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Abstract

This work aims at providing a efficient method to
estimate the parameters of a non linear model with
memory previously proposed to characterize rate
adaptation of repolarization indices. The physiologi-
cal restrictions on the model parameters have been
included in the cost function in such a way that un-
constrained optimization techniques can be used for
parameter estimation. The proposed method has
been evaluated on ECG recordings of healthy sub-
jects performing a tilt test, where rate adaptation of
QT and Tpeak-to-Tend (Tpe) intervals has been char-
acterized. Results show that the Tpe interval adapts
faster to changes in heart rate than the QT interval.

Keywords Rate adaptation, T peak to T end interval,
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1 Introduction

QT and Tpeak-to-Tend (Tpe) intervals are commonly
used to describe overall repolarization duration and its
spatial dispersion [1]. Changes in these intervals have
been related to increased arrhythmic risk under a variety
of clinical conditions [1].

The QT interval is known to be influenced by changes
in heart rate (HR) and the use of HR correction is crucial
in the estimation of QT prolongation. However, the rate
dependence of the Tpe interval is still an issue. Previous
studies characterizing Tpe rate dependence are controver-
sial, with Tpe shown to be independent of HR by some
authors [2] and markedly HR dependent by others [3].

In this work, a model previously proposed to estimate
QT rate adaptation [4] was used to estimate both, QT and
Tpe rate adaptation. The physiological restrictions on the
model parameters and the computational time required
for the estimation led us to propose a efficient estimation
method that uses a QuasiNewton optimization technique.
This technique was used in [5] and details are given in
this manuscript.

The proposed method was evaluated in ECG record-
ings presenting HR changes, in which Tpe rate adaptation
was characterized and compared to QT rate adaptation.

2 Methods

2.1 Model formulation

The input xRR[n] and output yTpe [n] denote the RR and
the Tpe series of each recording sampled to fs = 1 Hz.
The problem consists of identifying two blocks, a FIR
filter and a nonlinear function, which relate xRR[n] and
yTpe [n], as shown in Fig.1 (analogously for the QT inter-
val).

xRR[n]- FIR filter
(h)

zRR[n]- g(., a) -
ŷTpe [n]

?���
+

v[n]

-
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Figure 1: Block diagram describing the relationship be-
tween RR and Tpe consisting of a time invariant FIR filter
with impulse response h, and a nonlinear function param-
eterized by vector a.

The first block corresponds to a time invariant Nth-
order FIR filter with impulse response:

h = (h[1], ... , h[N ])T (1)

whose output is denoted by zRR[n]. Impulse response
h includes information about the memory of the system,
that is, a characterization of the influence of a history of
previous RR intervals on each Tpe (analogously for QT)
measurement.

The order N of filter h was set to 150 samples corre-
sponding to 150 seconds, expected to exceed the Tpe and
QT memory lag for the population used in this study.

The second block is a function gk(.,a), which is pa-
rameterized with the biparameter vector a = [a0, a1]

T .
gk(.,a) represents the relationship between the RR inter-
val and the Tpe or QT interval once the memory effect
has been compensated for, and it was particularized and
optimized for each subject using one of the regression
functions described below, denoted gk.

The output of the model ŷTpe [n] is defined as:

ŷTpe [n] = gk(zRR[n],a) (2)

In vector notation, zRR, is the convolution between the
input vector xRR and the impulse response h, and can be



expressed as zRR = xRR ∗ h = XRRh, where XRR is the
Toeplitz matrix of xRR:

XRR =


xRR[N ] xRR[N − 1] . . . xRR[1]

xRR[N + 1] xRR[N ]
...

...
. . .

...
xRR[M ] xRR[M − 1] . . . xRR[M −N + 1]


(3)

which is a (M − N + 1) × N matrix, where M is the
length of the signal xRR[n].

Different biparametric regression functions that span
from a linear to a hyperbolic relationship, as described
in [4], were considered for gk(.,a), and the one that best
fits the data of each subject is identified. Two examples
are:

Linear: yTpe [n] = g1(zRR[n],a) = a0 + a1zRR[n] (4)

Hyperbolic: yTpe [n] = g2(zRR[n],a) = a0 +
a1

zRR[n]
(5)

The optimum values of the FIR filter response h, vec-
tor a, and function gk were searched for by minimiz-
ing a least square estimator between the estimated output
ŷTpe [n] (see eq.(2)) and the Tpe interval series yTpe [n], for
each subject independently using its whole recording.

JLS
k (h,a) =

∥∥∥yTpe
− gk(xRR ∗ h,a)

∥∥∥2 (6)

However, as described in [4], this optimization prob-
lem is an ‘ill-posed’ problem which can have multiple
solutions. When dealing with ‘ill-posed’ problems, a reg-
ularization term including a priori information of the so-
lution, should be added. This study uses a Tikhonov reg-
ularization approach [6].

Rate dependence of repolarization features have been
modelled as exponential decays, so penalizing the devi-
ations of h from having an exponential decay is used to
construct the regularization matrix D as in [4].

D =


τ −1 0 . . . 0

0 τ −1
. . .

...
. . .

. . .
0 . . . 0 τ −1

 (7)

Note that in case of h having an exponential decay ex-
pressed as h[j] = e−λj = τ j , the equality ‖Dh‖ = 0
holds.

The value of τ is calculated as the best exponential de-
cay of h that leads to the minimum mean square error
between yTpe and ŷTpe using the linear regression model
g1.

The estimator thus turns into a regularized least square
estimator:

{h∗,a∗, k∗} = arg min
{h,a,k}

(
JLS
k (h,a) + β2 ‖Dh‖2

)
(8)

where β2 is a regularization parameter that control how
much weight is given to the energy of ‖Dh‖ relative to

the energy of the residual
∥∥yTpe

− ŷTpe

∥∥. The value of β
was obtained by using the “L-curve” criterion [7].

Regarding k∗ in eq.(8), the optimum regression func-
tion gk(.,a) was determined as the one that minimizes
the mean square error for each subject independently.

Then, the cost function to be minimized for each re-
gression function is:

Jk(h,a) =
∥∥∥yTpe

− gk(xRR ∗ h,a)
∥∥∥2 + β2 ‖Dh‖2 (9)

where the first term corresponds to the residual energy of
the model and the second one corresponds to the regular-
ization energy.

Restrictions: The optimal estimation of h is subject to
two constraints: the sum of the h components has to be 1
(
∑N
i=1 h[i] = 1), to ensure normalized filter gain, and all

the components of h have to be non-negative (h[i] ≥ 0),
to give a physiological plausible interpretation.

2.2 Optimization including restrictions

In this work we reformulated h in order to incorpo-
rate both constraints into the cost function, and we used a
“Quasi-Newton” optimization technique to minimize the
new cost function.

In order to minimize the cost function in eq.(9), sub-
ject to the previously described constraints, we propose
to define h[i] = h̃2[i]∑

h̃2[i]
, and optimize over h̃ without any

constraints.
Then, we obtain a new function to optimize:

J̃k(h̃,a) = Jk

(
h̃2∑
h̃[i]2

,a

)
with h[i] =

h̃2[i]∑
h̃2[i]

(10)

over which, unconstrained optimization techniques can
be used. h̃2 is defined as h̃2 =

[
h̃2[1], h̃2[2], . . . , h̃2[N ]

]
.

The new cost function J̃k(h̃,a) is optimized over h̃
and over a for each regression function gk. The estimated
ŷTpe

depends on the regression function gk(zRR, a), which
depends on h by the relationship zRR = xRR ∗ h. Then, in
order to differentiate the cost function J̃k with respect to
the first variable vector h̃, the chain rule is applied:

∂J̃

∂h̃
=

∂J̃

∂gk(.,a)
· ∂gk(.,a)

∂h
· ∂h
∂h̃

+ β2 ∂ ‖Dh‖2

∂h
· ∂h
∂h̃

(11)

where the first term represents the estimation error and
the second one the regularization term.

• The derivative ∂h
∂h̃

, also called Jacobian matrix, is
defined as the matrix of the derivatives of a vector-
valued function with respect to another vector. It
represent the effect on h of a perturbation, dh̃, of
the vector h̃:

 dh[1]
...

dh[N ]

 =


dh[1]
dh̃[1]

. . . dh[1]
dh̃[N ]

...
. . .

...
dh[N ]

dh̃[1]
. . . dh[N ]

dh̃[N ]


 dh̃[1]

...
dh̃[N ]





Therefore, the derivative:

∂h

∂h̃
=


dh[1]
dh̃[1]

. . . dh[1]
dh̃[N ]

...
. . .

...
dh[N ]

dh̃[1]
. . . dh[N ]

dh̃[N ]

 =

=


2h̃[1]

∑
h̃[i]2−2h̃[1]3

(
∑

h̃[i]2)2
. . . −2h̃[N ]h̃[1]2

(
∑

h̃[i]2)2

...
. . .

...
−2h̃[1]h̃[N ]2

(
∑

h̃[i]2)2
. . . 2h̃[N ]

∑
h̃[i]2−2h̃[N ]3

(
∑

h̃[i]2)2


(12)

• Calculation of ∂J̃k
∂gk(.,a)

:

J̃k =
∥∥yTpe − gk(zRR,a)

∥∥2 + β2 ‖Dh‖2

= (yTpe − gk(zRR,a))
T (yTpe − gk(zRR,a)) + β2 ‖Dh‖2

Therefore 1,

∂J̃k
∂gk(.,a)

= −2 · (yTpe
− gk(zRR,a))

T (13)

• Calculation of ∂gk(,a)∂h :

Taking into account that gk depends on zRR, and zRR =
XRRh:

∂gk(zRR,a)

∂h
=
∂gk(zRR,a)

∂zRR
· ∂zRR

∂h
=
∂gk(zRR,a)

∂zRR
·XRR (14)

∂gk(zRR,a)
∂zRR

is a matrix since ∂gk(zRR,a) and ∂zRR are
vectors. Besides, a perturbation of the ith element of the
vector zRR, produces an effect only on the ith element of
the vector gk(zRR,a), and then ∂gk(zRR,a)

∂zRR
is a diagonal

matrix.
For the two regression model examples shown in equa-

tions (4) and (5) , the diagonal of ∂gk(zRR,a)
∂zRR

are shown in
Table 1.

MODEL (gk) diag
(
∂gk(.,a)
∂zRR

)
∂gk(.,a)
∂a0

∂gk(.,a)
∂a1

a0 + a1zRR a1 1 1 zRR

a0 +
a1
zRR

− a1
z2

RR
1 1

zRR

Table 1: Example of the derivatives of two regres-
sion functions gk(zRR,a), with respect to zRR and a.
diag

(
∂gk(.,a)
∂zRR

)
is the diagonal of the matrix ∂gk(.,a)

∂zRR
. 1

represents a N-length vector of ones. All mathematical
expressions are element-wise.

• The derivative ∂‖Dh‖2
∂h :

∂ ‖Dh‖2

∂h
=

∂

∂h
(Dh)T (Dh) = 2(Dh)TD (15)

1d(Ax + b)T (Ax + b) = 2(Ax + b)TAdx, where A is a matrix
and x and b are vectors.

Eventually, ∂J̃k
∂h̃

can be computed by introducing equa-
tions (12), (13), (14) and (15) into (11).

In order to differentiate the cost function J̃k with re-
spect to the second variable vector a = [a0, a1]

T , the
chain rule is also applied:

∂J̃k
∂a

=
∂J̃k

∂gk(.,a)
· ∂gk(.,a)

∂a
(16)

The first term is already calculated in eq.(13), while
the second term is a Nx2 matrix where the first column
corresponds to ∂gk(.,a)

∂a0
and the second column to ∂g(.,a)

∂a1
,

both shown in Table 1.

2.2.1 Optimization technique

In this work, a Quasi-Newton optimization technique,
the BFGS (Broyden-Fletcher-Goldfarb-Shanno), is used
to minimize the cost function J̃k(h̃,a) [8].

BFGS Quasi-Newton method estimate the Hessian (or
the Hessian inverse) matrix preserving symmetry and
positive definiteness. In each step, the estimation of the
Hessian matrix is updated using the gradient informa-
tion [8].

In order to compute the step size along the descent
direction, obtained by the Quasi-Newton method, a
parabolic and a golden ratio line searches were used [9].

2.3 Population

Fifteen ECG recordings obtained during a the head-up
tilt test trial, sampled at a frequency of 1000 Hz, were
used to characterize Tpe and QT rate adaptation. The
tilt test protocol generated two step-like RR changes with
stabilized RR intervals after each of them (see Fig.2, top
panel).

ECG delineation was performed using a wavelet-based
delineator [10]. RR, QT and Tpe intervals were computed
from the ECG delineation marks in the V2 and V4 leads.

2.4 Quantification of the results

The time required for Tpe and QT to complete 90% of
their rate adaptation, denoted by t90, was computed by
setting a threshold of 0.1 to the cumulative sum of the
filter impulse response, c[n]:

c[n] =

N∑
i=n

h[i], leading to

t90 =
1

fs
argmax

n
(c[n] > 0.1) (17)

The cumulative sum c[n], represents the response of a
step function to the FIR filter h[n].

3 Results and Discussion

An example of the reconstruction of the yQT[n] and
yTpe [n] series, after estimating the corresponding h[n],
the regression model k and its coefficient vector a are



shown in Fig.2. The reconstructions ŷTpe [n] and ŷQT[n],
shown in black solid lines, begin after 150 seconds corre-
sponding to the length of the filter h[n]. The estimated re-
gression functions in this example are different for the QT
(linear model) and for the Tpe series (parabolic model).
6.3 Discussion 101
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ŷ
Q
T

g3(., a)

ŷ
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Figure 6.4: On the left, an example of how the reconstruction ŷQT (in black solid line) of
the QT interval series yQT (in gray dots), is obtained by xRR through the estimations of
h[n] and gk(., a). In this example, the optimum regression model for the QT interval is
the linear one (k=1). In the right part, analogously for the Tpe, the reconstruction ŷTpe
(in black solid line) is shown. The optimum model regression in this case is the parabolic
function (k=3). In dashed gray line, the linear function is also depicted for comparison
purpose.

which has a pronounced memory effect, with about 74 s to complete 90% of its rate
adaptation. However, this t90 value of 74 s in mean for the QT adaptation is lower than
the t90 reported in [108], which is around 120 s. This may be due, among other reasons,
to the younger age of the control subjects of the tilt test database used in this study.
While Tpe dependence on a previous history of RR intervals presents a fast decay in one
phase, in the case of the QT interval, the decay is performed in two phases, a fast one
and a slow one, in concordance with observations from previous studies [106].

APD in ventricular myocytes (epi, mid and endocardial cells) are known to have

Figure 2: Top panel: xRR series obtained from a subject of
the study population. Middle and bottom panels: on the
left, an example of how the reconstruction ŷQT (in black
solid line) of the QT interval series yQT (in gray dots),
is obtained by xRR through the estimations of h[n] and
gk(.,a). In this example, the optimum regression model
for the QT interval is the linear one (k=1). On the right,
analogously for the Tpe, the reconstruction ŷTpe (in black
solid line) is shown. The optimum model regression in
this case is the parabolic function (k=3). In dashed gray
line, the linear function is also depicted for comparison
purposes.

In Fig.3, the median, first and third quartile of the Tpe
rate adaptation, c[n], across the 15 recordings are shown
and compared to those of the QT interval. t90 values are
23 seconds, in mean, for Tpe to complete 90% of the rate
adaptation and 74 seconds for QT. The characterization
of Tpe rate adaptation, shows that Tpe is rate related and
it has a shorter memory lag than the QT interval.

4 Conclusions

In this work a efficient estimation of the parameters of
a model aimed at characterizing rate adaptation of repo-
larization features has been proposed. The physiologi-
cal restrictions have been included into the cost function,
which allowed the use of descent optimization methods
with a faster convergence. The evaluation of the method
on a tilt test database shows results within clinical ranges.
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