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Abstract— Sudden cardiac death is the leading cause of
death among cardiovascular diseases. Markers for patient risk
stratification focusing on QT-interval dynamics in response
to heart-rate (HR) changes can be characterized in terms of
parametric QT to RR dependence and QT/RR hysteresis. The
QT/RR hysteresis can be quantified by the time delay the
QT interval takes to accommodate for the HR changes. The
exercise stress test has been proposed as a proper test, with large
HR dynamics, to evaluate the QT/RR hysteresis. The present
study aims at evaluating several time-delay estimators based
on noise statistic (Gaussian or Laplacian) and HR changes
profile at stress test (gradual transition change). The estima-
tor’s performance was assessed on a simulated QT transition
contaminated by noise and in a clinical study including patients
affected by coronary arteries disease (CAD). As expected, the
Laplacian and Gaussian estimators yield the best results when
noise follows the respective distribution. Further, the Laplacian
estimator showed greater discriminative power in classifying
different levels of cardiac risk in CAD patients, suggesting that
real data fit better the Laplacian distribution than the Gaussian
one. The Laplacian estimator appears to be the choice for time-
delay estimation of QT/RR hysteresis lag in response to HR
changes in stress test.

Clinical Relevance—The proposed time-delay estimator of
QT/RR hysteresis lag improves its significance as biomarkers
for coronary artery diseases risk stratification.

I. INTRODUCTION

Sudden cardiac death (SCD) is the leading cause of death
with an incidence of 15%-20% among all deaths in Western
societies [1]. Elevated repolarization heterogeneity in the
ventricular myocardium can promote ventricular arrhythmias
which are strongly associated to SCD [3]. Particularly, during
exercise, ventricular repolarization dispersion can be exacer-
bated in response to abrupt changes in heart rate (HR) due to
the different repolarization adaptation to HR changes shown
by distinct ventricular cells [3]. Ventricular repolarization is
reflected by the T wave in the electrocardiogram (ECG) from
which the QT interval can be measured. QT-interval duration
characterizes repolarization dynamics. The time delay of QT
interval in accommodating to HR changes (QT/RR hystere-
sis) has been shown to be a marker for SCD risk stratification
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[2], [3], [4], [5]. The relation between HR changes and their
induced QT changes has been modeled with a non-linear
part, representing the stationary relation of QT with RR, plus
a first order linear system representing the system memory
[6]. This allows to measure the QT time lag in respose to
any RR change and was particularly applied to compute the
time the QT series takes to follow a step-like HR change
[2], [6]. However, step-like maneuvers are uncommon and
difficult to provoke leading to a recent proposal to measure
the QT time lag during stress test maneuvers [3], [7]. Since
HR varies almost linearly in stress test, the QT series should
then follow the HR changes with other linear trend delayed
by the time lag under estimation [3]. This method was
evaluated in patients with suspected cardiovascular disease,
to characterize arrhythmias and SCD risk [3]. The time delay
of QT series in following changes in the HR series was
computed as the time lag between the observed QT series
and an expected instantaneous memoryless HR-dependent
QT series, derived from the HR and a patient specific
estimate of the stationary QT to RR dependence [3]. The
computation of the time lag between the two series can be
formulated as a two-channel time-delay estimation, which,
under the hypothesis of series contaminated by Gaussian
noise, is well known to reduce to the least square (LS)
estimation which, under conditions of finite support, results
in the maximization of the cross-correlation between the
two channels [8], but that here, the increasing or decreasing
abrupt changes do not satisfy this condition, preventing the
use of the cross-correlation. In addition, features derived
from the ECG typically present a heavy-tailed distribution,
better represented by a Laplacian, rather than by a Gaussian
[9]. In the case of the QT interval, it results from a QRS onset
and T-wave end identifications, which are largely subject to
outliers, then better represented by a Laplacian distribution.
The aim of this study is to derive a Laplacian-based time-
delay estimator and test it in simulation and clinical practice.

II. MATERIALS AND METHODS

A QRS detector, identifying QRS-complex occurrence
time and an ECG wave delineator, identifying the QRS onset
and the T-wave end for each beat are required to generate
the HR and QT series [10]. These series typically follow
approximately linear transitions during stress test which also
include some measurement noise and constitute the basis for
the time delay detector derivation.
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A. Modeling of QT ramp-like transition at stress test

The QT series, resampled at 4 Hz, dQT(n), and the ex-
pected instantaneous memoryless, HR-dependent QT series,
di

QT(n), were modeled as a gradual step-like transition s(n)
plus added uncorrelated white noises v2(n), v1(n), respec-
tively (either Gaussian or Laplacian) with equal variance σ2

v
and a time lag, τ , between the two series:

di
QT(n) = x1(n) = s(n)+ v1(n)

dQT(n) = x2(n) = s(n− τ)+ v2(n)

}
n = 0, ...,N −1, (1)

where N is the length of the observed window. For sim-
plicity we assimilate di

QT(n) and dQT(n) to x1(n) and x2(n),
respectively.

B. Time delay estimators

The τ parameter in (1) influences the observed data
dQT(n), which follows a certain probability distribution. This
parameter, when data follows an assumed probability distri-
bution, can be estimated by maximum likelihood (ML) esti-
mation. To derive the ML estimator of τ between dQT(n)≡
x2(n) and di

QT(n) ≡ x1(n), we depart from the two-channel
model [8] in (1). It is assumed that the QT trend s(n) has
stationary behaviour at both ends of the observation window,
for a duration guaranteeing that delaying by τ the series, it
still has the same stationary value at end samples (transition
much shorter than the observation interval). The optimal ML
estimate of τ depends on the assumed distribution of the
noise contaminating the series.

1) Gaussian: The probability density func-
tion (PDF) characterizing the observation
x1 =

[
x1(0) · · ·x1(N −1)

]T and x2 =
[
x2(0) · · ·x2(N −1)

]T ,
with s =

[
s(0) · · ·s(N −1)

]T , results for Gaussian noise in:

pv(x1,x2;τ,s) =
N−1

∏
n=0

1
2πσ2

v
exp

[
−
(
(x1(n)−s(n))2+(x2(n)−s(n−τ))2

)
2σ2

v

]
.

(2)

Taking the logarithm and grouping factors independent of τ

or s, we obtain:

ln pv(x1,x2;τ,s) = Constant+

− 1
2σ2

v

N−1

∑
n=0

(
(x1(n)−s(n))2+(x2(n)−s(n−τ))2) . (3)

Maximization of the log-likelihood function in (3) is done
by first deriving with respect to s(n) for a given τ:

∂ ln pv(x1,x2;τ,s)
∂ s(n)

=
1

2σ2
v
(2x1(n)+2x2(n+ τ)−2s(n)−2s(n)) ,

(4)

which when set to zero, results in the following estimator:

ŝ(n;τ) =
x1(n)+ x2(n+ τ)

2
. (5)

Inserting ŝ(n;τ) into the log-likelihood function in (3) and
maximizing with respect to the other parameter τ , we obtain:

τ̂ =argmin
τ

(
N−1

∑
n=0

(x1(n)− x2(n+τ))2+(x2(n)− x1(n−τ))2

)

=argmax
τ

(
1
2

N−1

∑
n=0

x1(n)x2(n+τ)+x2(n)x1(n−τ)−Ex(τ)

4

)
,

(6)

with Ex(τ) =
N−1

∑
n=0

(
x2

1(n)+ x2
2(n)+ x2

1(n− τ)+ x2
2(n+ τ)

)
.

Since the signal s(n) is assumed to have constant value in an
interval larger than τ at the extremes, the estimator in (6),
from first equality, is just the LS estimate by varying τ:

τ̂LS =argmin
τ

N−1

∑
n=0

(x1(n)− x2(n+τ))2 ; τ ∈ {−I, ..., I}, (7)

with I representing the plausible range of values for τ .
Alternatively, when s(n) is of finite support and contained

in the observation interval, Ex becomes independent of τ and
the ML estimate of τ , from second equality in (6), results
in the value of τ maximizing the cross-correlation between
x1(n) and x2(n+τ) [8]. However, since here s(n) is not zero
at the interval extremes and, in addition, their values can
differ from one end to the other, Ex(τ) does depend on τ ,
making the ML estimate resulting from (6) non-interpretable
as a cross-correlation maximization. If we rather modify
the signals x1(n) and x2(n) by adding a constant value
b, such that the mean values at the extremes of the new
signals, x̃i(n) = xi(n)−bi, i=1,2, have the same module a
and reverted sign, Ex̃ becomes independent of τ and the
cross-correlation ML estimate could be used based on the
modified signal x̃i(n). A reasonable estimation of bi is

b̂i =
med{xi(0), ...,xi(I−1)}+med{xi(N−I), ...,xi(N−1)}

2
,

(8)
with the I samples at observation interval onset and end
where we have guaranties the HR is stationary. The ML
estimate is then the one that maximizes the cross-correlation
function between the biased modified observations (BCC):

τ̂BCC = argmax
τ

(
N−1

∑
n=0

x̃1(n)x̃2(n− τ)

)
; τ ∈ {−I, ..., I}. (9)

If we assume that the transition always occurs at the
center of the observation interval, the estimation of the
bias bi can just be avoided by zero-meaning the ob-
served signals, guaranteeing the same absolute mean value
at the series extremes. Thus, the estimate in (9) can
be used with the cross-correlation of the zero-meaned
(ZCC) observation signals x̃1(n) = x1(n)−mean{x1} and
x̃2(n) = x2(n)−mean{x2}, resulting in the τ̂ZCC estimator.

2) Laplacian: To derive the ML time delay estimation
under Laplacian noise distribution we depart from the same
signal model, but with Laplacian noise distribution resulting
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in the following observation signal PDF:

pv(x1,x2;τ,s) =
N−1

∏
n=0

1
2σ2

v
exp

[
−
√

2
σv

(|x1(n)−s(n)|+|x2(n)−s(n−τ)|)

]
.

(10)

Taking again the logarithm and grouping factors independent
of τ or s, we obtain:

ln pv(x1,x2;τ,s) = Constant+

−
√

2
σv

N−1

∑
n=0

(|x1(n)−s(n)|+|x2(n)−s(n−τ)|) . (11)

Maximization of the log-likelihood function in (11) by first
differentiating with respect to s(n) for a given τ:

∂ ln pv(x1,x2;τ,s)
∂ s(n) =−

√
2

σv

(
x1(n)−s(n)
|x1(n)−s(n)|+

x2(n+τ)−s(n)
|x2(n+τ)−s(n)|

)
=−

√
2

σv
[sgn(x1(n)−s(n))+ sgn(x2(n+ τ)−s(n))] ,

(12)

and setting to zero, results in the following estimator:

ŝ(n;τ) = med{x1(n),x2(n+ τ)}= x1(n)+ x2(n+ τ)

2
. (13)

Inserting ŝ(n;τ) into the log-likelihood function in (11) and
maximizing with respect to the other parameter τ , we obtain:

τ̂ =argmin
τ

N−1

∑
n=0

(
|x1(n)−x2(n+ τ)|

2
+
|x2(n)−x1(n− τ)|

2

)
.

(14)
Making use of the assumption that s(n) has constant value
at the extremes of the observation interval for a period larger
than τ , the Laplacian estimator (LE) of τ can be written as:

τ̂LE =argmin
τ

N−1

∑
n=0

|x1(n)−x2(n+ τ)|; τ ∈ {−I, ..., I}. (15)

C. Simulation

To assess the time delay estimator in a controlled scenario,
we simulate an HR acceleration (negative slope transition in
dQT(n) series) as a gradual step-like transition as:

s(n) =


a+b, n = 0, ..., N−T

2 −1
a
(
1− 2

T+1 (n−
N−T−2

2 )
)
+b n = N−T

2 , ..., N+T
2 −1

−a+b, n = N+T
2 , ...,N −1

(16)
where T models the duration of QT transitions between two
assumed flat areas taking values from a uniform random
distribution between 10 and 70 s. The amplitude of the
step is 2a and b + a indicates the departing level of the
step (Fig.1). In case of HR deceleration (positive slope
transition in dQT(n)) the step like transition has the form
−s(n). Observation signal length N is taken as 1000 s. Added
white noise vi(n) was scaled to better match the variability of
the real series with a factor taken randomly between 0.010
and 0.50 s. The transition ramp 2a amplitude was chosen
to match the amplitude range of real QT transitions. The
mean stationary QT value at higher HR, b−a, was generated
randomly between 0.23 and 0.30 s, and at lower HR, b+a,
between 0.33 and 0.40 s. The simulated time lag τ was also
randomly selected and ranged between 0 and 70 s. In total,

800 series realizations, sampled at 4 Hz, were generated,
which were the result of summing up 200 realizations from
each combination of negative/positive slope transition with
Gaussian/Laplacian added noise. Ranges of parameters were
chosen based on real QT changes in stress test [3].

To evaluate the time-delay estimator’s performance, the
error, ε , between the true τ introduced at the simulation and
the estimated one, τ̂ , was computed as ε = τ̂ − τ .
D. Clinical significance

To evaluate the significance of different estimators in
clinical practice, we considered LS and LE estimators, since
they were the ones showing the best performance in simu-
lation, see section III. A total of 448 ECGs recorded from
patients undergoing exercise stress testing at Tampere Uni-
versity Hospital in Finland [11] were analyzed. Patients were
classified into four groups according to their likelihood of
suffering from coronary artery disease (CAD). The low risk
(LR) ECG group (ECG-LR) consists of patients determined
as of LR just with information from clinical history and the
ECG, without subsequent coronary angiography (COR). The
remaining patients, who underwent a COR, were classified
depending on whether they presented less than 50% (COR-
LR), between 50 and 75% (COR-MR), or more than 75%
(COR-HR) of luminal narrowing of the diameter of at least
one major epicardial coronary artery or main branches. LR,
MR, and HR refer to Low, Mild and High Risk, respectively.
There were 213, 59, 24 and 152 subjects in ECG-LR, COR-
LR, COR-MR and COR-HR groups, respectively.

Uniformly sampled dRR(n) and dQT(n) series were com-
puted after applying a signal processing filtering pipeline
to the ECG [3]. Then, the instantaneous memory-less, HR-
dependent QT interval, di

QT(n), was computed. This series
follows the temporal variation of dRR(n) within the amplitude
range of dQT(n). The di

QT(n) series represents the QT value
that would correspond to each dRR(n) value, provided they
would have come from a stationary condition. Therefore,
di

QT(n) is supposed to be a memory-less version of the
observed QT series, dQT(n + τ). An automatic procedure
was applied to each signal to delimit exercise and recovery
observation ramps [3]. The observation interval is considered
to begin at sample no, taken I samples before the start of
the di

QT(n) change. A similar procedure is done for the
end of the observation interval ne, selected I samples after
the time when di

QT(n) change finishes. The exercise ramp
is a case of negative slope and the recovery, a case of
positive slope, as introduced in section II-A. The delay in
exercise and recovery ramps, τe and τr, and their difference,
∆τ = τr − τe, were computed for each subject. The results
are comparatively evaluated for the four patient groups.

III. RESULTS

An example of simulated QT transitions is shown in Fig
1. Table I contains the distribution, mean±standard deviation
(SD), of τ̂ and relative errors ε in simulation for the different
estimators under test. Fig. 2 shows box plots with the
performance of LS (top row) and LE (bottom row) estimators
in the clinical study, for different risk groups.
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Fig. 1. Simulated QT series with linearly gradual transitions.
TABLE I

SIMULATION RESULTS: DISTRIBUTIONS OF THE ESTIMATED DELAY τ̂

AND OF THE CORRESPONDING ERROR ε , REPORTED AS MEAN ± SD (S)
Noise PDF Gaussian Laplacian
τ(s) 21.47±16.27
τ̂ZCC(s) 21.52±16.20 21.50±16.21
εZCC(s) 0.05±1.31 0.03±1.22
τ̂BCC(s) 21.53±16.21 21.50±16.21
εBCC(s) 0.06±1.34 0.03±1.22
τ̂LS(s) 21.54±16.26 21.50±16.29
εLS(s) 0.07±1.20 0.02±1.01
τ̂LE(s) 21.55±16.18 21.48±16.29
εLE(s) 0.08±1.20 0.01±0.90

Fig. 2. Box plots of the time delays between di
QT(n) and dQT(n) series

for the four patient groups. a) and d) during exercise, τe, b) and e) during
recovery, τr , and c) and f) the difference between recovery and exercise, ∆τ .
The red dotted and continuous lines correspond to the mean and median
values, respectively. First row shows results for the Gaussian estimator
τ̂LS; second row shows results for the Laplacian estimator, τ̂LE. Blue box:
ECG-LR, green box: COR-LR, yellow box: COR-MR and red box: COR-
HR. Overlined variables denote patient group means. Delay significance,
p-values, in separating patient groups are plotted above box plot pairs.

IV. DISCUSSION

The aim of this study was to evaluate different estimators
of the time delay in the response of QT interval to HR
changes. Both Gaussian and Laplacian noise distribution
based estimators slightly overestimate τ in case both of
Gaussian noise and of Laplacian noise (Table I). In the case
of Gaussian noise, the best-performing estimator is LS, with
an error SD of εLS of 1.20 s while BCC gives the highest
SD of εBCC of 1.34 s. The lower performance of BCC and
ZCC could be a result of the extra variance added by the
estimation of extra parameters: the bias value b̂i at both sides
of the transition and/or the mean value, respectively. In case
of Laplacian noise, the best-performing estimator is LE with
SD of εLE of 0.90 s (Table I). From the evaluation of τ̂LS and

τ̂LE in clinical practice, it can be observed (Fig. 2) that the
time delay estimated as τ̂LE discriminates more significantly
between Low, Mild and High risk CAD subjects. The more
noticeable difference in results with respect to previous study
[3], where the LS estimator was used (top row in Fig. 2) is
that ∆τ becomes significantly different between COR-MR
and ECG-LR risk groups when delays are computed with
τ̂LE (third column, bottom row of Fig. 2).

V. CONCLUSIONS
Results, both in simulation and real data, show that

the LE time-delay estimator, derived from Laplacian noise
assumptions and consisting in minimizing the sum of the
absolute differences between the two delayed series, is the
best-performing estimator when computing delays between
QT series trends in response to HR changes, as cardiac
biomarkers for CAD risk stratification.
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