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An Automatic Patient-Adapted ECG Heartbeat
Classifier Allowing Expert Assistance

Mariano Llamedo∗ and Juan Pablo Martı́nez

Abstract—In this paper, we present a patient-adaptable algo-
rithm for ECG heartbeat classification, based on a previously
developed automatic classifier and a clustering algorithm. Both
classifier and clustering algorithms include features from the RR
interval series and morphology descriptors calculated from the
wavelet transform. Integrating the decisions of both classifiers, the
presented algorithm can work either automatically or with several
degrees of assistance. The algorithm was comprehensively eval-
uated in several ECG databases for comparison purposes. Even
in the fully automatic mode, the algorithm slightly improved the
performance figures of the original automatic classifier; just with
less than two manually annotated heartbeats (MAHB) per record-
ing, the algorithm obtained a mean improvement for all databases
of 6.9% in accuracy A, of 6.5% in global sensitivity S and of
8.9% in global positive predictive value P + . An assistance of
just 12 MAHB per recording resulted in a mean improvement
of 13.1% in A, of 13.9% in S, and of 36.1% in P + . For the
assisted mode, the algorithm outperformed other state-of-the-art
classifiers with less expert annotation effort. The results presented
in this paper represent an improvement in the field of automatic
and patient-adaptable heartbeats classification, concluding that the
performance of an automatic classifier can be improved with an
efficient handling of the expert assistance.

Index Terms—Clustering, heartbeat classification, linear classi-
fier, patient adaptable.

I. INTRODUCTION

THE World Health Organization places cardiovascular dis-
eases as the first single cause of death globally in the

present, and forecasts the same ranking up to 2030 [1]. The
heart function can be analyzed by means of the electrocardio-
graphic signal (ECG), which is a noninvasive, inexpensive, and
well-established technique. The computerized analysis of the
ECG is nowadays a well-established practice, and many im-
provements were achieved to aid cardiologists in the task of
analyzing long-term ECG recordings. One of the analysis per-
formed is the classification of heartbeats, for the subsequent
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study of arrhythmias. Arrhythmias are understood as any dis-
turbance in the rate, regularity, site of origin, or conduction of
the electrical impulses through the heart [2]. The classification
of thousands of heartbeats is a challenging task even for expe-
rienced cardiologists, and moreover, if the analysis is focused
in subtle or infrequent arrhythmias. Note that subtle arrhyth-
mias are not always imminently dangerous, but may represent a
long-term threat without a proper treatment. Therefore, the aid
in the analysis provided by automatic algorithms can improve
the diagnostic achieved by cardiologists.

Many algorithms for ECG heartbeats classification were de-
veloped in the last decades (see references in [3] and [4]), but due
to the lack of standardization in the development and evaluation
criteria, comparison of results across most of these works could
not be performed fairly or is impossible. In order to overcome
this problem, some methodological aspects in the development
and evaluation of heartbeat classifiers were followed in recent
works [3]–[6]. The most relevant key-points are as follows.

1) Use of public and standard databases, as the ones available
in Physionet [7].

2) Fulfillment of AAMI recommendations for class labeling
and results presentation [8].

3) Patient-oriented data division into training and testing sets,
as described in [3].

Another aspect suggested in our previous works is the analysis
of the capability of the classifier to retain its performance in other
databases not considered during the development [4]. We refer
to this property of a classifier as generalization capability, and
its analysis provides a broader idea of the performance achieved.
Up to the writing of this manuscript, only few of the reviewed
works used more than one database either for the development
[9], [10] or for a generalization assessment [11]–[13].

In the current state-of-the-art, it seems that the automatic
classification approach has approximated to a performance up-
per bound, probably because the huge interpatient variability
makes impossible that the probability distribution learned in a
train set be representative of that found in a test set and dur-
ing the normal operation of the classifier. The patient adaptation
technique by means of expert assistance (i.e., manual beat anno-
tation) was reported to be useful in two works to overcome this
problem [14], [15], at the expense of sacrificing automaticity.
Other works also reported better performances than the ones ob-
tained by automatic classifiers, always taking advantage of the
expert assistance [5], [6], [10], [16]. One aspect to study when
adopting this technique is the efficient use of the assistance, in
order to keep the classifier as much automatic as possible. It is
interesting to note that some classifiers require from 2 to 5 min
of manual annotations, which is equivalent to several hundred of
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TABLE I
DATABASES USED IN THIS WORK AND ITS CLASS REPRESENTATION

expert labeled heartbeats [5], [6], [14], [15], while [10] requires
the annotation of several heartbeats, depending on the num-
ber of arrhythmias present. One drawback of several patient-
adaptable approaches is that they cannot operate without assis-
tance [5], [6], [10], [16]. This is not the case of those developed
as an evolution of a previous automatic classifier [14], [15].

In this paper, we propose an expert assistance approach pursu-
ing two objectives: first, to be able to perform automatic classi-
fication, and second, if assistance is available, to take advantage
of it efficiently. For this purpose, we suggest the integration of
a well-known clustering algorithm based on mixture of Gaus-
sians (MoG) [17], with the linear discriminant classifier (LDC)
presented in [4]. In this solution, clustering is responsible of
retaining all patient-specific data ordering, while the automatic
classifier performs the cluster labeling, and can be assisted by an
expert, as will be described in detail in the following sections.

The objective of this paper is to study how the classifica-
tion performance of a previously developed multilead algo-
rithm [4], [18] can be improved, by implementing a patient-
adaptation technique based on clustering. Our working hypoth-
esis is that within a given recording, classes are clearly sepa-
rated and beats of the same class tend to be grouped in one or
more homogeneous clusters. In other words, after clustering the
beats from a recording, all beats grouped in the same cluster
would likely belong to the same class. For that purpose, first
we search for an appropriate set of features for intrarecording
clustering, and compare several integration strategies in a de-
velopment dataset, to finally assess the final performance and
generalization capability to other databases not considered dur-
ing the development. The performance will be compared with
other state-of-the-art classifiers [5], [6], [10], [15], [19].

II. METHODOLOGY

A. ECG Databases

All experiments performed in this paper were carried out
in several public databases available on Physionet [7], and the
well-known American Heart Association database [20]; their
relevant details are summarized in Table I. For all databases,
the AAMI recommendations for class-labeling were adopted
(in [8], Sec. 4.2]). The AAMI Q class (unclassified and paced
heartbeats) was discarded since it is marginally represented in
all databases. This limitation occurs to a lesser extent with the
fusion (F) AAMI class, but instead of discarding the heartbeats

of this class, we adopted an alternative labeling scheme already
used in [4]. It consists in merging the fusion (of normal and
ventricular beats) and ventricular classes, as the same ventricu-
lar class (V′ in Table I). This labeling does not compromise the
comparability with other AAMI compliant works, since F and
Q classes are scarcely represented in the databases used. The
databases used include different types of ECG recordings: some
of them were recorded during routine ambulatory practice, but
others were selected to include less common ventricular, junc-
tional, or supraventricular arrhythmias, or baseline ST segment
displacement or other ECG abnormalities. As a result, we use
in this paper a dataset with a broad range of normal and patho-
logical ECG recordings to evaluate the algorithm performance.
Moreover, the different length of recordings will evidence the
ability of the algorithm to handle the nonstationarities present
in the ECG. Further details of each database can be found on
Physionet [7].

We will refer as the “development dataset” to the union of the
MITBIH-SUP database and the 22 recordings included in the
DS1 subset of MITBIH-AR defined in [3], while the “evaluation
dataset” includes the rest of databases described in Table I.

B. Heartbeats Classification

Following the scheme presented in Fig. 1, the patient-
adaptable algorithm includes a LDC and an expectation-
maximization clustering algorithm (EMC). Both LDC and EMC
work independently and each performs a preliminary classifi-
cation/clustering task in different feature spaces. The LDC was
developed and trained as described in [4], while the EMC de-
velopment will be described later. Finally, the heartbeat and
cluster labels provided by the LDC and EMC, respectively, are
integrated with a voting scheme into a final heartbeat label.
Three modes of operation are proposed, depending on the de-
gree of expert assistance available in the application scenario:
1) automatic, 2) slightly assisted, and 3) assisted. The algo-
rithm performs the following procedures: 1) cluster and centroid
identification, 2) LDC automatic classification, and 3) expert
assistance.

For the automatic mode, in each record, K clusters and cen-
troids are identified, corresponding to groups of similar heart-
beats, while at the same time, the LDC computes the labels for
each heartbeat. Then, for each cluster, the algorithm tests if any
label obtains a qualified majority, meaning that the most repre-
sented label exceeds the α percent of the cluster population. In
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Fig. 1. Overview of the proposed algorithm. There is a graphical description in the center of the scheme about the task carried out by each block. The toy example
in the middle is also commented in the text to better understand the three modes of operation.

case this label exists, it is assigned to the whole cluster, super-
seding the LDC labels. If the qualified majority is not reached,
the uncertainty is considered to be too high to change the labels,
an thus the LDC labels remain unchanged.

The slightly assisted mode is similar to the automatic, with the
exception that in case of not finding a class qualified majority,
expert assistance is required to label the cluster centroid and
propagate it to the whole cluster, ignoring LDC labels. The
procedure of expert assistance is simulated by inspecting the
true labels provided with each database.

Finally in the assisted mode, K clusters and centroids are
identified, and then the expert is required to label each centroid.
The algorithm concludes assigning these labels to the rest of
heartbeats in each cluster.

To better understand the three modes of operation, a toy exam-
ple can be found in the center of Fig. 1. The LDC by itself makes
four errors in cluster 1 and three in cluster 2. For the automatic
mode, clusters 2 and 3 have majority of V and N classes, respec-
tively. Then, votation propagates centroid labels to the rest of
examples within both clusters, occurring one mistake in cluster
2. In cluster 1, there is no qualified majority for α = 50%, so
the LDC labels remain unchanged and five mistakes happen.
The automatic mode made 1 mistake less than the LDC. For
the slightly assisted mode, only cluster 1 would be modified,
by propagating the true label of the centroid S, resulting four
errors for this cluster. Finally for the assisted mode, in this case
the result is the same as in the previous mode, four errors in
cluster 1, one error in cluster 2, and no errors in cluster 3. In
summary, seven errors for the LDC, six for the automatic mode,
and five for the slightly and assisted modes. As was shown, the
algorithms rely heavily in the ability of the EMC to cluster the
heartbeats adequately.

1) Automatic Classifier: We follow a scheme similar to the
one in [4] and [18], where we developed a multilead heartbeat
classifier with good generalization capability. We used a linear
classifier compensated for the class imbalance, while as feature
model we adopted rhythm and morphological features computed
in a multilead manner. Regarding the classifier used, we found
that linear discriminant functions were suitable for the heartbeat
classification task in terms of performance and generalization

capability. Under the assumption of independent and normally
distributed data, the maximum a posteriori criterion (MAP)
leads to the linear classifier defined by the discriminant functions
[17]

gi(x) = μT
i Σ−1x − 1

2
μT

i Σ−1μi + log(P (ωi)) (1)

for the ith class, where x represents the feature vector describing
each heartbeat, μi is the the mean vector, Σ is the covariance
matrix, and P (ωi) is the prior probability.

The model parameters μi and Σ in (1) were estimated from
the training data as the sample mean

μi =
1

Mi

Mi∑

m=1

xm (2)

and weighted covariance matrix expressions

Σ =
1

∑C
i=1 wi

C∑

i=1

wi

∑Mi

m=1(xm − μi) · (xm − μi)T

Mi
(3)

while the values for the prior probabilities P (ωi) were consid-
ered the same for all classes. For the classification of C classes,
where Mi is the number of examples xm of the ith class, the rule
assigns an unlabeled observation x to the class i that results in
the maximum posterior probability gi(x). The class-weighting
possibility with wi is of much interest due to the heavy class-size
imbalance inherent to this application, where the normal class
is, in general, one order of magnitude more represented than
other classes. The weights used in [4] and [18] were also used
in this study, being wS = 10; wV =10; and wN = 1. The classifi-
cation tasks were performed using the PRtools toolbox [21] for
MATLAB (The Mathworks Inc., MA).

The features used by the automatic classifier are described
in Table II. The morphology features kL

Z and kL
M for lead L

are calculated in the two principal ECG leads after integrating
the multilead information with a principal component analy-
sis (PCA). Therefore, these features account for a multilead
morphological description of the QRS complex. For a detailed
description of the features and the multilead strategy used see [4]
and [18].
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TABLE II
FEATURE MODEL USED BY THE AUTOMATIC CLASSIFIER FOR RECORDINGS OF

TWO OR MORE LEADS

2) Clustering Algorithm: The EMC algorithm used in this
paper is based on the MOG model [17]. It consists of estimating
the parameters of a density function

p(x|Ψ) =
K∑

k=1

πk · N (x|μk ,Σk)

=
K∑

k=1

πk
1√

(2π)m |Σk |
exp− 1

2 (x−μk )T Σ−1
k (x−μk ) (4)

where the m-dimensional vector x is modeled by K Gaussians
with mixing coefficients πk , in order to retain a more realistic
structure of the data. The parameter set Ψ = {πk , μk , Σk |k =
1, . . . ,K} is estimated by maximum likelihood criterion. We
maximize the log likelihood

L(X|Ψ) = ln
N∏

n=1

p(xn |Ψ) (5)

for the N heartbeats in each recording named X =
{x1 , . . . , xN }. Since there is not a closed form solution
for Ψ by maximizing L(X|Ψ), the well-known expectation-
maximization (EM) algorithm is used to obtain the estimation
equations of the parameters Ψ at each iteration j, which are the
mixing coefficient for each cluster

π̂j
k =

1
N

N∑

m=1

βj−1
m,k (6)

the cluster mean

μ̂j
k =

1
Nπ̂j

k

N∑

m=1

βj−1
m,kxm (7)

and cluster covariance matrix

Σ̂
j

k =
1

Nπ̂j
k

N∑

m=1

βj−1
m,k (xm − μ̂j

k ) · (xm − μ̂j
k )T (8)

where βj
m,k is known as the ownership variable, which indicates

the probability of sample xm to have been generated by the kth
component at iteration j

βj
m,k = π̂j−1

k · N (xm |μ̂j−1
k , Σ̂

j−1
k )

∑K
n=1 π̂j−1

n · N (xm |μ̂j−1
n , Σ̂

j−1
n ).

(9)

TABLE III
FEATURES USED WITH THE EMC ALGORITHM

The EM algorithm iteratively computes the weight, location,
and dispersion for each of the K clusters [see (6)–(8)], until
βj

m,k does not change significantly, which is equivalent to obtain
stable clusters. The interested reader is referred to [17], [21] for
details, equations, and the implementation used in this paper.

Regarding the feature model used with the EMC, we fol-
lowed the same feature selection procedure described in [4],
by means of a sequential floating feature selection algorithm
(SFFS) [17], [22]. The complete pool of features consisted of 61
features, most of them described in the works cited in Section I.
For the case of clustering, instead of looking for features with
generalization capability or interpatient separability, we looked
for those with high intrapatient separability. This criterion was
achieved by modifying the SFFS’ optimization criterion used
in [4], in order to find a feature model that provides as much
intrapatient class separability as possible, facilitating the clus-
ters identification. The first modification consisted in evaluating
our clustering algorithm in a patient by patient fashion since
this is how this algorithm will be used in practice. The second
is that the performance will be evaluated in an optimistically
biased fashion, described in [18], assuming that we know a
priori the true labels of the heartbeats. This is done in order
to estimate a performance upper bound. The feature selection
experiments were carried out in a dataset formed by the union
of MITBIH-SUP with DS1 subset of MITBIH-AR [3]. As the
SFFS performs thousands of model evaluations, this task is very
demanding in processing power, specially for the random and
iterative nature of the EMC. For this reason, we replaced only
for the feature selection task, the EMC for a classifier based on
MoG, which uses the same algorithm used for cluster discovery.
The classifier based on MoG (MoGC) models each AAMI class
with K Gaussian distributions, in contrast with the LDC that
models each class with a mean vector and a pooled covariance
matrix for all classes (see (2) and (3)). The MoGC uses during
training the EM algorithm for the estimation of the Gaussian
components. This modification results, first, in moving through
more deterministic paths through the performance surface eval-
uated with the SFFS, and second in easing the EM iteration
since the heartbeat labels are known a priori.

As a result, a model of eight features was obtained. This
model also includes a description of the rhythm and morphology
of heartbeats as shown in Table III.
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TABLE IV
PERFORMANCE OBTAINED IN THE DEVELOPMENT DATASET FOR THE ELECTION OF K AND α PARAMETERS

TABLE V
PERFORMANCE COMPARISON WITH REFERENCE ALGORITHMS

Among the rhythm features used in the model, some of them
have already been used in previous works. The prematurity of a
heartbeat

PRR [i] =
RR[i]

∑i+1
k=i−1 RR[k]

(10)

measures how anticipated is a heartbeat respect to the pre-
vious and next RR interval. The local RR interval variation
is defined as dRRL [i] =

∑i+1
k=i−1 |dRR[k]|, where dRR[i] =

RR[i] − RR[i − 1]. One of the morphology related features is
the wavelet scale where the QRS complex is mostly projected. It
is known that fast evolving signals, as a normal heartbeat, tend
to be projected in lower wavelet scales or contains higher fre-
quency components. The QRS center scale for each lead (SLead

QRS )
is calculated as the weighted sum

SL
QRS =

∑6
s=1 AL

s .s
∑6

s=1 AL
s

(11)

where AL
s is the mean absolute amplitude of the QRS peaks at

scale s of the DWT, and lead L

AL
s =

1
D

D∑

d=1

∣∣WL
s s(ld)

∣∣ , s = 1, 2, . . . 6 (12)

being D the number of detected peaks (1 or 2) and ld the po-
sitions of the peaks. The last morphology feature used is the
maximum of the autocorrelation sequence of the ECG WT at
scale 3 (rQRST(kM )), which describes the QRST complex sim-
ilarity between PCA leads at scale 3 of the WT. This feature is
related to changes in the multilead morphology and the depo-
larization axis of the QRST complex. See [4], Figs. 2 and 3]
for details about the calculation of all the morphology features
used.

C. Performance Evaluation

The performance is calculated from the confusion matrix af-
ter performing a classification experiment, in terms of the class
sensitivity Si , class positive predictive value P+

i , global accu-
racy A, global sensitivity S, and global positive predictive value
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TABLE VI
GENERALIZATION EVALUATION OF THE PROPOSED ALGORITHM FOR ALL DATABASES USING THE 3 AAMI2 CLASSES

P+ as suggested in [8] and described in [4] and [18]. As the
initialization of the EMC is random, the results of the cluster-
ing algorithm are not deterministic. Then, each experiment is
repeated 30 times to evaluate the mean and standard deviation
of the performance estimates. The amount of expert assistance
required in the patient-adaptable modes of operation will be also
accounted for each experiment.

III. RESULTS

We performed two experiments, in the first one we stud-
ied the values of the algorithm parameters that will be used
in the second to evaluate its performance. The objective of the

first experiment was to set up the number of clusters (K) and
the qualified majority percentage used in votations (α), both
parameters used in automatic and slightly assisted modes of
operation. These parameters were assessed in the development
dataset (MITBIH-SUP and DS1 subset of MITBIH-AR), and
then used for the final performance evaluation in the remaining
datasets. Table IV shows the results of this experiment for two
values of the evaluated parameters. As a result of this experi-
ment, we adopted K = 9 and α = 50% for the automatic mode,
and K = 9 and α = 75% for the slightly assisted mode.

The final evaluation of the algorithm was performed in a broad
set of databases in order to obtain a realistic estimation of its
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TABLE VII
RESULTS AND CONFUSION MATRICES USING THE 5 AAMI CLASSES IN DS2 OF MITBIH-AR

performance, as done in [11], [18]. The three modes of opera-
tion were evaluated for each database with the parameter values
obtained in the first experiment. The results of this experiment
are presented in Tables V and VI grouped by dataset. Compari-
son with the most relevant algorithms found in the literature are
presented separately in Table V. In Table VI, the performance
obtained for all databases are presented. For each database, we
present the performance of our previous classifier [4] at the bot-
tom for comparison, and a biased performance estimation on
top as an upper bound. This biased performance is obtained
when a quadratic classifier [4], [17], [21] and the feature model
presented in Table III is trained and tested in the same patient,
for each patient in a database. This optimistically biased perfor-
mance serves as an upper bound, and represents the performance
of the model if it could be retrained for each patient. From the
results presented in Table V, the proposed algorithm outper-
forms almost all reviewed algorithms, except the algorithms of
Jiang [5] and Ince [6] in a small subset of MITBIH-AR, and
the algorithm of Kiranyaz [10] in the MITBIH-LT. Finally, the
results showed in Table VI evidence that the algorithm improves
the baseline performances obtained by the LDC.

IV. DISCUSSION AND CONCLUSION

In this paper, we presented a versatile ECG heartbeat classi-
fication algorithm suitable for a broad range of scenarios, from
automatic or unassisted to fully assisted mode. The automatic
part of the algorithm relies on a previously developed automatic
classifier with proven generalization capability [4], referred as
LDC in Fig. 1. The main limitation of the LDC is the inability
to handle large inter-patient rhythm and morphology variations.
Many works overcame this limitation with the assistance of an
expert [5], [6], [10], [14]–[16]. The approach to handle assis-
tance presented in this paper is based on a cluster algorithm,
responsible of retaining most of the patient specific characteris-
tics of the heartbeats (EMC in Fig. 1). For this reason, the feature
model used with the clustering algorithm pursues the maximum
intrapatient class separability. This approach is different to the
one used in the development of the LDC feature set in [4],
which pursued the maximization of a generalization criterion.
As a result, Tables II and III show the different feature models
used in the algorithm. As can be seen, both feature models use
rhythm and morphology features for heartbeats representation.
Regarding the rhythm features, the EMC has the addition of fea-
tures PRR and dRRL , which are related to the local RR interval
variation. As for the morphology description, features S1

QRS and
k1

M may together represent a robust surrogate of the QRS width;
while feature rQRST(kM ) describes the QRST complex simi-
larity between PCA leads at scale 3 of the WT. This measure is

related to morphologic and depolarization-axis changes in the
QRST complex.

To operate in automatic and slightly assisted modes, the EMC
algorithm uses K as the number of clusters to model, and the
voting scheme uses α as a threshold to assume that a whole
cluster belongs to a class. As can be seen in Table IV, the
performance intervals are comparable for the selected configu-
rations but a mild improvement can be seen for the highlighted
configurations. These configurations will be used for the final
evaluation and comparison of the algorithm.

The reference performances used for comparison purposes
were in all cases AAMI [8] compliant. Given that F and Q classes
are scarcely represented in the databases used, the AAMI2 alter-
native labeling used is numerically equivalent when calculating
the S and V′ class performances, presented in Tables V and VI.
The reader interested in this aspect is referred to section A.3.5.2
of [8]. Moreover, to ensure comparability, the results obtained
with the same features and development databases, considering
the five AAMI classes in DS2 are shown in Table VII.

The performance comparisons presented in Table V evidence
the usefulness of the proposed algorithm. Without expert as-
sistance the proposed algorithm performs slightly better than a
recent algorithm of Mar et al. [19] and the automatic version
of de Chazal et al. [3]. Furthermore, when assistance is avail-
able our algorithm outperforms the reviewed algorithms [5], [6],
[14], [15] in several subsets of the MITBIH-AR, with the fol-
lowing clarification. The algorithms of Jiang and Kong [5], Ince
et al. [6] and de Chazal and Reilly [15] outperform our algo-
rithm in different subsets of MITBIH-AR, but using more expert
assistance. However, the same algorithms perform worse in big-
ger subsets of the same database, as can be seen in Table V. This
fact reinforces the importance of evaluating arrhythmia classi-
fiers in a wide range of databases, to have a complete idea of
its performance. Finally, the algorithm presented by Kiranyaz
et al. [10] performed better than our algorithm in the MITBIH-
LT, but with an increased effort in assistance of 900 MAHB
per recording, respect to the 20 MAHB required by this algo-
rithm. However, the differences in performance are moderate,
and considering that the algorithm presented in [10] was specif-
ically developed for long-term recordings. It is worth remarking
that the MITBIH-LT presents the bigger class imbalance among
the studied databases, showing some limitations of the EMC to
detect scarcely represented classes, as the supraventricular.

An interesting aspect of the proposed algorithm is the im-
provement achieved in the amount of expert assistance re-
quired, 42 times less annotation effort than the algorithms of
Hu et al. [14] and de Chazal and Reilly [15], 25 times less than
Jiang and Kong [5] and Ince et al. [6], and 45 times less than
Kiranyaz [10].
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Regarding the comparison with the previous automatic mul-
tilead classifier, the fully automatic mode of the patient-adapted
algorithm presented in this paper achieved performance figures
higher than those obtained in [4] for all databases except in
the two databases including long-term recordings (MITBIH-LT
and MITBIH-ST), where the performance was slightly lower.
The decrease in MITBIH-LT and ST shows a limitation of the
clustering features to adequately account for changes in long
recordings. Moreover, as both databases include a small num-
ber of recordings (7 and 18, respectively), a particular recording
could have an exaggerated influence on the whole database per-
formance. However, for the automatic mode the mean improve-
ment across databases with respect to the LDC is of 2.3% in A,
of −2% in S and of 1.8% in P+ . With a small degree of assis-
tance, 1-2 MAHB per recording in the slightly assisted mode,
we obtained a mean improvement of 6.9% in A, of 6.5% in S
and of 8.9% in P+ . Furthermore, an assistance of just 12 MAHB
per recording results in a mean improvement of 13.1% in A, of
13.9% in S and of 36.1% in P+ . The important improvement in
performance achieved in assisted mode shows that our working
hypothesis, separate and homogeneous clusters within a record-
ing, is corroborated in most cases. The algorithm showed robust
dealing with different types of noise present throughout the eval-
uated databases, as a result of using robust features. In addition,
the results presented in Table VI are consistent, as more assis-
tance is translated into larger performance improvement. This
experiment evidences that the algorithm can handle properly
the different degrees of assistance provided by an expert. Note
that the development dataset, which includes DS1 of MITBIH-
AR and MITBIH-SUP, is included in the results presented in
Table VI. These results are optimistically biased and should be
considered only as an additional description of the algorithm
performance.

In slightly assisted mode, it is worth noting that the intra-
cluster class-heterogeneity in the recordings analyzed is propor-
tional to the assistance required. Remember that the algorithm
ask for assistance in those clusters where a qualified majority is
not reached. According to Table VI, from 11% to 16% of the
clusters did not reach a qualified majority. For the particular case
of the MITBIH-LT this figure raised to the 29%. This increase
is reasonable since the nonstationarities of the ECG signal, and
thus the cluster heterogeneity, are more evident in long-term
recordings.

The algorithm’s computational efficiency was not analyzed
in detail; however, it takes around 25 s to classify an MITBIH-
AR recording (30 min of two-lead ECG) in a desktop PC (Intel
Core2 E8500 CPU). The measurement was performed in a freely
available implementation of the algorithm in MATLAB [23].
Although the execution time is not excessively large, there is
room for improvement with an optimized implementation.

From the evaluation of the algorithm some limitations were
found and need to be addressed in future improvements. The
first is the inability of the clustering algorithm to find marginally
represented classes. This problem slightly affects the global per-
formance since the less represented classes have a mild effect in
a database-aggregated performance estimates. However, in cer-
tain applications the misclassification of this kind of infrequently
arrhythmias could limit the usefulness of algorithms based on
clustering techniques. Other limitations are related to the fea-
ture model used by the EMC, presented in Table III. In certain
recordings where the classes are reasonably represented to be
clustered, the EMC fails to recognize the clusters probably due
to the inability of the feature model to separate the classes. This
problem is also evidenced in the biased evaluation performance,
showed on top for each database in Table VI. Theoretically, if
the features and classifier used could adequately model the data,
the biased performance should be perfect for all classes (Si and
P+

i 100%). Since this is not true, it can be concluded that the
presented model still has limitations. This could be improved
with the development of better features or a most sophisticated
classifier. The last limitation found during the evaluation ap-
peared in long-term recordings. In these recordings the evident
nonstationarities in the feature space make the algorithm perfor-
mance to decrease considerably. For this reason, the assistance
provided to the algorithm was increased for long-term record-
ings. Strategies to deal with nonstationarities, as the proposed
in [10], will be studied in the future.

The results presented in this paper represent a performance
improvement with respect to the published works in the field of
automatic and patient-adaptable heartbeats classification. These
results show that the performance of an automatic classifier can
be improved with an efficient handling of the expert assistance.
The authors freely distribute a MATLAB implementation of the
algorithm for academic use [23].
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