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Abstract  

Background: Cardiac functional metrics such as ejection fraction, strain and valve 

excursion are important diagnostic and prognostic measures of cardiac disease. 

However, they ignore a large amount of systolic shape change information available 

from modern cardiovascular magnetic resonance (CMR) examinations.  

Objectives: We aimed to automatically quantify multidimensional shape and motion 

scores from CMR, investigate covariates, and test their discrimination of disease in the 

UK Biobank compared against standard functional metrics. 

Methods: An automated analysis pipeline was used to obtain quality controlled 3D left 

and right ventricular shape models in 38,858 UK Biobank participants, 5,149 of whom 

had one or more diagnoses of cardiovascular or cardiometabolic disease. Principal 

component analysis was used to obtain a statistical shape atlas and quantify each 

participant’s left and right ventricular shape at both end-diastole and end-systole 

simultaneously. Systolic strain was obtained from arc length changes computed from 

the shape model, and mitral/tricuspid annular plane systolic excursion 

(MAPSE/TAPSE) was computed from the displacement of the valves. Discrimination 

for prevalent disease was quantified using linear discriminant analysis area under the 

receiver operating characteristic curve. 

Results: The first 25 principal component scores captured >90% of the total shape 

variance. Significantly stronger discrimination for atrial fibrillation, heart failure, 

diabetes, ischaemic disease, and conduction disorders (p<0.001 for each) was 

obtained using shape scores compared with volumes, ejection fractions, strains, 

MAPSE and TAPSE.  
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Conclusions: Automatically derived shape and motion z-scores capture more 

discriminative information on disease effects than standard metrics, including volumes, 

ejection fraction, strain and valve excursions. 

Keywords: strain, MAPSE, TAPSE, shape  
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Introduction 

Heart function is commonly quantified by ventricular mass, volume, ejection fraction 

(EF), myocardial strain, and mitral/tricuspid annular plane systolic excursions 

(MAPSE/TAPSE)1. These metrics provide useful diagnostic and prognostic information 

on cardiac disease2,3. Strain is commonly computed from image feature tracking or 

tissue tagging in cardiovascular magnetic resonance (CMR) imaging1, or speckle 

tracking in echo2, and is a more sensitive indicator of adverse events than EF in 

hypertension4, hypertrophic cardiomyopathy5, and cardio-oncology toxicity6. However, 

MAPSE may be more predictive of death and hospitalization for heart failure than 

strain7 and may contain additional prognostic information for death in hypertensive 

patients8. The relationships between geometry, EF, strain and motion are complex9. 

Different metrics vary differently with covariates such as afterload and body 

habitus10,11. It is currently unclear what is the best metric for evaluation of heart 

disease, and better functional metrics are needed to provide more complete evaluation 

of cardiac dysfunction12,13. 

Statistical shape atlases enable quantification of most of the multidimensional 

heart shape information available in modern medical imaging methods such as 

CMR14,15. The development of these techniques has been facilitated by large cohort 

studies such as the Multi-Ethnic Study of Atherosclerosis (MESA)16 and the UK 

Biobank17, which utilized CMR to study the effects of disease on heart structure and 

function. Previous studies have shown that atlas shape scores have stronger 

associations with risk factors such as hypertension, hyperlipidaemia, diabetes, 

smoking and obesity than standard mass and volume metrics in 1,991 participants of 

MESA18 and 4,329 participants of the UK Biobank19. Shape models in ~1,500 

volunteers have also shown novel relationships with adiposity and titin-truncating 
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variants20,21. In particular, atlas-based shape scores have shown independent 

prognostic information for prediction of future adverse events in 4,618 MESA 

participants22 and in 1,021 patients post-acute myocardial infarction23. Fully automated 

analysis pipelines now enable computation of heart shape and scores in >10,000 UK 

Biobank participants24,25,26. However, previous studies have not compared shape atlas 

scores with common functional metrics such as strain and MAPSE for ability to 

discriminate disease.  

The aim of this study was to investigate the sensitivity of atlas metrics of cardiac 

function to disease, and examine their covariates. We hypothesized that atlas-based 

shape scores would have stronger discrimination of disease than standard functional 

metrics of mass, volume, EF, strain and MAPSE/TAPSE. We developed an automated 

analysis pipeline and generated customized shape models and a statistical shape atlas 

in 38,858 UK Biobank participants. The atlas captured right and left ventricular shape 

at both end-diastole and end-systole. Standard functional metrics were computed 

automatically from the shape models. This enabled direct comparison between atlas 

scores and standard metrics in linear discriminant analysis evaluation of disease 

discrimination. We show that atlas scores enable more sensitive discrimination of 

disease effects on heart shape and function than standard metrics, and show how they 

can be incorporated into the clinical workflow and used to increase the power of studies 

to detect disease or treatment effects.     

 

Methods 

An overview of the automated analysis pipeline is shown in Figure 1. The pipeline steps 

are detailed below. Briefly, CMR images (Figure 1A) of UK Biobank participants were 

automatically analysed using a previously validated27 deep learning convolutional 
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neural network algorithm (cvi42 Version 5.11 1505) (Figure 1B). Contours of the right 

and left ventricles and valve landmarks were extracted from short and long axis images 

and merged in 3D (Figure 1C). A biventricular shape model was customized (Figure 

1D) to each case using diffeomorphic registration. Principal component analysis (PCA) 

was used on the ~5800 resulting model vertices (Figure 1D) for unsupervised 

dimension reduction resulting in a set of PC shape scores for each participant. 

Participants with cardiovascular or cardiometabolic disease endpoints (8 types), as 

well as participants with no reported cardiovascular or cardiometabolic disease 

(reference) were used for subsequent linear discriminant analysis for each disease 

type.  

Study Population 

This post-hoc cross-sectional study evaluated data from the UK Biobank (application 

2964); a large-scale prospective cohort study with 500,000 participants aged 40-69 at 

time of enrolment with detailed health, lifestyle, physical measures, and biological 

samples. The study design and data collection methods have been described 

previously28,29. At the time of analysis, 45,683 individuals had available CMR images 

(Figure 1A)29. All participants gave written informed consent and the appropriate 

institutional review boards approved the study protocol (National Research Ethics 

Service North-West 11/NW/0382). Systolic blood pressure was averaged between 

manual and automated readings taken at the imaging visit and adjusted by adding 

15mmHg if the participant was taking blood pressure altering medication.  

Cardiovascular or cardiometabolic disease prevalence was determined for 8 

categories: atrial fibrillation; heart failure; a composite of myocardial infarction and/or 

ischaemic heart disease; hypertrophic cardiomyopathy; dilated cardiomyopathy; type 

2 diabetes mellitus; conduction disease comprising significant atrioventricular block, 
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bundle branch block and fascicular block; and a ventricular arrhythmia composite 

including ventricular arrhythmia, implanted cardiac defibrillator, sudden cardiac death 

and/or cardiac arrest. These were chosen to represent common disease categories of 

interest known to have pathophysiological effects on heart shape and function. 

Disease categories were determined using ICD9 & ICD10 codes from hospital episode 

statistics data from the NHS through the UK Biobank. A reference cohort was also 

identified with no reported cardiovascular or cardiometabolic disease (the reference 

sub-cohort). 

CMR Imaging and Automated Image Analysis 

The UK Biobank CMR protocol has been described previously29. Briefly, all imaging 

was performed on a wide bore 1.5 T scanner (MAGNETOM Aera, Syngo Platform 

VD13A, Siemens Healthineers, Erlangen, Germany) using a phased-array cardiac coil. 

Retrospectively gated balanced steady state free precession cine images were 

acquired with three long axis orientations (horizontal long axis, vertical long axis, LV 

outflow tract) and a short axis stack covering both the RV and the LV (6mm thickness 

for long axis, 8mm thickness for short axis, flip angle 80°, TR/TE = 2.6/1.1ms, temporal 

resolution 32ms interpolated to 50 phases per cardiac cycle, pixel size 1.8 x 1.8 mm). 

Each slice was acquired in a separate breath-hold. 

Contours and landmarks were automatically identified using cvi42 post-

processing software (Version 5.11 1505, Circle Cardiovascular Imaging Inc., Calgary, 

Canada). This software used deep learning convolutional neural network algorithms 

for fully automated analysis, which has been previously validated27. Contours were 

identified in short and long axis (two-chamber, three-chamber and four-chamber) 

images. Tricuspid and aortic valve points were defined from landmarks delineated on 

the two-chamber and three-chamber long axis views respectively, and mitral valve 
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points were defined on all long axis images. A LV endocardial apex point was defined 

on the four-chamber image. Since RV free wall myocardium was not detected by the 

machine learning algorithms, the RV free wall epicardial surface was imputed by 

displacing the RV endocardial points outwards by 3mm. The cvi42 software provided 

a report containing ventricular volumes and LV mass computed using slice summation 

of the short axis contours. The ED and ES frames were selected as the frames with 

the highest and lowest volumes computed by cvi42. 

Automated Biventricular Shape Analysis and PCA 

A biventricular shape model consisting of a subdivision surface template mesh was 

automatically customized to each case as described previously30. Briefly, breath-hold 

misregistration was automatically corrected and the shape model geometry was 

customized using diffeomorphic least squares minimization of the distances between 

the shape model and the contour points from all the short axis and long axis slices.  

A biventricular statistical shape atlas was constructed using PCA as previously 

described19. ED shapes were co-registered using Procrustes alignment (without 

scaling), and the aligned ED and ES shape model vertices were concatenated into a 

single shape vector. Singular value decomposition of the covariance matrix resulted in 

a relatively small number of PC scores that described the majority of shape variation 

across all participants, while accounting for correlations between points in the shape 

model. The first component explained the most of total shape variance, and each 

subsequent PC successively explained less variance. For each participant, PC scores 

were calculated which quantified the amount of each PC present in that individual. The 

PCs which captured >90% of the total variance were kept for functional analysis. 

A series of quality control checks were performed at different stages of the 

pipeline (details provided in Supplementary Material). 
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Geometric Shortening Strain 

Geometric % shortening strain was calculated as percent change in arc length:  

GLS or GCS = ((EDL-ESL)/EDL) x 100%   (1) 

where GLS and GCS denote global longitudinal and circumferential strains 

respectively, and EDL and ESL are the corresponding endocardial surface arc lengths 

at ED and ES respectively. Note % shortening was defined to be positive for 

contraction. Previous studies have found good agreement between geometric global 

strain and feature tracking as well as tagging estimates31,32.  

MAPSE and TAPSE calculation 

Mitral/tricuspid annular plane systolic excursion (MAPSE/TAPSE) was calculated as 

the mean 3D displacement of valve points from ED to ES in mm. 

Covariate Analysis 

Univariate and multivariate linear regressions were performed using R (version 4.2.1)33 

to quantify the strengths of relationships between functional metrics and covariates, 

including age, sex, height, body mass index, and afterload, in the disease-free 

reference sub-cohort. Afterload, or myocyte stress at ES, is known to be correlated 

with many functional metrics. Here we estimate afterload using the Arts formula34: 

𝐴𝑓𝑡𝑒𝑟𝑙𝑜𝑎𝑑 = 𝑆𝐵𝑃 (1 +
3 (𝐿𝑉𝐸𝑆𝑉)

𝐿𝑉𝑊𝑎𝑙𝑙𝑉𝑜𝑙𝑢𝑚𝑒
)    (2) 

where LV ES volume and LV wall volume (at ED) were estimated from the model using 

numerical integration. This formula has been shown to produce accurate estimates of 

myocyte stress at ES in a variety of geometries34, validated using a biomechanical 

model.  

Relationships with Disease 

Differences in functional metrics between the reference group and each disease 

category were tested using the Wilcoxon rank sum test. To examine the discriminative 
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ability of the PC scores compared with standard functional metrics, linear discriminant 

analysis models were constructed for each prevalent disease category. In each model, 

positive cases were those with the disease and negative cases were those in the 

disease-free reference cohort. For each disease category, two linear discriminant 

analysis model were compared, one in which the discriminatory variables were PC 

scores and the other in which the discriminatory variables comprised LV and RV end-

diastolic and end-systolic volumes, ejection fractions, global circumferential and 

longitudinal strains, and MAPSE and TAPSE. The area under the curve (AUC) was 

compared between the two models using the DeLong test. For this comparison the 

AUCs were constructed using the test cases from a five-fold cross validation analysis 

using the R caret package (version 6.0-93)35. An additional comparison was performed 

with covariates age, sex, body mass index, height, and afterload added to the 

discriminatory variables of both linear discriminant analysis models.  

 Although the PC scores are uncorrelated by definition, multicollinearity may 

exist between the standard measures (volume and strains). Multicollinearity can have 

a large effect on the regression parameters (betas), but may not change the overall 

AUC greatly. This was tested by successively excluding variables with variance 

inflation factor (VIF) greater than 5, until all variables had VIF<5 50. If both LV and RV 

measures of volume had VIF>5, the RV measure was removed first.  

 To test the benefit of adding standard variables to PC scores, we also compared 

PCs plus standard variables plus covariates against standard variables plus 

covariates, removing variables with VIF>5. 

Manual Volume and Tagging Analysis 

Volumes and strain results from the automated analyses were compared with manual 

analyses previously performed in the first 5000 CMR imaging participants36,37. The 
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manual volume analysis was performed by drawing short axis ventricular contours and 

valve landmarks, using cvi42. Calculation of volumes and mass was performed using 

slice summation in cvi4236. Manual strain analysis of the three short axis slices 

acquired with spatial modulation of magnetization (SPAMM) tissue tagging was 

performed using CIMTag2D v8.1.5 software, (Auckland MRI Research Group, New 

Zealand), which has been validated previously in phantoms and patients38. As 

previously described37, a tag grid was aligned automatically to the myocardial tagging 

planes at end-diastole. End-systole was determined visually, and tag tracking was 

performed using nonrigid image registration, with manual adjustments at key phases 

during the cardiac cycle including the end systolic and late diastolic frames. 

Circumferential myocardial strain was calculated by the software from the motion of 

the tag lines, averaged over the whole slice.  

 

Results 

Study Population, QC and Automated Analysis 

Of 45,683 CMR examinations available for analysis at the time of study, 3D shape 

models could be customized at ED and ES in 43,159 cases (Figure 1A, B, C). PCA 

was performed on 41,659 cases (Figure 1C). Model QC resulted in 1,500 cases 

rejected before the PCA. After PCA, 1,261 cases were excluded for high Mahalanobis 

distance, 463 cases for high PC projection error, and 1,832 cases for volume 

differences from cvi42 (the total 2,801 in Figure 1E is due to many cases being rejected 

for multiple criteria). After QC, there was a total of 38,858 cases, 5,149 with prevalent 

cardiovascular or cardiometabolic disease and 33,709 without.  

Table 1 shows participant demographics, comparing the reference sub-cohort 

with the disease sub-cohorts. In general, those with disease were older, more likely 
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male, with higher blood pressure and body mass index. Table 1 also shows ventricular 

volumes and LV mass computed from the shape models by numerical integration. 

Those with disease had significantly higher left and right ED and ES volumes, higher 

LV mass, and lower right and left EF. The reference group volumes and mass were 

within the reference range for normal cardiac structural and functional measures 

detailed previously36. 

Strain, MAPSE and TAPSE 

Table 2 shows global geometric longitudinal and circumferential strain computed from 

model arc lengths, and MAPSE and TAPSE computed from the displacement of model 

valve points, in reference and disease groups. Compared to the reference group, most 

strain measures were significantly (p < 0.05) reduced in all disease groups, except for 

hypertrophic cardiomyopathy in both LV GCS (mid) and RV GCS (mid), ventricular 

arrhythmia composite in RV GCS (mid) and RV GLS, and diabetes in RV GLS. MAPSE 

and TAPSE were also reduced in all disease groups compared to the reference (p < 

0.05).  

Figure 2 shows univariate correlations between standard functional metrics and 

covariates within the reference group. Strain was decreased in males, and also with 

increased height, body surface area, ventricular volume, LV mass, and LV afterload. 

Strain was not as strongly correlated with age, body mass index, or blood pressure. In 

contrast, MAPSE and TAPSE increased with height, body surface area, larger 

ventricular volume and LV mass, and was not as strongly correlated with sex, body 

mass index, and afterload. Multivariate regression results are presented in 

Supplementary Table S1.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



                  

 

Principal Components 

We selected the first 25 PCs of shape variation, which represent the largest modes of 

variation of biventricular shape within the cohort, and together accounted for over 90% 

of the total shape variance. Figure 3 shows the amount of shape variance explained 

by each PC. Animations of these can be found in Supplemental Movies. Since these 

modes result from unsupervised dimension reduction, anatomical interpretation is 

typically not possible; however, clear interpretations can be made for some modes. In 

particular, PC1 (34% of shape variance) was associated with overall size at both ED 

and ES with positive scores associated with larger hearts. PC2 (11%) was associated 

with systolic motion, with positive scores associated with larger displacement, in 

particular basal descent of the valves during systole (TAPSE and MAPSE). PC3 (8%) 

was associated with sphericity of both ventricles at ED and ES, with positive scores 

related to less spherical shapes. PC9 (2.1%) was associated with systolic basal 

excursion, PC10 (2%) was associated with sphericity of the right ventricle, and PC13 

(1.1%) was associated with ejection fraction. 

Figure 3 shows univariate correlations between PCs and demographics, 

volumes, and strain. PC1 (overall size) was positively correlated with ventricular 

volumes and mass, male sex, height and body surface area, afterload, and MAPSE 

and TAPSE. PC1 was negatively correlated with strain and EF. PC2 (longitudinal 

motion of the valves) was positively correlated with MAPSE and TAPSE, and to a 

lesser extent strain and EF. PC3 (sphericity) was correlated with RV GCS and 

MAPSE/TAPSE. PC 9 was correlated with MAPSE/TAPSE and to a lesser extent 

strain. PC10 was correlated with RV strain and EF, as well as TAPSE. PC13 was 

correlated with LV and RV strain and EF, and to a lesser extent MAPSE and TAPSE.  

Relationships with Disease 
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Strengths of relationships with cardiovascular or cardiometabolic diseases are shown 

in Table 3. Receiver operating characteristic curves are shown in Supplementary 

Figure S1. Comparing linear discriminant analysis models using the first 25 shape PC 

scores as discriminatory variables against a “standard” model with volumes, mass, 

ejection fraction, strain, MAPSE and TAPSE as discriminatory variables, the shape 

scores had significantly stronger relationships with prevalent atrial fibrillation, heart 

failure, myocardial infarction or ischaemic heart disease, diabetes and conduction 

disease. Relationships with hypertrophic and dilated cardiomyopathies and ventricular 

arrhythmia were similar between metrics, however the disease cohorts for these 

groups were relatively small (n=26, 32 and 152 respectively). When covariates age, 

sex, body mass index, height, and afterload were added to the discriminatory variables 

of both models, AUC improved and differences between models were reduced, as 

expected since the covariates are strongly related to disease and mask the differences 

between shape scores and strain/volume measures (Table 4). However, relationships 

with shape were still significantly stronger than those with volumes and strain (DeLong 

p < 0.05) in atrial fibrillation, heart failure, diabetes and conduction disease (Table 4).  

 To assess effects of multicollinearity, variance inflation factors (VIF) were 

computed for the discriminator variables in all models. Those with VIF>5 were 

successively removed. For the PC models, no discriminator variables needed to be 

removed. For the standard model without covariates, RV end-diastolic and end-systolic 

volume, LV end-systolic volume, and LV ejection fraction were removed. Results are 

shown in Table S2, and were very similar to Table 3. For the standard model with 

covariates, RV end-diastolic and end-systolic volume, LV end-diastolic volume and 

end-systolic volume, and LV ejection fraction were removed (none of the age, sex, 

R5.4 
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height, weight, BMI and afterload covariates had VIF > 5). Results are shown in Table 

S3, and were very similar to Table 4.  

 We also evaluated the effect of adding standard variables to the PC scores and 

covariates, compared with the standard variables and covariates. Since standard 

volume and strain measures are correlated with PCs, those with VIF>5 were removed. 

For the PC model, all PCs, LV and RV global circumferential and longitudinal strains, 

and all covariates age, sex, height, weight, BMI and afterload, remained after removal 

of variables with VIF >5. Results are shown in Table S4, and were very similar to Table 

4, and Table S3. This indicates that adding standard functional measures to the PCs 

has little effect on discriminatory power of the PC scores. 

Manual Volumes and Tagging Strain 

Within the 5,000 participants who had manual volume analysis, 4,257 had both manual 

and automatic shape model estimates of mass and volume (669 disease and 3,588 

reference). Comparisons between manual and shape model estimates for disease and 

reference cases within this sub-cohort are shown in Table 5. In general, the LV 

volumes and mass computed from the shape models using numerical integration were 

larger than the manual estimates. This is likely due to differences in computation 

methods, with the model volume and mass including structures up to the valves and 

at the apex tip whereas manual estimates were performed with short axis slices only 

using slice summation. LV mass was also larger in the model estimates, partly due to 

allocation of mass to the LV at the junction of the RV free wall and the septum in the 

model, which is excluded in standard LV contours39. The differences in volume and 

mass were consistent between disease and reference cases for both methods (Table 

5). Bland-Altman plots of differences between methods are shown in Supplemental 

Material.  
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Within the first 5,000 participants who had manual tagging strain analysis, 3,845 

had both manual and automatic shape model strain estimations. Geometric 

circumferential mid-ventricle strains and tagging strains are shown in Table 5 for each 

sub-cohort. Bland-Altman plots are shown in the Supplemental Materials. LV global 

circumferential midventricular strain was higher than tagging circumferential strain, 

which was expected since endocardial circumferential strain is typically higher than 

mid-wall and epicardial strain (the tagging estimate being an average over the whole 

wall)40. Differences between disease and reference cohorts were consistent between 

shape model and tagging strain estimates. Correlations between tagging GCS and 

covariates (sex, height, afterload, LV volume etc) followed similar patterns to geometric 

model GCS (Figure 2). Correlations between tagging GCS and PCs (Figure 3) also 

followed similar patterns to geometric model GCS.   

Sensitivity of Combined Metrics 

Disease-specific combined PC scores can be used to quantify functional impairment 

and track changes with disease development or treatment effects. For example, the 

standardized combined z-score obtained from the linear discriminant analysis models 

is the linear combination of PC scores which best discriminate the presence of disease. 

Table 6 shows the disease-specific combined z-scores for each disease category. 

These disease-specific z-scores are intuitive, in that reference (healthy) cases have a 

mean around zero and a standard deviation around one, and disease cases have a 

higher score in units of standard deviations. The differences in z-scores between 

reference and disease cases are more highly significant for shape scores than 

standard metrics in all disease categories. Studies designed to detect a change in heart 

function with disease progression or treatment would therefore have more power to 

detect an effect. For example, in diabetes the z-scores were 0.00 ± 0.97 (reference) vs 
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0.99 ± 1.00 (diabetes) for PCs and -0.03 ± 0.98 vs 0.68 ± 1.15 for standard metrics. A 

power calculation of the number of participants needed for a study of heart function in 

diabetes would require 32 participants (16 in each group) to detect a difference 

between patients and controls using PC scores, and 68 participants (34 in each group) 

for standard metrics, assuming an alpha of 0.05, power of 0.8. 

 

 

Discussion 

Evaluation of cardiac disease typically includes functional assessment including 

ejection fraction, strain, and valve plane motion, commonly assessed with 

echocardiography or CMR1,41. However, these metrics do not capture all the shape 

change information present in modern medical imaging examinations. Here, we 

showed that shape scores derived from a statistical shape atlas, including both ED and 

ES shape information, are more strongly discriminative of disease than standard 

volumetric, strain and valve motion metrics (Table 3). The PC scores can be 

automatically calculated at the time of imaging (Figure 1), by segmenting the images, 

customizing a shape model, and computing the PC scores. Combined PC scores (such 

as linear discriminant analysis z-scores in Table 6) can be used to quantify patient 

status relative to a reference cohort, such as that provided in the UK Biobank. This 

provides a potentially more powerful set of functional metrics than is currently 

available, enables more sensitive quantification of disease effects, and can reduce the 

number of subjects required for studies of disease status and treatment effects.  

In particular, PC scores performed well for discrimination of diabetes mellitus, 

myocardial infarction, conduction disease, atrial fibrillation and heart failure, suggesting 

PC scores contain more information on shape and shape changes during systole in 
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these disease categories. No significant differences were found for hypertrophic and 

dilated cardiomyopathies, with relatively high AUC for both sets of discriminatory 

variables, indicating that traditional measures are very discriminative for these 

diseases. However, the number of hypertrophic and dilated cardiomyopathies cases 

was low in this cohort and the method should be tested in larger disease cohorts. 

Ventricular arrhythmia discrimination was also similar between shape scores and 

traditional metrics, with moderate AUC, which may indicate that systolic shape 

changes are not as informative in these pathologies.  

 Our pipeline for atlas shape quantification was fully automated, with some 

similar characteristics to previously published automated analysis pipelines for 

quantification of cardiac shape and function23,24,25,26,42,43,44. However, to our knowledge 

the current study is the first to compare PC shape scores with EF, strain and 

MAPSE/TAPSE functional indices for the discrimination of disease.  

Geometric strain computed from arc lengths had good agreement with tagging 

strain, as found in previous studies31,32. As expected, endocardial strain was higher 

than tagging midwall strain. Strain was significantly decreased with most examined 

diseases (Table 2), consistent with previous studies1. In particular, a previous study of 

3,984 UK biobank participants showed reduced tagging strain in 143 diabetes mellitus 

participants45. The current study corroborates this finding, with the diabetes mellitus 

group (n=1,656) having reduced geometric strain for both LV and RV GCS and GCS, 

as well as MAPSE and TAPSE. 

There was a significant dependence of strain on afterload, in agreement with 

previous studies10,46. Also, strain was reduced with male sex and increased body size 

(body surface area and height), in agreement with previous studies24,41,43,47. Some 

previous studies have shown that MAPSE may have different prognostic information 
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to strain7,8 and has different relationships with body size than strain11. Here, MAPSE 

had different relationships with age, body size and afterload to strain, with reduced 

dependence on afterload and body size, but stronger dependence on age. Moreover, 

some PC scores were highly correlated with MAPSE and TAPSE (PC2 and PC9 in 

Figure 3) whereas others were more correlated with strain (PC10 for RV strain and 

PC13 for LV strain), consistent with strain and MAPSE information being captured in 

the PC scores. Correlations between PC scores and sex, height and afterload were 

also found, particularly with PC1 which was associated with overall heart size. Other 

PCs had greatly reduced correlations with body habitus and afterload, including PC2 

(MAPSE) and PC10 and PC13 (RV and LV strain).   

 Limitations of this study include use of UK Biobank data, which comprised 

mainly low-risk participants with selection bias arising from volunteering for the study. 

Subsequently there is a lack of cases with disease in cardiomyopathy and arrhythmia 

categories. Although an automated quality control procedure was used to remove 

outliers, it is likely that additional QC of the automated pipeline including analysis of all 

frames in the cine sequence such as in Ruijsink et al., 202042 would benefit results. 

Mistakes in automatic segmentation will lead to errors in the PC scores, although the 

first 25 scores used in this study are relatively robust to small errors in segmentations. 

Disease was classified by self-reported incidence or hospital electronic health records 

and may not fully capture the diseases present in individuals in early asymptomatic 

stages of disease. Co-morbidities between diseases were not considered since the 

nature of the relationships between shape score and disease require a detailed 

analysis of how shape varies with height, sex, age, and co-morbidities, which will 

require a larger disease cohort (UK Biobank will shortly have 100,000 imaging 

participants, enabling some disentanglement of these effects). Table 4 shows only 
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modest AUC improvements when covariates age, sex, body mass index, height, and 

afterload are included in the discrimination of atrial fibrillation, heart failure, diabetes 

and conduction disease. This is due to these covariates being highly discriminative, 

masking differences between PC and standard heart function measures. However, the 

main utility lies in improved sensitivity of z-scores derived from PCs (Table 6), e.g. 

enabling 50% fewer diabetic patients to detect differences from a reference group, 

thereby facilitating studies of mechanistic effects of disease and treatment. LV volume 

and mass were significantly higher in the models compared to standard slice 

summation (Table 5). This is likely due to systematic differences in calculation 

methods, with numerical integration of model mass including muscle up to the RV free 

wall, and up to the valve locations. Finally, a recent study of 45,700 UK Biobank 

participants showed feature tracking strain was independently predictive of incident 

heart failure, myocardial infarction and stroke48. Having established improved 

sensitivity with prevalent disease, future work should study the utility of atlas scores in 

predicting future adverse events, and assess their utility combined with other data from 

applicable examinations, e.g. LGE and mapping information, stress perfusion data, 

calcium scores, aortic distensibility, etc. Such predictive models will need to examine 

the multicollinearity between predictors seen in Figure 2 and Figure 3. Two previous 

methods used for incident disease prediction include partial least squares22 and linear 

discriminant analysis with careful feature selection49. The examination of changes in 

disease specific scores (such as in Table 6) should also be extended to longitudinal 

studies. 
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Conclusions  

Atlas-based shape and motion scores capture more of the available shape change 

information present in modern imaging examinations than standard measures of 

cardiac function. An automated analysis pipeline enables routine evaluation of 

disease-specific z-scores at the time of imaging. Atlas scores provide more sensitive 

metrics for the evaluation of disease effects.  
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Figure Legends: 

 

Figure 1: Automated analysis pipeline. CMR, cardiovascular magnetic resonance; 

PCA, principal component analysis; APSE, annular plane systolic excursion; PC, 

principal component; IQR, interquartile range. 

Figure 2: Univariate correlations between strain and covariates in the reference cohort. 

LV, left ventricular; RV, right ventricular; GCS, global circumferential strain; GLS, 

global longitudinal strain; MAPSE, mitral annular plane systolic excursion; TAPSE, 

tricuspid annular plane systolic excursion; BMI, body mass index; SBP, systolic blood 

pressure adjusted for presence of medication; DBP, diastolic blood pressure adjusted 

for presence of medication; body surface area, body surface area; EDV, end-diastolic 

volume; ESV, end-systolic volume; M, mass; EF, ejection fraction. Model strains and 

MAPSE/TAPSE from n=33709 cases; tagging strain from n= 3,280 cases. 

Figure 3: Univariate correlations between PCs and demographics, volumes, and strain. 

The amount of shape variance explained by each PC is shown on the left. LV, left 

ventricular; RV, right ventricular; GCS, global circumferential strain; GLS, global 

longitudinal strain; GCSt, global circumferential strain (tagging); MAPSE, mitral annular 

plane systolic excursion; TAPSE, tricuspid annular plane systolic excursion; BMI, body 

mass index; SBP, systolic blood pressure adjusted for presence of medication; DBP, 

diastolic blood pressure adjusted for presence of medication; BSA, body surface area; 

EDV, end-diastolic volume; ESV, end-systolic volume; M, mass; EF, ejection fraction. 

All correlations N=33709 cases except tagging N=3,280. 

Supplemental Figure S1 ROC curves for linear discriminant analyses (Table 3). Blue: 

PC model; Green: standard model. 

Supplemental Figure S2 Bland Altman Plots: Manual vs Shape Model. 
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Tables 

Table 1. Participant characteristics for sub-cohorts with and without disease. Values 

are mean (standard deviation) for continuous variables and count (%) for categorical 

variables. Conduction disease: bundle branch block, fascicular block or atrioventricular 

block. Ventricular arrhythmia composite: ventricular arrhythmia, cardiac arrest, sudden 

cardiac death, defibrillator implantation). All variables were significantly different 

between Reference and Disease groups (* p<0.001 Disease vs Reference, Wilcoxon 

rank sum test) 

 

Characteristic Disease (n = 
5,149) 

Reference (n = 
33,709)1 

Age (years) 67 (7)  63 (8) * 

Sex (male) 3,453 (67%) 14,974 (44%) * 

Weight (kg) 83 (15)  75 (14) *  

Height (cm) 171 (9)  169 (9) * 

BMI (kg/m2) 28.2 (4.6)  26.3 (4.0) * 

SBP (adjusted) 147 (21)  138 (20) * 

DBP (adjusted) 86 (12)  82 (11) * 

LV EDV (ml) 155 (36)  146 (32) * 

LV ESV (ml) 74 (22)  67 (18) * 

RV EDV (ml) 153 (35)  147 (35) * 

RV ESV (ml) 70 (20)  65 (20) * 

LV Mass (g) 131 (27)  123 (26) * 

LVEF (%) 52.4 (6.4)  54.2 (4.8) * 

RVEF (%) 54.7 (6.7)  56.1 (5.8) * 

Heart failure 341 (6.6%) . 

Atrial fibrillation 1,088 (21%) . 

Myocardial infarction, 
ischaemic heart disease 

2,389 (46%) . 

Hypertrophic 
cardiomyopathy 

26 (0.5%) . 

Dilated cardiomyopathy 32 (0.6%) . 

Diabetes mellitus 1,656 (32%) . 

Ventricular arrhythmia 
composite 

151 (2.9%) . 

Conduction disease 635 (12%) . 
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Table 2 Geometric strain (% shortening) and MAPSE/TAPSE in different disease 

categories. Mean (standard deviation). GCS, global circumferential strain; GLS, 

global longitudinal strain; MAPSE, mitral annular plane systolic excursion; TAPSE, 

tricuspid valve plane annular excursion; LV, left ventricle; RV, right ventricle; * P < 

0.05, † P < 0.001, Wilcoxon rank sum test disease vs Reference. 

Group LV GCS (mid) LV GLS RV GCS (mid) RV GLS MAPSE TAPSE 

Reference 27.0 (3.6) 20.6 (2.6) 23.8 (5.6) 32.1 (5.3) 12.2 (2.2) 17.6 (3.3) 

Atrial fibrillation  25.3 (5.2)† 18.6 (3.9)† 22.5 (6.1)† 29.4 (6.8)† 10.9 (2.8)† 15.4 (4.5)† 

Dilated cardiomyopathy 19.6 (4.9)† 15.8 (3.6)† 17.7 (6.3)† 25.5 (6.7)† 9.7 (2.4)† 14.1 (3.8)† 

Diabetes mellitus 26.3 (4.4)† 19.9 (3.0)† 22.7 (6.0)† 31.9 (5.9) 11.1 (2.3)† 16.0 (3.8)† 

Hypertrophic 
cardiomyopathy 

26.1 (6.0) 17.8 (3.5)† 23.6 (6.8) 28.1 (6.2)* 10.6 (3.3)* 14.9 (4.4) † 

Heart failure 23.4 (5.3)† 17.8 (3.7)† 22.2 (6.2)† 30.0 (6.6)† 10.4 (2.6)† 15.2 (4.1)† 

Myocardial infarction, 
ischaemic heart disease 

25.9 (4.6)† 19.5 (3.1)† 23.1 (5.9)† 31.3 (5.9)† 11.4 (2.3)† 16.1 (4.0)† 

Conduction disease 24.8 (4.6)† 19.0 (3.1)† 22.7 (6.1)† 30.3 (6.2)† 11.4 (2.4)† 16.0 (3.8)† 

Ventricular arrhythmia 
composite 

25.0 (5.2)† 18.7 (3.7)† 22.9 (5.0) 30.9 (6.2) 11.2 (2.4)† 16.4 (4.0)† 
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Table 3. Comparison of linear discriminant analysis AUC of disease prevalence: PC 

scores vs standard metrics. Disease: cardiovascular or cardiometabolic disease; 

AUC, area under the curve; PCs, principal components. LV and RV end-diastolic and 

end-systolic volumes, ejection fractions, global circumferential and longitudinal 

strains, LV mass, and MAPSE and TAPSE are all included in the Standard model. 

 
 
Disease 

 AUC DeLong test 
P-value PCs (1-25)  Standard  

Atrial fibrillation 
(n=1088) 

0.76 0.71 8.9E-13 

Heart failure (n=341) 0.82 0.78 2.4E-05 

Hypertrophic 
cardiomyopathy (n=26) 

0.79 0.83 0.14 

Dilated cardiomyopathy 
(n=32) 

0.92 0.91 0.70 

Ventricular arrhythmia 
composite (n=151) 

0.73 0.68 0.04 

Myocardial infarction or 
ischaemic heart disease 
(n=2389) 

0.73 0.69 1.0E-20 

Diabetes mellitus 
(n=1656) 

0.77 0.68 2.1E-56 

Conduction disease 
(n=635) 

0.78 0.74 6.4E-08 

 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



                  

 

Table 4. Comparison of linear discriminant analysis AUC of CMD prevalence, including 

covariates in both models. CMD, cardiometabolic disease; AUC, area under the curve; 

PCs, principal components; Standard: LV and RV end-diastolic and end-systolic 

volumes, ejection fractions, global circumferential and longitudinal strains, LV mass, 

and MAPSE and TAPSE. Covariates were age at imaging, sex, height, weight, BMI 

and afterload. 

 
 
 
CMD 

 AUC DeLong test 
P-value PCs Standard  

Atrial fibrillation 
(n=1088) 

0.77 0.76 1.8E-03 

Heart failure (n=341) 0.85 0.82 4.9E-04 

Hypertrophic 
cardiomyopathy (n=26) 

0.82 0.83 0.55 

Dilated cardiomyopathy 
(n=32) 

0.94 0.89 0.10 

Ventricular arrhythmia 
(composite) (n=151) 

0.74 0.72 0.19 

Myocardial infarction or 
ischaemic heart disease 
(n=2389) 

0.77 0.77 0.18 

Diabetes mellitus 
(n=1656) 

0.82 0.81 2.2E-04 

Conduction disease 
(n=635) 

0.81 0.79 4.9E-04 
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Table 5. Model and manual analyses of volume and strain. Mean (standard 

deviation); *p<0.001 Disease vs Reference, Wilcoxon rank sum test; 1Strain for 

n=565 for disease and 3,280 for reference cases with both manual tagging 

(midventricular) and model strain. GCS: global circumferential strain. 

 Shape Model Manual 

Characteristic Disease 
(n=669) 

Reference 
(n=3,588) 

Disease 
(n=669) 

Reference 
(n=3,588) 

LVEDV (ml) 157 (37)* 148 (32) 151 (37)* 142 (32) 

LVESV (ml) 75 (23)* 68 (18) 63 (23)* 58 (17) 

LVM (g) 132 (28)* 123 (26) 99 (26)* 87 (23) 

RVEDV (ml) 154 (36)* 148 (35) 158 (37)* 151 (37) 

RVESV (ml) 69 (21)* 65 (20) 70 (23)* 67 (22) 

LV GCS (mid, %) 1 26.2 (4.1)* 27.2 (3.3) 21.5 (3.3)* 22.5 (2.9) 
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Table 6: Linear discriminant scores for each disease category (z-scores). Disease: 

cardiovascular or cardiometabolic disease; PCs, principal components; Standard: LV 

and RV end-diastolic and end-systolic volumes, ejection fractions, global 

circumferential and longitudinal strains, LV mass, and MAPSE and TAPSE. 

 PCs (1-25) Standard 

Disease Reference  Disease  P-value Reference  Disease  P-value 

Atrial fibrillation (n=1088) -0.04 ± 0.95 1.32 ± 1.59 9.8E-132 -0.03 ± 0.97 0.99 ± 1.43 1.2E-98 

Heart failure (n=341) -0.02 ± 0.98 1.79 ± 1.58 7.2E-64 -0.02 ± 0.95 1.94 ± 2.69 1.8E-33 

Hypertrophic 
cardiomyopathy (n=26) 

-0.00 ± 1.00 2.25 ± 1.63 2.1E-07 -0.00 ± 1.00 2.08 ± 1.46 1.2E-07 

Dilated cardiomyopathy 
(n=32) 

-0.00 ± 0.99 3.05 ± 1.56 2.6E-12 -0.00 ± 0.99 3.97 ± 3.59 6.1E-07 

Ventricular arrhythmia 
composite (n=151) 

-0.01 ± 0.99 1.27 ± 1.57 2.4E-18 -0.01 ± 0.98 1.56 ± 3.06 4.2E-09 

Myocardial infarction or 
ischaemic heart disease 
(n=2389) 

-0.07 ± 0.94 0.93 ± 1.26 2.9E-251 -0.05 ± 0.93 0.79 ± 1.47 3.9E-148 

Diabetes mellitus 
(n=1656) 

-0.05 ± 0.97 0.99 ± 1.00 3.3E-264 -0.03 ± 0.98 0.68 ± 1.15 4.3E-117 

Conduction disease 
(n=635) 

-0.02 ± 0.98 1.30 ± 1.36 1.2E-93 -0.02 ± 0.96 1.22 ± 1.84 1.7E-53 
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