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niques studied the <*Wiener”’ filter is the only one that tries to ex-
tract the noise present in the frequency band of interest. Unlike the
DFT technique this method does not reject signal content in the
higher harmonics. The **Wiener™ filter is truly adaptive in that it
not only adapts its sampling rate to sample exactly 128 sample
points per period of the signal, but also has an adaptive transfer
function that changes to give an optimum estimate of the signal
derivative in the mean square error sense. While quantitative mea-
sures of the performance of the different techniques are difficult to
produce in practice, since their performance depends on the signal-
to-noise ratio and the amount of overlap between the power density
spectra of the signal and the noise, it would be reasonable to sug-
gest, that an accurate differentiator of the left ventricular pressure
waveform, which deals optimally with noise both inside and out of
the pass band, can be based on the adaptive ““Wiener’’ filter out-
lined here.
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Abstract—Digital low-pass filtering and differentiation (LPD) are
useful in real-time processing of many biomedical signals. A general
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method is presented for determining the coefficients of a differentiator
that maximizes the signal-to-noise ratio or minimizes the error between
actual and ideal LPD filters, when signal and noise spectra are known.
Several examples of digital filters suitable for ORS complex and P-T
wave processing in ECG are presented.

I. INTRODUCTION

Biological signals usually have a band-limited spectrum. Signal
recordings in practice are corrupted by noise from biological and
environmental sources. For example, ECG signal recordings may
be corrupted by broad-band muscle noise. Low-pass filters that re-
ject noise frequencies higher than the cutoff frequency of the signal
are desirable. Differentiation of biological signal is a useful signal
processing tool to extract information about rapid transients in the
signal. Low-pass filtering and differentiation are usually imple-
mented in two cascaded stages of digital filters [1], [2]. Some stud-
ies have been made to combine these into a single linear filter low-
pass differentiator (LPD) [3]-[5].

The current methods do not take into consideration signal and
noise spectra. Often signal and noise spectra are known a priori,
from studies of a large number of experimental recordings [6]. LPD
can be optimized from the knowledge of these spectra. Another
important consideration is the specific application of our LPD; we
may be interested in maximizing the signal-to-noise ratio (SNR) or
in preserving the differentiated signal shape while noise content is
reduced. We present finite impulse response (FIR) implementa-
tions of LPD designed to meet these objectives. We present theo-
retical criteria for determining the best LPD coefficients and give
the values obtained for: 1) QRS detection in noise, 2) P, T waves
detection in noise, 3) P, T waves enhancement with respect to ORS.

II. THEORY

We employ the notation of [3] where the ideal LPD frequency
response is given by (Fig. 1)

H(a, w) = [jw

0 a1r<|w|57r

‘w\ = awm

(1)

where ar, (0 < a =< 1), denotes the upper limit of the differen-
tiation band and j is the complex imaginary unit. For the sake of
simplicity, we assume the sampling interval to be equal to one unit
of time (T = 1). Let f; be the sampling rate and £¥ be the cutoff
frequency of the LPD, so that

fe

a=2 7 (2)
The ideal filter in its most general form is
H(a, w) = ":%w Ci exp ( jnw). (3a)
Alternately, a different base exp ( j(n — 1/2)w) leads to
H(a, ») = "im C exp (j(n — 1/2)w) (3b)

where C,, and C,, are the coefficients of the ideal filter, which have
an implicit dependence of parameter a.

The approximate FIR filter obtained with N finite number of coef-
ficients can be expressed as

F(w) =j §1 C,. sin (nw) (4a)

(4b)

na

N
F(w) =j§l C, sin ((n — 1/2)w)

where C,,, C,, are the coefficients of the filter approximation.

0018-9294/90/0400-0420$01.00 © 1990 IEEE
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Fig. 1. Ideal low-pass-differentiator (LPD) transfer function for a cutoff
parameter a, (0 < a < 1).

We call these two filter forms F, and F,, symmetric and asym-
metric, respectively. For sampled data, the time-domain expres-
sions for these filters are

K = /2 % C(X(k + n) - X(k )

with d C,, = C, (52)
N p—
Y, (k) = d/2 g Co(X(k + n) — X(k — n + 1))
with d C,, = C,, (5b)

where d is a scale factor that results in integer values for C,, C,,;
Y;(k), Y,(k) are the filter outputs at sample time k, and X (k) is
the sampled input at time k. Note that Y, is delayed by 1/2 sample
interval. In future derivations we will use the notation F, Y and
coefficients C, for both the symmetric and the asymmetric forms.
These two bases are needed to cover all directly implementable FIR
LPD.

A. LPD with Reduced Mean-Squared Error

Assume that the signal has a spectrum §(w) with a cutoff fre-
quency f,. and sampling rate f;. Let noise have spectrum N(w) if it
is known a priori from experimental work. The output of the ideal
differentiator will be jw S (w). In order to obtain a real differentiator
output S(w) F(w) as a good replica of the ideal output, we must
make the difference between the ideal H(a, ) and the real F(w)
small, especially at frequencies where w S(w) is high.

Under these considerations, we define the square-error E(a) as
follows:

E(a) = g |H(a, w) - F(0)|” () do (6)
with the weight factor W(w) defined as

W B wS(w)/S0
(w) = N(w)/NO

w| < am
-l (7)
ar < |w| <7
with

0=

—an

wS(w) dw

and
: N(w) dw. (8)

NO = S-M N(w) do + S

-7 a

Then we define the best real coefficients (C,, C,, -+ +, Cy) as

those that minimize E(a). This definition leads to the following
relation:

50” W(w) do = S::FWTw)dw + S;,wa)dw' (9)

—arm

It ensures that the error between 0 and ar, and between ar and =
receives the same importance. This is important since usually we
have (a < 1/2) to avoid aliasing problems, and without this dis-
tribution of weights we could make a precise approximation of the
low-pass part of the filter, and a rather poor one of the differentia-
tion.

Usually the spectrum of the signal S(w) is a continuous but
complex function of w. In order to simplify the calculations, we
approximate S(w) by a function with r linear parts, and then obtain
an analytical second-order expression for E(a). From (6) we ob-
tain E(a) as a function of filter coefficients, their squared values
and parameter a.

E(a) = E(d, C]’ C2’ T, CNs C%) C%v U, Clzv) (10)
As we can see in [3] minimization of (10) does not imply that the

error for low frequencies is minimum. Therefore, we minimize (10)
with an additional restriction of ideal behavior at w = 0.

dF(w) _
dw o I

w=

Then from (4), we require that

N N
Z] nC, =1, Z] (n—-1/2)C, =1 (11)
n= n=
and we can write
Cy = CN(CIa Cy o ov e C(N—l))~ (12)
Combining (10) and (12)
E(a) = E(a, C\, Cy, ++, Cy-1y, C3, -+, Cy_yy)). (13)

To minimize this expression we must solve a linear system of N — 1
equations with N ~ 1 unknowns.
dE(a)

ac, ~ e G

) C(N—l) =0

SN -1 (14)

From (14) and (11) we obtain a set of N coefficients that minimize
E(a).

fori =1, -

B. LPD for Signal-to-Noise Ratio (SNR) Improvement

In the above study we do not consider noise in the signal spec-
trum, but sometimes the spectrum is contaminated with noise that
we cannot remove without distorting the signal. In these cases we
design an LPD that optimizes SNR. With this criterion the filter
may not reproduce the signal accurately, but may be useful for
some applications (like QRS detection) where we need a good SNR.
First we define

s

. S(w) H(a, w) dw
SNRI(a) =—
. N(w) H(a, w) dw

(15)

SNR1 is calculated from ideal differentiator H(a, w). Since SNR1
is a function of a, we can maximize (15) and obtain the best ¢ =
ay (and from (2) we get cutoff frequency f¥) that maximizes SNR1.

On the other hand, SNR2 is the real SNR obtained with actual
filter F(w).

L |S(w) F(w)[ do
SNR2 = :

T

. |N(w) F(w) |2 dw

(16)

Note that (16) is quadratic because F(w) can be both positive and
negative in the range (0 < w < 7). The function in (16) must be
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Fig. 2. (a) Linear approximation of the QRS complex and P, T waves
spectra in two parts: for QRS in ( f = 0, f, = 11) Hz and (f, = 11, f.
=37)Hz; for P-Tin (f=0,f, = 2)Hzand ( f, = 2, f. = 8) Hz. This
is an approximation of spectra given by [6]. (b) ORS signal recovered
from spectra in Fig. 2(a) under restriction explained in text, sampling
rate of 250 Hz and 1 s of periodicity. (c) P, T waves recovered from
spectra in (a) with the same conditions than in (b).
maximized with respect to filter coefficients C; (i =1, - * ,N — 1),  normalized integer value coefficients (C,) in order to improve the

but this requires solution of a third-order system of N — 1 equations
with N — 1 unknowns which is difficult to do analytically. There-
fore, we take ao from (15), minimize E(aq) in (13), and obtain the
best C, as in (14). Finally, as described below, we find the nearest
integer approximation to the coefficients C, that maximizes SNR2.

C. Filter Coefficient Approximation

With the above described criteria we find the best set of N coef-
ficients to be C;, C,, * * - , Cy. But these may not always be de-
sirable. In general, minimization with sufficiently large number of
coefficients p results in higher values of C, for some n. Thus, when
all coefficients C,, - - - , Cp are examined, a few selected coeffi-
cients C,,, C,,, * * + , C,, may be the largest. A filter can be con-
structed with minimization of E(a) from only these largest coef-
ficients without a significant loss in performance. It would also
be advisable to examine E(a) for adjacent filter coefficients
Consty Cimery s Cwz iy

Another approximation is to convert real value coefficients to

computational speed. Since such quantization and normalization
modify the error E (a), it is advised to consider adjacent coefficient
values also. -

III. APPLICATIONS

We illustrate the methods mentioned above with applications to
ECG signal processing in three different situations: 1) QRS detec-
tion in noise, 2) P, T waves detection in noise, and 3) P, T waves
enhancement with respect to QRS complexes.

We take a linear approximation of the QRS and P-T spectra given
in [6] and approximated in Fig. 2(a), in two parts: for frequencies
in (0, f)) and ( fi, f,.), which from (2) correspond to w in (0, a;7)
and (a7, aw).

r w+p1 lwl < aw
S(w)y=4rn w+p, ar<|ol<anr (17)
0 ar < || < 7
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From spectra in Fig. 2(a) and sampling rate of f, = 250 Hz. (T =
4 ms), for QRS (w) spectrum

fi=11Hz f =37Hz

and from (2)
a, =0.088 a =029 r, =1.114

pr =034 r, = —1.036 p, =0.97.

for PT(w) spectrum
fi=2Hz f =8Hz
and from (2)
a; =0.016 a =0.064 r = 8.355

pr =000 r,=-2785 p, =0.56.

If the ideal signal is assumed to be symmetric then the signal
shape can be recovered from the spectra in Fig. 2(a). Fig. 2(b)
shows the morphology of the ideal QRS and Fig. 2(c) P, T wave-
forms recovered from the approximated spectra in Fig. 2(a).

A. ORS Detection in Noise

If we are interested in QRS detection we must improve signal to
noise ratio at the LPD filter output; then we proceed as explained
in Section II-B. Assuming that noise comes basically from muscle
sources, we may suppose white noise [6]. We find that the ideal a
which maximizes (15) corresponds to a cutoff frequency f* = 14.9
Hz. Then we minimize E(a) with H(a) corresponding to this cut-
off frequency, and find the nearest integer coefficients that maxi-
mize (16).

Let ¢ be the power spectral density for N(w), and QRS-D1, QRS-
D2, ORS-D3 be the optimum filters (in sense of Section II-B) with
1, 2, and 3 coefficients respectively for QRS detection. Subindexes
(a, 5) denote symmetric or asymmetric configuration, respectively.
We obtain

d (G, Cy Cy),, SNR2c?

QRS-D1: 1/2 (0,1,0), 0.374;
ORS-D2: 1/385 (0,9, 10), 0.655;
ORS-D3: 1/43 (4,6, 7), 0.800;

SNR2 c? increases with number of coefficients, thus improving
performance for QRS detection in presence of noise. Also, if ¢
(noise power spectrum) decreases SNR2 increases.

Fig. 3(a) shows transfer functions (QRS-Di(w) i = 1, 2, 3;
ORS(w); and ideal LPD) and Fig. 3(b) QRS-Di filter outputs for
a real ECG with added white noise. An improvement of perfor-
mance is evident when the number of coefficients increases.

B. P, T Waves Detection in Noise

P, T waves detection problem is similar to the QRS detection
problem; this implies taking §(w) = P_T(w). Maximizing SNR1
in (15) we obtain the ideal a corresponding to cutoff frequency f*
= 3.19 Hz. Minimizing E(a) and rounding coefficients to maxi-
mize SNR2 we get the filter coefficients. The filters for 1, 2,3
coefficients are

d (Co, Cios Cin, E]Z)Sﬂ SNR2 ¢?
PT-DI: 1/115  (0,0,0, 1) 0.012
PT-D2: 1/21 (0,1,1,0), 0.023
PTD3: 1/315 (0,1, 1,1) 0.035.

The SNR improves when the number of coefficients increases. For
the same noise power, the SNR2 is lower than in QRS detection;

1.64
1.23+ QRS Detection
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Fig. 3. (a) Transfer functions for: QRS-Di(w) (i =1, 2, 3) filters,
QRS (w) spectrum, and ideal LPD for QRS wave. (b) Results on an ECG
signal: original ECG, ECG with added white noise, with SNRa = 10

maximum signal amplitude
<SNRa = 2 P >, and outputs of QRS-Di from

maximum noise amplitude

noisy signal.

this is as a result of lower signal power for P, T waves as compared
with ORS.

Fig. 4(a) shows the transfer functions for PT-Di(w), P T(w),
and ideal LPD. Fig. 4(b) shows PT-Di filter outputs for the same
real ECG, with added white noise. Note how in this case P and T
waves are proportionally more magnified than QRS wave.

C. P, T Waves Enhancement with Respect to QRS

In order to extract P, T waves from ECG we consider ORS as
noise, and try to maximize SNR; operating as for ORS, P_T detec-
tion but now with N(w) = QRS(w); S(w) = P_T(w) we found
that the best a which maximizes SNR1 corresponds to a frequency
fo =2.875Hz. When E(a) is minimized, considering QRS as noise
in W(w), and doing the integer approximation we obtain the fol-
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Fig. 4. (a) Transfer functions for: PT-Di(w) (i = 1,2,3) filters, P_T(w)
spectrum, and ideal LPD for P, T waves. (b) Results on an ECG signal:
original ECG, ECG with added white noise, with SNRa = 10 as defined
in Fig. 3, and outputs of PT-Di from noisy signal.

lowing PT-QRSi, (i = 1, 2, 3) optimum filters, with 1, 2, and 3
coefficients, respectively.

d SNR2
PT-QRS1: 1/10.5 (Cy = 1), 0.0547
PT-QRS2: 1/21 (G =1,C; = 1), 0.219
PT-ORS3: 1/30 (Cs=1,Co=1C5=1) 0347

(21)

Here we have an exact value of SNR2 hence we know the relative
noise power with respect to signal (QRS(w), P T(w)).

Fig. 5(a) shows the transfer functions for PT-QRSi(w) (i = 1,
2,3), P_T(w), QRS (w) (this now must be seen as noise) and ideal
LPD for P, T waves. Note that the gain is low between cutoff fre-
quency of P_T(w) and cutoff frequency of QRS (w) as we desired,
and after these values PT-QRSi () can take any value, since nei-
ther signal nor noise are supposed to be present beyond the cutoff
frequency.

Fig. 5(b) shows PT-QRS:i filter outputs from a real ECG signal
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Fig. 5. (a) Transfer functions for: PT-QRSi(w) (i = 1, 2, 3) filters,
P_T(w), and QRS (w) spectra, and ideal LPD for P, T waves. (b) Re-
sults on an ECG signal: original ECG, and outputs of PT-QRSi from
original signal.

in the three cases considered where we see a bigger PT/QRS re-
lation as number of coefficients increases, and better than in orig-
inal signal.

Table I presents these results for sampling rates f; = 200, 250,
and 300 Hz, three very common sampling rates in ECG signal pro-
cessing. We can see how as we increase f;, order of filter coeffi-
cients increases. That is evident if we believe that higher sampling
rate leads to an increase in the number of samples, and therefore
the coefficient order, to get same calculations. -

IV. CONCLUSIONS

We present a general method to derive FIR LPD for digital pro-
cessing of ECG signals. This method assumes a priori knowledge
of both signal and noise spectra. This may not always be possible
in general applications, but in biological signals we usually know
an estimate of the spectra of signals such as ECG, as well as noise
sources such as EMG. This knowledge can be applied to theoretical
design of the filter. The derived LPD filters are time invariant, then
they may introduce some distortion of the signal when its spectrum
changes significantly from the time-invariant estimate. We apply
this technique to ECG signal processing for three common sam-
pling rates. The method can be generalized to other signals and
other sampling rates. For example, an important application is in
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TABLE 1
OPTIMUM LPD FOR ECG SIGNAL PROCESSING AT SAMPLING RATES f; = 200, 250, 300 Hz IN THE THREE CASES CONSIDERED IN TEXT.
(NORMALIZATION FACTOR d VALUE CAN BE CALCULATED FROM EQUATIONS (11a, b) AND (5)

QRS Detection

d (a, Ez, Es, E4)A.u

f, = 200 Hz f. = 250 Hz f, = 300 Hz
ORS-DI: 1/1.5 (0, 1, 0,0), 1/2 (0, 1,0,0), 1/2.5 (0,0, 1,0),
QRS-D2: 1/21.5 (0, 6, 5, 0), 1/38.5 (0, 9, 10, 0), 1/5 0, 1, 1, 0),
ORS-D3: 1/43 (8,10, 5, 0), 1/37 (4,6,7,0), 1/82 (0, 8, 10, 9),
PT Detection
f,=200Hz _ fi=250Hz_ _ f,=300Hz
d (Cq, Cg, Cy, Cro)s.a d (Cy, Cig, Cy1, C2)ya d(Cy, Ciy, Ci3y Cha)y
PT-DI1: 1/8 (0, 1,0, 0), 1/11.5 (0,0,0, 1), 1/12.5 0,0, 1,0y,
PT-D2: 1/16 (0, 1, 1, 0), 1/21 (0, 1, 1, 0), 1/24 (0, 1, 1, 0),
PT-D3: 1/24 (1, 1, 1, 0), 1/31.5 (0,1, 1, 1), 1/37.5 0,1, 1, 1),
PT/QRS Enhancement d(C, Ej, RS
f, = 200 Hz f, = 250 Hz f. = 300 Hz
PT-QRS1:  1/85(Co=1), 1/10.5 (C,, = 1), 1/13 (s = 1),
PT-QRS2:  1/17(C,=1,C,, = 1), 1/21 (Co=1,Ci3 = 1), 1/25 (Cio=1,Cis = 1),
PT-QRS3:  1/24 (C4=1,Cg=1,Cp = 1), 1/30 €5 =1,Cyo=1,Ci5s = 1), 1/36 (Co=1,Cp = 1, Crg = 1),

neurophysiologic work where neural spike signals are recorded by
microelectrodes and must be discriminated from the background
noise of the brain. An LPD filter may be employed here to detect
neural spikes in real time.
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lyzing the performance of ultrasound hyperthermia applicators, was
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investigated. The phantom, consisting of a fixed porcine kidney with
thermocouples placed throughout the tissue, was perfused with de-
gassed water by a variable flow rate pump. The phantom was insonated
by an unfocused multielement ultrasound applicator and the temper-
atures in the phantom were recorded. The results indicate that for test-
ing protocols where tissue phantoms are needed, the fixed kidney prep-
aration offers an opportunity to use a more realistic phantom than has
previously been available to assess the heating performance of ultra-
sound hyperthermia applicators.

I. INTRODUCTION

The goal of hyperthermic treatment of a tumor is to elevate the
temperature of its entire volume to the therapeutic range, typically
43-45°C. Perfusion plays an important role in shaping the tem-
perature distribution in tissues heated with hyperthermia applica-
tors, and can vary significantly during the course of a given treat-
ment [1]-[3]. To experimentally evaluate the performance of an
applicator in a treatment simulation, a perfused tissue phantom must
be employed in order to obtain realistic temperature distributions.

Due to the complex blood perfusion patterns present in normal
tissue and tumors, it is difficult to construct a phantom to simulate
these patterns [4]. Several simple dynamic phantoms have been
constructed for microwave hyperthermia purposes [5], [6]. The flow
geometry through these phantoms is quite different from that in
tissue. Because of this difference, the temperature distributions ob-
tained with these phantoms possess a questionable relationship to
actual patient temperatures [4]. The use of dog kidneys and thigh
muscles as in vivo thermal models have been reported by several
rescarchers [7], [8]. However, the experimental complexity asso-
ciated with these in vivo models makes them impractical as a sim-
ple and repeatable system for assessing the heating capabilities of
a particular applicator design.

The purpose of the present work is to determine if a recently
developed perfused tissue phantom can serve as a simple and easy
to maintain device for analyzing more realistically the heating ca-
pabilities of ultrasound hyperthermia applicators.

II. METHODS AND MATERIALS

A. Perfused Tissue Phantom

The perfused tissue phantom employed in this study was an al-
cohol-fixed porcine kidney. This preparation possesses a system of
perfusion channels whose structure closely resembles that of the
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