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Steady-State MSE Convergence of LMS Adaptive
Filters with Deterministic Reference Inputs with

Applications to Biomedical Signals
Salvador Olmos and Pablo Laguna

Abstract—In this paper, we analyze the steady-state mean
square error (MSE) convergence of the LMS algorithm when
deterministic functions are used as reference inputs. A particular
adaptive linear combiner is presented where the reference inputs
are any set of orthogonal basis functions—the adaptive orthogonal
linear combiner (AOLC). Several authors have applied this struc-
ture always considering in the analysis a time-average behavior
over one signal occurrence. In this paper, we make a more precise
analysis using the deterministic nature of the reference inputs and
their time-variant correlation matrix. Two different situations
are considered in the analysis: orthogonal complete expansions
and incomplete expansions. The steady-state misadjustment is
calculated using two different procedures with equivalent results:
the classical one (analyzing the transient behavior of the MSE) and
as the residual noise at the output of the equivalent time-variant
transfer function of the system. The latter procedure allows a
very simple formalism being valid for colored noise as well. The
derived expressions for steady-state misadjustment are contrasted
with experimental results in electrocardiographic (ECG) signals,
giving exact concordance for any value of the step size.

Index Terms—Biomedical signal, deterministic input, LMS
adaptive filters, steady-state analysis.

I. INTRODUCTION

T HE MOST well-studied bioelectrical signals are the event-
related signals that are time locked to a stimulus. The stim-

ulus can be external, as in visual, auditory, or electrical in the
case of evoked potentials, or internal, as in electrocardiograms,
(ECG’s). For internal stimuli, a time-reference point can be de-
fined from every signal occurrence, for example, the QRS fidu-
cial point for ECG. The repetitive signals are often contaminated
by noise from several sources. In general, an event-related signal
can be considered to be a stochastic process that can be decom-
posed into a periodic deterministic signal that is time locked to a
stimulus and an additive stationary noise uncorrelated with the
signal. Several signal processing techniques are used to recover
the signal hidden in the noise. The adaptive signal processing
technique appears to be appropriate for such situations [1]–[3].

The LMS algorithm [4] is undoubtedly the most popular algo-
rithm for adaptive signal processing. The popularity of the LMS
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algorithm is to a large extent due to its computational simplicity.
Furthermore, it is generally felt that its behavior is quite simple
to understand [4], [5], and the algorithm appears to be very ro-
bust.

The most common applications of the LMS algorithm (noise
canceling, prediction, identification systems, etc.) use random
reference inputs. As a consequence, the majority of authors have
analyzed the properties of the LMS algorithm for random inputs.
Several authors analyzed the MSE convergence of the LMS al-
gorithm for Gaussian random inputs under theindependence
assumption[5]–[9]. This assumption, although clearly violated
in many applications, simplifies the analysis significantly. The
discrepancies between theoretical results based on this assump-
tion and the true algorithm behavior was investigated in [10] and
found to be relatively small. A more realistic assumption (less
strong) has also been used by several authors [11], [12], where
statistically dependent reference inputs are considered.

Much less work has been done with deterministic reference
inputs. Some of the applications are related to adaptive noise
cancellers of sinusoidal interferences [13]–[17], where a deter-
ministic periodic waveform can be used because the disturbance
period is knowna priori or can be estimated from noise source
measurements. The behavior of the LMS algorithm for sinu-
soidal references is slightly different than when the inputs are
random and is denoted as a non-Wiener solution of the LMS al-
gorithm [13], [14], [16]. In all these works, the structure of the
adaptive filter was a transversal filter.

In the field of biomedical signals, several applications of the
multiple-input adaptive linear combiner (ALC) [4] have been
proposed, where several deterministic functions are used as ref-
erence inputs [18]–[23]. Very little accurate work has been ad-
dressed to the MSE convergence analysis of the LMS algo-
rithm with deterministic reference inputs. Most of the authors
normally use all the basis functions (the number of basis func-
tions is the same as the signal duration:samples). However,
many applications need a reduced number of coefficients (e.g.,
data compression [24], monitoring, detection, and analysis of
pathologies like ischemia in ECG [25] and hypoxia in evoked
potentials [18]). Two different situations will be considered in
this paper: complete expansions and incomplete ex-
pansions . In Section II, we introduce theadaptive or-
thogonal linear combiner, which is a generalization of previous
applications, whose reference inputs are the basis functions of
any orthogonal transform.

In addition, all the authors analyzed the convergence using
a time-average over a signal occurrence. Recently, Barroset
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al. [26] presented a simple MSE convergence analysis of the
LMS algorithm when exponential functions were used as ref-
erence inputs. They applied the classical expressions of MSE
convergence based on the independence assumption derived for
random input reference signals [27]. In Section III, we show a
more precise analysis of the MSE convergence considering the
deterministic reference input signal nature and their time-variant
correlation matrix.

In [19], [28], and [29], it was shown that the LMS algorithm
with periodic impulsive reference inputs is equivalent to a linear
time-invariant filter, whose transfer function is a comb filter.
In addition, the misadjustment was interpreted in [29] as the
residual noise that passes through the filter. In Section IV, we
generalize the same result for any complete orthogonal trans-
form (not only the identity transform formed by impulse func-
tions) obtaining the same misadjustment result as in [29]. More-
over, we recently showed that when a reduced number of func-
tions is used in the ALC, the adaptive filter is equivalent to a
linear time-variant periodic filter [30], [31]. The misadjustment
interpretation as the residual noise through the linear filter can
also be applied for incomplete expansions obtaining the same
results as with the classical time-domain analysis but in a more
elegant and direct fashion.

Finally, simulation results with ECG signals from the QTDB
database [32] corroborate that the derived equations for the
steady-stateexcess MSEgive exact results even for high values
of the step-size .

II. A DAPTIVE ORTHOGONAL LINER COMBINER

The ALC [4] with the LMS algorithm has been applied to the
analysis of ECG signals [3], [4], [19], [22], [33], evoked poten-
tials [18], [34]–[36], and impedance cardiography signals [21].
It makes use of the recurring features of the signal. In this work,
we denote theadaptive orthogonal linear combiner(AOLC)
filter as a particular form of the ALC whose reference inputs are
the basis functions of any orthogonal transform. Several authors
have analyzed special cases of this structure using as reference
inputs impulse functions [15], [19], [28], [29], Walsh functions
[18], cosine functions [35], [36], exponential functions [20],
[26], Hermite functions [22], and KLT functions [23], [25], [30].
In this paper, we generalize all these configurations to any or-
thogonal transform whose basis functions at time instantare
denoted as , where is
the value of theth basis function at time instant, and is the
number of functions used in the modeling.

The structure of the adaptive filter is shown in Fig. 1. The pri-
mary input consists of concatenated signal
occurrences (composed of the deterministic part and the
noise part . The noise is a wide-sense stationary sto-
chastic process, whereas is the biomedical signal under
study after an -sample segmentation defined around the stim-
ulus instant. In the steady-state analysis of the algorithm, we as-
sume that is periodic. In practice, will be time variant,
and the algorithm will try to track the signal changes in a fi-
nite adaptation time. A first approximation analysis is to con-
sider that the adaptive algorithm has infinite time to adapt its

Fig. 1. Adaptive linear combiner with orthogonal basis functions as reference
inputs (AOLC).

weights. The adaptive system dynamically estimates the amount
of each reference input present in the input signal .
For the analysis, we will consider that the basis functions
are periodic, i.e., for all . The number
of basis functions will be variable. The filter output

with
recovers the deterministic part of correlated with the refer-
ence inputs, whereas the uncorrelated noise is attenuated. The
LMS algorithm tries to minimize the mean-square value of the
error signal .

In the next section, we will show that when complete expan-
sions are considered , the weight vector converges to the
optimum Wiener solution , which is the projection of the
deterministic signal onto the space generated by .
The estimation error at the optimum Wiener solution can
be decomposed into two terms

(1)

The first component represents the
estimation error due to the truncation of the orthogonal expan-
sion. If we assume that the deterministic part of the input oc-
currence-concatenated signal remains constant over all oc-
currences, then both and are periodic. The second term

is the noise present in the observed signal. Moreover,
the components and are mutually independent. In the
AOLC, the reference inputs are deterministic and statistically
independent from the noise . No independence assumptions
are needed in this case.

The MSE performance of the AOLC filter is analyzed here
using two different ways with equivalent results. First, in Sec-
tion III, we use the classical analysis, i.e., the transient analysis
of the MSE for zero-mean white noise, and second, we evaluate
the steady-state MSE as the residual noise at the output of the
system using its equivalent transfer function in Section IV.

III. T RANSIENT ANALYSIS OF THE MSE

The solution to the finite difference equation of the LMS al-
gorithm

(2)
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is given by [14], [37]

(3)

where

(4)

The first term is a transient, and it will be null
at steady-state if low values of the step-sizeare used

because . Alternatively, we
may assume that .

The convergence analysis of the LMS algorithm for the
AOLC is a bit simpler because both and are
deterministic as well as periodic. We consider two different
situations in the analysis: complete expansions and incomplete
expansions.

A. Complete Expansions

When complete orthonormal expansions are used, the basis
function matrix

(5)

is square and unitary [38], i.e.,

(6)

The first equality is equivalent to the orthogonality
property of the basis functions over the time index

, where is the Kronecker
delta function. The second equality implies a second kind of
orthogonality involving different time-index vectors over the
basis index, i.e., . In
this case, the time-variant transition matrix products are
greatly simplified, and it is easy to demonstrate that

(7)

If we consider the transition matrix product of a complete signal
occurrence, we have , and the product

reduces to . Hence, the weight vector at
time from (3) reduces to

(8)

We can iteratively apply (8) to an integer numberof signal
occurrences giving

(9)

The first term is a transient if and assuming that the
deterministic part is periodic, the steady-state mean weight
vector will be

(10)

if zero-mean noise is assumed. Thus, the weight vector of the
AOLC for complete expansions converges to the optimum
Wiener solution, i.e., the clean signal projection onto the
transformed domain defined by the basis functions .
Equivalently, the steady-state weight vector is an unbiased esti-
mate of . The weight error vector
at any occurrence time instantof the th occurrence can be
written using (3) as

(11)

In the complete expansion case, is due to the noise
because the truncation error is null, and .

The minimum error can be calculated from (1) as
. The total mean square error will be the sum

, where theexcess MSE
can be written [27] as

(12)

The last term of (12) can be decomposed using (1), as

(13)

When complete expansions are considered, . In addi-
tion, the term is also null if zero-mean white noise
is assumed. Hence

(14)
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The weight error correlation matrix at the
end of the th occurrence can be calculated from (11) as

(15)

The second and third terms are null if zero-mean white noise is
assumed.Therefore, in that case

(16)

since . Finally, the steady-state excess
MSE can be written using (14) and (16) as

(17)

If we want to calculate at time instants different from the
end-occurrence time , we can apply an
equivalent recursive relation to (16) for , obtaining the
same steady-state excess MSE value as in (17). The normalized
steady-state misadjustment is

(18)

The same result was obtained in [19], [29] for periodic impulse
functions, where the simplicity of the basis functions allowed an
easy estimation of the misadjustment. The expression obtained
now is valid for any complete orthogonal transform. In contrast,
the expression1 in [26, eq. (34)] gives a steady-state misadjust-
ment of

(19)

1The definition of the step-size� in [26] was twice the value here.

which is very close to the exact result, especially for very low
values of , as was the case in [26]. The difference arises from
the fact that Barroset al.used a recursive equation for the weight
error correlation matrix [26, eq. (7)] that was derived in [27]
for random reference input signals by applying the Gaussian
moment factoring theorem. However, the reference input signals
considered in [26] were deterministic (exponential functions).

B. Incomplete Expansions

When a reduced number of basis functions is used in the
AOLC , we can conceptually analyze the MSE conver-
gence in a similar way as in the last section. The only difference
is that now, the analytical expressions are more complex. In ad-
dition, the truncation error is no null.

When an incomplete set of basis functions is considered, the
complete basis function matrix can be partitioned as

(20)

being the matrix formed by the selected basis func-
tions and the complementary matrix. Ap-
plying (20) to the first equality in (6), we obtain

(21)

and from the second equality in (6)

(22)

From (21), we corroborate that the orthonormality over the time
index is also true for a reduced number of orthogonal functions,
i.e., . In contrast, the orthonormality over the basis
index is lost in general because at least one
term of is nonzero. In summary, when incomplete ex-
pansions are used and the transition
matrix products in (4) have a more complex description.
The steady-state weight error vector can be calculated from (11)
by taking the limit as . The first term will converge to
the null matrix for small values of because

(23)

The difference is that two different driving terms must be con-
sidered now because has two components (1). Hence

(24)



OLMOS AND LAGUNA: STEADY-STATE MSE CONVERGENCE OF LMS ADAPTIVE FILTERS 2233

Now, is originated by two different sources: the truncation
error and the noise . Applying the expected value, we
obtain

(25)

The steady-state weight vector of incomplete expansions is a bi-
ased estimate of , and the bias is different at different oc-
currence-time instants. The bias is originated by and can
be made small using a high number of basis functions or using a
transform that packs the signal energy in a low number of basis
functions. The bias depends on the step-sizein a complex way
because also depends on.

The minimum error is now time-variant

(26)

The excess MSE can be calculated using (12) and (13). The
weight error correlation matrix can be calculated by multiplying
(11) and applying the expected value

(27)

To calculate the steady-state value, we take the limit as .
All the first three terms are transient (null at steady-state) if the
step-size is selected to accomplish (23). As a consequence,
the steady-state weight error correlation matrix can be written
as

(28)

where

(29)

if is assumed to be a zero-mean white noise with variance
. In this case

(30)

The first term is due to the truncation error (deterministic
and periodic), and the second term is generated by the presence
of noise . Applying the periodicity of the basis functions,
(30) can be written as

(31)

where

(32)

and

(33)

We do not have a closed form of the sum of the second term
series in (31)

(34)

but its convergence is guaranteed because of (23). A numerical
approximation of the sum of the series can be obtained by
truncating the series to a finite number of additive terms. Finally,
the steady-state weight error correlation matrix can be written
as

(35)
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where

(36)

The weight error correlation matrix is composed of two different
terms: the first one due to the truncation error and the second
term due to the presence of the noise.

Finally, the steady-state excess MSE at time instant
can be calculated using (12), (13), (25), and (35) as

(37)

Remember that this expression is only valid for white noise.
Furthermore, the steady-state excess MSE of incomplete expan-
sions is different at different time indexes. The last equation
reduces to the complete expansions case (17) doing
and considering complete basis functions .

We can distinguish three different terms in (37): the first one
is the power of the biased estimation of

originated by ; the second term is the
variance introduced by the noise , and the third term is the
cross-term of the truncation error and . A new term
could be obtained from the interaction between and ,
but it was null in (37) because white noise was assumed in the
analysis. There is no interaction between the truncation error

and noise because they come from two different phys-
ical sources. The first two terms in (37) are related to the first
term in (12) because has two independent sources:
and . The third and the “missing” terms in (37) are related
to the second term in (12).

IV. TRANSFERFUNCTION INTERPRETATION

A. Complete Expansions

Several authors have analyzed the ALC when periodic im-
pulse functions are used as reference inputs (a complete expan-
sion), showing its equivalence to a linear time-invariant filter
[19], [28], [29], [39]. The impulse response of the system
is an impulse train with exponentially decreasing amplitude de-
pending on the value of the step-size[29, eq. (21)]. The fre-
quency response is a comb filter whose lobe-width is
proportional to

(38)

We have recently shown [30], [31] that any complete orthog-
onal transform (and not only the identity transform made of im-

pulse functions) obtains the same time-invariant transfer func-
tion (38).

In [29], the misadjustment was interpreted as the residual
noise that passes through the equivalent transfer function. As
a consequence, the steady-state excess MSE for complete ex-
pansions can be obtained as the integral value

(39)

where is the noise power spectral density. In the case
of white noise with variance , the integral can be easily eval-
uated using Parseval’s relation as

(40)

The excess MSE is the same as in (17). One major advantage
of this misadjustment interpretation is that it can be easily cal-
culated for other noise spectral density functions by evaluating
the integral (39).

B. Incomplete Expansions

When a reduced number of basis functions are used in the
AOLC, the system is equivalent to a linear time-variant periodic
filter [30], [31]. Hence, the steady-state excess MSE will also be
time variant, as it was shown in (37). The time-variant impulse
response is introduced in Appendix A.

If the primary input signal is decomposed as
, where

deterministic component over the signal subspace
spanned by the basis functions;
truncation error;
observed noise;

the excess MSE can be calculated using (26) as

(41)

The AOLC system is linear, and therefore, the output signal
can be decomposed into three terms ,
where each term is the output corresponding to one of the input
terms , , and , respectively. The steady-state output

in the absence of noise will be because the
corresponding input signal is completely represented by the

basis functions. Applying the zero-mean noise assumption to
(41) and after some simple algebraic manipulations, we get

(42)

where the cross-term products between and the determin-
istic signals , , , and are null. In the case of
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Fig. 2. Schematic block diagram of steady-state� [k] calculation according
to the transform function interpretation (42).

white noise, the term is also null. Fig. 2 illustrates
(42) with a block diagram. The inputs to the linear time-variant
system AOLC are both error sources: the truncation error
and the noise . Four different outputs are obtained. The
first term is the power of the response to . This term
is the same than in (37). The second term

is the noise variance at the output, which is the same
as in (37). The cross terms and

also have a equivalence term in (37). We can
conclude that there is a direct relationship between each term of
(37) and (42).

We need to calculate the output signal power of a time-variant
periodic system. In Appendix A, we derive expressions for the
response of a time-variant filter to deterministic and random
input signals. The term in (42) can be evaluated using (58)
as

(43)

where is defined in Appendix A as the response at time
to the input signal . The second term can

be easily calculated at steady-state using (64) in Appendix A as

(44)

where is the input noise autocorrelation function, and
is the impulse response of the AOLC system at time

instant of the occurrence. In the special case of a white noise
random input signal , the output noise energy
is simplified to

(45)

Finally, the third term of , can be easily cal-
culated as

(46)

Summing all three terms, the steady-state excess MSE is

(47)

This expression can be more easily evaluated than (37) because
the sequence can be obtained running the filter with an
input impulse at time instant, and the instantaneous impulse
response is directly related to by (55) of Ap-
pendix A.

The two excess MSE expressions (37) and (47), corre-
sponding to the two different approaches, are term-by-term
equivalent, even though their appearance is very different.
When the truncation error is small and very low values of
step-size are used, we demonstrate in Appendix B that both
equations can be greatly simplified, showing analytically its
equivalence for this particular case.

C. Excess MSE for Colored Noise

Biomedical signals are always embedded in physiological
noise generated by contiguous physiological systems. For ex-
ample, muscle electrical activity, motion artifacts, and baseline
wandering are often also recorded in ECG signals. Therefore,
nonwhite noise should also be considered in the convergence
analysis of the AOLC. Most random processes with a contin-
uous power spectrum density can be generated as the output
of a causal linear filter driven by white noise [40]. This white
noise-driven model is called theinnovations representationof
the random process.

1) Complete Expansions:Let be the impulse response
of the linear filter of the innovations representation of the col-
ored noise , and let the white input noise. The impulse
response can be normalized in order to get a unity energy filter

; therefore, noise power information will be
in the white input noise variance . The excess MSE can be
calculated using (39) as

(48)
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which can be also easily evaluated using the Parseval’s relation
as

(49)

The convolution can be written as

(50)

For many biomedical signals, such as evoked potentials or ECG
signals, we can assume that the noise autocorrelation function is
shorter than , which is the occurrence length. From (49) and
(50) and assuming that the length of is shorter than , we
get

(51)

The excess MSE for complete expansions with colored input
noise is the same than for white noise.

2) Incomplete Expansions:When a reduced number of
functions are used in the AOLC, we have shown that the
excess MSE can be easily evaluated using (42). The last term

is due to the interaction between the present
noise and past noise samples and is evaluated as

(52)

Finally, evaluating the steady-state excess MSE at time instant
with , we get

(53)

Fig. 3. Original and simulated noisy observed signal occurrence with SNR=

20 dB. (a) Clean signals[k]. (b) Observed noisy signald[k].

Fig. 4. First four KL basis functions of the ST-T complex.

In order to get an equivalent result using the time-domain tran-
sient analysis of , more complex equations should be an-
alyzed. When white noise is considered, , (53)
is equivalent to (47) because the impulse responses accomplish

.

V. RESULTS

In this section, we experimentally verify the validity of the de-
rived equations so far. As a first step, we made a simulation to
evaluate the steady-state performance for stationary signals. A
signal was synthesized as a sequence of records. Each one
consisted of a selected invariant ST-T complex of one normal
heartbeat from record 103 of the QTDB database [32] and addi-
tive Gaussian white noise, , with a value of SNR 20 dB.
We show in Fig. 3 the selected clean heartbeat and a signal oc-
currence when the simulated noise is added.

We selected the optimal Karhunen–Loéve transform [40] as
an example of one commonly used orthogonal transform, but
any orthogonal transform could be used. The basis functions
were estimated using a training set of signals from several
databases [25] in order to adapt the basis functions to a large
population of ECG morphologies. These basis functions are
optimum in the sense that they represent the highest percentage
energy of the training set ensemble with the minimum number
of functions [40]. We show in Fig. 4 the first four KL basis
functions for the ST-T complex of the ECG.

The AOLC filter was applied to the simulated signal, and
the results of steady-state excess MSE were compared with de-
rived equations in previous sections. As a first step, we study the
MSE convergence of incomplete expansions without simulated
noise. In this case, the weight error vector trajectory is
completely deterministic, and we will expect exact results from
the analysis, setting . In this simplified case, the error
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Fig. 5. Theoretical and experimental steady-state weight error vector
lim V[iN + j] for two different values of� = 0.05 and 0.4 whenp = 3
basis functions are used. (a)� = 0.05. (b)� = 0.4.

signal will be . Thus, the MSE can be
written as

(54)

In this case, the steady-state weight error vector is only due to
the truncation error because there is no noise in the simu-
lated signal. These are the best conditions for the AOLC to es-
timate the signal . However, the steady-state weight vector
will be biased with respect to the optimum weight vector. We
show in Fig. 5 the values of the steady-state weight error vector
with two different values of the step-size 0.05 and 0.4 when
only 3 basis functions are used in the AOLC. Theoretical re-
sults are calculated using (25). Experimental results are obtained
by running the AOLC filter. Results of the the weight vector are
shown after 100 signal occurrences where all transients have
died. Experimental and theoretical results are completely over-
laid. It is clearly seen that all the 3 components of the weight
vector are a biased estimate of the optimum weight vector, and
the steady-state bias is different for every occurrence instant.
Moreover, the bias is larger for higher values offollowing an
approximated linear relation with, as predicted in (25).

In order to illustrate the impact of the biased estimation of
the steady-state weight vector on the reconstructed signal, we
show in Fig. 6 the output signal
using 3 basis functions after all transients have died. The
difference between the reconstructed signals obtained with the
biased weight vector and the optimum weight vector are almost
invisible, especially for low values of the step-size. The impact
of the biased estimation of the steady-state weight vector on the
reconstructed signal is very low in terms of signal deformation.

The steady-state excess MSE for 3 basis functions are
shown in Fig. 7 for two different values of the step-size
0.05 and 0.4). We show the theoretical values of [the last
two terms in (54)] and experimental values for two different
values of . Experimental results are shown after 100 oc-
currences. Again, both results (theoretical and experimental) are
completely overprinted. Moreover, theoretical results are also
calculated as the sum of the first and third terms of both (37)
and (42), showing their equivalence. It is corroborated that the
steady-state excess MSE is different for every time instantof
the occurrence with higher values when the step-size is larger,
although no noise is present in the input signal. Moreover, the

Fig. 6. Impact of the biased estimation of the steady-state weight vector on the
reconstructions. (a)� = 0.05. (b)� = 0.4.

Fig. 7. Theoretical and experimental values of the steady-state� [k] with
p = 3 KL basis functions without noise.

steady-state excess MSE can be negative because of the trunca-
tion error.

The second step of verification is to consider the presence of
noise in the observed signals. In Fig. 8, we show the steady-state
excess MSE using derived expressions (37) and (47) and exper-
imental measures averaging 10 000 runs of the filter with simu-
lated noisy signals of SNR 20 dB after 100 occurrences.
We show three different values of the number of functions.
The mean values of the experimental results of steady-state ex-
cess MSE are overprinted on the theoretical values for both
cases: small and large values of the step-size. The value of
steady-state decreases for high values of the number
of basis functions and for low values of the step-size. When

is low, e.g., 3, the truncation error is much more
important than noise, and Fig. 8(a) is very similar to Fig. 7.
When is low, the steady-state can be negative, as can
be seen from Fig. 8(a) and (b). However, the total MSE

is always a semidefinite positive quantity. When
is high, the truncation error is very small, and is

positive [see Fig. 8(c)].
If we want to reduce the value of the total output signal error

, we can use a higher value of the numberof functions
and/or select a lower value of the step-size. A question that
arises now is which of both actions will be more efficient in
order to reduce the total error . To answer this equation, we
can use the three-term decomposition of the steady-state
in (37) and (47) and see which term is more important for a
given condition of the input signal, the SNR of the contami-
nating noise, etc. Moreover, only
depends on the number of functions. When the truncation error
is more important than the noise, the number of functions should
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Fig. 8. Comparison of theoretical and experimental values of steady-state� usingp = 3, 10, and 20 KL basis functions with SNR= 20 dB. Note that vertical
scales are different. (a)p = 3. (b)p = 10. (c)p = 20.

Fig. 9. Decomposition of steady-state� usingp = 20 KL basis functions with SNR= 20 dB. Note that vertical scales are different. (a) First term. (b) Second
term. (c) Third term.

be preferably increased. For example, from the conditions
3 and 0.4 in Fig. 8(a), it is more efficient to increase the
number of functions to 10 with 0.4 than to decrease
the step size to 0.05 with 3 (without evaluating the re-
duction in due to the increasing number of basis functions).
However, when the truncation error is small compared with the
noise, a decrease of the step size is the more appropriate choice.
For example, we show in Fig. 9 the decomposition of
into the three terms for 20 basis functions with low and
high values of and SNR 20 dB. The noise term shown in
Fig. 9(b) is more important than truncation error, and therefore,
a decrease of the step size is more efficient.

For clinical applications, we can be interested in specific
areas of the repetitive signal that are located at equal time
instants inside the occurrence, e.g., ST elevation for ischemia
detection, QRS amplitude, etc. With our analysis, we can
evaluate the steady-state MSE for every time of the signal
occurrence instead of a mean value, as had been analyzed in
previous works.

VI. CONCLUSIONS

In this paper, we analyzed the steady-state MSE convergence
of the LMS algorithm using the adaptive orthogonal linear com-
biner (AOLC), where the reference inputs were any set of or-
thogonal functions. The deterministic and periodic properties
of the reference inputs allowed an exact steady-state analysis of
the LMS algorithm. The primary input was a deterministic and
periodic signal contaminated by stationary noise.

Two alternative formulations of the problem were used: First,
we used a time-domain formulation based on the solution of the
discrete-time recursive equation for the evolution of the weight
vector. The second formulation is based on a transfer domain

approach, where the misadjustment could be interpreted as the
residual noise power that passes through the equivalent transfer
function of the system. This interpretation allowed an easy cal-
culation of the excess MSE for the case of colored input noise.

In addition, the analysis was performed in two different
situations: complete expansions and incomplete expansions.
The steady-state misadjustment expressions for complete
expansions were in concordance with exact results previously
obtained when periodic impulses were used as reference inputs
[19], [29]. The same result of steady-state misadjustment is
now generalized to any complete orthogonal transform. Some
important differences are obtained when only a reduced number
of functions are used in the expansion. The first one
is that the weight vector converges to a biased estimate of the
optimum Wiener solution. The bias is due to the truncation
error. Moreover, the value of steady-state misadjustment is
different for every occurrence time instant.

The decomposition of the steady-state excess MSE into three
different terms (for the case of white noise) gives a useful cri-
teria for selecting the more appropriate parameters (number of
basis functions and the step-size) that define the AOLC
system. When the first term is higher than the others, the number
of basis functions should be increased because the truncation
error is more important than the noise present in the signal. On
the contrary, if the second term is higher, it means that lower
values of the step-size should be used in order to reduce the
amount of noise.

Experimental results with electrocardiographic signals show
that derived expressions give exact results of steady-state excess
MSE for any value of the step-size. Many previous published
results were close to the exact solution given here because they
only considered low values of the step-sizein their analysis,
and in that case, the results are approximately equivalent.
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APPENDIX A

In this Appendix, we calculate the response of deterministic
and random inputs to a linear time-variant periodic filter. Many
digital signal processing textbooks analyze the response of a
linear time-invariant system to stationary random input signals
[39], [40], showing that if the random input signal is stationary
in the wide sense, the output is also stationary in the wide sense.
Moreover, the power spectrum of the output is the product of the
input spectrum and the modulus squared frequency response of
the system. However, when incomplete expansions are used, the
equivalent transfer function of the AOLC is linear time-variant
and periodic with impulse response . A closed form for
the instantaneous impulse responses of the AOLC is not known
in general. However, the instantaneous impulse response can
be related to the output of the filter in response to an impulse
function. Let be the output of the AOLC at instantwhen
the input impulse was located at sample. This signal will be
causal . The impulse responses of the system

, where the first index denotes
the impulse response waveform and the second index is the time
instant when the impulse response is valid, can be written as

because can be expressed as the
linear convolution

(55)

Therefore, . The output can be easily
obtained running the AOLC filter. We calculate the response of
such a time-variant system to deterministic and random input
signals.

Let denote the input signal composed
of a periodic deterministic component and a wide-sense
stationary zero-mean random signal , with autocorrelation
function . The output signal can
be also decomposed into two different components because the
system is linear: , where is the re-
sponse of the system to the deterministic componentand

the response to .
The deterministic component can be directly obtained ap-

plying the linear convolution

(56)

The output will be periodic because , and

(57)

The output signal power will also be periodic

(58)

The response to the stationary random input signal will
be random with expected value

(59)

and if zero-mean noise is assumed. The autocor-
relation of will be

(60)

which can be written as

(61)

The random input signal is stationary, and hence

(62)

The output random signal is not wide-sense stationary because
the autocorrelation function depends on the absolute time in-
stant , due to the time-varying impulse response of the system.
The expression (62) can be simplified making the change of
variables obtaining

(63)

For the misadjustment evaluation, we are interested in the
steady-state residual noise power of the output signal. This value
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can be obtained from (63) by setting the autocorrelation lag
at time instant and taking the limit as

(64)

In the special case of a white-noise random input signal,
, and the output signal power is simplified to

(65)

APPENDIX B

When the truncation error is very small (due to high
number of basis functions and very low values of the step-size

are used, the analytical expressions that describe the excess
MSE [(37) and (47)] can be greatly simplified. In this Appendix,
we theoretically show that for this particular case both expres-
sions are equivalent.

The transition matrices product over a complete signal occur-
rence can be expanded as anth-degree polynomial
of . If very low values of the step size are used and quadratic
and higher order terms oncan be neglected, in (1)
can be approximated as , which is the
same result as in the complete expansion case. Using this ap-
proximation in (34), we can write

(66)

If the truncation error can be considered null ( ), the
steady-state excess MSE will only be composed of the term

(67)

where was defined in (33). Using (33) and neglecting
quadratic terms on, we can write

(68)

For the second expression of steady-state excess MSE (47), it
is shown in [30] and [31] that when low values of the step-size

are used, the response to an impulse function at sample

is approximately equal to the convolution of the time-invariant
impulse response corresponding to the complete expansion (38)
and the inner product values of the reference vectors

. Let be the output of the system at instant
when the impulse is located at sample, writing

(69)

The steady-state excess MSE can be calculated by setting
in (47) and then taking the limit

(70)

If we apply (69) and (55) to the last equation, we finally obtain

(71)

In conclusion, we have theoretically shown that both expres-
sions (37) and (47) for the steady-state excess MSE in the partic-
ular case of very low values of the step-size and low truncation
error give the same approximation. However, experimental re-
sults show their equivalence for any value of the step-sizeand
the number of functions.
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