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Truncated Orthogonal Expansions of Recurrent Signals:
Equivalence to a Linear Time-Variant Periodic Filter

Salvador Olmos, José Garćıa, Raimon Jańe, and Pablo Laguna

Abstract—In this correspondence, we show that orthogonal expansions
of recurrent signals like electrocardiograms (ECG’s) with a reduced
number of coefficients is equivalent to a linear time-variant periodic filter.
Instantaneous impulse and frequency responses are analyzed for two
classical ways of estimating the expansion coefficients: inner product and
adaptive estimation with the LMS algorithm. The obtained description as
a linear time-variant periodic filter is a useful tool in order to quantify the
distortion produced by the effect of using a reduced number of coefficients
in the expansion, and to give frequency criteria to select the appropriate
number of functions. Moreover, the misadjustment of the LMS algorithm
can be explained as a distortion of the instantaneous frequency response.
Experimental results are illustrated with the Karhunen–Loeve transform
of ECG signals, but this approach can also be applied to any orthogonal
transform.

Index Terms—Data compression, least mean squares methods, trans-
forms.

I. INTRODUCTION

Orthogonal expansion is a very well-known technique for signal
analysis. It is based on the decomposition of the signal as a linear
combination of simple and elementary basis functions [1]. An ap-
propriate choice of the orthogonal basis functions achieves a signal
representation, where each coefficient contributes with independent
and complementary information, for example, frequency components
for the Fourier transform, instantaneous signal values for the iden-
tity transform, localized frequency components using the wavelet
transform, etc.

When the same number of samplesN in the signal under study
is used as the number of basis functions in the expansion (exact
modeling), the signal energy is completely represented, and the
equivalent system can be considered to be the identity function.
However, many applications (such as data compression [2]–[5],
parameter extraction for pattern recognition, monitoring [6], etc.)
require rank reduction. In these applications, the number of basis
functions used is reduced to a fractionp < N (undermodeling), and
accordingly, some signal components are discarded. The selection of
the number of basis functions is the main problem because it is a
tradeoff between signal representation capacity and rank reduction.

In this correspondence, we show that the effect of using a reduced
number of coefficients in orthogonal expansions of recurrent signals,
like electrocardiograms (ECG), can be described as applying a linear
time-variant periodic filter to the input signal. This equivalence gives
a useful tool in order to quantifya priori in the frequency domain
the distortion introduced in the reconstructed signal when a variable
number of functions is used in the expansion. As a consequence, it can
be used to establish a criteria to select the number of basis functions.
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The starting point of this correspondence is the analysis of the
LMS algorithm with deterministic inputs [7], where it is proposed as
an approximation to the behavior of the LMS algorithm in terms of
a linear transfer function. In the more general case, the equivalent
system can be described by a recursive finite difference equation
with time-varying coefficients. The analysis was illustrated for several
examples of deterministic input signals:

• sinusoidal inputs;
• impulse train;
• square waves.

In the particular case of an impulse train, several authors have shown
its equivalence to a linear time-invariant comb filter [7]–[10].

In this correspondence, we consider as reference inputs to the LMS
algorithm any subset of orthogonal basis functions repeating itself
with the periodicity of the recurrent primary signal under analysis.
We focus on the effect of using a variable number of basis functions
and calculating the equivalent instantaneous impulse and frequency
responses. Moreover, the misadjustment of the LMS algorithm can
be interpreted by means of the instantaneous frequency responses.
An equivalent analysis is also proposed for another classical and
well-known technique that is often used to estimate the expansion
coefficients: the inner product. Some of the results shown here were
presented in [11].

Two classical and well-known techniques are often used to estimate
the expansion coefficients:inner product (IP) [12], [13] when the
value of the signal to noise ratio (SNR) is high, andadaptive
estimation with the LMS algorithm[14]–[17], when the uncorrelated
noise with the signal must be attenuated. Both techniques have been
previously analyzed by many authors, but to the best knowledge of
the authors, the analysis with a variable number of basis functions
has yet to be addressed. The aim of this correspondence is to give a
new interpretation of both techniques as a linear time-variant periodic
filter. In order to illustrate the equivalence, instantaneous impulse
and frequency responses of the system are calculated when the
Karhunen–Loeve (KL) transform [2], [13] is applied to ECG signals.
The usefulness of the new interpretation is shown in two applications:
the time-varying distortion effect of the number of basis functions
used for data compression of ECG signal with the KL transform
and the filtering effect when compacting information for ischemia
analysis of the ECG signal.

II. I NNER PRODUCT

The inner product (IP) is the most common way to estimate the
orthogonal expansion coefficients of signals with high values of SNR.
The IP is the solution to the problem of minimizing the mean square
error between the original signal and a reduced linear combination of
basis functions [13]. In addition, the IP has a geometric interpretation
as the orthogonal projection of the signal vector onto the signal
subspace spanned by the basis functions used in the expansion.

The reconstructed signaly[n] for thekth occurrence of a recurrent
N -length input signalx[n], using a reduced numberp < N of
coefficients, can be written as

y[(k � 1)N + n] =

p�1

i=0

c
k�1
i

~�i[n]; 0 < n < N � 1 (1)

where ~�i[n] are the periodic extension of the basis functions�i[n],
andck�1i are the coefficients of the inner product between the basis
functions and the signal from the previous occurrence (applying
causality to the filter)

c
k�1
i =

N�1

m=0

~�i[m]x[(k � 2)N +m]; 0 < i < p� 1: (2)

Fig. 1. Block diagram of the inner product as a linear time-variant periodic
filter.

The input–output equation is obtained by substituting (2) in (1)

y[(k � 1)N + n] =

N�1

m=0

x[(k � 2)N +m]r[m; n]

0 < n < N � 1 (3)

where r[m; n] = p�1

i=0
~�i[m] ~�i[n] = ~�T [m] ~�[n] is the inner

product between the basis functions vectors at time instantsm and
n, and ~�[n] is the basis functions vector at timen. The output at
occurrence instantn can be seen as a linear combination of input
samples from the last occurrence (N samples delay) with time-
varying values of the basis functions inner productr[m; n]; that is,
IP can be described as a linear time-variant filter that is also periodic
becauser[m; n] = r[m + N; n] = r[m; n + N ]. In order to find
the instantaneous impulse responses, (3) should be written as a linear
convolution of the input signalx[n], wheren0 = (k � 1)N + n

denotes the time index

y[n0] =

1

m=�1

x[m]h[n0 �m; n
0] (4)

with theN samples finite duration impulse responsesfh[m; n]; n =
0; 1; � � � ; N � 1g

h[m; n]

=
r[n �m+N; n]; for m = n+ 1; n+ 2; � � � ; n+N

0; elsewhere.
(5)

The first indexm of h[m; n] denotes the index for the impulse
response shape, and the second onen denotes the time instant when
the impulse response is valid. Fig. 1 illustrates the interpretation of
the inner product as a linear time-variant periodic filter that is applied
to the input signal occurrences.

The same result can also be easily obtained using the vector
notation, where the reconstructed occurrence signal vectorY can
be obtained as the matrix product

Y = THTX = HX (6)

whereT is thep�N matrix whose columns are the basis functions
vectors used in the expansionT = [�[0]�[1] � � ��[N�1]], andX is
the input signal occurrence vector. Several digital signal processing
textbooks state the equivalence between matrix product and linear
convolution operators [3], [18]. In a general case (for noncomplete
orthogonal expansions), theN�N matrixH will not be Toeplitz, and
accordingly, the output can be calculated as the linear convolution of
the input with a finite length time-variant impulse response, whose
values are determined by the inner product values of the basis
functions.

In order to quantify this filtering effect, instantaneous impulse and
frequency responses are calculated, depending on the numberp of
basis functions used in the expansion. The KL transform [2], [13]
of ECG signals is used as an example, although other orthogonal
expansions can be considered without loss of generality. The basis
functions are estimated [19] from a training set of ECG signals of
MIT-BIH Arrythmia [20] and ESC-STT [21] databases (resampled
to 360 Hz). In Fig. 2, impulse responsesh[m; n] are shown for
different values ofn, when p = 30 KL basis functions are used
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Fig. 2. Impulse responses for IP withp = 30 KL functions at different
times n.

in the expansion. The impulse responses are of finite length with
durationN = 430 samples (heartbeat length).

If we apply the Fourier transform to each impulse response
fh[m; n]; n = 0; 1; � � � ; N�1g, we get the instantaneous frequency
responsesH(ej!; n), which are shown in Fig. 3, located with respect
to a typical normal heartbeat (at top left). Frequency responses are
lowpass but with a time-varying response. For the ST segment and
P and T waves, the cutoff frequency is lower than for the QRS
complex. This behavior is in accordance with the frequency content
of each waveform of the ECG signal [22]. We can observe that the KL
orthogonal expansion with the IP usingp = 30 basis functions can
represent the main frequency components of each ECG waveform
at every timen. This behavior is related to the fact that the KL
transform is handmade from a training set of ECG signals, and its
first basis functions represent the main signal-morphology.

Other orthogonal transforms whose basis functions have only
one frequency component throughout time, like the discrete cosine
transform, are not as well suited as KL functions to represent the ECG
with a reduced number of coefficients, because the ECG signal has
different frequency components at different times within a heartbeat.

The Fourier transform of the output signaly[n] at thekth occur-
rence can be related to the input as

Y (ej!) =

N�1

n=0

y[(k � 1)N + n]e�j!n

=

N�1

n=0

N�1

m=0

x[(k � 2)N +m]r[m; n]e�j!n

=

N�1

m=0

x[(k � 2)N +m]R(m; e
j!) (7)

that is,Y (ej!) is a linear combination of frequency responses where
the weights are the input samples of the previous signal occurrence,
and the frequency responses depend on the basis functions used in
the expansionR(m; ej!) = N�1

n=0 r[m; n]e�j!n. Using (5) and
the fact thatr[m; n] = r[n; m], it can be easily demonstrated that

R(m; e
j!) = e

�j!(m+N)
H
�(ej!; m) (8)

whereH(ej!; m) is the frequency response of the system at in-
stant m (Fourier transform of impulse responseh[n; m]). In a
similar way, the instantaneous frequency responseH(ej!; n) =
1

m=�1 h[m; n]e�j!n can be calculated as

H(ej!; n) = e
�j!(n+N)

R
�(ej!; n): (9)

Thus, the instantaneous frequency responsesH(ej!; n) depend only
on the basis functions used in an easy way. The global frequency

response of the system can be straightforwardly obtained as

HG(e
j!) =

Y (ej!)

X(ej!)
= m

x[m]R(m; ej!)

X(ej!)
: (10)

The global frequency responseHG(e
j!) relates the original signal to

the reconstructed by means of the basis representationR(m; ej!).
Many biomedical signals are time locked to a stimulus that can be

internal like electrocardiograms or can be external, as in the case
of evoked potentials [8]. In the case of ECG, the time-reference
point is defined from identifying a signal waveform, such as the
QRS complex. In order to apply orthogonal expansions to ECG
signals, we need to estimate the time-reference point of the signal,
using QRS detectors [23], [24]. Timing errors can appear in the
estimation process due to the noise presence. Therefore, it can be
interesting to analyze the behavior of the inner product estimation
of the signal when a misalignment ofa samples occurs between the
signal occurrence and the basis functions. In this case, the global
frequency response will be

HG(e
j!
; a) =

Y (ej!)

X(ej!)
= m

x[m� a]R(m; ej!)

X(ej!)
: (11)

We show in Fig. 4 the distortion introduced in the output signal when
a misalignment of 52 ms is introduced to a normal heartbeat (record
100 from MIT-BIH database), andp = 30 KL basis functions are
used. Comparing the overprinted original signalX(ej!) with the
reconstructed oneY (ej!), it can be seen that the frequency distortion
is higher for misaligned beats than for aligned beats.

We can conclude that the description of IP as a linear time-variant
periodic filter gives a relationship between the input signal at different
time instants (around the P wave, the QRS complex, and the T
wave) with time-variant transfer functions corresponding to those
time instants. In addition, it allows the interpretation of the effect
of misalignment of the input signalx[n] with respect to the basis
functions as a distortion filter.

The description shown here could also be used to design linear
time-variant periodic filters. The problem would be addressed in the
reverse direction: From desired instantaneous frequency responses
H(ej!; n) and using (9), we could obtain the basis functions products
r[m; n] = ~�T [m] ~�[n]. From these values, we should obtain the
values of the basis functions~�[n].

III. A DAPTIVE ESTIMATION WITH THE LMS ALGORITHM

When the input signal is corrupted with uncorrelated noise, adap-
tive techniques [14]–[17] are often used to estimate the orthogonal
expansion coefficients. The reference inputs to the adaptive linear
combiner [15] shown in Fig. 5 are the periodic extension of the
basis functions~�i[n] (deterministic and orthogonal) in contrast with
classical adaptive schemes where two random signals are used as
reference inputs. The primary inputx[n] is the noisy recurrent signal
under study.

The weight vectorW[n] is updated with the LMS equation

W[n + 1] =W[n] + 2�e[n] ~�[n] (12)

where ~�[n] is the vector of basis functions values at timen.
Assuming that the weight vector is initialized to the null vector
W[0] = 0, Clarkson [7], [9] analyzed the behavior of this system,
showing that in the most general case, it can be described as a finite
difference equation

y[n] = 2�

n�1

m=0

e[m]( ~�T [m] ~�[n]) (13)
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Fig. 3. Frequency responsesH(ej! ; n) for IP with p = 30 KL functions at different timesn.

(a) (b)

Fig. 4. Frequency distortion due to misaligned occurrences. (a) Aligned
normal heartbeat. (b) 52-ms misaligned heartbeat).

Fig. 5. Adaptive linear combiner with deterministic inputs to estimate the
expansion coefficients.

that can be rewritten as

y[n] = 2�

n�1

m=0

x[m]r[m; n] � 2�

n�1

m=0

y[m]r[m; n]: (14)

This finite difference equation is recursive, with time increasing order
and time-variant periodic coefficientsr[m; n] = ~�T [m] ~�[n].

When all basis functions are used in the expansionp = N (exact
modeling), the inner product values are

r[m; n] =
1; for m� n = kN
0; otherwise.

(15)

In this particular case, the finite difference equation (14) defines a
linear time-invariant filter with transfer function

H(z) =
Y (z)

X(z)
=

2�z�N

1 + (2�� 1)z�N
: (16)

Several authors had previously analyzed the adaptive linear combiner
system when the reference input signals are the complete set of
impulse functions (equivalent to the identity transform) obtaining
the same transfer function [7], [8], [10]. The same result is now
generalized for any complete set of orthogonal basis functions. Its
frequency responseH(ej!) is a comb filter [10] whose lobes repeat
at frequencies that are multiples of the normalized fundamental
frequency!0 = (2�=N). The �3 dB cut-off frequency of each
lobe is (�=�)!0 far from the central frequency of the lobe. High
values of the step-size� imply simultaneously wider lobes of the
frequency response and higher values of the misadjustment. In [10],
the steady-stateexcessMSE �ex[1] was interpreted as the residual
noise that passes through the lobes spread, and now, it can be easily
calculated as

�ex[1] =
1

2�

�

��

jH(ej!)j2Sn(e
j!)d! (17)

where Sn(ej!) is the power spectral density of the noise. In the
particular case of white noiseSn(ej!) = �2, the integral (17) can
be easily calculated using the Parseval relation as

�ex[1] = �2
1

n=�1

jh[n]j2 = �2
�

1� �
(18)

giving the same result ofexcessMSE previously obtained by several
authors [8], [10]. In the case of colored noise, we can obtain the same
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Fig. 6. Impulse responsesh[m; n] for LMS � = 0:3 with p = 30 KL
functions at different timesn.

result applying the spectral factorization. The time-invariant impulse
response is a causal impulse train with exponentially decreasing
amplitude that can be expressed as

h[n] = 2�

1

k=1

(1� 2�)k�1�[n � kN ]: (19)

Several authors have shown the equivalence of this filter with an
exponential weighted averager [8].

However, many applications require a reduced number of func-
tions, such as data compression, parameter extraction for pattern
recognition, monitoring, etc. To our best knowledge, the analysis for
a reduced number of coefficients (undermodeling) has not yet been
addressed.

The recursive equation (14) is difficult to solve directly in order
to find the impulse responses that have infinite length because of the
recursivity. However, the outputs when the input signals are impulse
functions�[n�a] located at samplea can be easily obtained running
the filter with this input. Letf [a; n] be the output at instantn when
the input impulse was located at samplea. The impulse responses
of the systemfh[m; n]; n = 0; 1; � � � ; N � 1g can be written as
h[m; n] = f [n � m; n] becausef [a; n] can be expressed as the
linear convolution

f [a; n] =

1

m=�1

h[m; n]x[n �m]

=

1

m=�1

h[m; n]�[n � a�m] = h[n� a; n]: (20)

Different impulse responsesh[m; n] of the adaptive system using
p = 30 KL basis functions and a value of the step-size� = 0:3
at different timesn are shown in Fig. 6. Some differences can
be appreciated with respect to the case when all basis functions
p = N are used [impulse train with exponential decreasing factor
depending on the step-size� at (19)]. In truncated orthogonal
expansions, there is an interaction between the basis functions due
to the noncompleteness of the subspace (the inner product values
r[m; n] are different from zero), and this is illustrated in the burst-like
decaying amplitude episodes and not only impulses.

Applying the Fourier transform to each of the impulse responses
h[m; n], we get the corresponding instantaneous frequency responses
H(ej!; n). Fig. 7 illustrates the frequency response at the time
instant n = 90 (250 ms) near the peak of the QRS complex.
Frequency responses for the LMS algorithm appear to be comb filters;
therefore, uncorrelated noise (nonrepetitive components with respect
to the heartbeat occurrence time) will be attenuated [8], [10].

If smaller values of the step-size� are used, the lobes of the
frequency response are narrower and closer to the ideal comb filter.

Fig. 7. Frequency responseH(ej! ; n) for LMS with � = 0:3 andp = 30
KL basis functions at timen = 90 (250 ms).

This effect is illustrated in Fig. 8, where details of low and medium
frequencies of the same frequency response shown at Fig. 7 can
be seen for two different values of the step-size� (0.3 and 0.05).
The inner product frequency response at the same time instantn is
also shown for comparison. The envelope of the frequency response
for the LMS algorithm is very similar (but not identical) to the IP
(compare Fig. 7 with Fig. 3).

From Fig. 8, we can see that frequency response envelopes of the
LMS algorithm with small values of the step-size� are a better
approximation to the inner product frequency response than with high
values of�. This effect can be explained analyzing the LMS update
equation with very small values of the step-size�. We will calculate
the output at samplen of the adaptive filter to an impulse located at
samplem0 f [m0; n] = y[n] =WT [n] ~�[n], applying the recursive
equation (12) to the weight vectorW[n]. When the input signal is
an impulse functionx[n] = �[n �m0], the error signale[n] at time
instantsn > m0 is directly e[n] = �y[n], and the weight vector
update equation can be written as

W[n + 1] = (I� 2� ~�[n] ~�T [n])W[n] n � m0: (21)

If we apply (21) iteratively, we have

W[n] =

0 n � m0

2� ~�[m0] n = m0 + 1
Fn�1;m +1W[m0 + 1] n � m0 + 2

(22)

where Fi; j represents the product of the time-variant transition
matrices

Fi; j =
(I� 2� ~�[i] ~�T [i])(I� 2� ~�[i� 1] ~�T [i� 1])

� � � (I� 2� ~�[j] ~�T [j]); i > j

I� 2� ~�[i] ~�T [i]; i = j:

(23)

Making use of the periodic behavior of the basis functions~�[n], we
can write a recursive relation of the weight vector everyN samples as

W[n +N ] = Fn+N;n+1W[n]: (24)

The product of the transition matrices over one complete signal
occurrenceFn+N;n+1 will be a N -degree polynomial of� that can
be written as

Fn+N;n+1 = I� 2�A1 + (2�)2A2 � (2�)3A3 + � � � (25)

whereA1 = n+N

k=n+1
~�[k] ~�T [k] = I. If small values of� are used

(� � 1), the last equation can be approximated toFn+N;n+1 '
(1� 2�)I. If we apply iteratively the update weight vector equation
(24), we get

W[n + kN ] ' (1� 2�)kW[n] (26)
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Fig. 8. Low- and high-frequency details of the frequency responseH(ej!; n) at time n = 90 (250 ms) for IP and LMS withp = 30 KL basis
functions and� = 0.3 and 0.05.

which means the weight vector trajectory along occurrences keeps
the same shape except for an exponentially decreasing factor. As
a consequence, the output signal will be approximately equal to a
unique waveform with a constant decreasing factor(1�2�) at every
signal occurrence

y[n+ kN ] ' (1� 2�)ky[n]: (27)

Finally, the output of the filter to an impulse function located at
samplem0 for small values of� (�2 is neglected) can be calculated
using (22) and (27)

f [m0; n] '
0; n � m0

2�(1� 2�)kr[m0; n]; n > m0; k = b n
N
c
:

(28)

This equation can be interpreted as the convolution of a causal
impulse train with decreasing amplitude [the same impulse response
for the case of complete expansion case of (19)] and the values of
the basis functions inner productsr[m; n]. The Fourier transform of
f [m0; n] will be

F (m0; e
j!) =

1

n=�1

f [m0; n]e
�j!n

=

1

n=m +1

f [m0; n]e
�j!n

: (29)

Decomposing the series in occurrence intervals and applying (28),
we get

F (m0; e
j!)

=

1

k=0

2�(1� 2�)k
m +N

q=m +1

r[m0; q]e
�j!(q+kN) (30)

which can be expressed as

F (m0; e
j!) =

1

k=0

2�(1� 2�)ke�j!kN

�

m +N

q=m +1

r[m0; q]e
�j!q

=
2�

1 + (2�� 1)e�j!N
R(m0; e

j!): (31)

Remembering that the frequency response of the time-invariant
system (comb filter) corresponding to the adaptive system with
complete expansions is written in (16), and using (9), we can write

F (m0; e
j!) =

2�e�j!N

1 + (2�� 1)e�j!N
e
j!N

R(m0; e
j!)

= e
�j!m

HLMS-CE(e
j!)H�IP(e

j!
; m0) (32)

whereH�IP(e
j!; m0) is the IP frequency response at instantm0, and

HLMS-CE(ej!) is the time-invariant LMS frequency response with
complete expansions. The exponential factore�j!m is generated by
the delay of the input signal�[n�m0]. Thus, we have demonstrated
that the Fourier transform of the outputf [m0; n] for low values of the
step-size� is equivalent to the product of both frequency responses:
comb filter and inner product.

A similar procedure could be applied to the instantaneous fre-
quency response of the LMS algorithmHLMS(e

j!; m0) using (20)

HLMS(e
j!
; m0) =

1

m=�1

h[m; m0]e
�j!m

=

1

m=1

f [m0 �m; m0]e
�j!m

: (33)

Following the same argument as before

HLMS(e
j!
; m0)

=

1

m=1

f [m0 �m; m0]e
�j!m

=

1

k=0

2�(1� 2�)ke�j!kN

�

m +N

q=m +1

r[m0 � q; m0]e
�j!q

=
2�

1 + (2�� 1)e�j!N
e
�j!(m +N)

R
�(ej!; m0)

= e
�j!m

HLMS-CE(e
j!)HIP(e

j!
; m0): (34)

The instantaneous frequency responses of the LMS algorithm, when
low values of the step-size are used, is equal to the product of both
frequency responses: the comb filter corresponding to the adaptive
estimation system with complete expansions and the inner product
frequency response due to the effect of using a reduced numberp

of coefficients in the expansion. This result was previously observed
at Fig. 8.

In summary, the adaptive estimation system with the LMS al-
gorithm with p < N can be described as a linear time-variant
periodic filter that can be analyzed by means of instantaneous impulse
responsesfh[m; n]; n = 0; � � � ; N�1g in a similar way than for IP.
This description of the adaptive estimation of orthogonal expansion
coefficients using the LMS algorithm explains the combination of
both filtering effects: comb filtering due to the adaptive estimation
and lowpass filtering due to the reduced number of functions used
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(a) (b)

(c) (d)

Fig. 9. Frequency responsesH(ej!; n) for IP with p = 5 and 50 KL functions at different timesn. (a) P wave instantn = 32 (89 ms). (b) QRS complex
instantn = 90 (250 ms). (c) ST segment instantn = 110 (305 ms). (d) T wave instantn = 180 (500 ms).

in the expansion. Furthermore, it is a new way to explain the
well-known tradeoff for selecting the value of the step factor�

(convergence time and misadjustment reflected in the degradation
of the instantaneous frequency responses). Low values of the step-
size � are recommended for estimating signals embedded in noise
because the misadjustment is larger for higher values of the step-size
� [9], [14], [15]. With the description shown here, we observe that
the instantaneous frequency responses for low values of the step-size
� can be approximated as the product of the comb filter [8] and
the inner product frequency response. Low� values imply thinner
lobes in the frequency response, and thus, the noise power that passes
through the filter is reduced. However, low values of the step-size
also increase the convergence time. Higher values of the step-size
generate two effects.

• The lobes of the comb filter (16) are wider.
• The lowpass frequency response is distorted.

In Fig. 8, we can see that this distortion (bias from the product of
comb filter and inner product frequency response) is larger at high
frequencies. Therefore, this is a new way to interpret and quantify
the misadjustment of the LMS algorithm.

IV. A PPLICATIONS

A. ECG Data Compression

Data compression is one of the most evident applications where
the reduced number of functions in orthogonal expansions is a
key factor [2]. ECG data compression systems based on orthogonal
expansions, like [17], [19], and [25], get better rate-distortion tradeoff
than methods based on interpolation techniques [4]. With the shown
description of orthogonal expansion of recurrent signals as a linear
time-variant periodic filter, we can quantitatively predict which
frequency components are well represented at every occurrence time
using a variable number of basis functions. For example, Figs. 3 and 7
illustrate thatp = 30 KL basis functions can represent the main
frequency components of a heartbeat. Moreover, this description can
be a useful tool for testing and comparing behaviors of different
orthogonal transforms with variable number of basis functions.

For example, low bit rate data compression systems use a very
low number of basis functions to represent the ECG signal. As
a consequence, many frequency components will be attenuated. In

Fig. 9, we show the frequency responses (dash lines) at several time
instants when onlyp = 5 KL basis functions are used in the expansion
and the coefficients are estimated with IP. We can see that the main
frequency components of QRS complex [22] [Fig. 9(b)] are well
represented, whereas other waveforms like the P wave and the ST
segment [Fig. 9(a) and (c), respectively] have a large attenuation. This
result is in accordance to the fact that the KL transform basis functions
were sorted in decreasing value of the covariance matrix eigenvalues.
Therefore, the first basis functions represent the heartbeat intervals
corresponding to the highest signal energy. As the QRS complex and
T wave have more energy than the P wave and the ST segment,
they are better represented when few functions are used. Sometimes,
however, the clinical information underlying in latter intervals is very
useful for diagnostic purposes. As a consequence, higher values of
the number of functionsp should be used in order to avoid distortion
at the P wave and ST segment.

In contrast, when the number of basis functions is very high,
the signal (as well as noise) representation capacity increases. For
example, in Fig. 9, we also show several instantaneous frequency
responses whenp = 50 KL basis functions (solid lines). Power-
line interference of 50 Hz (Europe) and 60 Hz (USA) can be seen
because the signals from the training set were contaminated with
these components. Records from databases were recorded on analog
tapes with battery-powered recorders, so most of the 50/60-Hz noise
present in the database arose during playback. Several records were
digitized at twice real time; therefore, this noise appears at 25/30 Hz
(and multiples) relative to real time.

In this correspondence, we have shown the equivalence of trun-
cated orthogonal expansions with a linear time-variant filter. How-
ever, we have not addressed an automatic method to estimate the
appropriate number of basis functionsp at any application. We believe
that this is an extension to the presented work that should consider
the particular interest of each application. For example, for data
compression of ECG signals, the selection of the numberp of basis
functions could be done by first defining the desired minimum cut-
off frequencies at different time instants of the signal occurrence
(P wave, QRS complex, ST segment, T wave) according to the
clinical information of the ECG waveforms and, second, calculating
the instantaneous frequency responses for a variable and growing
value ofp until the required specifications are obtained. At the end
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(a) (b)

Fig. 10. Frequency responses applying IP with two, three, and four KL basis functions for the ST-T complex at two different time instants of the ST
segment. (a) Time instant 85 ms after QRS mark. (b) Time instant 100 ms after QRS mark.

(a) (b)

Fig. 11. Frequency responses applying IP with two, three, and four KL functions for the ST segment at different time instants of the ST segment. (a)
Time instant 85 ms after QRS mark. (b) Time instant 100 ms after QRS mark.

of the process, we obtain the minimum value ofp that can represent
all clinical information of the signal.

B. Ischemia Analysis with the KL Transform

Myocardial ischemia is caused by a lack of blood supply over a
cardiac area and is reflected on the ECG signal as a low-frequency
deviation of the ST segment. The KL transform has been recently
applied to the ST-T complex (composed by the ST segment and
the T wave) as a tool for the monitoring of ischemia [6]. The KL
sensitivity to detect ischemic changes in the repolarization induced
by angioplasty was larger (85%) than that obtained by traditional
indexes based on local measurements on the ECG: ST level (64%),
T wave amplitude (37%), or T wave position (33%) [26].

Applying the orthogonal expansions description as a linear time-
variant periodic filter, we can study the number of basis functions
needed for representing the very low-frequency components at the
ST-T segment for ischemia analysis. It can be seen from Fig. 10 that
if only two KL basis functions are used, the very low frequencies at
time 85 ms after the QRS complex will be attenuated. Using three
or four basis functions improves the representation of the very low
frequencies. The reason for this behavior is the same as explained in
Section IV-A; there is a signal interval with higher level of energy
(which is more important to the KL transform in order to minimize
the mean squared error) than the rest. In this case, the T wave has
much more energy than the ST segment.

Another possibility to represent the ST segment with a reduced
number of coefficients could be the use of the KL transform applied
only to the ST segment (excluding the T wave). In this case, the
signal energy is more uniformly distributed, and a better performance
should be expected. We show in Fig. 11 the frequency responses at
the same time instants of the ST segment, but now, the KL transform
is only applied to the ST segment. The low-frequency representation

has improved a lot, even in the case of onlyp = 1 KL basis function
being used to represent the ST segment.

In summary, values of the number of functionsp = 3 or 4 should be
used in order to represent the low frequencies at the ST segment when
the ST-T complex is analyzed with the KL transform. In contrast,
fewer functions (p = 1) are sufficient to represent the very low-
frequency components of the ST segment when only the ST complex
is analyzed with the KL transform.

V. CONCLUSIONS

In this correspondence, two different approaches are analyzed for
estimating the coefficients of orthogonal expansions using a reduced
number of functions: inner product and adaptive estimation with
the LMS algorithm. We show that both estimation systems are
equivalent to a time-variant periodic filter. Both systems are analyzed
by means of their time and frequency descriptions: instantaneous
impulse responsesh[m; n] and instantaneous frequency responses
H(ej!; n). The inner product has finite length impulse responses
with durationN samples (length of a signal occurrence), whereas
impulse responses of the LMS are infinite because of the recursive
nature of the LMS algorithm. Both systems have the same frequency
response envelopes (if low values of the step-size� are used in
the LMS), producing a similar lowpass time-variant filtering effect
but with the difference that LMS frequency responses have comb
shape; therefore, they attenuate uncorrelated noise (nonperiodic with
heartbeat occurrence time).

Using the time-variant periodic filter description of orthogonal
expansions shown in this work, we can quantitatively know which
frequency components are well represented using a reduced number
of functions at every time instant of the signal occurrence. Therefore,
it can be used as a useful criteria for determining the required
number of functions. This description is also a new way to interpret
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the misadjustment of the LMS algorithm as a frequency response
distortion.

Applications can be in data compression, parameter extraction for
pattern recognition, detection, and monitoring of pathologies in ECG
signal processing, time-variant filter design, etc. Theoretical results
are corroborated with the use of the KL transform of the ECG signal,
but it can be applied to any orthogonal transform without loss of
generality.
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Multichannel Blind Separation of Sources
Algorithm Based on Cross-Cumulant

and the Levenberg–Marquardt Method

Ali Mansour and Noboru Ohnishi

Abstract—In this correspondence, we derive a new cost function that is
more general than our previous one and is based on the cross-cumulant (2
� 2) of the output signals. However, the new algorithm deals with multiple
inputs and multiple outputs (MIMO’s) and uses a Levenberg–Marquardt
method for the minimization of the cost function.

I. INTRODUCTION AND CHANNEL MODEL

The blind-separation-of-sources problem involves retrieving the
sources from the observations of unknown mixtures of unknown
sources. In the general case, authors assume that the sources are non-
Gaussian signals and statistically independent of one another. In the
general case and in instantaneous mixtures, the fourth-order statistics
are required to separate the sources [2], [3].

As shown in Fig. 1, at any timen, and with the help ofN sensors,
N instantaneous mixturesyi(n) of the N unknown zero-mean
sourcesxi(n), which are assumed to be statistically independent, are
observed. In addition, we assume that the unknown mixture matrix
MMM is aN �N nonsingular matrix. TakingY as the mixture vector
andX as the source vector (see Fig. 1), we can writeY =MMMX:

The separation is achieved by estimating aN � N matrix WWW
satisfyingWWWMMM = ���PPP , wherePPP is any permutation matrix, and���
is any fullrank diagonal matrix [4]. LetS be the vector of the output
signals; then

S =WWWY = GGGX (1)

whereG = (g(i;j)) is the global matrix, i.e.,GGG = WWWMMM: The
separation will be performed whenGGG becomes a general permutation
matrix (i.e.,GGG = ���PPP , wherePPP is a permutation matrix, and��� is
a fullrank diagonal matrix).
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