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Abstract 31 

Beta oscillations (13-30Hz) are ubiquitous in the human motor nervous system. Yet, their origins and 32 

roles are unknown. Traditionally, beta activity has been treated as a stationary signal. However, 33 

recent studies observed that cortical beta occurs in ‘bursting events’, which are transmitted to 34 

muscles. This short-lived nature of beta events makes it possible to study the main mechanism of 35 

beta activity found in the muscles in relation to cortical beta. Here, we assessed if muscle beta 36 

activity mainly results from cortical projections. We ran two experiments in healthy humans of both 37 

sexes (N=15 and N=13, respectively) to characterize beta activity at the cortical and motor unit (MU) 38 

levels during isometric contractions of the tibialis anterior muscle. We found that beta rhythms 39 

observed at the cortical and MU levels are indeed in bursts. These bursts appeared to be time-locked 40 

and had comparable average durations (40-80ms) and rates (~3-4 bursts/second). To further confirm 41 

that cortical and MU beta have the same source, we used a novel operant conditioning framework 42 

to allow subjects to volitionally modulate MU beta. We showed that volitional modulation of beta 43 

activity at the MU level was possible with minimal subject learning and was paralleled by similar 44 

changes in cortical beta activity. These results support the hypothesis that MU beta mainly results 45 

from cortical projections. Moreover, they demonstrate the possibility to decode cortical beta activity 46 

from MU recordings, with a potential translation to future neural interfaces that use peripheral 47 

information to identify and modulate activity in the central nervous system. 48 

Significance statement 49 

We show for the first time that beta activity in motor unit populations occurs in bursting events. 50 

These bursts observed in the output of the spinal cord appear to be time-locked and share similar 51 

characteristics of beta activity at the cortical level, such as the duration and rate at which they occur. 52 

Moreover, when subjects were exposed to a novel operant conditioning paradigm and modulated 53 

motor unit beta activity, cortical beta activity changed in a similar way as peripheral beta. These 54 

results provide evidence for a strong correspondence between cortical and peripheral beta activity, 55 

demonstrating the cortical origin of peripheral beta and opening the pathway for a new generation 56 

of neural interfaces.  57 
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1. Introduction 58 

Neural oscillations of brain activity in the beta range (13-30Hz) are ubiquitous in the motor nervous 59 

system (Kilavik et al., 2013). Alongside their pervasive appearance in the brain, beta oscillations with 60 

cortical origin are transmitted linearly and at fast and stable speeds to tonically active muscles 61 

(Ibáñez et al., 2021; Witham et al., 2011). Beta activity can indeed represent an important portion of 62 

the neural inputs received by spinal motor neurons and their innervated muscle fibres, i.e. motor 63 

units (MUs) (Dideriksen et al., 2018; Farina et al., 2014; Grosse et al., 2002). However, the 64 

prominence of beta activity at the MU level contrasts with the fact that, so far, it has been difficult 65 

to find a direct link between these oscillations and motor function (Baker, 2007; Davis et al., 2012; 66 

Engel and Fries, 2010; Jenkinson and Brown, 2011; Little et al., 2019). One aspect of beta inputs to 67 

MU that makes them hard to study is not knowing which main sources are contributing to these 68 

inputs. Are the characteristics of beta activity in MUs similar to the non-stationary features of beta 69 

oscillations at the cortical level? Is the motor cortex the main structure projecting common beta 70 

inputs to muscles? Or are there other relevant sources elsewhere in the central nervous system?  71 

An interesting recent observation is that cortical beta activity is not a continuous signal, but it 72 

appears in short-lived bursts (Bonaiuto et al., 2021; Feingold et al., 2015; Little et al., 2019; 73 

Pfurtscheller et al., 2005; Shin et al., 2017). Such temporal non-stationary characteristics of beta 74 

activity require new approaches, based on joint time and frequency analysis, to study these 75 

oscillations (van Ede et al., 2018; Jones, 2016; Tal et al., 2020) and their possible links to motor 76 

function (Bonaiuto et al., 2021; Little et al., 2019; Shin et al., 2017; Wessel, 2020). The tracking of the 77 

non-stationary, burst-like behavior of cortical beta allows for directly following its propagation to the 78 

peripheral nervous system by identifying its main characteristics, such as burst duration and 79 

frequency, at the cortical and peripheral level. The analysis of the transmission of beta from the 80 

central to the peripheral nervous system would provide new insights into the role of beta oscillations 81 

on motor control. Moreover, understanding beta transmission would enable the development of 82 

neural interfaces to monitor and extract cortical activity non-invasively from the periphery to 83 

supplement and overcome current limitations of traditional brain monitoring interfaces. 84 

Here we ran two experiments to characterize beta oscillations present at the level of MUs in the 85 

tibialis anterior muscle and their association with cortical beta rhythms in the context of mild 86 

isometric contractions. In the first experiment, we asked subjects to hold a constant force level while 87 

concurrently recording cortical activity via electroencephalography (EEG) and muscle activity via 88 

high-density electromyography (EMG). The EMG was decomposed into the underlying MU activity 89 

associated with force generation. Then, in the second experiment, we used a decomposition 90 

algorithm to extract MU activity from the EMG in real-time (Barsakcioglu et al., 2021) and a novel 91 
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neural feedback paradigm to operantly conditioning beta in the MUs (Bräcklein et al., 2020). By 92 

doing this, we were able to assess how the relationship between cortical and peripheral beta 93 

rhythms is influenced by volitional modulation of MU beta power. Overall, our results demonstrate 94 

that beta activity in the MUs is short-lived, mainly driven by cortical bursts, and can be volitionally 95 

modulated, imposing parallel modulation at the cortical level.  96 



 

6 
 

2. Materials and methods 97 

2.1. Subjects 98 

In this study, 28 healthy subjects (3 females, all subjects between 24 and 35 years old) participated, 99 

of whom 15 (2 females) in Experiment 1 and 13 (1 female) in Experiment 2. All subjects were naïve 100 

to the experimental paradigms. None of the subjects reported any history of sever neuronal or lower 101 

limb injuries. Experiment 1 was approved by the University College London Ethics Committee (Ethics 102 

Application 10037/001) and Experiment 2 by the ethics committee at Imperial College London 103 

(reference number: 18IC4685). 104 

2.2. Data acquisition 105 

High-density surface EMG (HDsEMG) from the tibialis anterior muscle of the dominant leg (self-106 

reported) was acquired via a 64-electrode grid (5 columns and 13 rows; gold-coated; 1 mm 107 

diameter; 8 mm interelectrode distance; OT Bioelettronica, Torino, Italy). The electrode grid was 108 

placed over the muscle belly aligned to the muscle’s fiber direction. In addition, single-channel EMG 109 

of the medial and lateral head of the gastrocnemius muscle was recorded via wet electrodes (Ambu 110 

Ltd, St Ives, United Kingdom) placed above the muscle belly throughout Experiment 2. The EMG 111 

signals were monopolar recorded, amplified via a Quattrocento Amplifier system (OT Bioelettronica, 112 

Torino, Italy), sampled at 2048Hz, A/D converted to 16 bits, and digitally band-pass filtered (10-113 

500Hz). Subjects were seated throughout the experiments while the foot of the dominant leg was 114 

locked into position to allow dorsiflexion of the ankle only. The force due to ankle dorsiflexion was 115 

recorded via a CCT TF-022 force transducer, amplified (OT Bioelettronica, Torino, Italy), and low-pass 116 

filtered at 33Hz. The communication between the amplifier and the computer was conducted via 117 

data packages of 256 samples (one buffer corresponds to a signal length of 125ms). All incoming 118 

EMG signals were band-pass filtered between 20-500 Hz using a 4th order Butterworth filter.119 

 Furthermore, EEG signals were acquired from 31 positions according to the International 10-120 

20 system via active Ag/AgCl electrodes (actiCAP, Brain Products GmbH, Munich, Germany). FCz was 121 

used as a reference. The signal was amplified (BrainVision actiCHamp Plus, Brain Products GmbH, 122 

Munich, Germany) and sampled at 1000 Hz. The EEG was offline band-pass filtered between 0.5 and 123 

45 Hz (4th order Butterworth filter). A surface Laplacian filter covering the central part of the brain by 124 

taking the neighboring positions of Cz into account was applied (Kayser and Tenke, 2015). Both EMG 125 

and EEG signals were offline resampled at 512 Hz and synchronized with a common digital trigger 126 

signal.  127 

For one subject, no EMG of the lateral nor medial head of the gastrocnemius muscle was recorded 128 

due to a material failure. 129 
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2.3. Experimental paradigm 130 

The experimental paradigm for both experiments is visualized in Figure 1A. 131 

2.3.1. Pre-experimental processing 132 

Before the start of the experiments, subjects were asked to perform a single maximum dorsiflexion 133 

of the ankle to estimate the maximum voluntary contraction level (MVC). The obtained MVC was set 134 

as a reference for the following experiment to ensure that stable forces were produced by the 135 

tibialis anterior muscle. 136 

In addition to force feedback, Experiment 2 also informed the subjects about the amount of beta 137 

activity in the MU innervating the tibialis anterior muscle. For this, an online decomposition 138 

algorithm was used to decode MU activity in real-time (Barsakcioglu et al., 2021). In order to 139 

estimate the separation matrix used to decode MU activity from the HDsEMG recordings, subjects 140 

were instructed to perform an additional ramp and hold task. This involved a 4s period of linear 141 

increase in the contraction level departing from a relaxed position and reaching a contraction level 142 

of 10% of the MVC (ramp phase) and steady contraction at 10% of the MVC level held for 40s (hold 143 

phase). The decomposed MU discharge behavior was visually inspected following established 144 

guidelines (Del Vecchio et al., 2020) while subjects were instructed to gradually increase the force 145 

due to dorsiflexion tup to 10% MVC to recruit MUs. 146 

2.3.2. Experiment 1 – force task 147 

Experiment 1 aimed to assess the characteristics of cortical and MU beta activity during constant 148 

isometric contraction at a mild force level. This experiment consisted of two blocks. In each block, 149 

subjects were provided with visually guided feedback on the exerted force and asked to follow a 150 

ramp and hold trajectory for 40s at 10% MVC presented on a screen while EEG was recorded 151 

concurrently. Between blocks, subjects were instructed to rest to avoid muscle fatigue. 152 

2.3.3. Experiment 2 – beta modulation 153 

In Experiment 2, the relationship between cortical and MU beta was assessed while subjects were 154 

allowed control over MU beta. For this, subjects were instructed to move a cursor inside a target 155 

rectangle by exerting a force due to ankle dorsiflexion at 10% MVC. While holding the cursor inside 156 

the rectangle, i.e. exerting a constant force at 10% MVC, subjects were asked to change the color of 157 

the cursor to match a presented target by modulating the MU beta power at ~20Hz. Similar to 158 

Experiment 1, EEG was recorded throughout Experiment 2.  159 

Experiment 2 consisted of three parts: i) an initialization phase to determine all parameters 160 

necessary for real-time neurofeedback on the MU beta activity, ii) familiarization phase to allow 161 

subjects to get familiar with the experimental neurofeedback environment and task, and iii) the 162 
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neurofeedback task in which subjects were exposed to real-time feedback on the exerted force and 163 

MU beta activity. 164 

Initialization phase 165 

The initialization phase mimicked the paradigm previously performed in (Bräcklein et al., 2020). 166 

Subjects were asked to exert a force at 10% MVC for 40s guided visually by a force trajectory. During 167 

this period, the underlying MU activity was used to identify the most prominent peak inside the beta 168 

band of the intramuscular coherence (IMC). The IMC was used in this case as it allowed us to 169 

estimate the common input to the MU pool at a given frequency (Castronovo et al., 2015; Dideriksen 170 

et al., 2018). The power inside a 5Hz band of the cumulative MU spike train (CST) centered around 171 

the IMC peak in the beta band was extracted online using a 3rd-order Butterworth filter. The mean of 172 

this beta feature in the initial training block was used for normalization during the neurofeedback 173 

part in Experiment 2. The logarithm of this normalized beta feature was then fitted to a Gaussian 174 

distribution to provide feedback on the beta activity using a color code. Specifically, a blue-to-white-175 

to-red colormap was mapped to the logarithmical beta feature ranging from two standard 176 

deviations below the mean (blue) to two standard deviations above the mean (red), while the mean 177 

was coded via the color white (see Figure 1B). If the beta feature value was outside the range of the 178 

colormap, i.e. more than two standard deviations off the mean, the displayed color was set to the 179 

closest extrema (either blue or red). 180 

Familiarization phase 181 

The familiarization phase provided subjects with the same feedback environment as they 182 

experienced later in the neurofeedback task. Subjects were instructed to move a cursor up into a 183 

target rectangle by modulating the force exerted during dorsiflexion of the ankle. This target 184 

rectangle was centered at 10% MVC with a lower and upper bound at 9.5% and 10.5% MVC, 185 

respectively. The cursor's color changed accordingly to the underlying beta feature and its 186 

corresponding value in the blue-white-red colourmap. If the cursor was outside the target rectangle, 187 

its color was changed to black. Hence, subjects only received feedback on the underlying beta 188 

feature when the cursor was inside the target. By doing this, subjects were encouraged to exert 189 

stable forces. Cursor position and color were updated every 125ms. The beta feature amplitude was 190 

averaged across the amplitudes observed in the seven most recent 125ms buffers analyzed as 191 

previously performed by (Bräcklein et al., 2020). Subjects had approximately 10min to get 192 

themselves familiar with this neurofeedback environment.  193 
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Neurofeedback task 194 

The neurofeedback task was divided into multiple blocks. Subjects were asked to perform a 195 

minimum of three and a maximum of six blocks of training before three last consecutive blocks were 196 

used for further analysis. Each block consisted of three trials. Each trial started with subjects 197 

contracting their tibialis anterior muscle to produce ankle dorsiflexion forces that moved the cursor 198 

inside the target rectangle at 10% of the MVC. Once the cursor was within the target rectangle, the 199 

force produced had to be kept constant for 30s while beta activity had to be modulated. Specifically, 200 

subjects were asked to either keep the cursor blue for as long as possible (beta down-modulation 201 

condition), or red (up-modulation condition). In a third condition, no feedback on the underlying 202 

beta activity was given (the cursor stayed white when held inside the target; see Figure 1B). The 203 

color target indicating the modulation condition of each trial, was provided verbally by the 204 

experimental instructor and as visual clues by the color of the cursor edge. Hence, the cursor edge 205 

was blue when subjects were asked to keep the cursor blue (down-modulating MU beta), red (up-206 

modulating beta), or black if no neurofeedback on MU beta was provided. Per block, each 207 

modulation condition was presented once in a randomized order. Between each trial, subjects 208 

rested for at least 1 min to minimize muscle fatigue. 209 

2.4. Analysis 210 

2.4.1. Spectral analysis 211 

The time-frequency representation of the CST and the surface Laplacian EEG was obtained using the 212 

continuous wavelet transform implemented via the cwt function in MATLAB (Version 2018b, 213 

MathWorks Inc., MA, USA). The cortico-muscular coherence (CMC) was estimated using magnitude-214 

squared wavelet coherence implemented via the MATLAB function wcoherence. A similar 215 

approach was chosen to estimate the temporal evolution of the IMC via a custom MATLAB script 216 

built upon the wcoherence function. To estimate the IMC, the MU pool was split into two 217 

randomly selected sub-pools of equal size. The magnitude-squared wavelet coherence between the 218 

CSTs of both MU sub-pools was calculated. This step was repeated over 100 iterations, always 219 

choosing a different configuration of MU sub-pools. The IMC was obtained by averaging the 220 

coherence estimates obtained during the 100 iterations.  221 

The beta bursting activity present in the CST and EEG signals was extracted using a band-pass filter 222 

(13-30Hz, 4th-order Butterworth). The envelopes of the band-pass-filtered signals were used to 223 

determine when beta bursts occurred. The threshold above which the envelope was classified as a 224 

bursting event was empirically determined similar to the methods used in (Little et al., 2019; Shin et 225 

al., 2017). For Experiment 1, the envelopes from EEG and CST in each block were split into 1s 226 

windows. In each window, the correlation between the power of the signal and the percentage of 227 
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signal above the threshold was determined using the Pearson correlation coefficient and averaged 228 

across blocks. Hereby, the threshold was increased from 0 to 6 times the median in .25 steps. The 229 

threshold that resulted in the maximum correlation between power and percentage of signal above 230 

threshold was used to identify beta events. This procedure was repeated for Experiment 2 on block-231 

level for the non-beta power feedback trials. The results are visualized in Figure 2. For Experiment 1, 232 

the empirically determined threshold was 2.50 and 2.75 times the median for CST and EEG, 233 

respectively. For Experiment 2, it was 2.25 and 2.75 times the median for CST and EEG. Consecutive 234 

periods where the envelopes were above the threshold were marked as ON periods (beta bursting 235 

events), similarly as previously performed in (Echeverria-Altuna et al., 2021). Hence, the length of 236 

ON periods was used to estimate the duration of beta events. The beta event power was calculated 237 

as sum of all ON events divided by the recording time. The remaining periods, i.e. when the 238 

envelope was below the threshold, were identified as OFF periods. The time points of ON and OFF 239 

events were set to the center of the respective periods. To analyze neural activity around ON and 240 

OFF periods, the wavelet transposed spectra of CST and EEG, the wavelet CMC and IMC were 241 

averaged in 500ms windows centered at the times of ON and OFF events. Furthermore, the 242 

percental mismatch between ON and OFF events was calculated as: ((ON - OFF) / OFF) * 100. 243 

2.4.2. Experiment 1 – force task 244 

The HDsEMG recorded during 40s of isometric ankle dorsiflexion at 10% MVC was offline 245 

decomposed into the underlying MU activity using the algorithm proposed in (Negro et al., 2016). 246 

The decomposition results were manually inspected as detailed in (Del Vecchio et al., 2020). To 247 

control if the identified bursts in the EEG and the MU pool result from underlying amplitude 248 

modulations or in contrast from isolated bursting events, the lagged coherence method was 249 

employed (Fransen et al., 2015) using the NeuroDSP Python toolbox (Cole et al., 2019). This spectral 250 

measure examines coherence between the signal and a delayed version of the same signal at each 251 

frequency. If the lagged coherence is large, it provides evidence that the observed bursting events 252 

occur in periodically and thus may be due to an underlying modulation. However, when the 253 

examined signal occurs in de-coupled events, detached from any ongoing modulations, the lagged 254 

coherence is smaller. The power spectral density was calculated using Welch’s method (2s window, 255 

50% overlap) and normalized between 1 and 40Hz. 256 

2.4.3. Experiment 2 – beta modulation 257 

The online decomposed MU activity was post-hoc cleaned from artefacts. Action potentials that 258 

were fired with an instantaneous discharge rate above 30 spikes-per-second (sps) were neglected. 259 

Only the 30s-time interval during which subjects were instructed to modulate the beta activity while 260 

keeping the force constant were analyzed. In addition, the beta activity and discharge rate were 261 
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recalculated by neglecting MUs that had an average discharge rate below 5sps or above 30sps or a 262 

discharge rate coefficient of variation (CoV) above 0.5 in any of the recorded blocks. The resulting 263 

cleaned pools of MUs were used in the subsequent analysis, also for example, to recalculate the 264 

beta feature and wavelet transformed CST activity, CMC, and IMC.  265 

Functional values obtained during up- and down-modulation of MU beta activity, such as the mean 266 

force, beta amplitude, average rectified EMG, i.e. global EMG, bipolar EMG, and the corresponding 267 

CoVs to all values mentioned before, and the mean MU discharge rates were normalized by the 268 

averaged values obtained during the control condition (when no neurofeedback on the MU beta 269 

activity was provided). The wavelet transformed CST and EEG, CMC, and IMC were interpolated to 270 

transform the logarithmical frequency scale into a linear one for further analysis to ensure an equally 271 

weighted representation of all frequencies. The results were averaged inside the entire beta band 272 

(13-30Hz) and within in 500ms window centered around the ON-triggered averaged. The values 273 

obtained during neurofeedback were normalized by the corresponding values obtained during the 274 

control condition. 275 

The custom scripts used for analysis are available upon reasonable request from the corresponding 276 

author. 277 

2.5. Statistics 278 

Statistical analysis was performed via SPSS (IBM, Armonk, NY, USA) and custom MATLAB routines. 279 

Results were reported as mean ± standard deviation. Significant clusters of beta activity in the 280 

difference in the time-frequency representation of beta ON and OFF events were determined using 281 

the cluster-level analysis proposed by (Maris and Oostenveld, 2007). In brief, this approach assessed 282 

clusters of adjacent samples in both frequency and time dimensions under a single permutation 283 

distribution (we used 10 000 permutations and an univariant clustering threshold of .05). This 284 

approach allows to bypass multi-comparison issues present in multi-dimensional data. The 285 

characteristics of beta bursting events in the MUs and the EEG were compared by using two-sided 286 

paired t-tests. The effect of volitional beta modulation on multiple motor behavioral properties of 287 

the innervated leg were tested by a repeated measures MANOVA. Hereby, the independent 288 

variables were the different modulation conditions, i.e. beta down- and up-modulation. Dependent 289 

variables were the mean force, mean rectified EMGs of agonist and antagonist muscles, the CoV of 290 

these values and the mean discharge rates of the decomposed MUs across subjects. Differences in 291 

the mean beta feature amplitude were assessed by two-sided paired t-tests. To assess whether the 292 

temporal evolution of the modulated beta feature correlated with muscle activation, the correlation 293 

coefficient between the exerted force, the rectified EMG of the agonist muscle or the discharge rate 294 

of the identified MU pool, and the beta feature were estimated using the Pearson correlation 295 
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coefficient. To do this, force, rectified EMG and discharge rate were post-processed in a similar 296 

fashion as the beta feature, i.e. corresponding values were averaged per each recording buffer.  297 

The difference in beta event features at the cortical and MU level was assessed using linear mixed 298 

models. Linear mixed models were also used to evaluate the effect of volitional beta modulation at 299 

MU level on the beta bursting characteristics and spectral values, such as wavelet-transformed CST 300 

and EEG, CMC, and IMC, on single blocks, in which the difference between beta down- and up-301 

modulation was the dependent variable and the subject-wise grouping a random effect. Values 302 

during up- and down-modulation were normalized using data from the non-feedback condition as 303 

described in 2.4.3. The partial eta-squared (ηp
2) was used to assess the effect size of the changes 304 

between beta modulations. Values greater than 0.14 indicate that a “large” effect can be observed 305 

in the particular comparison (Cohen, 1988). The threshold for statistical significance was set to p < 306 

.05. 307 

  308 
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3. Results 309 

3.1. Experiment 1 – force task 310 

In total, 22.73 ± 7.95 MUs per block were identified in Experiment 1. Figure 3 visualizes the time-311 

frequency spectra inside the beta band of cortical (EEG signals) and muscle (the CST generated with 312 

the decomposed MUs) signals during a period of isometric ankle dorsiflexion at 10% MVC. Both 313 

spectra indicated that beta activity at the cortical and muscle levels occurred in short intervals, i.e. 314 

bursts of activity, while subjects held constant forces. The zoomed-in plot (Figure 3, bottom) 315 

suggested that some bursts observed in the muscle overlapped with bursts observed in the EEG. 316 

While the observed beta burst might occur as infrequent uncoupled bursting events, they could also 317 

result from an underlying amplitude-modulated oscillation. Hence, we conducted a control analysis 318 

to assess whether beta bursts in MUs and EEG result from a sustained amplitude modulation. In this 319 

case, the phase inside the beta band should predict the phase in upcoming cycles. In contrast, if 320 

these bursts do not originate from an underlying sustained modulation, the current phase inside 321 

beta should correlate less with future cycles (Fransen et al., 2015). Figure 4 illustrates that although 322 

both cortical and MU show prominent beta activity in their spectra, the lagged coherence decreases 323 

inside this range compared to other spectral components. Further, this effect seems prolonged 324 

across multiple cycles. This indicates that in both EEG and MU activity, beta bursting events seem to 325 

be isolated, thus not resulting from underlying modulation. 326 

To understand activity around the short-lived beta bursts found in the EEG and CST signals, the 327 

wavelet-transformed data were averaged at the center of ON and OFF periods found in the EEG 328 

across blocks. Figure 5 visualizes these triggered averages for the wavelet-transformed EEG, CST, the 329 

CST-EEG coherence (CMC), the intramuscular coherence (IMC), and the force profile at respective 330 

time intervals. While the exerted force did not significantly change between ON and OFF periods (no 331 

significant clusters, always p > .05), beta activity present in the EEG was significantly pronounced 332 

during ON relative to OFF periods in a cluster at the center of EEG beta events (p = .024). Also, beta 333 

activity in the CST was pronounced during ON periods compared to OFF, despite the time points of 334 

ON and OFF being determined by the EEG activity (p = .042). It is worth noting that the maximum 335 

difference between ON and OFF in the EEG was around time lag 0 (-.49ms), while the maximum 336 

difference in the CST was delayed by 24.41ms. Furthermore, a significantly pronounced bursting 337 

activity in the CMC was observed (p = .001). Similarly, the results suggested that the IMC was also of 338 

transient behavior inside the beta band (IMC, p = .026). 339 

The previous results indicated that beta activity observed in cortical and muscle recordings occurred 340 

in bursts. Moreover, the significant beta activity in the CST identified during EEG beta bursting 341 
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events suggested that beta bursts in the MU overlapped with those present at the cortical level. This 342 

confirms previous observations made using surface EMG signals (Echeverria-Altuna et al., 2021). In 343 

addition, we observed that the common input inside the beta range to the MU pool was of bursting 344 

behavior and appeared to be time-locked to cortical beta bursts. To further assess how beta bursts 345 

observed in the MU pool matched with the beta bursts in the EEG we compared the rate and 346 

duration of the beta bursts extracted from the CST and EEG (Figure 6). Beta events observed at the 347 

MU level appeared at a rate of 3.56 ± .41 events per second while beta events in EEG at a slightly but 348 

significantly lower rate of 3.23 ± .30 (p = .003, ηp
2 = .469). There was no significant difference 349 

detected between the average duration of the beta bursts observed on the MU level (55.61 ± 350 

11.27ms) and the bursts in the EEG (53.10 ± 9.23; p = .398, ηp
2 = .052). 351 

3.2. Experiment 2 – beta modulation 352 

Results from Experiment 1 showed that beta activity occurs in bursts both at the cortical and muscle 353 

levels. Moreover, the bursts observed at both levels are similar in features such as duration and rate 354 

of events and appear to be temporarily aligned with a small offset. These results therefore support 355 

the notion that beta activity in the EEG and CST have a shared underlying source. If this is the case, it 356 

is expected that modulation of beta activity at the MU level should correspond to a similar 357 

modulation of cortical beta observed in the EEG. To test this, Experiment 2 used a novel neural 358 

interface based on real-time decomposition of MU activity from the interference EMG. 359 

In this online experiment 11.92 ± 2.48 MUs per subject were identified and tracked in real time. 360 

Subjects could significantly reduce the normalized mean beta amplitude during down-modulation to 361 

0.91 ± 0.20, compared to up-modulation at 1.07 ± 0.26 (two-sided paired t-test, t(12) = -2.454, p = 362 

.030; see Figure 7A). In the context of volitional MU beta modulation, neither the mean exerted 363 

force nor other functional measures of the innervated leg changed significantly (repeated measures 364 

MANOVA Wilks’ Lambda corrected, p = .424, ηp
2 = .811). Furthermore, across all subjects, no 365 

temporal correlation between the beta feature and the force, rectified EMG of the tibialis anterior 366 

muscle, and discharge rate of MUs were detected (Figure 7B; all medians are below the significance 367 

level). Taken together, these results suggested that subjects were able to modulate the beta band 368 

activity present in a MU pool without critically altering the motor output. 369 

To study the impact that modulation of beta activity in the MU pool has on cortical beta activity, we 370 

compared the burst power and the three burst features that contribute to the power estimate, i.e. 371 

peak amplitudes of the beta bursts, the bursts durations, and the number of bursts, between beta 372 

down- and up-modulation conditions normalized by the corresponding values obtained when no 373 

beta feedback was provided (Figure 8). The power of the beta bursts in both CST and EEG increased 374 
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during up-modulation compared to down modulation from 0.89 ± .27 to 1.09 ± .37 (p = .003, ηp
2 = 375 

.540) in the CST, and from 0.75 ± .25 to .83 ± .26 (p = .013, ηp
2 = .415) in the EEG. The amplitudes of 376 

beta bursts in the CST and in the EEG were significantly higher in the up-regulation condition than in 377 

the down-modulation condition (CST: from 0.96 ± .09 to 1.02 ± .12, p = .002, ηp
2 = .581; EEG: from 378 

0.94 ± .09 to 0.96 ± .09, p = .038, ηp
2 = .311). The duration of the beta events did also change 379 

between conditions at the MU level from 0.93 ± .12 to 1.00 ± .11 during down- and up-modulation, 380 

respectively (p < .001, ηp
2 = .652) but was not significant at the cortical level with longer durations of 381 

beta events during up-modulation (from .92 ± 0.10 to 0.96 ± 0.11, p = .079, ηp
2 = .235). The rate of 382 

observed beta events at the MU level increased significantly from 0.98 ± .15 to 1.05 ± .18 (p = .023, 383 

ηp
2 = .363). On average, the rate of beta events did also increase at the cortical from .85 ± .14 to 0.89 384 

± .14, but this effect was marginally not significant (p = .058, ηp
2 = .268). 385 

The appearance of beta bursts in the EEG and MU activity changed during volitional beta feature 386 

modulation. Figure 9 shows the impact of volitional beta modulation on the MU and EEG beta 387 

activity during beta ON events. The spectral power in the beta band during ON events increased 388 

significantly in the CST from .99 ± .20 to 1.09 ± .23 (p = .019, ηp
2 = .378) and in the EEG from .90 ± .11 389 

to .94 ± .11 (p = .026, ηp
2 = .351) during down- and up-modulation conditions, respectively. Similarly, 390 

the IMC increased significantly during up-modulation from 0.97 ± .06 to 0.98 ± .05 (p = .034, ηp
2 = 391 

.321) suggesting a stronger common input in the beta band during the up-regulation condition. 392 

Interestingly, the CMC did not change significantly from 1.00 ± .06 to 1.00 ± .06 between conditions 393 

(p = .994, ηp
2 = .000), which implies that while the common input to the MU inside the beta range 394 

increased during beta up-modulation relative to down-modulation, the spectral connectivity 395 

between cortical beta and MU beta remained unaffected. These results indicated that cortical beta 396 

power mirrored the changes in the MU. Finally, it should be noted that the same overall effects were 397 

observed when using beta bursting events in the CST to define the timing of ON periods (see Figure 398 

9).  399 
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4. Discussion 400 

We studied the correspondence of cortical beta activity with beta oscillations found in the output of 401 

spinal motor neurons. To do this, we assessed how cortical and peripheral beta bursting events 402 

relate to each other during muscle contractions. We then used a MU-driven neurofeedback 403 

approach to modulate the beta inputs to muscles to test if cortical beta activity followed the 404 

modulation of peripheral beta activity. Our results demonstrate, for the first time, that beta activity 405 

present in a MU pool appears in isolated bursts that closely correspond to the beta activity observed 406 

at the cortical level. In addition, when modulated at the periphery, cortical beta showed the same 407 

modulation pattern. We conclude that beta activity in the periphery is mainly determined by cortical 408 

projections. 409 

The common beta activity present in the MU population strongly corresponded to the cortical beta 410 

projections. We showed that beta activity present in a MU pool is short-lived and shares the 411 

characteristics of the cortical beta rhythms, i.e. rate and duration of beta events. Moreover, the 412 

common input to the MU pool inside the beta range and the resulting MU beta activity were time-413 

locked and followed cortical beta rhythms by tens of milliseconds. Although determining the 414 

transmission delay by only analyzing the beta power is not robust against noise that may mask the 415 

underlying shape of beta bursts, our observation is in strong agreement with previous investigations 416 

using the averaged CMC (Ibáñez et al., 2021; Mima et al., 2000). When we asked subjects to perform 417 

volitional modulations of the beta activity present in the MUs via a novel neurofeedback paradigm 418 

(Bräcklein et al., 2020), changes in the cortical beta power were shown to be coherent with those 419 

induced in the periphery. These findings suggest a strong and stable correspondence between 420 

peripheral and cortical beta oscillations during steady force contractions.  421 

Although the effective beta activity at the MU level could potentially result from other neural 422 

centers (Thompson et al., 2019), as it was suggested to be the case for MU activity in the alpha range 423 

(8-12Hz) during tremor (Christakos et al., 2006), it seems that these non-cortical contributions may 424 

be minimized or suppressed in the context of cortical inputs during isometric contractions. If their 425 

contribution would have superseded the presence of cortical projections at the MU level, the 426 

resulting beta activity in the periphery would be expected to differ from beta patterns observed at 427 

the cortical level. Moreover, the common input to the MUs inside the beta band was increased 428 

during volitional up-modulation of the MU beta power while the connectivity between cortical and 429 

peripheral sites remained unaffected (Figure 9). Hence, the coherence between the cortical regions 430 

and the MU pool inside the beta band (CMC) did not change, but the strength of the common input 431 

received by the MU pool (IMC) did. This provides additional evidence for MU beta signals mainly 432 

emerging from the cortical sites: if successful beta modulation resulted from additional modulation 433 
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of non-cortical sources, the CMC would have been affected by the volitional beta feature modulation 434 

(Negro and Farina, 2011). 435 

The dominance of cortical beta inputs to muscles contrasts with the observed lack of direct influence 436 

on the produced force. No significant relationship between the force output of the tibialis anterior 437 

muscle and the presence of beta rhythms in the innervating MU pool was detected. Still, despite the 438 

absence of any evidence for a direct link between beta bursts and the motor output, beta 439 

oscillations at the MU level could determine a non-linear effect on the neural drive to the innervated 440 

muscle and therefore on the force output (Watanabe and Kohn, 2015). Our results show, however, 441 

that these beta events at the MU level are infrequent, i.e. approximately four events per second 442 

(Figure 6). While a stationary beta that changes amplitude continuously, as simulated in (Watanabe 443 

and Kohn, 2015), may influence force control, a bursting beta is very unlikely to do so since the 444 

corrections in force would be far too slow to improve steadiness. Alternatively, the motor system 445 

could utilize the observed beta events as a sonar signal integrating sensory information from the 446 

muscle (Baker et al., 2006), yet this hypothesis requires further experimental validation. During 447 

Experiment 2, when subjects were instructed to modulate MU beta power, and cortical beta 448 

changed coherently, the exerted force remained unchanged. This provides further evidence that 449 

apart from the timing of beta bursting events, also the modulation of the beta event amplitude does 450 

lie inside a motor null-space relative to force production. Hence, the strong link between cortical and 451 

spinal neurons via beta activity observed in this study did not seem to have any direct influence on 452 

motor output. 453 

When subjects were exposed to neurofeedback on the MU beta activity, beta modulations at the 454 

cortical and MU levels were mainly driven by altering the amplitude. Also rate and duration of beta 455 

events increased during beta-up modulation, however, this effect was only significant at MU level. It 456 

yet remains unknown what underlying mechanism led to a volitional increase in beta power via 457 

increase in the amplitude of beta bursts. One possible explanation would be that subjects were able 458 

to recruit larger cortical networks involved in the projection of beta activity to the muscle. It was 459 

previously shown that the duration of beta bursts was not affected by the performed motor task in 460 

normal conditions (Echeverria-Altuna et al., 2021). Here, we observed, although not always 461 

significant, slightly longer periods of beta events during beta up-modulation compared to down-462 

modulation of MU beta. Subjects did not receive feedback on the instantaneous amplitude of beta 463 

events, nor about their duration or rate. Instead, the feedback provided on the beta feature 464 

amplitude during Experiment 2 was smoothed with a moving average and aimed to motivate 465 

subjects to modulate the beta activity across the entire duration of the trial, i.e. suppressing or 466 

promoting beta activity as long and as often as possible. Further experiments with different 467 
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neurofeedback approaches (e.g., using the instantaneous behavior of beta events) are necessary to 468 

investigate whether subjects could learn to modulate other characteristics of beta activity in the 469 

brain and the muscles. This would be highly useful to advance our understanding of the possible 470 

roles of beta oscillations in movement. 471 

Finally, the strong presence of cortical projections at the MU level opens up new means of studying 472 

cortical beta: peripheral neural interfaces, such as presented in (Barsakcioglu et al., 2021), would 473 

allow an indirect yet reliable window into cortical activity and may contribute to an advanced 474 

understanding of the functional role of beta oscillations in the human motor nervous system by 475 

complementing traditional interfaces, such as based on EEG or magnetoencephalography. We 476 

showed that by closing the loop with a peripheral neural interface based on MU activity, subjects 477 

could volitionally modulate the power of cortical beta bursts. This could provide new possibilities to 478 

exploit cortical beta, for example, as a control signal for virtual or robotic effectors (Dominijanni et 479 

al., 2021; Eden et al., 2021). 480 

In conclusion, we have shown for the first time that the final neural drive to muscles contains 481 

bursting beta activity. Moreover, these beta bursts in the MU behavior shared the appearance and 482 

were time-locked to those observed on the cortical level. Volitional modulation of MU beta activity 483 

was accompanied by coherent changes in cortical beta manifesting the strong correspondence 484 

between cortical and MU beta. The observed bursting activity inside the beta band appeared in 485 

infrequent events at low rate and thus may, at most, influence force generation as a disturbing 486 

factor rather than supporting accurate force control. Cortical beta oscillations seem to be the main 487 

contribution to MU beta activity and the strong correspondence between cortical and peripheral 488 

beta suggests the potential use of peripheral neural interfaces to track and modulate cortical 489 

activity.  490 
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Figure legends 580 

Figure 1: Schematic overview of the experimental paradigms used in both experiments. A: Experimental flow-chart for 581 

Experiment 1 and 2. Both experiments start with estimating the maximum voluntary contraction level (MVC). In Experiment 582 

1, subjects are asked to repeat two blocks of ramp-and-hold force task at 10% MVC separated by a rest period. Experiment 583 

2 continues with two initialization steps in which the online decomposition (“Initialization online decomposition”) and the 584 

neurofeedback parameters (“Initialization phase”) are initialized. In “Familiarization phase” subjects are exposed to the 585 

neurofeedback paradigm used during the “Neurofeedback task”. A single block of the “Neurofeedback task” consisted of 586 

three trails: beta down, beta up, and control. The trials were presented in randomized order and separated by a rest period. 587 

A minimum of six and a maximum of nine blocks were presented to each subject separated by a rest period while only the 588 

last three blocks were used for the analysis. B: Schematic overview of Experiment 2. HDsEMG of the tibialis anterior muscle 589 

was decomposed into the underlying neural activity while, concurrently, the force due to ankle dorsiflexion and the EEG 590 

were recorded. Subjects were asked to navigate a cursor inside a target rectangle by performing ankle dorsiflexion at 10% ± 591 

.5% MVC. Color of the cursor changed based on the beta power in the MU pool. Subjects were asked to keep the cursor 592 

inside the force target and change the cursor color to either blue (down-modulation of the beta activity) or red (up-593 

modulation of the beta activity). In a control condition, no feedback on the beta feature was provided and, instead, the 594 

cursor turned white when placed inside the target. 595 

Figure 2: Beta burst threshold estimation. Correlation between beta band power and number of samples above threshold 596 

for Experiment 1 (top) and Experiment 2 (bottom) for the MU (left) and EEG (right) data. Grey lines indicate single blocks 597 

while solid black line indicate mean across blocks. For Experiment 2, only the control condition was used. Dashed black lines 598 

indicate maximum correlation value and corresponding threshold. 599 

Figure 3: Beta power present in the EEG and MU pool shown in a representative subject. TOP: Force due to dorsiflexion of 600 

the ankle, interpolated time-frequency spectrum inside the beta band for surface Laplacian EEG and CST via continuous 601 

wavelet transform. BOTTOM: Zoom-into force, interpolated time-frequency-spectra of surface Laplacian EEG and CST, and 602 

beta band power (blue) and maxima envelope (red) extracted from the band-pass filtered CST. The Black dashed line 603 

indicates the threshold used to identify beta bursts (ON, grey shaded areas) and valleys in between bursts (OFF). 604 

Figure 4: Lagged coherence analysis for EEG (left) and MU activity (right). Top: Mean power spectral density normalized 605 

between 1 and 40Hz across all blocks. Shaded areas indicate standard error of the mean. Middle: Mean lagged coherence 606 

at three cycles across all blocks. Shaded areas indicate standard error of the mean. Bottom: Mean lagged coherence for 607 

cycles 3 to 7 across blocks. 608 

Figure 5: Neural activity during beta bursting events present in the EEG. ON and OFF periods were aligned and averaged 609 

across blocks. From top row to bottom: force (shading indicates 95% percentile), interpolated wavelet-transformed EEG, 610 

wavelet-transformed-MU activity, CMC, and IMC, at the center time points of ON periods (left), OFF periods (center), and 611 

percental mismatch (right). Black boundaries indicate significant clusters (p < .05). 612 

Figure 6: Relationship between beta bursts observed at the cortical and muscle levels. The rate at which beta events 613 

occurred (left) and their mean duration (right) are shown for cortical (EEG) and peripheral (CST) signals across blocks by 614 

their median and quantiles. Values for individual blocks are marked in grey and connected observation sides of beta events 615 

(i.e. CST and EEG). **p < .01 616 
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Figure 7: Functional values during beta power modulation. A: Mean force and beta feature amplitude (normalized by 617 

mean amplitude during non-feedback condition) during down- and up-modulation conditions (blue and red, respectively) 618 

shown by their median and quantiles all subjects. Grey points indicate the mean value per subject, while grey lines combine 619 

data of the same subject. * p < .05. B: Temporal correlation between the beta power feature and the force, global EMG of 620 

the tibialis anterior and the mean discharge rate (DR) shown across subjects with their median and quantiles. Black bar 621 

indicates significance level of correlation. 622 

Figure 8: Normalized beta events features during modulation. Mean power, amplitude, duration and rates of beta events 623 

are shown across blocks. Corresponding values for beta down-modulation (blue), and up-modulation (red) are normalized 624 

by the control condition (no neurofeedback on beta activity). The top row shows values observed on the MU level (CST) and 625 

the bottom one for EEG level. Grey dots indicate values for single blocks. Grey lines combine values corresponding to the 626 

same block. *p < .05 627 

Figure 9: Impact of volitional beta feature modulation on spectral measures. From left to right: beta band power 628 

extracted from the MU activity and EEG, beta-band coherence in the CMC and IMC across subjects during beta feature 629 

down- (blue) and up-modulation (red). Mean values were extracted from a 500ms window centered around the ON periods 630 

identified in the EEG (top) and MU activity (CST, bottom) and were normalized by the corresponding values obtained during 631 

the control condition (no beta neurofeedback). Grey dots indicate values for single block, while grey lines combine values 632 

corresponding to the same block. *p < .05 633 




















