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Abstract--The measurement of ensemble variability in time-aligned event signals is 
studied in relation to sampling rate requirements. The theoretical analysis is based 
on statistical modelling of time misalignment in which the time resolution is limited 
by the length of the sampling interval For different signal-to-noise ratios (SNRs), the 
sampling rate is derived which limits the misalignment effect to less than 10% of the 
noise effect. Each signal is assumed to be corrupted by additive noise. Using a 
normal QRS complex with a high SNR (~ 30 dB), a sampling rate of approximately 
3kHz is needed for accurate ensemble variability measurements. This result is 
surprising since it implies that the Nyquist rate is far too low for accurate variability 
measurements. The theoretical results are supplemented with results obtained from 
an ECG database of 94 subjects for which the ensemble variability is computed at 
different sampling rates using signal interpolation. The ensemble variability is 
substantially reduced (40%) when increasing the rate from 1 to 3 kHz, thus corrobor- 
ating the results suggested by the theoretical analysis. 
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1 Introduction 

TIME ALIGNMENT is critical to the analysis of repetitive signals 
when no synchronisation information is available. Ensemble 
averaging of time-aligned, repetitive signals is a widely used 
technique for improving the SNR of various biomedical signals, 
e.g. for the analysis of cardiac late potentials (BREITHARDT et al., 
1991) or evoked potentials of the brain (GEVlNS and R~MOND, 
1987). Time alignment turns out to be an even more critical 
operation when studying ensemble variability of repetitive 
signals. Although ensemble variability primarily reflects the 
amount of noise in signals with fixed morphology, it may 
convey useful information when it is of interest to characterise 
signals with varying morphology. For example, increased beat- 
to-beat variability in the QRS complex of the ECG has been 
suggested as a marker for cardiac electrical instability, possibly 
related to myocardial ischemia (PRASAD and GUPTA, 1979; BEN- 
HAIM et al., 1992; NOWAK et al., 1993). 

it is well known that misalignment introduces an tmdesirable 
low-pass filtering effect in the averaged signal which is caused 
by noise, signal nonstationarity, and other limitations that affect 
the performance of the alignment algorithm. This effect must be 
taken into account when analysing a signal with respect to its 
high-frequency content. Considering ensemble variability, poor 
time alignment causes a spurious increase of the variability 
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which is particularly pronotmced for waveforms with consider- 
able high-frequency content. Unfortunately, few papers, if any, 
have studied the latter aspect of time alignment in any detail. 

The choice of sampling rate is usually based on knowledge of 
the signal spectrum, i.e. the Nyquist rate is determined. Recent 
results indicate, however, that such design considerations may 
be insufficient when dealing with ensemble variability (LAGUNA 
et al., 1997; SE)RNMO, 1998). Since sampling limits the align- 
ment precision, the ensemble variability will always include a 
contribution due to limited time resolution as defined by the 
length of the sampling interval, it is therefore of interest to study 
the effect of increased sampling rate, achieved either by 
sampling the analogue signal at a higher rate or by interpolation 
of the digitised signal. The present paper develops an analytical 
approach for studying how the ensemble average (EA) and the 
ensemble variability (EV) are influenced by various factors: time 
misalignment, noise, and morphologic variability. The influence 
of each factor is first treated separately in terms of power 
measures and then the estimation of morphologic variability in 
the presence of misalignment and noise is considered briefly. 
The power measure reflecting ensemble variability is studied in 
relation to sampling rate. Results based on the theoretical 
analysis are compared to EV measurements obtained from a 
high-resolution ECG database. 

2 Performance analysis 

2.1 Misalignment in noise-free signals without morphologic 
variabili O, 

The effect of misalignment is studied under the assumption 
that s(t) is a repetitive, deterministic signal defined in the time 
interval [a, b] with a duration of L seconds. The ith realisation in 
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the ensemble of N signals is formed by introducing a random 
jitter t i in the signal, s(t - ti). Neither noise nor morphologic 
variability are present. The effect of t i on the ensemble average 
is quantified in terms of the error, e(t), between s(t) and the 
ensemble average ~(t), i.e. 

e(t) = s(t) - ~(t) (1) 

1 N 

s(t) = N~i=l s(t -- "Ci). (2) 

Based on the assumption that the jitter t i is small compared to the 
variations in s(t), the signal s(t - ti) can be approximated by a 
truncated Taylor series expansion (UIJEN et al., 1979; SHAW and 
SAVARD, 1995), 

1 
s(t -- "ci) ~ s(t) -- s'(t)'c i +'2";sn(t)'c 2 

Z !  

Assuming that the random jitter t i is zero-mean, i.e. 
2 N 1 / N ~ I ' =  1 t i = 0 and with variance 0-~ = 1 / N ~ i = l  t F, the 

first order term of the Taylor approximation is equal to zero 
and the error e~(t) is therefore described by a second-order term: 

1 N 1 0-2 e~(t) ~ ~ ( s ' ( t ) t  i 1 ,, ~\  - ~ s  (t)tF) = - s " ( t ) 2 !  
2~/ i=1 ~ 

p d =  l I [  I Z s'2(t)0-2dt 

= ~- IL(27~f)ZsZ(f)df 

2 1 1~ 
_ 0-~ ~o2lS(~o)12&o 

MT~2 2= 

_ 2  M / 2  1 ( ~ _ )  2 

(10) 

where S(f)  is the Fourier transform of s(t), S(~o) is its discrete- 
time Fourier transform, S(k) its discrete Fourier transform, and 
M is the number of samples in each signal (L = MT~; T~ is the 
length of the sampling interval). From eqns 9 and 10, it is 
obvious that misalignment, as described by 0-~, will affect pe and 
P~ differently, if  the misalignment factor 0-J T~ is less than one 

(3) (one sample interval), the factor (0-JT~) 4 clearly has a much 
smaller influence on pe than the factor (0-JT~) 2 has on P~. in 
addition, the energy spectral density [S(~o)[- will influence the 
. . . .  9 • • • 4 "  mtegrand m different ways, since [S(~o)[- is multiplied by ~o in 
pe and by ~o 2 in P~. 

it should be noted that P~, as well as P~, depends on the power 
spectral density distribution of s(t) such that higher frequencies 
contribute more than lower ones to the error signal e~(t). This 

(4) observation agrees well with the earlier mentioned low-pass 
filtering effect associated with misalignment. 

Furthermore, the effect of t i on the ensemble variability d~(t) is 
studied in terms of the squared error between s(t - ti) and ~(t), 

d~(t) = (s(t - ti) - ~(t)) 2 

Again, by using the first-order approximation it can be shown 
that the ensemble variability d~(t) is given by: 

d~(t) ,~ 
~S,( t ) .Ci)  

1 ~ _si(t).ci _{_ i=1 
N i=1 

2 

= s'(t)0-~. 

In order to quantify the effect o fmisalignment during the interval 
[a, b], we will study the power of e~(t) and d~(t), respectively, 

pe = Z e2(t)dt 
a 

pd = 1 [~' 
-£ d2(t)dt 

a 

where the index t implies that the power measure relates to 
misalignment. By inserting the approximations derived in eqns 4 
and 6, the following expressions result, 

1 fb I#) 4 
P~ = ~ £  J s -(t)0-~dt 

a 

__0- ff 
-- 4 L J  ~ (27~/')4[S(/')[2df 

4 1 I ~ _ 0-~ ~041S(~0)12&0  
4Mrs4 2-g 

0-4 M / 2  1 [ 2 x k \  4 

J 

2.2 Noisy signals without misal ignnwnt or morphologic 
variabili O, 

(5) We will now consider the influence of additive, stationary 
noise hi(t) on the ensemble average and the ensemble variability 
under the assumption of perfect time alignment and no morpho- 
logic variability. Each realisation in the ensemble is described by 
s(t) + hi(t). Again, we consider two power measures for quanti- 

ing the influence of noise which here are denoted by pe and 
P n  • 

it is well known that the power of the error between s(t) and 
(6) ~(t) is equal to the noise variance divided by the number of 

averaged realisations (ROMPELMAN and Ros, 1986), 

p e =--°-2 (11) 
N 

where 0-2 denotes the noise variance. The corresponding calcula- 
tion for d,( t)  is, under the assumption that the noise is 

(7) uncorrelated between realisations, given by: 

1 N  1 N  
(8) dn(t) = ~i~= 1 ( s ( t ) + n i ( t ) ) _ ~ j ~ = l ( S ( t ) + n j ( t ) )  

= 0-n(t) = 0-n (12) 

and thus the power P~ is simply obtained by 

2 (13) P~ = 0-,, 

Obviously, the ensemble variability is much more influenced by 
noise than is the ensemble average. Assuming that the noise hi(t) 
is uncorrelated with the misalignment effect, the total power due 
to misalignment and noise is given by P~ + P~ and P~ + P~, 
respectively. 

We will now determine the sampling rate for which the 
misalignment effect is small in relation to the noise effect. To 

(9) do this, we require that the power due to misalignment is one 
order of magnitude smaller than that due to noise, i.e. 
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2.3 Signals with morphologic variabili O, but withoztt noise or 
misalignment 

Morphologic variability is considered to be intrinsic to the 
signal. To analyse the influence of  such variability, we will 
assume that the signals are noise-free and perfectly aligned in 
time. Each realisation in the ensemble is described by 
s(t) + t'i(t ), where t'i(t ) represents morphologic variability. 
The corresponding power measures of  the error signal, Pf, and 
the ensemble variability, p d, are defined by 

2.4 Measztring morphologic variabili O, in the presence o f  
noise and misalignment 

it is obvious that measurements of  overall ensemble varia- 
bility, d(t), do not only reflect morphologic variability but time 
misalignment and noise as well. Therefore, when relying on d(t), 
it is important to use a sampling rate which ensures that the 
misalignment effect is sufficiently small. The other step to be 
taken is to compensate for the ensemble variability d(t) with 
respect to the noise contribution. This can sometimes be 
accomplished by estimating the noise variance at a certain 
time t o when the effects due to morphologic variability and 
misalignment are negligible. The variance estimate is then 
obtained by ~2 ,,, d2(to), and a new signal can be defined, 
d~(t) = d 2 ( t ) -  d2(to), from which variability measurements 
with better accuracy can be obtained. 

Such a noise compensation procedure has been considered 
when measuring morphologic variability in the QRS complex 
(SHAW and SAVARD, 1995). In that case, the isoelectric segment 
between the end of  the P wave and the onset o f  the QRS complex 
was considered to contain a t o with negligible morphologic 
variability and without any effect due to misalignment, in other 
applications as Holter ECG, exercise or pediatrics ECGs where 
the PQ segment is not stable at all, a better estimate can be 
obtained from the TP segment. In any case, this estimate should 
be taken from high-pass filtered signals to avoid biased noise 
power given by baseline drift or U waves. 

1 f~' d2(t) , P~, 
= I - -  dt 

p d =  1 ~' 
-£ d;(t)dt = PL, 

a 

where 

(17) 

(18) 

2 

0 

d 2 ( t  ) = 1 t,2(t) (25) 

We will consider a simple model in which morphological 
variability is assumed to be amplitude variability 

vi(t) = ais(t) (20) 

where a i is modelled by a uniformly distributed random variable 
within the interval [--qa" qa]" Although this model cannot 
account for sophisticated variability patterns, it is judged to be 
adequate for modelling variations in the ECG associated with 
respiration. In this model, it is easily found that PL, = Poq2/3 is 
the power of  the variability signal in terms of  the amplitude 
dispersion. 

When misalignment and morphologic variability are jointly 
present, similar reasoning can be made on how to select the 
sampling rate as in Section 2.2: a sampling rate obtained from the 
factor 10 requirement (i.e. P~ = P~/IO and pd = pd /10 ) i s  thus 
viewed as that rate which is required to reliably detect morpho- 
logic variability as low as with an SNR = Po/PL,. Eqns 14 and 
15 still apply when taking SNR I = Po/P~,. 

3 Results 

The choice of  sampling rate is first studied from a theoretical 
point of  view relying on the results in Sections 2.1 and 2.2. The 
signal s(t) is taken as a QRS complex (Fig. 1 ) acquired with a 
sampling rate of  1 kHz from a normal subject. The QRS was up- 
sampled to 100kHz, using sinc-based interpolation, to avoid 
effects due to time quantisation. The ensemble contained 100 
beats formed by adding to the same QRS different effects (noise, 
misalignment or variability) and the signal power of  each beat 
was normalised to one (N = 100 and P0 = 1, respectively). The 
theoretical results are supported by measurements on ensemble 
variability obtained from simulated signals (Section 3.2) as well 
as from ECG signals (Section 3.3). 

3.1 Theoretical results 

The power measures describing the contributions due to 
misalignment, noise and morphologic variability for different 
values of  0-~, SNR and qa are presented in Table 1 for the 
particular QRS in Fig. 1. in this table, the values reveal that the 
effect o f  misalignment is between one and three orders of  

1 
0 

L I I I I 

20 40 60 80 100 
ms 

P{ = P~,/IO and P{ = P~/IO. The factor 10 was selected to 
make the misalignment effect sufficiently small in relation to the 
noise effect. Using these two requirements, we obtain, 

0.4 [_~co ' 4 ' ) . 0.2 P0 
pe =~-~ J ~(2xt) I S ( . t ) l - d t  - 1 6 7 N - -  I O .  N .  S N R  I 

(14) 

and, similarly, from eqns 10 and 13 we have that 

P~ = (2xf)Nls(f)lNdf 0-2 Po (15) 
-- ] O - - 1 0 - S N R  1 

Here, S N R  I represents the signal-to-noise ratio measured as a 
linear rather than a logarithmic relation. The power of  s(t) is 
Po = Eo/L, where E 0 is the signal energy, it is noted that the 
expressions 14 and 15 represent linear relationships between the 
SNR and 0-~. 

Assuming that the precision in alignment is entirely deter- 
mined by the sampling interval, the minimum sampling rate 
which fulfils eqns 14 and 15 is given by (ROMPELMAN and Ros, 
1986) 

1 
fs -- 2V~0-~ (16) 

Fig. 1 The QRS complex used for the study 
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Table 1 Power measures for contributions due to misalignment, 
noise, or molphologic variabilio: independently for the QRS complex 
in Fig. 1 (N = 100 beats) 

er, (ms) P{ in EA pd in EV 

4 4.04.10 2 2.01.10 t 
1 1.58.10 4 1.26.10 2 
0.288 1.08.10 6 0.98.10 3 
0.25 0.62.10 6 0.79.10 3 

(a) Power measures due to misalignment 

SNR (dB) P,~ in EA P'/, in EV 

10 10 3 10 t 
20 10 4 10 2 
30 10 5 10 3 

(b) Power measures due to noise 

~I~ P~ in EA P'/ in EV 

0.05 0.83.10 5 0.83.10 3 
0.1 3.33.10 5 3.33.10 3 
0.15 7.50.10 5 7.50.10 3 

(c) Power measures due to morphological variability 

magnitude smaller in the EA estimation than in the EV estima- 
tion. So even if the alignment error o-~ decreases both indexes, 
the effect is much more noticeable in the EV signal, it should be 
noted that the pe and P{ indexes have contributions also from 
noise and signal variability. This result suggests a much larger 
effect o f  alignment improvement in variability analysis than in 
signal averaging. 

The sampling rate needed to ensure that the misalignment 
effect is less than 10% of  the noise effect is presented in Table 2. 
This sampling rate is obtained by combining eqn 16 with the 
power measures in eqn 14 and eqn 15. it is noted from Table 2 
that the demands on sampling rate increase when the SNR 
increases. Moreover, ensemble averaging requires a lower 
sampling rate than does ensemble variability when the SNR is 
about 30 dB (typical for high resolution ECG analysis). For 
example, a sampling rate o f  .ts = 1023Hz is required for 
ensemble averaging at an S N R = 3 0 d B ,  while a threefold 
increase is needed for accurate measurements o f  ensemble 

Table 2 Sampling rate (Hz) which ensures that time misalignment is 
< 10% of  the variability effect 

SNR(dB) EA EV 

0 181 102 
10 323 324 
20 576 1024 
30 1023 3239 

variability (.1~ : 3239 Hz). it should be emphasised that noise 
also influences the precision o f  time alignment and, accordingly, 
the results in Table 2 can be viewed as lower bounds. The 
variance o-~ is, in practice, larger due to noise than is indicated by 
eqn 16. 

3.2 Simulation results 

Focusing on the ensemble variability power measures, we will 
now corroborate the results above by simulating the following 
four ensembles, each with N : 100. 

1 In the first ensemble, each realisation is formed by the same 
QRS of  Fig. 1 delayed by a zero-mean, Gaussian random 
variable T i. The dispersion is a~ : 0.288 ms so as to model 
the dispersion associated with o~ : 1000Hz. (The time 
delay is quantised to a resolution o f  0.01 ms because o f  
the 100kHz sampling rate.) The resulting ensemble is 
plotted in Fig. 2a. 

2 The second ensemble is obtained by adding white, station- 
ary Gaussian noise ni(t) to s(t) with SNR = 30 dB (Fig. 2b). 

3 The third ensemble is obtained by assuming that the 
morphologic variability o f  s(t) is characterised by eqn 20, 
a uniformly distributed a i and qa : 0.1 (Fig. 2c). 

4 Finally, an ensemble is generated which includes all o f  the 
above mentioned effects, i.e. s(t - T i) + hi(t) + ais(t) (Fig. 
2d). 

Fig. 3 shows the squared ensemble variability and the 
corresponding power estimate computed from each of  the four 
above ensembles, it is obvious that the power estimate asso- 
ciated with each of  the first three ensembles (/Sd : 0.0011, 
/5~ : 0.0010 and /SL~ : 0.0034) agrees well with the corre- 
sponding values in Table 1, i.e. P~ : 0.0010, P~ : 0.0010 
and PL~ : 0.0033. 

In practice, we are forced to estimate morphologic variability 
from an ensemble which also contains the undesirable effects 
due to misalignment and noise (i.e. as described by the fourth 
ensemble). Straightforward computation o f  the overall ensemble 
variability from d(t) gives/3d : 0.0057 which, after subtraction 
with the noise power ( / 5 ~  0.0010), produces an estimate o f  
morphologic variability, P ~ ' :  0.0047. Obviously, this esti- 
mate is inaccurate since the true morphologic variability is equal 
to P~ : 0.0033. This discrepancy is explained by the fact that P~ 
cannot be neglected with respect to the morphologic variability. 
Therefore, we will investigate an ensemble with the same 
variability properties but with a lower dispersion o-~, thus 
corresponding to a higher sampling rate. 

From Table 2 we have that a sampling rate of  3239Hz is 
needed for proper detection o f  morphologic variability at an 
SNR of  30 dB. Using the time dispersion o-~ : 0.089 ms, which 
corresponds to this sampling rate, the squared ensemble varia- 
bility and related power estimate are presented in Fig. 4 for each 
of  the four ensembles. It is obvious that the variability due to 

3 

2 

0 

10 2'0 4'0 ~0 8'0 ' 
ms 
a 

3 

0 

1~ 20 40 60 80 100 
ms 
b 

3 2£L 
0 

10 20 40 60 80 100 
ms 
c 

m s  

d 

Fig. 2 QRS signal ensembles with (a) Gaussian de/av z i with er~ = 0.288 ms (corresponding to ~ = 1000 Hz), (b) additive Gaussian noise at 
SNR = 30 dB, (c) molphologic variability with uniformly distributed amplitude 01, = O. 1), and (d) all three effects combined. In all cases 
N = 100 beats 
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Fig.  3 Squared ensemble variabilio.' for the four ensembles shown in 
Fig. 2 and the sum o f  the independently estimated EV 
(d,~(t) -t- d~(t) -t- d~.(t)). Note the overall agreement between 
the total d2(t) and the sum o f  the independently estimated EV. 
The estimated power o f  each contribution is." /3~ = 0.0010,  
/5~t = 0.0011, P',( = 0.0034 and /Sa = 0.0057. For more 
details" see text; . . . .  ~( t) ,  - -  d~(t), - - - -  d~.(t), - -  
d2(t), - -  d,~(t) + d~(t) + d~.(t), SNR = 30 dB, L = 1 0 0 0 H :  

misalignment, d~(t), is now much lower than that for 1 kHz in 
Fig. 3. Repeating the above procedure of  subtracting the noise 
power, an accurate estimate of  the morphologic variability 
results,/Sd' =/Sd _/5~ = 0.0046 - 0.0010 = 0.0036, which is 
very close to the true value 0.0035. 

it is noted from Figs 3 and 4 that the agreement between the 
overall variability d2(t) and the sum of  individual components, 
d~(t) + d~(t) + d~,(t), is good. Therefore, the assumption of  a 
lack of  correlation between the three components made in 
Section 3.1 seems reasonable to apply for moderate to high 
SNRs. 

3.3 Experimental  results 

3.3.1 Database 
Ninety-four non-selected subjects referred for myocardial 

scintigraphy were included in this study. Thirty-four subjects 
had no signs of  ischemia or infarction. The remaining 60 
subjects had signs of  ischemia or myocardial infarction or both 
on the scintigraphy. 

The ECG was acquired during rest for five minutes using a 
standard 12-lead configuration (V1 to V6, i, ii, iii; the augmented 
limb leads aVR, aVL and aVF were not analysed). The signal 
was digitised* at a sampling rate of  1000 Hz with an amplitude 
resolution of  0.6 gV. The amplifier had a bandwidth of  0 to 
250Hz. From each recording, 100 normal sinus beats were 
selected for time alignment and subsequent ensemble variability 
measurements. An increase in sampling rate (up-sampling) was 
achieved by sinc-based interpolation. 

3.3.2 Time alignment method 
Time alignment was based on an a posteriori,  matched 

filtering technique which makes repeated use of  all beats in the 
alignment process; the so-called Woody method (WOODY, 
1967). in the initial step, all beats are aligned using a matched 
filter with known impulse response (e.g. taken as the first beat in 
the ensemble). Having aligned all beats, the ensemble average is 
taken as the new impulse response and another iteration of  the 
alignment process is performed. The 'alignment/filter update'  

*Equipment by Siemens-Elema AB, Solna, Sweden 
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N ~ - ~ -  - -  5 - -  . / -  i - % (  I ~ l =  I 
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m8 

Fig. 4 Same as in Fig. 3 but with a misalignment of  a z = 0.0891 ms 
which corresponds to ~ = 3239Hz. The estimated power of  
each contribution is': /3~ = 0.0010,  /3~t = 0.0001,  
/5,( = 0.0035 and/Sa = 0.0046." . . . .  d,~(t), d{(t), 
. . . .  d](t), d2(t), 4~(t) + d~(t) + d](t), 
SNR = 30 dB, ~ = 3239 Hz 

procedure is repeated until no further time shifts occur between 
successive iterations. For multilead ECGs, the method processes 
each individual lead with its corresponding matched filter 
(SORNMO et al., 1998). The filter outputs are then summed 
together and the time for the maximum amplitude is located from 
the output and used in the next iteration. 

3.3.3 Redztction in ensemble variabili O, as a f rac t ion  off 
sampling rate 

The power of  the ensemble variability was computed for each 
lead of  the time aligned beat ensemble at sampling rates ranging 
from 1 to 5 kHz in increments of  1 kHz. The power values were 
normalised to the 1 kHz value and then averaged over all leads. 
Finally, the lead-averaged power values were averaged over all 
94 subjects. The resulting average reduction in ensemble varia- 
bility is presented in Fig. 5a. it was found that the largest 
reduction was obtained by increasing the sampling rate from 1 
to 2 kHz. Using a sampling rate higher than 3 kHz did not 
produce much further reduction. This result is in general 
agreement with the theoretical sampling rate (3239 Hz) which 
was required to ensure that the misalignment effect was less than 
10% of  the morphologic variability for the particular QRS 
complex in Fig. 1. It is also apparent from the standard deviation 
bars in Fig. 5a that a considerable case-to-case variation exists in 
the degree of  reduction. Although the reduction in variability 
differs considerably from case to case, it reaches a lower limit in 
all cases around 3 kHz. This observation is concluded from Fig. 
5b which presents the average behaviour of  the difference 
between successive values for the cases in Fig. 5a. 

Fig. 6 presents a case in which a considerable reduction occurs 
in ensemble variability when the sampling rate increases from 1 
to 3 kHz. The largest reductions were found in leads V 3 and V 4. It 
is interesting to observe that the QRS waveforms of  these leads 
also had the steepest slopes (higher high-frequency contribu- 
tion). 

4 Discussion 

Historically, the problem of  selecting a sufficient sampling 
rate for ECG analysis has received considerable attention 
(BERSON, 1976; BARR and SPACH, 1977; ZYWIETZ et al., 
1983; BLANCHARD and BARR, 1985). The sampling rate that is 
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(a) Average reduction in the ensemble variabilio: power as a 
fimction o f  sampling rate (the sampling rate is" increased in 
steps of  1 kHz). galues are normalised with the 1 kHz value, 
averaged over leads" for every subject, and finally averaged 
over the 94 subjects. Bars represent standard deviation across 
subjects. (b) Average behaviour o f  the difference between 
successive values for the cases" in (a) 
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Fig. 6 Example o f  ensemble variability reduction when increasing 
the sampling rate fi'om 1 to 3 kHz. (a) the original ECG leads" 
and (b) the corresponding ensemble variabilio.' for a sampling 
rate o f  l kHz (solid line) and 3 kHz (dotted line) 

suggested depends, to a large degree, on the intended type of 
analysis. For high-resolution analysis, a rate of  1 kHz is consid- 
ered sufficient for accurate representation of high-frequency 
notches and slurs occurring in the QRS complex (BARR and 
SPACH, 1977). Currently, this rate is commonly used in commer- 
cial systems for late potential analysis in which ensemble 
averaging is performed. A lower sampling rate, e.g. 250 or 
500 Hz, can be acceptable for diagnostic purposes where the 
measurement of  different QRS amplitudes and durations are 
required (BERSON, 1976). 

The analysis of  paediatric ECGs calls for a sampling rate 
which may be as high as 4 kHz (YAMAMOTO et al., 1987). in that 
study, however, different sampling rates were not investigated in 
a systematic way; only the rates 250Hz and 4kHz were 
investigated. The QRS duration may be as short as 30 ms in 
newborns and is thus more than three times shorter than in a 
normal adult. Assuming that the QRS shape of a newborn and an 
adult are identical, The QRS complex of a newborn, s,#,(t), can 
be viewed as a scaled version s(ct) of the adult s(t) by a factor 
c _~ 3 if we assume that the width of adult QRS complex is about 
100 ms, s,#,(t) = s(c .  t). Inserting s(ct) in eqn 15, we obtain that 
the minimum o-~ for newborns has a factor 1/c  with respect to 

n b  . . . .  

o-~ for adults. Accordingly, the mlmmum sampling frequency for 
newborns f~,+ must be c times larger than that for adults, i.e. 
L,b = c -L .  

The present study shows from a theoretical point of  view that a 
sampling rate of  at least 3 kHz is required for accurate measure- 
ments of  ensemble variability in ECG from adults. This result is 
further supported by experimental results obtained from a 
database with high-resolution ECGs, which indicate that varia- 
bility measurements are reduced by an average of 40% when the 
sampling rate is increased from 1 to 3 kHz. it is interesting to 
note that such a high sampling rate is needed although the 
bandwidth for the ECG signals was 250 Hz. Assuming a scale 
factor c = 3 for pediatric ECGs, a sampling rate of  approxi- 
mately 9kHz is required for accurate ensemble variability 
measurements in newborns ECGs. 

Matched filtering is the classical approach to time alignment 
of signals in noise with unknown arrival times (VAN T~EES, 
1968). In this study, the Woody method was considered since it 
improves the performance of matched filtering by introducing an 
iterative procedure in which the impulse response is improved. 
Several other methods for time alignment of  QRS complexes 
have been presented in the literature. For example, the normal- 
ised integral method which estimates the delay between two 
signals by their normalised integral difference (LAGUNA et al., 
1994), the sliding window method in which waveform slopes 
with opposite signs are detected (BARBARO et al., 1991), or 
simple threshold crossing detection (JANI~ et al., 1991 ). Since the 
performance of all three methods were, in general, inferior to that 
of the Woody method (LAGUNA et al., 1997), the present paper 
considers only the Woody method for time alignment. 

The use of  the signal-to-noise ratio in biomedical signal 
processing is often problematic since the exact signal power is 
difficult to determine. However, the SNR is, in the present study, 
a useful measure to quantify noise effects when analysing a 
waveform s(t) with known morphology. In other studies, 
another definition of the SNR may be preferable. 

5 C o n c l u s i o n s  

In this study, we have considered the sampling rate and the 
alignment effect when analysing ensemble average and 
ensemble variability. For an SNR of 30dB (typical for 
HRECG), a sampling rate of  3 kHz is recommended so as to 
make the effect of  time alignment negligible in EV signals. The 
signal can be sampled either directly at the required rate or by 
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interpolating the data sampled at the typical 1 kHz rate. it  was 
shown that the EV power not only depends on misalignment but 
also on the frequency distribution o f  signal components. This 
aspect should be considered when studying beat-to-beat varia- 
bility with the EV power measure since it depends on signal 
dynamics, misalignment, and the signal spectrum. 

Ac~Tlowledgmen~This work was supported by grant TIC97-0945- 
C02-01:2 and 2FD97-1197-C02-01 from CICYT, P40-98 from 
CONSI+D, Spain; and a grant from the Swedish National 
Board for Technical Developemt (NUTEK). 

References 

BARBARO, V, BARTOLINI, P., and FIERLI, M. (1991): 'New algorithm 
for the detection of ECG fiducial point in the averaging technique', 
Ned. Biol. E1N. Cornput., 29, pp. 129-135 

BARR, R., and SPACH, M. (1977): 'Sampling rate required for digital 
recordings of intracellulax and extracellular cardiac potentials', 
Circulation, 55, pp. 40-49 

BEN-HAIM, S., GIL, A., and EDOUTE, Y. (1992): 'Beat to beat 
morphology variability of the electrocardiogram for the evaluation 
of the chest pain in the emergency room', Am. J. Cardiol., 70, pp. 
1139-1142 

BERSON, A. (1976): 'Bandwidth sampling, and quantising for auto- 
mated ECG processing', in 'Computers in cardiology' (IEEE, 
Piscataway, NJ), pp. 295-301 

BLANCHARD, S., and BARR, S. (1985): 'Comparison of methods for 
adaptive sampling of cardiac electrograxns and electrocardiograms', 
Ned. Biol. E1N. Cornput., 23, pp. 377-386 

BREITHARDT, G., CAIN, M. E., EL-SHERIF, N., FLOWERS, N., HOM- 
BACH, V, JANSE, M., SIMSON, M., and STEINBECK, G. (1991): 
'Standards for analysis of ventricular late potentials using high 
resolution or signal-averaged electrocardiography', J Am. Coll. 
Cardiol., 17, pp. 999-1006 

GEVINS, A. S., and RI~MOND, A. (1987): 'Handbook of electroence- 
phalography and clinical neurophysiology: methods of analysis of 
brain electrical and magnetic signals', volume 1 (Elsevier) 

JANt~, R., NIX, H., CAMINAL, P., and LAGUNA, P. (1991): 'Alignment 
methods for signal averaging of high resolution cardiac signals: a 
comparative study of performance', IEEE Trans. Biomed. Eng., 38, 
(6), pp. 571-579 

LAGUNA, P., JANt~, e., and CAMINAL, P. (1994): 'A time delay 
estimator based on the signal integral: Theoretical performance 
and testing on ECG signals', IEEE Trans. Signal Process. 42, 
(11 ), pp. 3224-3229 

LAGUNA, P., SIMON, B., and SORNMO, L. (1997): 'Improvement in 
high-resolution ECG analysis by interpolation before time align- 
ment', in 'Computers in cardiology' (IEEE, Piscataway, NJ), pp. 
617-620 

NOWAK, J., HAGERMAN, I., YLt~N, M., NYQUIST, O., and SYLVt~N, C. 
(1993): 'Electrocardiogram signal variance analysis in the diagnosis 
of coronary artery disease-a comparison with exercise stress test in 

an axlgiographically documented high prevalence population', Clin. 
Cardiol., 16, pp. 671-682 

PRASAD, K., and GUPTA, M. (1979): 'Phase-vaxiaxlt signature algo- 
rithm. A noninvasive technique for early detection and quantifica- 
tion of Ouabain-induced cardiac disorders', Angiology, 30, pp. 
721 732 

ROMPELMAN, O., and Ros, H. H. (1986): 'Coherent averaging 
technique: a tutorial review. Part 1: Noise reduction and the 
equivalent filter. Part 2: Trigger jitter, overlapping responses and 
non-periodic stimulation', J Biomed. Eng., 8, pp. 24-35 

SHAW, G. e., and SAVARD, P. (1995): 'On the detection of QRS 
variations in the ECG', IEEE Trans. Biomed. Eng., 42, pp. 736-741 

SORNMO, L. (1998): 'Vectorcardiographic loop alignment and mor- 
phologic beat-to-beat variability', IEEE Trans. Biorned. Eng., 45, 
pp. 1401-1413 

SORNMO, L., WOHFART, B., BERG, J., and PAHLM, O. (1998): 'Beat-to- 
beat QRS variability in the 12-lead ECG and the detection of 
coronary artery disease', J Electrocardiol., 31, pp. 336-344 

UIJEN, G. J., DE WEERD, J. P., and VENDRIK, A. J. (1979): 'Accuracy of 
QRS detection in relation to the analysis of high-frequency compo- 
nents in the electrocardiogram', Ned. Biol. Eng. Comput., 17, pp. 
492-502 

VAN TREES, H. (1968): 'Detection, estimation and modulation theoo.', 
part F (John Wiley & Sons, New York) 

WOODY, C. (1967): 'Characterization of an adaptive filter for the 
analysis of variable latency neuroelectric signals', Ned. Biol. Eng., 
5, pp. 539-553 

YAMAMOTO, H., MIYAHARA, H., and DOMAE, A. (1987): 'Is a higher 
sampling rate desirable in the computer processing of the pediatric 
electrocardiogram?', J Electrocardiol., 20, pp. 321-328 

ZYWIETZ, C., SPITZENBERGER, g., PALM, C., and WETJEN, A. (1983): 
'A new approach to determine the sampling rate of ECGs', in 
'Computers in cardiology' (IEEE, Piscataway, NJ), pp. 261-264 

Author's biography 

PABLO LAGUNA received MS and PhD degrees in 
, Physics from the Science Faculty at the University 

of Zaragoza, Spain, in 1985 and 1990, respec- 
i ~  'fl~. tively. The PhD thesis was developed at the 

, Biomedical Engineering Division of the Institute 
• ... .~.: of Cybernetics (U.RC.-C.S.I.C.) under the direc- 

4 ... tion of Pere Caxninal. He is an associate professor 
. .... of signal processing and communications in the 

Department of Electronics Engineering and Com- 
munications at the Centro Polit6cnico Superior, University of Zaxa- 
goza, Spain. From 1987 to 1992 he worked as assistant professor of 
automatic control in the Department of Control Engineering at the 
Politecnic University of Catalonia (U.RC.), Spain and as a researcher 
at the Biomedical Engineering Division of the Institute of Cybernetics 
(U.RC.-C.S.I.C.). His professional research interests axe in signal 
processing, in particular applied to biomedical applications. 

546 Medical & Biological Engineering & Computing 2000, Vol. 38 


