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Abstract— A study on the feasibility of obtaining usable
electrocardiogram (ECG) signals from a wearable armband
during 24-hour continuous monitoring is presented. The wear-
able armband records 3-channel ECG and, unlike the con-
ventional Holter monitors, it is convenient for long-term daily
life monitoring because it uses no obstructive leads and it is
based on dry (no gels) electrodes, which do not cause skin
irritation. An optimal channel selector is presented, based on a
linear classifier using features that are related to the ECG signal
quality. In addition, this linear classifier is also used for artifact
detection. The developed optimal channel selector and artifact
detector are applied to 24-hour armband ECG recordings from
5 subjects. For reference comparison, the subjects also wore
a Holter device. The armband obtained usable data during
51.07±13.54% (inter-subject mean ± standard deviation) of
the non-bed recording time, and the mean heart rate was
accurately (relative error with respect to the Holter less than
10%) estimated from the armband selected ECG channel from
94.39±3.41% of the usable data. During the bed recording
time, the percentage of usable data was 93.54±2.92%, and
mean heart rate was estimated accurately from 97.01±1.80%
of those data. These results suggest that the armband device
is potentially feasible for a long-term daily life heart rate
monitoring based on the presented channel selector and artifact
detector, especially during the bed time.

I. INTRODUCTION

The diagnosis of most of the cardiac arrhythmias and other
cardiac pathologies is based on electrocardiogram (ECG).
Many of these pathologies produce paroxysmal symptoms,
making a continuous monitoring necessary. One of the
most popular approaches for continuous ECG monitoring
is performed by using Holter monitors. These monitors use
obstructive leads, and wet electrodes over the chest that
cause skin irritation after few days, making them unsuitable
for long-term daily monitoring. A daily long-term ECG
monitoring would be interesting in different applications,
including atrial fibrillation detection [1], sleep studies [2],
stress assessment, and monitoring of chronic respiratory pa-
tients, especially when combined with respiration estimation
[3].
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A wearable armband device for ECG monitoring is being
developed in our lab at University of Connecticut, aimed to
overcome the above mentioned limitations of Holter devices.
This armband is designed to be worn on the left upper arm,
and it incorporates 3 pairs of hydrophobic dry electrodes
also developed in our lab [4] and uses them to record 3 ECG
leads, one per pair, differentially. This armband device devel-
oped is more comfortable for the patient and it can be worn
for long periods of time without skin irritation, resulting in
being more convenient for daily long-term recordings than
conventional Holter monitors. However, the armband setup
is more challenging than the Holter setup. The electrodes
are much closer to each other than in conventional Holter,
which is usually based on electrodes distributed over the
chest. Furthermore, the use of dry electrodes results in a
poorer impedance matching in comparison to the use of wet
electrodes. These disadvantages can result in less fidelity
ECG signals. Besides the ECG signal, the armband setup
records electromyography (EMG) signals from the local
muscles, mainly from the left biceps and left triceps. Thus,
the obtained ECG signal-to-noise ratio is lower in compari-
son to the one obtained with the conventional Holter setup.
However, the quality of armband ECG signals was high
enough to obtain respiratory rate using ECG-morphology
features during lab-controlled no-movement conditions [3].
Nevertheless, the armband ECG signals have never been
evaluated during 24-hour continuous recordings before.

In this paper, a pilot study on the feasibility of obtaining
usable ECG signals from the wearable armband during
24-hour recordings is presented. The study includes the
development of an automatic channel selector for using the
highest quality ECG signal at each moment, as well as an
automatic artifact detector for discarding those data which
are not usable. Mean heart rate was extracted from the
selected armband ECG channel and subsequently compared
to the mean heart rate extracted from a conventional Holter
device.

II. METHODS

A. Signal acquisition and preprocessing

Armband signals were recorded from 5 healthy subjects
continuously during 24 hours. For reference purposes, 3 ECG
channels were simultaneously recorded by a conventional
Holter available in the market: Rozinn RZ 153+ (Glendale,
NY, USA). These ECG signals were down sampled to 250
Hz, considering that this sampling rate is enough for getting
sufficiently time-accurate QRS detection marks, e.g., it is
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Fig. 1. Example of preprocessed armband ECG signals x1(n), x2(n), and x3(n) in red, orange, and green, respectively. Last row shows xARMBAND(n),
in the color that corresponds to the selected channel in each 10-seconds segment, and in black when the segment is considered an artfact (see segment
from 40 to 50 seconds). Detected QRS complexes are shown with black ’x’ marks over xARMBAND(n).

the lowest recommended sampling rate for measuring the
classical heart rate variability (HRV) indices [5].

ECG signals from the armband were found to be highly
contaminated by noise, mainly due to the EMG from the
local muscles. Thus, a strong band-pass filtering was applied
in order to better isolate ECG data. The low/high cut-off
frequencies of this filter were empirically set to 3/25 Hz.
These filtered ECG signals are denoted x1(n), x2(n), and
x3(n), in this manuscript. An example of these signals can
be observed in Fig. 1.

B. Channel selection

Channel selection was performed in segments of 10 sec-
onds based on several ECG signal quality indices (SQI)
available in the literature. The features used by these SQI
can be divided in two big groups: fiducial features and
non-fiducial features [6]. The fiducial features are based on
detecting the beats followed by studying the mean level
and/or regularity of the resulting inter-beat (RR) intervals.
However, the abnormal values of mean level and, espe-
cially of regularity of the RR intervals are the basis for
many potential applications, such as arrhythmia detection,
sleep studies, stress assessment and monitoring of chronic
respiratory patients. Low signal quality based on abnormal
values of mean level and/or regularity of inter-beat intervals
may lead to the most valuable data for such arrhythmia
applications being of low quality. Thus, no fiducial features
were considered in this work. Nine non-fiducial features were

computed in segments of 10 seconds: Multiscale entropy [7];
Shannon entropy [8]; Ratio between power in the frequency
band 5-20 Hz with respect to the total power [9]; Self-
correlation [10]; Shannon entropy, mean, and variance of the
first intrinsic mode function [11]; Skewness, and Kurtosis
[12].

In order to have a unique SQI per ECG channel and 10-
seconds segment, a linear classifier was used. In order to train
the classifier, all 10-seconds segments during the first hour
from the first channel of each of the 5 armband recordings
were visually inspected. These segments were labeled as
artifact, normal, or none of the above. Subsequently, the nine
non-fiducial features were computed from segments labeled
as normal or artifact, and they were used for selecting 20
normal segments and 20 artifact segments per subject, by
using k-means in order to obtain a good representation of
the underlying distribution of the data. Thus, a total of 200
segments (100 normal and 100 artifacts) were selected. A
feature selection was performed using those 200 segments
by a forward wrapper approach, which consists of adding
gradually one more feature and selecting the one which pro-
vides the highest accuracy, and stopping when the obtained
accuracy is lower than that obtained with one less feature.
Later, the linear classifier was trained on those 200 segments
using only those features selected by the wrapper.

Subsequently, the selected features were computed from
each of the 3 ECG channels. For each 10-seconds segment,
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TABLE I

MEAN AND STANDARD DEVIATION (SD) OF THE PERCENTAGE OF SEGMENTS WITH ACCURATE HEART RATE ESTIMATES (LESS THAN 10% OF

RELATIVE ERROR WITH RESPECT TO THE HOLTER) FROM THE WEARABLE ARMBAND DEVICE; OF THE PERCENTAGE OF SEGMENTS WITH USABLE

ARMBAND DATA ACCORDING TO THE ARTIFACT DETECTOR; AND OF PERCENTAGE OF SEGMENTS WITH HOLTER USABLE DATA; DURING NON-BED

TIME AND DURING BED TIME.

Non-bed time Bed time

Subject Percentage of segments with Percentage of segments with

usable data accurate heart rate Holter usable data usable data accurate heart rate Holter usable data

1 29.98% 88.80% 95.47% 89.15% 96.14% 80.56%

2 53.78% 94.95% 98.26% 93.39% 94.37% 98.83%

3 49.45% 96.22% 65.64% 92.83% 97.29% 93.72%

4 54.78% 94.22% 92.07% 95.65% 98.60% 98.95%

5 67.34% 97.78% 94.96% 96.69% 98.64% 98.31%

Mean 51.07% 94.39% 89.28% 93.54% 97.01% 94.07%

SD 13.54% 3.41% 13.40% 2.92% 1.80% 7.86%

the selected ECG channel was chosen by the linear classifier
as the one being the furthest from the “artifact” class. These
ECG segments were normalized in amplitude with respect
to their standard deviation, and inverted in case that their
minimum is greater than their maximum in absolute value.
Then, a unique armband ECG signal xARMBAND(n)) was created
by concatenating those selected segments. An example of this
signal can be observed in Fig. 1.

C. Artifact detection

A 10-seconds segment from xARMBAND(n) was considered
an artifact if the linear classifier described in Section II-B
classified it as an artifact (i.e., the segment was classified as
an artifact in the 3 ECG channels from the armband).

D. Mean heart rate measure

The location of the QRS complexes of xARMBAND(n) were
automatically detected by an algorithm based on variable
frequency complex demodulation and adaptive threshold
rules [13]. The fiducial point of each QRS complex was
set to that where the absolute value of the amplitude is
maximum (R or S peak, depending on the lead morphology).
The instantaneous heart rate was computed from these QRS
locations as the inverse of the beat-to-beat intervals:

dHRi =
1

nQRSi
− nQRSi−1

Fs, (1)

where nQRSi
denotes the ith QRS location sample. Subse-

quently, for each 10-seconds segment, the mean of dHRi series
was computed. For comparison purposes, the mean heart
rate was measured also from the Holter device by a similar
procedure. The artifact detector and channel selector was
not used in this case. Instead, the first channel was always
used. In order to identify those segments with artifacts in this
channel, two different QRS detectors ([14] and [15]) were
applied. Those segments where these QRS detectors offer a
different output were discarded from further analysis.

The percentage of 10-seconds segments where the mean
heart rate estimated from the armband differs less than 10%
from the mean heart rate estimated from the Holter was
computed. The data used for training the linear classifier

described in Section II-B (the first hour of each recording)
was not used for this analysis in order to avoid a possible
bias in the results. This analysis was performed separately
for the bed time and for the non-bed time.

III. RESULTS

The forward wrapper selected 8 out of the 9 examined
features for the linear-classifier-based artifact detector and
channel selector: Shannon entropy; Ratio between power in
the frequency band 5-20 Hz with respect to the total power;
Self-correlation; Shannon entropy, mean, and variance of the
first intrinsic mode function; Skewness, and Kurtosis. Table
I shows the percentage of segments for which usable data
were obtained from the armband, according to the artifact
detector (described in Section II-C), and the percentage of
those usable segments for which an accurate mean heart rate
was obtained (relative error with respect to the Holter less
than 10%), during non-bed and during bed time. In addition,
the percentage of discarded segments because QRS detectors
were not consistent with the reference Holter ECG signal is
also shown.

IV. DISCUSSION

The feasibility of obtaining usable ECG signals from
a wearable armband during 24-hour recordings has been
analyzed. The armband developed in our lab at University of
Connecticut records 3 ECG channels simultaneously. A novel
channel selector was developed based on a linear classifier
using some features that have been reported to be related
to the ECG signal quality in the literature [6]. This channel
selector chose an ECG channel in every 10-seconds segment.
A new signal, composed of the selected ECG channel at
each time was generated, and its QRS complexes were
automatically detected. Furthermore, the linear classifier was
used also to identify those 10-seconds segments containing
artifacts, which were discarded from further processing.

The feature selection was performed by a forward-wrapper
approach. All studied features were selected except the multi-
scale entropy. This does not mean that the multi-scale entropy
has no signal quality information, but that the information
it contains is linearly redundant with the information of
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the other considered features. The mean heart rate was
estimated in every 10-seconds segment from the armband
and compared to the mean heart rate estimated from the
Holter monitor, which was taken as Gold Standard. The
estimation was considered accurate if it differs less than
10% from the estimation based on the Holter monitor. Note
that this remains a strict criterion, as 10% in 10 seconds
during usual rest heart rates (around 60 per seconds) means
an error of only one beat. Table I shows that during non-bed
time, the armband obtained artifact-free data for the 51.07%
± 13.54% (inter-subject mean ± standard deviation) of the
segments, and the mean heart rate was accurately estimated
in 94.39% ± 3.41% of those usable segments. Bed time is
less challenging than non-bed time because the movements
of the subjects are markedly reduced. Results are much better
in terms of quantity of obtaining artifact-free data (93.54% ±

2.92%), and they are also slightly better in terms of number
of segments offering accurate estimates (97.01% ± 1.80%).

V. CONCLUSION

Obtained results suggest that the armband device is suit-
able for a daily life heart rate monitoring, especially during
the bed time. However, further studies must be elaborated
including more subjects in order to extract stronger conclu-
sions. These studies may include the use of signal processing
techniques that may offer a higher signal-to-noise ratio by
combining the information of the 3 different ECG leads, and
specific studies for certain applications, such as arrhythmia
detection, sleep studies, stress assessment, and/or monitoring
of chronic respiratory patients.
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