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a b s t r a c t 

Monitoring of ventricular premature beats (VPBs), being abundant in hemodialysis patients, can provide 

information on cardiovascular instability and electrolyte imbalance. In this paper, we describe a method 

for VPB detection which explores the signals acquired from the arterial and the venous pressure sensors, 

located in the extracorporeal blood circuit of a hemodialysis machine. The pressure signals are mainly 

composed of a pump component and a cardiac component. The cardiac component, severely overshad- 

owed by the pump component, is estimated from the pressure signals using an earlier described iterative 

method. A set of simple features is extracted, and linear discriminant analysis is performed to classify 

beats as either normal or ventricular premature. Performance is evaluated on signals from nine hemodial- 

ysis treatments, using leave-one-out crossvalidation. The simultaneously recorded and annotated photo- 

plethysmographic signal serves as the reference signal, with a total of 14 9,6 86 normal beats and 3574 

VPBs. The results show that VPBs can be reliably detected, quantified by a Youden’s J statistic of 0.9, for 

average cardiac pulse pressures exceeding 1 mmHg; for lower pressures, the J statistic drops to 0.55. It is 

concluded that the cardiac pressure signal is suitable for VPB detection, provided that the average cardiac 

pulse pressure exceeds 1 mmHg. 

© 2017 IPEM. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

It is well-known that ventricular premature beats (VPBs) are

requent in dialysis patients [1,2] , and increase in number when

xcess potassium is removed [3] . Ventricular arrhythmias in dialy-

is patients have been studied in long-term, ambulatory electrocar-

iogram (ECG) recordings, showing that VPBs are much more fre-

uent during hemodialysis than during the postdialysis period [4] .

atients with regional wall motion abnormalities, ischemic heart

isease, and left ventricular hypertrophy have a higher rate of

PBs during hemodialysis than have patients without these dis-

ases. Rapid changes in this rate may be a sign of cardiovascular

nstability and electrolyte imbalance, and the significance of such
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hanges have been investigated for prediction of acute, intradia-

ytic hypotension [5] . 

Pulse pressure waves propagate from the heart through the ar-

eries to the fistula , where the waves enter the extracorporeal

lood circuit of the dialysis machine. In this blood circuit, the

aves are measured by the arterial and the venous pressure sen-

ors. A peristaltic blood pump generates a pulsatile blood flow

hrough the extracorporeal circuit. The blood flows from an arterial

eedle inserted into the fistula, through the dialyzer, purifying the

lood, and then back to the fistula through a venous needle. The

mplitude of the pressure pulses generated by the blood pump is

rastically larger than is the amplitude of the pressure pulses gen-

rated by the heart. 

We have previously shown that a cardiac pressure signal can be

xtracted from the signals produced by arterial and venous pres-

ure sensors [6] , (see also [7] ). In these studies, we compared heart

ate and heartbeat occurrence time estimated from the extracted

ardiac pressure signal to the corresponding quantities obtained

rom the photoplethysmographic (PPG) signal. The results showed
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Fig. 1. (a) Block diagram of the method for cardiac pressure signal estimation. Note 

that the output signal is referred to as “cardiac pressure signal”, whereas the in- 

termediate signals are referred to as “components”. (b) The arterial and the venous 

pressure signals are the input to the method, whereas (c) the cardiac pressure sig- 

nal is the output. Note the considerable difference in amplitude between the signals 

in (b) and (c). 
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that the proposed method offers excellent accuracy of heart rate

and heartbeat occurrence time, also at low signal-to-noise ratios. 

In the present paper, we investigate, for the first time, whether

the extracted cardiac pressure signal is suitable for VPB detection.

A set of features, describing amplitudes, durations, and areas, is

proposed and used to classify detected beats as either VPBs or

normal based on linear discriminant analysis. Using leave-one-out

crossvalidation, the performance is evaluated by comparing the re-

sults from the proposed classifier to the annotated reference PPG

signals. 

2. Background 

2.1. Cardiac pressure signal estimation 

The cardiac pressure signal is estimated using the iterative

method described by Holmer et al. [6] . The method alternates

between modeling of separate arterial and venous pump compo-

nents, and estimation of a cardiac pressure signal. The resulting

estimate is based on both the arterial and the venous pressure sig-

nals, by mixing the arterial cardiac component with the venous

cardiac component. The mixing consists of time shifting and av-

eraging, where the time shift is determined by maximizing the

correlation between the arterial and venous cardiac components.
he arterial and the venous cardiac components are obtained by

ubtracting the arterial and the venous model pump components

rom the respective arterial and venous pressure signals. The ar-

erial and the venous pump signal estimates are determined by

ubtracting the cardiac pressure signal estimate from the respec-

ive signals. The pump signal estimates are, in turn, used to itera-

ively refine the arterial and the venous model pump components,

o that the pump component remainders in the cardiac pressure

ignal estimate are reduced. The iteration continues until the dif-

erence in successive cardiac pressure signal estimates no longer

mproves. The main building blocks of the method are shown in

ig. 1 (a), where the input signals and the output signal are illus-

rated in Fig. 1 (b) and (c), respectively. 

. Experiment and database 

.1. Clinical study 

The data originate from a clinical study performed at Skåne

niversity Hospital, Lund, Sweden. The study was approved by the

ocal ethical review board, and all patients signed an informed con-

ent form before participating. 

The data set includes 9 treatments from 7 patients with kidney

ailure who underwent hemodialysis treatment for at least three

onths prior to the study onset. The treatments were performed

ccording to the regular prescription provided by the nephrologist,

nd lasted 4–5 h. Four patients had a history of heart complication.

ne patient had a graft as vascular access, whereas all others had

stulas. The average cardiac pulse pressure P̄ np was determined

uring a blood pump stop at the treatment onset, see Table 1 .

reatments with P̄ np below 0.5 mmHg [6] , as well as patients with

acemaker, patients undergoing hemodiafiltration treatment, and

atients participating in other studies, were not included. 

The patients were treated with AK 200 hemodialysis machines

rom Gambro. An external device with pressure sensors was con-

ected to the extracorporeal blood circuit to acquire the arterial

nd the venous pressure signals. The external device was used in-

tead of the built-in pressure sensors to avoid the time-consuming

ork that comes with a software update of a dialysis machine.

owever, the recorded data can be regarded as originating from

he built-in sensors, since the external and built-in sensors were

f identical brand and type. 

As reference, a PPG signal was acquired using the LifeSense TM 

nger pulse oximeter. The PPG signal and the estimated cardiac

ressure signal were lowpass filtered, using a cut-off frequency of

 Hz. All analyzed signals had a time resolution of 10 ms. The use

f the PPG signal as a reference is discussed in Section 6 . 

.2. Annotation of the reference PPG signal 

Firstly, pulse detection was performed on the reference PPG sig-

al, using a lowpass differentiator filter and a time-varying thresh-

ld, where the time of the peak amplitude of each heart pulse was

sed as reference [8,9] . Secondly, the detected pulses were clas-

ified as either normal or VPB using the method of Gil et al. [9] .

ext, all VPBs were manually reviewed to avoid incorrect anno-

ations. Segments with motion artifacts were manually excluded,

eading to that 9% of the total treatment time were excluded. For

ach treatment, Table 1 presents its duration, the duration of dis-

arded segments, P̄ np , the mean and standard deviation of the

eak-to-peak interval in the PPG signal, and the number of anno-

ated normal and premature beats. 
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Table 1 

Treatment characteristics. 

Treatment Duration Discarded P̄ np m pp ±σ pp #VPBs #normal 

# (h:mm) (h:mm) (mmHg) (ms) 

1 4:13 0:10 5.0 993 ± 109 158 14,526 

2 4:10 0:03 2.9 952 ± 175 507 15,029 

3 4:31 0:11 1.8 767 ± 51 6 19,768 

4 4:41 0:04 1.3 785 ± 107 336 20,852 

5 4:40 0:26 1.3 966 ± 111 54 15,665 

6 4:54 1:49 0.70 790 ± 72 23 13,879 

7 4:52 0:04 0.70 756 ± 134 773 22,060 

8 4:37 0:02 0.55 871 ± 191 1382 17,586 

9 3:42 0:51 0.54 961 ± 180 335 10,321 

The category “Discarded” is the accumulated duration of discarded segments due to mo- 

tion artifacts in the PPG signal. P̄ np is the average pulse pressure of the cardiac pressure 

signal determined during blood pump stop. m pp and σ pp denote the mean and standard 

deviation, respectively, of the peak-to-peak interval. Note that the number of VPBs and 

normal beats, m pp , and σ pp are determined from the annotated PPG signals. 

Fig. 2. Illustration of signals and VPB detection for treatment #1. (a) Venous pres- 

sure signal p v ( t ) (black) and arterial pressure signal p a ( t ) (grey). (b) Cardiac pressure 

signal p c ( t ) estimated from p v ( t ) and p a ( t ) (black), the envelopes e max ( t ) and e min ( t ) 

(grey), and the trend b ( t ) (dotted line). (c) The normalized cardiac pressure signal 

p n ( t ); VPBs are labeled with “∗” and normal beats with “.”. (d) The reference PPG 

signal with annotations. Note the large difference in amplitude between p c ( t ) in (b) 

and p v ( t ) and p a ( t ) in (a). 
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. Methods 

.1. Preprocessing 

The cardiac pressure signal p c ( t ) is estimated from the ob-

erved arterial and venous pressure signals, denoted p a ( t ) and

 v ( t ), respectively, using the iterative method briefly described in

ection 2.1 . Segments in p c ( t ) with excessive noise, manifested as

udden changes in energy (at least a factor of 4), or a heart rate

ower than 15 or higher than 180 beats per minute, are excluded.

ig. 2 (a) and (b) illustrates p a ( t ), p v ( t ), and p c ( t ), respectively. 

Since the amplitude of p c ( t ) varies significantly during treat-

ent, p c ( t ) is detrended and normalized to produce amplitude-

ndependent features, using a method based on empirical mode

ecomposition [10,11] . The local extrema are identified in p c ( t ). If

wo local extrema with the same polarity are closer than 350 ms

o each other, then only the extremum with the largest magni-

ude is kept. If the peak-to-peak interval T pp is 1.8–2.2 times larger

han the 5-point sliding median of T pp , denoted 

˜ T pp , the previously

xcluded extremum is recovered, provided that a pulse with the

eak-to-peak amplitude larger than 0.4 mmHg exists in the in-

erval [0 . 85 , 1 . 15] · ˜ T pp . The upper envelope e max ( t ) is obtained by
onnecting the local maxima using cubic spline interpolation. The

ower envelope e min ( t ) is obtained in the same way, but instead

onnecting the local minima. The average envelope ē (t) and the

rend b ( t ) are determined by 

¯
 (t) = 

1 

2 

(e max (t) − e min (t)) , (1) 

(t) = 

1 

2 

(e max (t) + e min (t)) , (2) 

espectively. Fig. 2 (b) illustrates e max ( t ), e min ( t ), and b ( t ), together

ith p c ( t ). The detrended and normalized cardiac pressure signal

s obtained by 

p n (t) = 

p c (t) − b(t) 

ē ( t) 
, (3) 

llustrated in Fig. 2 (c) along with information on beat type as pro-

uced by the method described below. Fig. 2 (d) shows the refer-

nce PPG signal and the annotations. 

.2. Feature extraction 

The simple features X ∈ { P , T , A }, illustrated in Fig. 3 and based

n (a) amplitude P , (b) duration T , and (c) area A , are consid-

red for classification. Four amplitude features are extracted from

 c ( t ), whereas 6 area features and 7 duration features are extracted

rom p n ( t ) since this signal is much less influenced by variations

n baseline and amplitude. Since a VPB may influence the features

f the preceding beat X −, as well as the following beat X + , the

eatures of the two enclosing beats are also evaluated, leading to

n additional 34 features. Since the features may vary consider-

bly within a treatment session, the median of the five most re-

ent beats is used for centering, denoted with superscript c , or

ormalizing the features, denoted with superscript n , either with

 

c = X − ˜ X or X n = X/ ̃  X , thus leading to 102 additional features

ased on X −, X , X , X + . In addition, the difference between the

urrent beat’s peak-to-peak interval and that of the preceding beat,

enoted �T pp , is included as a feature. In total 154 features are ex-

racted, and considered for classification. 

.3. Classification and training 

Beats detected in p c ( t ) are classified as either normal or ventric-

lar premature, using linear discriminant analysis. For each beat,

he following linear discriminant function (LDF) is evaluated [12] , 

f (x ) = 

(
m 

T 
v − m 

T 
n 

)
C 

−1 x 

−1 

2 

m 

T 
v C 

−1 m v + 

1 

2 

m 

T 
n C 

−1 m n + ln 

(
P v 

P n 

)
, (4) 
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Fig. 3. (a) Amplitude features determined from p c ( t ). (b) Duration and (c) area 

features determined from p n ( t ). The following area features are evaluated: A = 

A 1 + A 2 + A 3 + A 4 , A pn = A 3 + A 4 , A np = A 1 + A 2 , A zz = A 2 + A 3 , A zp = A 2 , A pz = A 3 . 

The vertical axis in (a) has arbitrary units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The performance index J versus the number of features used for linear dis- 

criminant analysis when based on (black squares) all nine treatments, (red dia- 

monds) seven treatments with P̄ np ≥ 0 . 7 mmHg, and (blue triangles) five treatments 

with P̄ np ≥ 1 mmHg. (For interpretation of the references to color in this figure leg- 

end, the reader is referred to the web version of this article.) 

Fig. 5. Normalized histograms of normal beats and VPBs as a function of the linear 

discriminant function f ( x ), involving (a) all nine treatments, (b) seven treatments 

with P̄ np ≥ 0 . 7 mmHg, and (c) five treatments with P̄ np ≥ 1 mmHg. 

L  

t  

j  

t

where x is a vector containing the K features of one beat, m v is the

average feature vector for all VPBs, m n is the mean for all normal

beats, C is the estimated covariance matrix of the features based

on all beats. The a priori probabilities P v and P n of VPBs and nor-

mal beats, respectively, are for each treatment determined from

the annotations of all other treatments. A different LDF is used for

each treatment, determined by leave-one-out cross validation, i.e.,

for each treatment the LDF is trained using all other treatments. If

f ( x ) > 0, the beat is classified as VPB, otherwise as normal. 

Youden’s J statistic [13] is used as performance index to deter-

mine the K most relevant features, 

J = 

N TP 

N TP + N FN 

+ 

N TN 

N TN + N FP 

− 1 , (5)

where N TP is the number of annotated VPBs classified as VPBs (true

positives), N FN is the number annotated VPBs classified as normal

beats (false negatives), N TN is the number of annotated normal

beats classified as normal beats (true negatives), and N FP is the

number of annotated normal beats classified as VPBs (false pos-

itives). Note that perfect performance, i.e., J = 1 , is achieved for

N FN = 0 and N FP = 0 . The J statistic was chosen as performance in-

dex since the data set is highly unbalanced, with many more nor-

mal beats than VPBs. 

To determine the most relevant feature, LDFs with feature vec-

tor length of K = 1 are first determined for all features separately.

The feature whose LDFs (one for each treatment) yields the largest

J for the evaluated set of treatments, is judged as the most rel-

evant. Then, the second most relevant feature is determined for
DFs when x contains two features, i.e., K = 2 . The feature which,

ogether with the most relevant feature, results in the largest J is

udged as the second most relevant. The third most relevant fea-

ure is determined in the same way, and so on. 
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Fig. 6. Receiver operating characteristic for VPB detection using linear discriminant 

analysis of the five most relevant features, for treatments with different lower limits 

of P̄ np . 

Fig. 7. EBC versus treatment time, i.e. percentage of VPBs during a 10-min sliding 

window plotted versus time during treatment #1. “PPGref” denotes the percent- 

age of VPBs according to the annotations, and “Pressure” denotes the percentage of 

VPBs from detection. 
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Fig. 8. EBC versus treatment time, i.e. percentage of VPBs during a 10-min sliding 

window plotted versus time during treatment #2. “PPGref” denotes the percent- 

age of VPBs according to the annotations, and “Pressure” denotes the percentage of 

VPBs from detection. 

Fig. 9. EBC versus treatment time, i.e. percentage of VPBs during a 10-min sliding 

window plotted versus time during treatment #8. “PPGref” denotes the percent- 

age of VPBs according to the annotations, and “Pressure” denotes the percentage of 

VPBs from detection. 
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o  
. Results 

Fig. 4 presents the performance index J as a function of the

umber of features. The performance index J was evaluated for all

54 features, but only the 10 most relevant are plotted, since J does

ot increase much when more than 5 features are included. For

he complete data set the following five features were found to be

he most relevant—T n pp , T 
c 

zp , T 
c −

np , �T pp , and P c −np —and therefore used

or classification. When the data set is reduced to only include

reatments with P̄ np ≥ 1 mmHg, T n pp remains the most relevant fea-

ure, whereas the order of relevance changes for the other features;

he same observation applies to P̄ np ≥ 0 . 7 mmHg. From Fig. 4 it is

oted that J equals 0.9 when requiring that P̄ np ≥ 1 mmHg, while

t drops to 0.55 when all treatments are analyzed. 
Histograms of f ( x ) for normal and VPBs are shown in Fig. 5 .

ince the total number of normal beats is much larger than the

otal number of VPBs, the histograms have been normalized with

espect to the total number of beats in each class. As expected, the

wo beat classes becomes more well-separated as the lower limit

f P̄ np increases. 

The receiver operating characteristic (ROC) is shown in

ig. 6 when the five most significant features are used for classi-

cation. As expected, better performance is achieved as the lower

imit of P̄ np increases. 

The ectopic beat count (EBC) is defined as the relative number

f VPBs in a 10-min sliding window [5] . EBC is derived from both
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Table 2 

Ectopic beat count. 

Treatment # P̄ np Mean �EBC (%) Std �EBC (%) 

1 5.0 − 1.46 1.89 

2 2.9 − 0.40 1.18 

3 1.8 0.32 1.01 

4 1.3 − 0.52 2.41 

5 1.3 0.15 0.74 

6 0.70 0.49 2.39 

7 0.70 32.99 12.67 

8 0.55 23.63 11.91 

9 0.54 − 4.56 13.76 

P̄ np is the average pulse pressure of the cardiac pressure sig- 

nal determined during blood pump stop. �EBC denotes the 

difference between classified and annotated EBC. 
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the estimated cardiac pressure signal and the annotations of the

PPG signal, and shown for treatment #1 in Fig. 7 . The agreement

between the EBC derived from the estimated cardiac pressure sig-

nal and the EBC derived from the annotations is satisfactory. The

number of VPBs increases towards the end of the treatment—a be-

havior often observed in hemodialysis patients. The EBC for treat-

ment #2 fluctuates more over time, see Fig. 8 , but the agreement

is still satisfactory. For both these treatments, P̄ np exceeds 1 mmHg.

On the other hand, the agreement is much worse for treatment #8

due to that P̄ np is very low (0.55 mmHg), see Fig. 9 . �EBC, i.e. the

difference between the EBC derived from the pressure signal and

the EBC derived from the annotations of the PPG signal, is com-

puted, and its mean and standard deviation for all treatments is

presented in Table 2 . 

6. Discussion 

We have demonstrated that the information provided by the

extracorporeal arterial and venous pressure sensors can be used

for detecting VPBs when the average cardiac pulse pressure P̄ np ex-

ceeds 1 mmHg, previously suggested by Holmer et al. [6] . When

exceeding, the detection performance is similar to that achieved by

analyzing the PPG. However, for P̄ np < 1 mmHg, the performance

drops due to reduced separation between normal beats and VPBs,

see Fig. 5 . Another manifestation of a low P̄ np is that the number

of VPBs is overestimated, see Fig. 9 , which is related to inaccu-

rate estimation of the peak-to-peak interval T pp in treatments with

P̄ np < 1 mmHg. For the particular treatment in Fig. 9 the consider-

able variation in heart rate ( σpp = 191 ms, see Table 1 ) may have

contributed to overestimation of VPBs. 

In our experience, the properties of the fistula largely deter-

mines the amplitude of the cardiac pressure signal, and, accord-

ingly, whether the patient is suitable for VPB detection. In addition,

this amplitude may vary between different designs of hemodialysis

machines. Unfortunately, the present data set is much too small to

provide insight on the percentage of the hemodialysis population

which is suitable for VPB detection with the present method. 

For treatments with P̄ np ≥ 1 mmHg, the performance index J

does not improve when more than one feature are analyzed, see

Fig. 4 . On the other hand, for P̄ np < 1 mmHg, J improves with at

least four additional features. Irrespective of P̄ np , T n pp remains the

most relevant feature on the present data set. 

Given that the data set is unbalanced, the number of false pos-

itives will surpass the number of true positives for P̄ np < 1 mmHg,

see Fig. 6 . As a result, the classifier overestimates the number of

VPBs for virtually any point on the ROC. On the other hand, for

P̄ np ≥ 1 mmHg, a true positive rate of 0.9 is achieved with very

few false positives. 

Heartbeat classification is a well-studied problem in ECG signal

processing, and many sophisticated techniques have emerged for
his purpose (see, for example, [14–17] . While those studies rest on

olid knowledge on the properties of the ECG signal, the present

tudy explores heartbeat classification in relation to a novel type

f signal whose properties have never before been explored for

PB detection. As a result, the present focus is more on feasibil-

ty than on methodological advances, and, therefore, well-known

echniques are embraced such as empirical mode decomposition

nd linear discriminant analysis. 

A limitation of the present study is that the annotations of VPBs

ere not based on the ECG, but on the PPG. When collecting the

resent database, it was unfortunately not practically feasible to

ecord the ECG. However, we have previously shown that VPBs can

e classified from the PPG signal, and that the PPG signal can be

sed as a surrogate for the ECG signal when analyzing heart rate

urbulence [9] , see also related work on automated VPB detection

n the PPG signal [18,19] . Although the ECG signal offers better

emporal accuracy than does the PPG signal, we consider the ac-

uracy of PPG-based classification to be sufficient when the goal

s to evaluate detection performance for a method analyzing the

ardiac pressure signal. 

A major limitation of the present study is that the data set is

uch too small for a meaningful division into training and test

ets. Therefore, the results of the present study should be viewed

s a proof-of-concept that VPBs can be detected from the cardiac

ressure signal. 

A limitation of the present method is its inability to distinguish

etween atrial premature beats and ventricular premature beats;

his limitation applies also to the reference PPG method. In the

CG, atrial premature beats can be distinguished from ventricular

remature beats since the QRS complex is preceded by an abnor-

al P wave. In the cardiac pressure signal, however, it is not possi-

le to distinguish whether a heartbeat is preceded by an abnormal

-wave. 

. Conclusions 

The results show that VPB detection based on the cardiac pres-

ure signal, estimated from the arterial and the venous pres-

ure signals, is feasible. Satisfactory detection performance can

e achieved when the average cardiac pulse pressure exceeds

 mmHg. Another study is required on a much larger data set. 
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