of indepen-

dent simulations. A clear example of such problems are studies with populations of models

like in our test case [4] and others [24–26]. Another example are studies involving model opti-

mization such as [27, 28], where genetic algorithms are used to fit some parameters of the

model. The evaluation of each iteration of the genetic algorithm is computationally intensive,

but it can be run in parallel. In both kinds of studies, thanks to the small dependence of DENIS

with the batch size, the size of the population could be increased without excessively lengthen-

ing the completion time.

In such studies, the completion of the tasks could be further accelerated by modifying job

dispatching in several ways. One way could be to replicate jobs, like in our test case where each

simulation was launched twice, and to wait only for the fastest result; other possibilities include

generating more than two tasks per job and using a minimum number of agreeing results for

validation [29]. Also, a hybrid approach where simulations that missed the deadline in DENIS

were solved in a supercomputer or cluster could be cost-effective, since our results indicate

that only a small percentage of tasks would miss a moderate deadline.

Finally, limitations of this work need to be acknowledged. In the first place, changes in the

availability of volunteers had an influence in the performance of DENIS. Accounting for this

variability is not straight-forward, because not even the number of volunteers correlates per-

fectly with the amount of work that can be performed in a VC network, since volunteers can

individually set quota limits for CPU usage. Given this limitation, we tried to minimize the

effect of the variable number of volunteers within each experiment by launching the batches

corresponding to the different groups in a cyclic way, without waiting for previous batches to

finish execution. This means, for example, that in the first experiment the volunteer network

was solving simulations of all sizes at a given point in time. Therefore, the four groups in

Fig 3(a) were affected by the variable number of volunteers in a similar way, and it is safe to

assume that the differences between groups should not be heavily affected by the volunteer var-

iability. Also, this dispatching policy makes it possible to evaluate the DENIS performance in a

scenario as realistic as possible, in which DENIS could be working on different problems

simultaneously.

An additional effect of this dispatching policy is the effect of slow vs. fast volunteers in short

simulations that we discussed previously, and also the delay between the first and second

round of simulations in the test case. As a secondary consequence, the groups of simulations
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in our experiments were not totally independent from each other. Non-independent observa-

tions introduce bias and can make a statistical test give too many false positives [30]. In our

case, that means that the influence of simulation length, deadline, and batch size could be

weaker than our results suggest.

Another limitation regards the expected long-term performance of DENIS. In small-scale

VC projects like this one, with work units expected to take a matter of hours to complete and

where work is available on a sporadic basis, the biggest challenge is the retention of volunteers,

as there is a very high drop-out rate [19]. In our experiments we use a simple First-Come-

First-Served job dispatching policy, not taking into account the hosts’ past performance, and

the default credit-awarding system [20]. More sophisticated policies could yield better perfor-

mance [31][16], and improve the retention rate of volunteers [19].

Conclusion

This paper demonstrates the capabilities of DENIS, a cardiac electrophysiology simulator

based on volunteer computing. DENIS greatly outperformed regular stand-alone computers,

dividing the time to complete large batches of simulations by a factor ranging from three to 44

in different experiments. Such capacity makes it possible to undertake large cardiac simulation

projects without the need for HPC infrastructure.
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