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I. INTRODUCTION
Orthogonal expansion is a very well-known technique for signal

manalysis. It is based on the decomposition of the signal as a linear

combination of simple and elementary basis functions [1]. An ap-
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representation, where each coefficient contributes with independent
and complementary information, for example, frequency components
for the Fourier transform, instantaneous signal values for the iden-
tity transform, localized frequency components using the wavelet
transform, etc.

When the same number of sampl&sin the signal under study
is used as the number of basis functions in the expansion (exact
modeling), the signal energy is completely represented, and the
equivalent system can be considered to be the identity function.
However, many applications (such as data compression [2]-[5],
parameter extraction for pattern recognition, monitoring [6], etc.)
require rank reduction. In these applications, the number of basis
functions used is reduced to a fractipnr< N (undermodeling), and
accordingly, some signal components are discarded. The selection of
the number of basis functions is the main problem because it is a
tradeoff between signal representation capacity and rank reduction.

In this correspondence, we show that the effect of using a reduced
number of coefficients in orthogonal expansions of recurrent signals,
like electrocardiograms (ECG), can be described as applying a linear
time-variant periodic filter to the input signal. This equivalence gives
a useful tool in order to quantif@ priori in the frequency domain
the distortion introduced in the reconstructed signal when a variable
number of functions is used in the expansion. As a consequence, it can
be used to establish a criteria to select the number of basis functions.
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The starting point of this correspondence is the analysis of the | |
LMS algorithm with deterministic inputs [7], where it is proposed as \f\ /\AJ\/\\ \ﬁ MJ'W‘”
an approximation to the behavior of the LMS algorithm in terms of ’ " IP S
a linear transfer function. In the more general case, the equivalent z[n/] him,n/] y[n']

system can be described by a recursive finite difference equation ) ) ) ] ) o
with time-varying coefficients. The analysis was illustrated for severa‘ge'rl' Block diagram of the inner product as a linear time-variant periodic

examples of deterministic input signals:
< sinusoidal inputs;

* impulse train; The input—output equation is obtained by substituting (2) in (1)
e sguare waves. No1
In the particular case of an impulse train, several authors have shown yl(k — )N +n] = Z 2[(k = 2)N 4+ m]r[m, n]
its equivalence to a linear time-invariant comb filter [7]-[10]. m=0
In this correspondence, we consider as reference inputs to the LMS 0<n<N-1 (3)
algorithm any subset of orthogonal basis functions repeating 'tSWBere rim. n] = 07 bm)Bi[n] = ST [m]d[n] is the inner

with the periodicity of the recurrent primary signal under analys'?‘roduct between the basis functions vectors at time instantnd

We focus on the effect of using a variable number of basis functlon’? and ®[n] is the basis functions vector at time The output at

urrence instant. can be seen as a linear combination of input
mples from the last occurrencd” (samples delay) with time-
ing values of the basis functions inner produiet:, n]; that is,

and calculating the equivalent instantaneous impulse and freque
responses. Moreover, the misadjustment of the LMS algorithm can
be interpreted by means of the instantaneous frequency response

An equivalent an_aly5|s IS z_also proposed for a_nother classical IP"can be described as a linear time-variant filter that is also periodic
well-known technique that is often used to estimate the eXpans'B@caus&[yn n] = r[m + N, n] = r[m, n + N]. In order to find

coefficients: the inner product. Some of the results shown here W&h& instantaneous impulse responses, (3) should be written as a linear

presented n [11]. . .__convolution of the input signak[r], wheren' = (k — 1)N +n
Two classical and well-known techniques are often used to estimate. Jies the time index

the expansion coefficientsnner product(IP) [12], [13] when the -

value of the signal to noise ratio (SNR) is high, aadaptive y[n'] = Z z[m]h[n' — m, ] ()
estimation with the LMS algorithrii4]-[17], when the uncorrelated i
noise with the signal must be attenuated. Both techniques have been
previously analyzed by many authors, but to the best knowledge"lﬁ'lth the
the authors, the analysis with a variable number of basis functiots?> "
has yet to be addressed. The aim of this correspondence is to givg[g,, ,]
new interpretation of both techniques as a linear time-variant periodic {

m=—00

N samples finite duration impulse respon$égn, n]; n =
N -1}

rln —=m+N,n], form=n+1,n+2,---,n+N
0, elsewhere.

filter. In order to illustrate the equivalence, instantaneous impulse = (5)

and frequency responses of the system are calculated when the

Karhunen—Loeve (KL) transform [2], [13] is applied to ECG signalsThe first indexr of h[m, n] denotes the index for the impulse
The usefulness of the new interpretation is shown in two applicatiorieésponse shape, and the second mrkenotes the time instant when
the time-varying distortion effect of the number of basis functionhe impulse response is valid. Fig. 1 illustrates the interpretation of
used for data compression of ECG signal with the KL transforitie inner product as a linear time-variant periodic filter that is applied

and the filtering effect when compacting information for ischemito the input signal occurrences.

analysis of the ECG signal. The same result can also be easily obtained using the vector
notation, where the reconstructed occurrence signal vé¥taran
II. INNER PRODUCT be obtained as the matrix product
The inner product (IP) is the most common way to estimate the Y = T/'TX = HX (6)

orthogonal expansion coefficients of signals with high values of SNR. . . . . .
The IP is the solution to the problem of minimizing the mean squalé1ereT is thep x N matrix whose columns are the basis functions
error between the original signal and a reduced linear combinationvcﬁm_Ors usgd in the expansith= [@[0]®[1]- - §[jN_ 1_”’ andX is )
basis functions [13]. In addition, the IP has a geometric interpretatig?]e input signal occurrence vector. Several digital signal processing

as the orthogonal projection of the signal vector onto the Si(‘:]ntg'xtbook_s state the equivalence between matrix product and linear
subspace spanned by the basis functions used in the eXpamsion_convolutlon operators [3], [18]. In a general case (for noncomplete

The reconstructed signa[»] for the kth occurrence of a recurrent ©'th0gonal expansions), théx V' matrix H will not be Toeplitz, and
N-length input signalz[n], using a reduced number < N of accordingly, the output can be calculated as the linear convolution of

coefficients, can be written as the input with a fini'te length time_-variant impulse response, Whos_e
values are determined by the inner product values of the basis
functions.

In order to quantify this filtering effect, instantaneous impulse and
. frequency responses are calculated, depending on the nymbier
where®;[n] are the periodic extension of the basis functidn$z], pasis functions used in the expansion. The KL transform [2], [13]
andc;~" are the coefficients of the inner product between the bagif ECG signals is used as an example, although other orthogonal
functions and the signal from the previous occurrence (applyiR&pansions can be considered without loss of generality. The basis

p—1
ylk=DN+n]=> '®n], O0<n<N-1 ()

=0

causality to the filter) functions are estimated [19] from a training set of ECG signals of
N-1 MIT-BIH Arrythmia [20] and ESC-STT [21] databases (resampled
=" dimla[(k-2)N+m];  0<i<p—1 (2) to 360 Hz). In Fig. 2, impulse responségm, n] are shown for

m=0 different values ofr, whenp = 30 KL basis functions are used
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n=32 (89 ms) n=90 (250 ms) response of the system can be straightforwardly obtained as
_‘Z'z v Z:v[m]R(m, e’
s Y(e’*)
E Hg(e') = — = - - 10
=01 . G(E ) )(((,’J'*’) X (i) ( )
P IS S
e o5 T s s e T s The global frequency respong; (c’) relates the original signal to
nT:‘;“fo((Ss)OS ms) :irr;o(?%oo me) the reconstructed by means of the basis represent&ien, ¢’*).

o5 on S Many biomedical signals are time locked to a stimulus that can be
80'2 80'2 , - ‘ internal like electrocardiograms or can be external, as in the case
2»0’1 20'1 _ of evoked potentials [8]. In the case of ECG, the time-reference
= '0 A = 'O A point is defined from identifying a signal waveform, such as the

QRS complex. In order to apply orthogonal expansions to ECG
O % ey 7 °© %% ey ? signals, we need to estimate the time-reference point of the signal,

using QRS detectors [23], [24]. Timing errors can appear in the
estimation process due to the noise presence. Therefore, it can be
interesting to analyze the behavior of the inner product estimation
of the signal when a misalignment aefsamples occurs between the

in the expansion. The impulse responses are of finite length wilgnal occurrence and the basis functions. In this case, the global

Fig. 2. Impulse responses for IP with = 30 KL functions at different
times n.

duration N = 430 samples (heartbeat length). frequency response will be
If we apply the Fourier transform to each impulse response . R joy
{h[m, n]; n=0, 1, ---, N—1}, we get the instantaneous frequency Y (e7*) > wlm = alR(m. e

responsed (¢’*, 1), which are shown in Fig. 3, located with respect ~ He(e’”, a) = X(e") ~ (o) (11)

to a typical normal heartbeat (at top left). Frequency responses are o

lowpass but with a time-varying response. For the ST segment 2V show in Fig. 4 the distortion introduced in the output signal when

P and T waves, the cutoff frequency is lower than for the QR& Misalignment of 52 ms is introduced to a normal heartbeat (record

complex. This behavior is in accordance with the frequency conteH0 from MIT-BIH database), ang = 30 KL basis functions are

of each waveform of the ECG signal [22]. We can observe that the Kised. Comparing the overprinted original sighéle’~) with the

orthogonal expansion with the IP usipg= 30 basis functions can reconstructed onk (e’*’), it can be seen that the frequency distortion

represent the main frequency components of each ECG wavefdfrigher for misaligned beats than for aligned beats.

at every timen. This behavior is related to the fact that the KL We can conclude that the description of IP as a linear time-variant

transform is handmade from a training set of ECG Signals’ and ngriodic filter giVeS a relationship between the input Signal at different

first basis functions represent the main signal-morphology. time instants (around the P wave, the QRS complex, and the T
Other orthogonal transforms whose basis functions have omgave) with time-variant transfer functions corresponding to those

one frequency Component throughout time’ like the discrete Cosm@e instants. In addition, it allows the interpl’etation of the effect

transform, are not as well suited as KL functions to represent the E@&Misalignment of the input signat[»] with respect to the basis

with a reduced number of coefficients, because the ECG signal fidgctions as a distortion filter.

different frequency components at different times within a heartbeat.The description shown here could also be used to design linear
The Fourier transform of the output signgl] at thekth occur- time-variant periodic filters. The problem would be addressed in the

rence can be related to the input as reverse direction: From desired instantaneous frequency responses
N H(e’*, n) and using (9), we could obtain the basis functions products
) - . ). — &7 1 ;
V(&) = Z [k = 1)N + n]e7*n rim, n] = ® [m]fI)[n]. F.rorrj these values, we should obtain the

= values of the basis function®[n].
N—1 N—1 )

= >0 a[(k = 2N + mlr[m, n]e 7" lIl. ADAPTIVE ESTIMATION WITH THE LMS ALGORITHM
’\‘/:01 m=0 When the input signal is corrupted with uncorrelated noise, adap-
— oy AT oo tive techniques [14]-[17] are often used to estimate the orthogonal

— 2k — VN , ,J

- ZO 2[(k = 2)N +m]B(m, ) ) expansion coefficients. The reference inputs to the adaptive linear

combiner [15] shown in Fig. 5 are the periodic extension of the
that is,Y (e’*) is a linear combination of frequency responses whetgasis functionsb; [»] (deterministic and orthogonal) in contrast with
the weights are the input samples of the previous signal occurreng@ssical adaptive schemes where two random signals are used as
and the frequency responses depend on the basis functions usegbférence inputs. The primary inpufn] is the noisy recurrent signal
the expansionR(m, ¢’*) = Z;, o Tlm, nle™7“". Using (5) and ynder study.

the fact that[m, n] = r[n, m], it can be easily demonstrated that  The weight vectoW[n] is updated with the LMS equation
R(m, %) = ¢ I TN (03 ) (8) Win + 1] = W(n] + 2ue[n] &[n] (12)

where H(e’~, m) is the frequency response of the system at irwhere &[»] is the vector of basis functions values at time
stant m (Fourier transform of impulse respondgn, m]). In a Assuming that the weight vector is initialized to the null vector

similar way, the instantaneous frequency respofe’*, n) = WI[0] = 0, Clarkson [7], [9] analyzed the behavior of this system,
> hm, n]e™*" can be calculated as showing that in the most general case, it can be described as a finite
/ difference equation
H(e™, n) = e IwnHN) p (€', n). 9) ! quat 1
Thus, the instantaneous frequency resposes™, ») depend only y[n] = 2p Z e[m](®" [m]®[n]) (13)

on the basis functions used in an easy way. The global frequency m=0
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1=90 (250 ms)
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“QRS complex 5
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5 "o
<
Py 0.2 4
5
go_.s, P Teimi " i N W o
ST segment e160 (500
°11'P wave & ; ] ' S
oos)- ; S o i
: —F
70'050 0. 0.2 0.3 c.4 0.5 086 0.7 0.8 0.9 1 .
Time (s)
nu 20 40 &0 ;ﬂmq (ltlg(; 120 140 160 180
- r;;g(aw) ) o oS my)
R N R
Fig. 3. Frequency responsés(e/«, n) for IP with p = 30 KL functions at different times..
Aligned Misaligned a=52ms When all basis functions are used in the expangiea N (exact
modeling), the inner product values are
—n=kN
= — rlm, n] = {1’ forhm " kA (15)
s — e 0, otherwise.
% In this particular case, the finite difference equation (14) defines a
= linear time-invariant filter with transfer function
Y(2) 2pz~ N
\ H(z)= = . 16
D= X0 T 1x eu-n (e
m‘u\‘n,m,\~
25 P s 35 \:\;’V\'éo Several authors had previously analyzed the adaptive linear combiner
Frea. (Hz) Freq. (Hz) system when the reference input signals are the complete set of
(@ (b) impulse functions (equivalent to the identity transform) obtaining
Fig. 4. Frequency distortion due to misaligned occurrences. (a) Aligndg@ same transfer function [7], [8], [10]. The same result is now
normal heartbeat. (b) 52-ms misaligned heartbeat). generalized for any complete set of orthogonal basis functions. Its
frequency respons# (¢’*) is a comb filter [10] whose lobes repeat
z[n] at frequencies that are multiples of the normalized fundamental
frequencywo = (27/N). The —3 dB cut-off frequency of each
lobe is (y1/m)wy far from the central frequency of the lobe. High
Wi values of the step-size imply simultaneously wider lobes of the
n] e[n] frequency response and higher values of the misadjustment. In [10],
2[n] s the steady-statexcessMSE £°*[oc] was interpreted as the residual
5 : noise that passes through the lobes spread, and now, it can be easily
~ ,,,
®,_; [n)]—m calculated as
: 1 [ PRI
f LMS £ [oc] = 5 / [H (e7)|>Sn (e7*) dew (17)
m —T

Fig. 5. Adaptive linear combiner with deterministic inputs to estimate the

expansion coefficients. where S5,.(¢’*) is the power spectral density of the noise. In the

particular case of white nois6, (¢’~) = o2, the integral (17) can

that can be rewritten as be easily calculated using the Parseval relation as

n—1 n—1 et

y[n] =2p Z z[m]r[m, n] = 2p Z y[m]r[m, n]. (14) £ [o0] = 0 Z nn)* = ‘TQﬁ (18)

m=0 m=0 n=—0cc

This finite difference equation is recursive, with time increasing ordgiving the same result afxcessVISE previously obtained by several
and time-variant periodic coefficient§m, n] = &7 [m]®[n]. authors [8], [10]. In the case of colored noise, we can obtain the same
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n=32 (89 ms) n=90 (250 ms) N=90 (250 ms)
0.15 0.15
'§>: 0.1 0.1 T
E
= 0.05 0.05 l i
o "rl i S o 4+t _‘L Y |
—0.05 ~0.05
(o] .5 10 0 5 10
Time (s) Time (s) 7
n=110 (305 ms) n=180 (500 ms)
0.15 : 0.15 B
=
; 0.1 0.1 4
é H
<~ 0.05 - B 0.05
o 4 y - o L A " 20 40 60 80 1 60 120 140 160 180
Frec. (Hz)
-0.05 -0.05
[+ 5 10 Q 5 10 . . .
Time (s) Time (s) Fig. 7. Frequency respondé(e’*, n) for LMS with ¢ = 0.3 andp = 30

i ) KL basis functions at timex = 90 (250 ms).
Fig. 6. Impulse responsdsm, n] for LMS ¢ = 0.3 with p = 30 KL

functions at different times:.

This effect is illustrated in Fig. 8, where details of low and medium
result applying the spectral factorization. The time-invariant impuldeequencies of the same frequency response shown at Fig. 7 can
response is a causal impulse train with exponentially decreasipg seen for two different values of the step-siz€0.3 and 0.05).

amplitude that can be expressed as The inner product frequency response at the same time instant
oo also shown for comparison. The envelope of the frequency response
h[n] = 2p Z(l —2p)F 1 8[n — EN]. (19) for the LMS algorithm is very similar (but not identical) to the IP
k=1 (compare Fig. 7 with Fig. 3).
Several authors have shown the equivalence of this filter with anFrom Fig. 8, we can see that frequency response envelopes of the
exponential weighted averager [8]. LMS algorithm with small values of the step-size are a better

However, many applications require a reduced number of fun@pproximation to the inner product frequency response than with high
tions, such as data compression, parameter extraction for pattédties ofu. This effect can be explained analyzing the LMS update
recognition, monitoring, etc. To our best knowledge, the analysis féguation with very small values of the step-sjizeWe will calculate
a reduced number of coefficients (undermodeling) has not yet bgbg output at sample of the adaptive filter to an impulse located at
addressed. samplemo f[mo, n] = y[n] = W [n]®[n], applying the recursive

The recursive equation (14) is difficult to solve directly in ordegquation (12) to the weight vectdV[»]. When the input signal is
to find the impulse responses that have infinite length because of @feimpulse functior:[n] = 8[n — my], the error signak[r] at time
recursivity. However, the outputs when the input signals are impulistantsn. > mo is directly e[z] = —y[n], and the weight vector
functionsé[n — a] located at sample can be easily obtained runningupdate equation can be written as
the filter with this input. Letf[a. n| be the output at instant when o A 1ET
the input impulse was IocatEad a]t sampleThe impulse responses Win+1] = (- 21 @[n]@" [n]) Win] n 2 mo. (@1)

of the system{h[m, n]; » = 0,1, ---., N — 1} can be written as |f we apply (21) iteratively, we have
him., n] = f[n — m, n] becausef[a, n] can be expressed as the

linear convolution 0 n < mo
o Win] = { 2pu®[mg) n=my+1 (22)
fla, n] = Z hlm, n]az[n — m] Fo i mg+1W[mo+1] n>mo+2
m:;x where F; ; represents the product of the time-variant transition
= Z hlm, n]é[n —a —m] = hin — a, n]. (20) matrices
m=— (T — 2081187 [1)) (1 - 2p8[i — S"[i — 1))
Different impulse responseism, n| of the adaptive system using F: ; = (I = 2u®]f] 87 1)), i>j
p = 30 KL basis functions and a value of the step-sjize= 0.3 I—2u®[i]|®7 . i=j.
at different timesn are shown in Fig. 6. Some differences can (23)

be appreciated with respect to the case when all basis functions o . ) s
p = N are used [impulse train with exponential decreasing factdfaking use of the periodic behavior of the basis functidris], we
depending on the step-size at (19)]. In truncated orthogonal &N write a recursive relation of the weight vector ev&rgamples as
expansions, there is an interaction between the_ basis functions due Wn + N] = Frisn. ot Wal. (24)
to the noncompleteness of the subspace (the inner product values
r[m, n] are different from zero), and this is illustrated in the burst-likdhe product of the transition matrices over one complete signal
decaying amplitude episodes and not only impulses. occurrencel',, - n, .+1 Will be a N-degree polynomial of: that can

Applying the Fourier transform to each of the impulse responsee written as
h[m, n], we get the corresponding instantaneous frequency responses o .
H(e’*, n). Fig. 7 illustrates the frequency response at the time ¥rt+N.nt1 =I—2uAq+ (Zp) Az = (21) A+ (25)
instantn. = 90 (250fms¥1 near thle p_er?k of the Q};S Corgpflf)""herem _ Z-:i_n\;»l $[k]®7[k] = 1. If small values of: are used
Fhreql;ency responlsesdort.e LMSagorlnt_m appear to eco_rE ilt $ < 1), the last equation can be approximatedRo, x. .41 ~
therefore, uncorrelated noise _(nonre_petltlve components with respgect 2,)L. If we apply iteratively the update weight vector equation
to the heartbeat occurrence time) will be attenuated [8], [10].

. (24), we get

If smaller values of the step-size are used, the lobes of the

frequency response are narrower and closer to the ideal comb filter. Win + kN] ~ (1 —2u)"W]n] (26)
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15 T a T 08 T T T T
--- P i
- LMSp=03 §
|~ LMSp=0.05 o7r

- P
--- LMS =03
——  [MSp=0.05

IH(e" ,90)I

4 6
Frec (Hz) Frec (Hz}

Fig. 8. Low- and high-frequency details of the frequency respalige’«, n) at time n = 90 (250 ms) for IP and LMS withp = 30 KL basis
functions andpx = 0.3 and 0.05.

which means the weight vector trajectory along occurrences keaplsere Hip (¢’“, my) is the IP frequency response at instant, and
the same shape except for an exponentially decreasing factor. Bgus-ci:(e’*) is the time-invariant LMS frequency response with
a consequence, the output signal will be approximately equal tccamplete expansions. The exponential faetof“™° is generated by
unique waveform with a constant decreasing fa¢lor 2.) at every the delay of the input signa@[» — my]. Thus, we have demonstrated
signal occurrence that the Fourier transform of the outpfftno, »] for low values of the

yln + kN] = (1 - 2#)/@!/[71’]' @7) step-sizeu is equivalent to the product of both frequency responses:

comb filter and inner product.

Finally, the output of the filter to an impulse function located at A gimilar procedure could be applied to the instantaneous fre-

samplem, for small values of: (1* is neglected) can be caleulatedyyency response of the LMS algorithB s (e7“, mo) using (20)
using (22) and (27)

oo

07 n g mo Jw _ —Jjwm
flmo, n] = {2#(1 — 2p)*r[me, nl, n>mok=|2] Hims(e’, mo) = _Z him, mgle
(28) 0
This equation can be interpreted as the convolution of a causal = Z flmo —m, mole™*™. (33)

impulse train with decreasing amplitude [the same impulse response
for the case of complete expansion case of (19)] and the valuesmfilowing the same argument as before

the basis functions inner productpn, n]. The Fourier transform of
flmo, n] will be Hyms (7, mo)
F(mo, ejw) = Z flmao, n]S_J’W" Z flmo —m, 771,0]67]@'777
= Z Flmo, nle™7". (29) (Z 2u(l —2p I”ej“’kv>
n=mqg+1 k=0
Decomposing the series in occurrence intervals and applying (28), mo+N o
we get . Z rlmo — q, mole” !
- g=mg+1
F(mo, ') o 201 ; ' j
o mo+ N = 1 + (2 1) —oN 6*]»’(7710+N)R*(6J~u‘ TIL(J)
ke i N t— 1)e=r!
S - S sl e (@)
=0 a=mot1 =c 0 Hims-cr (e’) Hp (7%, my). (34)

hich . .
which can be expressed as The instantaneous frequency responses of the LMS algorithm, when

Fme. Cjw> _ Z 25(1 — 2II/)L~C—‘)'L,.;I.~N low values of the step-size are us_ed, is equal to t_he product of bqth
‘ = frequency responses: the comb filter corresponding to the adaptive
estimation system with complete expansions and the inner product

mo+N
. Z r[ma, qle 77 frequency response due to the effect of using a reduced number
q=mat1 of coefficients in the expansion. This result was previously observed
21 jus at Fig. 8.
T 1+ (2u— e N R(mo, 7). (31) In summary, the adaptive estimation system with the LMS al-

-eg%rithm with p < N can be described as a linear time-variant

Remembering that the frequency response of the time-invariaft dic filter that b vzed b f instant : |
system (comb filter) corresponding to the adaptive system wigfriodic fiterthat can eanayze y means otinstantaneous impuise

complete expansions is written in (16), and using (9), we can writkeSPONSeshlm. nJ; n =0, -, N—1} in a similar way than for IP.

o —jwN This description of the adapnve estimation of orthogonal expansion
F(mo, ') = Zpe » TN R(mog, e) coefficients using the LMS algorithm explains the combination of
1 + (2/' - 1)"*”“\7 ‘ both filtering effects: comb filtering due to the adaptive estimation

=e M Hims-ce( )HIp(e “. mo) (32) and lowpass filtering due to the reduced number of functions used
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Fig. 9. Frequency responség e/« n) for IP with p = 5 and 50 KL functions at different times. (a) P wave instant = 32 (89 ms). (b) QRS complex
instantn = 90 (250 ms). (c) ST segment instant= 110 (305 ms). (d) T wave instant = 180 (500 ms).

in the expansion. Furthermore, it is a new way to explain theig. 9, we show the frequency responses (dash lines) at several time
well-known tradeoff for selecting the value of the step factor instants when only =5 KL basis functions are used in the expansion
(convergence time and misadjustment reflected in the degradationl the coefficients are estimated with IP. We can see that the main
of the instantaneous frequency responses). Low values of the stigpguency components of QRS complex [22] [Fig. 9(b)] are well
size i are recommended for estimating signals embedded in noigpresented, whereas other waveforms like the P wave and the ST
because the misadjustment is larger for higher values of the step-siggment [Fig. 9(a) and (c), respectively] have a large attenuation. This
# [9], [14], [15]. With the description shown here, we observe thaksult is in accordance to the fact that the KL transform basis functions
the instantaneous frequency responses for low values of the step-gjée sorted in decreasing value of the covariance matrix eigenvalues.
i can be approximated as the product of the comb filter [8] antherefore, the first basis functions represent the heartbeat intervals
the inner product frequency response. Lpwalues imply thinner corresponding to the highest signal energy. As the QRS complex and
lobes in the frequency response, and thus, the noise power that pags@fmye have more energy than the P wave and the ST segment,
through the filter is reduced. However, low values of the step-sigey are better represented when few functions are used. Sometimes,
also increase the convergence time. Higher values of the step-§iggever, the clinical information underlying in latter intervals is very

generate two effects. _ _ useful for diagnostic purposes. As a consequence, higher values of
* The lobes of the comb filter (16) are wider. the number of functions should be used in order to avoid distortion
« The lowpass frequency response is distorted. at the P wave and ST segment.

In Fig. 8, we can see that this distortion (bias from the product of In contrast, when the number of basis functions is very high,
comb filter and inner product frequency response) is larger at higie signal (as well as noise) representation capacity increases. For
frequencies. Therefore, this is a new way to interpret and quantdxample, in Fig. 9, we also show several instantaneous frequency

the misadjustment of the LMS algorithm. responses whep = 50 KL basis functions (solid lines). Power-
line interference of 50 Hz (Europe) and 60 Hz (USA) can be seen
IV. APPLICATIONS because the signals from the training set were contaminated with
these components. Records from databases were recorded on analog
A. ECG Data Compression tapes with battery-powered recorders, so most of the 50/60-Hz noise

dyesent in the database arose during playback. Several records were
the reduced number of functions in orthogonal expansions isdigitized a}t twice rea_l time; there_fore, this noise appears at 25/30 Hz
key factor [2]. ECG data compression systems based on orthogoff]d multiples) relative to real time. _
expansions, like [17], [19], and [25], get better rate-distortion tradeoff N this correspondence, we have shown the equivalence of trun-
than methods based on interpolation techniques [4]. With the sho®ated orthogonal expansions with a linear time-variant filter. How-
description of orthogonal expansion of recurrent signals as a linéef. we have not addressed an automatic method to estimate the
time-variant periodic filter, we can quantitatively predict whictPPropriate number of basis functignat any application. We believe
frequency components are well represented at every occurrence tihad this is an extension to the presented work that should consider
using a variable number of basis functions. For example, Figs. 3 anthg particular interest of each application. For example, for data
illustrate thatp = 30 KL basis functions can represent the maigompression of ECG signals, the selection of the numbef basis
frequency components of a heartbeat. Moreover, this description ddnActions could be done by first defining the desired minimum cut-
be a useful tool for testing and comparing behaviors of differenff frequencies at different time instants of the signal occurrence
orthogonal transforms with variable number of basis functions. (P wave, QRS complex, ST segment, T wave) according to the
For example, low bit rate data compression systems use a veliical information of the ECG waveforms and, second, calculating
low number of basis functions to represent the ECG signal. Ake instantaneous frequency responses for a variable and growing
a consequence, many frequency components will be attenuatedvafue ofp until the required specifications are obtained. At the end

Data compression is one of the most evident applications wh
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Fig. 10. Frequency responses applying IP with two, three, and four KL basis functions for the ST-T complex at two different time instants of the ST
segment. (a) Time instant 85 ms after QRS mark. (b) Time instant 100 ms after QRS mark.
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Fig. 11. Frequency responses applying IP with two, three, and four KL functions for the ST segment at different time instants of the ST segment. (a)
Time instant 85 ms after QRS mark. (b) Time instant 100 ms after QRS mark.

of the process, we obtain the minimum valuepdhat can represent has improved a lot, even in the case of oply 1 KL basis function
all clinical information of the signal. being used to represent the ST segment.

In summary, values of the number of functigns- 3 or 4 should be
used in order to represent the low frequencies at the ST segment when
the ST-T complex is analyzed with the KL transform. In contrast,

Myocardial ischemia is caused by a lack of blood supply overfawer functions § = 1) are sufficient to represent the very low-
cardiac area and is reflected on the ECG signal as a low-frequemeyquency components of the ST segment when only the ST complex
deviation of the ST segment. The KL transform has been recentdy analyzed with the KL transform.
applied to the ST-T complex (composed by the ST segment and
the T wave) as a tool for the monitoring of ischemia [6]. The KL
sensitivity to detect ischemic changes in the repolarization induced
by angioplasty was larger (85%) than that obtained by traditionalIn this correspondence, two different approaches are analyzed for
indexes based on local measurements on the ECG: ST level (64@&timating the coefficients of orthogonal expansions using a reduced
T wave amplitude (37%), or T wave position (33%) [26]. number of functions: inner product and adaptive estimation with

Applying the orthogonal expansions description as a linear timtie LMS algorithm. We show that both estimation systems are
variant periodic filter, we can study the number of basis functioregjuivalent to a time-variant periodic filter. Both systems are analyzed
needed for representing the very low-frequency components at the means of their time and frequency descriptions: instantaneous
ST-T segment for ischemia analysis. It can be seen from Fig. 10 tlapulse responses|[m, n] and instantaneous frequency responses
if only two KL basis functions are used, the very low frequencies & (¢/*, n). The inner product has finite length impulse responses
time 85 ms after the QRS complex will be attenuated. Using thredth duration N samples (length of a signal occurrence), whereas
or four basis functions improves the representation of the very lampulse responses of the LMS are infinite because of the recursive
frequencies. The reason for this behavior is the same as explainedature of the LMS algorithm. Both systems have the same frequency
Section IV-A; there is a signal interval with higher level of energyesponse envelopes (if low values of the step-gizare used in
(which is more important to the KL transform in order to minimizehe LMS), producing a similar lowpass time-variant filtering effect
the mean squared error) than the rest. In this case, the T wave baswith the difference that LMS frequency responses have comb
much more energy than the ST segment. shape; therefore, they attenuate uncorrelated noise (nonperiodic with

Another possibility to represent the ST segment with a reduckeartbeat occurrence time).
number of coefficients could be the use of the KL transform applied Using the time-variant periodic filter description of orthogonal
only to the ST segment (excluding the T wave). In this case, tlepansions shown in this work, we can quantitatively know which
signal energy is more uniformly distributed, and a better performanfrequency components are well represented using a reduced number
should be expected. We show in Fig. 11 the frequency response®fdiunctions at every time instant of the signal occurrence. Therefore,
the same time instants of the ST segment, but now, the KL transfoitmcan be used as a useful criteria for determining the required
is only applied to the ST segment. The low-frequency representatiommber of functions. This description is also a new way to interpret

B. Ischemia Analysis with the KL Transform

V. CONCLUSIONS
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the misadjustment of the LMS algorithm as a frequency respong®] N. V. Thakor, J. G. Webster, and W. J. Tompkins, “Estimation of
distortion. QRS complex power spectrum for design of a QRS filtEEEE Trans.

Applications can be in data compression, parameter extraction Biomed. Eng.vol. BME-31, pp. 702-706, Nov. 1984.

. . o L ] O. Pahim and L. 8nmo, “Software QRS detection in ambulatory
pattern recognition, detection, and monitoring of pathologies in EC monitoring—A review,"Med. Biol. Eng. Computyol. 22, pp. 289297,

signal processing, time-variant filter design, etc. Theoretical results 1984,
are corroborated with the use of the KL transform of the ECG signd®4] J. Pan and W. J. Tompkins, "A real-time QRS detection algorithm,”
but it can be applied to any orthogonal transform without loss of  EEE Trans. Biomed. Engvol. BME-32, pp. 230-236, Mar. 1985.
eneralit ?25] B. Bradie, “Wavelet package-based compression of single lead ECG,”
9 Y- IEEE Trans. Biomed. Engvol. 43, pp. 493-501, 1996.
[26] J. Garéa et al, “Comparative study of local and Karhunen-éwe
based ST-T indexes in recordings from human subjects with induced

myocardial ischemia,"Comput. Biomed. Resvol. 31, pp. 271-292,
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