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Adaptive Diffusion Schemes for
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Abstract—In this paper, we deal with distributed estimation
problems in diffusion networks with heterogeneous nodes, i.e.,
nodes that either implement different adaptive rules or differ in
some other aspect such as the filter structure or length, or step
size. Although such heterogeneous networks have been considered
from the first works on diffusion networks, obtaining practical
and robust schemes to adaptively adjust the combiners in differ-
ent scenarios is still an open problem. In this paper, we study a
diffusion strategy specially designed and suited to heterogeneous
networks. Our approach is based on two key ingredients: 1) the
adaptation and combination phases are completely decoupled, so
that network nodes keep purely local estimations at all times and
2) combiners are adapted to minimize estimates of the network
mean-square-error. Our scheme is compared with the standard
adapt-then-combine scheme and theoretically analyzed using en-
ergy conservation arguments. Several experiments involving net-
works with heterogeneous nodes show that the proposed decoupled
adapt-then-combine approach with adaptive combiners outper-
forms other state-of-the-art techniques, becoming a competitive
approach in these scenarios.

Index Terms—Adaptive networks, diffusion networks, dis-
tributed estimation, least-squares, mean-square performance.
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I. INTRODUCTION

OVER the last years, adaptive diffusion networks have be-
come an attractive and robust approach to estimate a set of

parameters of interest in a distributed manner (see, e.g., [1]–[15]
and their references). Compared to other distributed schemes,
such as incremental and consensus strategies, diffusion tech-
niques present some advantages, e.g., they are more robust to
link failures or they do not require the definition of a cyclic
path that runs across the nodes as in incremental solutions [16].
Furthermore, they perform better than consensus techniques in
terms of stability, convergence rate, and tracking ability [5]. For
these reasons, adaptive diffusion networks are considered an
efficient solution in applications such as target localization and
tracking [4], environment monitoring [5], and spectrum sensing
in mobile networks [4], [17], among others. Moreover, they are
also suited to model complex behaviors exhibited by biological
or socioeconomic networks [5].

Diffusion networks consist of a collection of connected nodes,
linked according to a certain topology, that cooperate with each
other through local interactions to solve a distributed inference
or optimization problem in real time. Each node is able to extract
information from its local measurements and combine it with the
ones received from its neighbors [4], [5]. This is typically per-
formed in two stages: adaptation and combination. The order in
which these stages are performed leads to two possible schemes:
Adapt-then-Combine (ATC) and Combine-then-Adapt (CTA)
[1], [18]. In both cases, the adaptation and combination steps
are interleaved with the communication of the intermediate esti-
mates among neighbors. In general, it is assumed that this com-
munication among the nodes is synchronous, though an analysis
of asynchronous diffusion strategies is available in [19].

In this paper, we focus on heterogeneous diffusion networks.1

We refer as heterogeneous to networks whose nodes implement
diverse update functions, i.e., they can differ in the filter length
or structure, step sizes, or even in the implemented learning rule.
This is different to other popular scenarios such as multitask or
node-specific diffusion networks [23], where the heterogeneity
is in the input that nodes receive or/and in the task they solve.
Heterogeneous nodes are an interesting choice to improve the
tracking performance of the network, or simply to achieve a
better tradeoff between computational cost and convergence

1Although there exist many studies involving heterogeneous networks in the
literature (sensor networks [20], epidemiology [21] or cellular networks [22]),
here we restrict ourselves to the particular case of diffusion networks.
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Fig. 1. Estimation error for two nodes of a fully-connected ATC network with
5 nodes. All nodes implement LMS rules, but node 1 (fast node) uses a larger
step size than the rest of nodes.

rate by updating the nodes with different algorithms. Thus, it
is not surprising that such heterogeneous networks have been
considered in the literature from the first works on diffusion
networks. For instance, [4] and [5] already considered in the
analysis of the ATC and CTA schemes the case of least-mean-
squares (LMS) nodes with different step sizes, and [24] used
the term heterogeneous to refer to informed and uninformed
(i.e., without access to local measurements) nodes in a diffusion
network.

Compared to multitask scenarios, experimental studies of this
kind of networks have been quite limited up to now and we think
that they deserve more attention. One possible explanation is
that overall network performance can be very sensitive to an
inappropriate selection of the network combiners. To illustrate
this, Fig. 1 shows the performance of the ATC scheme of [18]
for a fully-connected network of 5 nodes implementing LMS
updates, using static combiners. In this example, four nodes have
a common step size, whereas the last node uses a larger value that
can provide faster convergence. As it can be seen, in this case
the diffusion strategy actually degrades the convergence of the
fast node and the steady-state performance of the slow ones with
respect to the operation of these nodes in the non-cooperation
case. This is due to the use of fixed combiners that ‘contaminate’
the estimation of the fast node during convergence, whereas
during the steady-state regime slow nodes fuse their estimations
with that coming from the fast node, resulting in larger rather
than smaller estimation error.

This simple example illustrates the importance of adequate
rules for setting and adjusting the combination parameters in
heterogeneous networks. Indeed, combination weights play an
essential role in the overall performance of the network. For
instance, diffusion least-mean-squares (LMS) strategies can

perform similarly to classical centralized solutions when the
weights used to combine the neighbors estimates are opti-
mally adjusted [4], [25], [26]. Initially, different static com-
bination rules were proposed such as Uniform [27], Laplacian
[28], Metropolis [28], and Relative Degree [29]. Some adaptive
schemes for adjusting the combination weights (e.g., [25], [26],
[30], [31]) have also been proposed in order to optimize the net-
work performance under spatially varying signal-to-noise ratio
(SNR). Although these adaptive rules can reduce the steady-
state error with respect to static combiners, some experiments
show a deterioration in the convergence behavior [31]. Conse-
quently, some schemes propose the use of different rules for
transitory and steady-state regimes and include mechanisms to
switch from one rule to the other in an online manner [31],
[32]. Since all these works are generally optimized assuming
homogeneous nodes, an important challenge is related with the
fact that all the above-mentioned combination rules result in de-
graded performance when used with heterogeneous networks,
and there are presently no alternatives for dealing with such
problem in a general case.

In this work, we focus on an alternative diffusion scheme
especifically designed for heterogeneous networks. In our ap-
proach, firstly proposed in [33], [34], and which will be called
Decoupled ATC (D-ATC), the adaptation phase is kept decou-
pled from the combination phase, i.e., the local estimation of
each node is combined with the estimates received from its
neighbors, as in standard ATC, but the resulting combined es-
timation is not fed back into the next adaptation step. This
scheme presents a more clear separation between the adaptation
and combination phases. As it will be shown later, this allows
us to implement mean-square-error (MSE) based rules for the
combination phase which offer an adequate behavior for het-
erogeneous networks. With these rules we obtain a significant
improvement in convergence and steady-state performance with
respect to previous approaches, both in tracking and stationary
scenarios. In addition, our proposal seems to be a more nat-
ural scheme for asynchronous networks, which are receiving
increasing attention [19].

This paper extends our previous works [33], [34] in different
ways:

1) We analyze the mean behavior of our diffusion strategy
and derive sufficient conditions for the network combiners
that guarantee the mean stability of the algorithm.

2) Using energy conservation arguments [35], we derive
closed-form expressions for the steady-state mean-square
deviation (MSD) of the network and of its individual nodes
in a non stationary environment.

3) We propose two new rules for adjusting the combination
weights: One following a Least-Squares (LS) approach,
in the same vein as the one introduced in [33], [34], and
one based on the Affine Projection Algorithm (APA).

4) Finally, we include detailed simulation work, both for
stationary and tracking scenarios, to illustrate the perfor-
mance of the proposed schemes and to corroborate the
theoretical results.

The paper is organized as follows. The general formulation of
ATC diffusion strategies for heterogeneous networks, together
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TABLE I
SUMMARY OF THE NOTATION USED IN THE PAPER

with the introduction of adaptive combiners, is presented in
Section II. In Section III, the Decoupled ATC strategy is pro-
posed, and we theoretically analyze it in Section IV. APA and
LS-based rules for adapting network combiners are derived in
Section V. Experimental results are provided in Section VI,
and we close the paper with our main conclusions and some
possibilities for future works in Section VII.

A. Notation

We use boldface lowercase letters to denote vectors and bold-
face uppercase letters to denote matrices. The superscript T
represents the transpose of a matrix or a vector. Depending on
the context, 0N represents an N × N matrix or a length-N
column vector with all elements equal to zero, and 11N is an
all-ones column vector with length N . In addition, to simplify
the arguments, we assume that all the variables are real. Table I
summarizes the notation that is used throughout the paper.

II. HETEROGENEOUS DIFFUSION NETWORKS WITH

MSE-BASED ADAPTIVE COMBINERS

A. ATC and CTA Diffusion Strategies

Consider a collection of N nodes connected according to
a certain topology, as depicted in Fig. 2. Each node k shares
information with its neighbors and we denote this neighborhood
of k, excluding the node itself, N̄k , while Nk = N̄k ∪ {k}. The
network objective at every time instant n is to obtain, in a
distributed manner, the solution that minimizes a certain global
cost function J [w(n)].

In this work, we consider that the global cost and the in-
dividual cost of each agent are the mean-square error (MSE).
In particular, we consider a linear estimation setting: At every
time instant n, each node k has access to a scalar measure-
ment dk (n) and a regression column vector uk (n) of length M ,
both realizations of zero-mean random processes. We assume

Fig. 2. Example of diffusion network: At every time step n, each node k takes
a measurement {dk (n), uk (n)}. In this example, the neighborhood of node k
is Nk = {2, 3, r, k} and its cardinality is Nk = 4.

that these measurements are related via some unknown column
vector wo(n) of length M through a linear model

dk (n) = uT
k (n)wo(n) + vk (n), (1)

where vk (n) denotes measurement noise and is assumed to be
a realization of a zero-mean white random process with power
σ2

v ,k and independent of all other variables across the network.
The objective of the network is estimating the (possibly) time-
varying parameter vector wo(n).

In standard ATC or CTA diffusion strategies, adaptation and
combination phases are iterated to solve this estimation problem
in an adaptive and distributed manner. In particular, the ATC
scheme has the following two steps

φk (n) = fk (wk (n − 1),uk (n), dk (n),ηk ), (2)

wk (n) =
∑

�∈Nk

c�k (n)φ�(n), (3)

where an intermediate estimation φk (n) is calculated as a func-
tion of these elements: the previous estimation wk (n − 1),
current local data {uk (n), dk (n)} and a state vector ηk that
incorporates any other information needed for filter adaptation.
Some typical choices for the adaptation stage (2) are least-mean-
squares (LMS), normalized least-mean-squares (NLMS), Affine
Projection Algorithm (APA) [35], etc. φk (n) is then shared
with the neighbors and combined by means of the coefficients
c�k (n), � ∈ Nk , to calculate wk (n).

Note that we assume that the update rules on (2) can be
different among the nodes but all of them try to solve the same
estimation task. This is complementary to other approaches such
us multitask networks [36], where each node solves a different
but related task.

B. Adaptive Combiners for Heterogeneous Networks

Different update rules to adapt the combiners in diffusion
schemes have been proposed in the literature [25], [26], [30], all
of them based in the approximated minimization of the network
MSD (NMSD) defined as

NMSD(n) =
1
N

N∑

k=1

MSDk (n)

=
1
N

N∑

k=1

E{[wo(n) − wk (n)]2}, (4)
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Fig. 3. Estimation error for an ATC network with different combiners. It can
be observed that state-of-the-art adaptive combination rules (in red) obtain a
very good steady-state behaviour, much better that the ATC with LS combiners
(black) because of the numerical problems of the latter.

where MSDk (n) is the mean-square deviation of each node k
in the network at iteration n.

However, the NMSD is very complicated to estimate as
wo is unknown, and the available approximations [25], [26],
[30] are only valid for the steady-state NMSD, NMSD(∞) =
limn→∞ NMSD(n). Moreover, there is no approach in the lit-
erature that approximately minimizes (4) in heterogeneous net-
works, not even for the well-studied case of diffusion LMS
networks with different step sizes in the nodes.

In this work, we follow a different approach. We propose an
update rule driven by the online minimization of network MSE
(NMSE), defined as

NMSE(n) =
1
N

N∑

k=1

MSEk (n) =
1
N

N∑

k=1

E{ě2
k (n)}, (5)

where ěk (n) = dk (n) − y̌k (n) = dk (n) − uT

k (n)wk (n − 1)
represents the error at node k using combined estimates
available at that node, while y̌k (n) stands for the corresponding
combined output.

It is well-known that for linear regression problems both cri-
teria, MSD and MSE, are tightly related [35]. In our approach,
MSEk (n) can be easily approximated during both the conver-
gence and the steady-state phases, and whatever the kind of
update implemented by each node of the network. In addition,
other advantage of using the NMSE as the optimization criterion
lies in the fact that its minimization can be tackled with well
known algorithms to update the combination weights, includ-
ing gradient-based or LS strategies. In this respect, while using
the NMSD requires a model for the network performance to
overcome the lack of knowledge of the optimum weight vector,
minimization of the network MSE can be seen as a model-free
approach.

Fig. 3 illustrates the performance of a standard ATC diffu-
sion in a fully connected network with 5 LMS nodes. As in the
example in Fig. 1, one node has a comparably larger step size
than the other nodes. The scheme of [30], with adaptive com-
bination weights (ATC ACW 2), is not able to exploit the fast
convergence of the node with large step size. This is due to the
lack of an accurate NMSD approximation during convergence.

When the network combiners are adjusted using an LS criterion
(ATC with LS combiner), the behavior of the network is similar
to the use of static combiners, what made us wonder why the
network did not fully exploit the best properties of the differ-
ent nodes. When analyzing this problem in detail, we observed
severe numerical problems due to the coupled nature of adapta-
tion and combination stages in standard ATC, i.e., the feedback
of the combined weights in the adaptation step causes almost
perfect correlation among the weight estimations at all nodes,
ill-conditioning the minimization of (5).

In the next section, we propose a novel diffusion scheme that
overcomes these numerical instabilities, permitting an effective
use of NMSE-based adaptive combiners.

III. DECOUPLED ADAPT-THEN-COMBINE DIFFUSION

Recently, we proposed a diffusion method [33], [34] that also
iterates an adaptation and a combination phase. However, differ-
ently from standard ATC or CTA diffusion [4], [5], each node
in our scheme preserves and adapts a purely local estimation
ψk (n), which is then combined with the combined estimates,
w�(n − 1), received from the neighboring nodes � ∈ N̄k at the
previous iteration. Note that, although we have selected an ATC
approach as the basis of our algorithm, it could be straightfor-
wardly extended to CTA. Consequently, the proposed diffusion
scheme can be written as follows

ψk (n) = fk (ψk (n − 1),uk (n), dk (n),ηk ), (6)

wk (n) = ckk (n)ψk (n) +
∑

�∈N̄k

c�k (n)w�(n − 1). (7)

with adaptive combiners c�k (n) selected to minimize (5).
In the adaptation phase (6), an updated local estimationψk (n)

is calculated as a function of the previous local estimation
ψk (n − 1), local data {dk (n),uk (n)} and a state vector ηk .
In the combination phase (7), each node calculates wk (n) using
time-varying combination coefficients c�k (n).

Two conditions are applied in the adaptation of c�k (n). Firstly,
as most adaptive filtering schemes converge to unbiased es-
timations of the optimal solution in stationary scenarios, i.e.,
E{wo(n) −ψk (n)} → 0 as n → ∞, we constrain all coeffi-
cients at each node to sum up to one, in order to keep combined
weights estimations unbiased in steady state. In addition to this,
to guarantee mean stability of our scheme, and in contrast with
our previous work [33], we also impose non-negativity con-
straints on such combiners,

c�k (n) ≥ 0,
∑

�∈Nk

c�k (n) = 1,∀k. (8)

These conditions on combination coefficients have also been
considered in other diffusion schemes available in the literature
to guarantee certain stability properties.

The adaptation and combination stages on the proposed dif-
fusion algorithm can be interpreted in the following way: with
respect to the adaptation of local estimates ψk (n), each node
could be considered as an isolated adaptive filter working in-
dependently from the rest of the network. Thus, it pursues
the minimization of MSEk (n) using just its own regressors.
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During the combination phase, which includes the computation
of combined weight estimators wk (n) and the adaptation of the
combiners, minimization of the network MSE is pursued.

We should emphasize that the most significant difference of
(6) and (7) with respect to standard ATC is that the weight
vector resulting from the combination is not fed back to the
update of each individual filter. Even though under some cir-
cumstances this feedback can be beneficial, for instance to re-
duce the steady-state error in homogeneous networks, it also
dilutes the differences between individual filter performances,
which are key to get the maximum advantage out of heteroge-
neous networks. Furthermore, local estimates differ more among
nodes than combined estimates, what results in a better condi-
tioning for the model-free MSE-based adjustment of network
combiners.

Since this diffusion scheme keeps the updates at each node
decoupled from the rest of the network, we will refer to it in
the following as Decoupled ATC (D-ATC). There are some ad-
ditional advantages of decoupling the adaptation step from the
combination phase:

� Since nodes are updated as if they were working isolated
from the network, the analysis of the local estimates can
rely on existing models for adaptive filters.

� Decoupled adaptation simplifies the design of heteroge-
neous networks, thus making it easy to include nodes that
use different learning rules (e.g., LMS and RLS, Recur-
sive Least-Squares), different learning parameters (e.g.,
step sizes, or asymmetry parameters in sparsity-aware
nodes), or different filter lengths (using zero-padding for
the shorter nodes).

� Related to this, the adaptation phase of our scheme is not
influenced by an erroneous selection of the combination
weights. In contrast, in standard ATC, if the combination
weights are suboptimal, the adaptation phase of the diffu-
sion algorithm is also affected.

� Since the adaptation of each node is completely indepen-
dent of other nodes’ adaptation, we can more easily deal
with synchronization issues. Furthermore, the combination
stage can be modified to include the last available estimates
received from the neighbors so that a delay in a particular
node does not slow down the network.

IV. THEORETICAL ANALYSIS OF D-ATC

In this section, we analyze the performance of the D-ATC dif-
fusion strategy in the mean and mean-square sense and derive
expressions for the steady-state NMSD in stationary and non-
stationary environments. Different from [33], [37] and thanks to
the energy conservation method [35], we directly obtain steady-
state results, bypassing several of the difficulties encountered
when obtaining them as a limiting case of a transient analysis.
In order to simplify the analysis, the combiners c�k (n) are as-
sumed to be static. Finally, for this analysis we consider LMS
and NLMS adaptations and consequently the general equation
(6) becomes

ψk (n) = ψk (n − 1) + μk (n)uk (n)ek (n), (9)

where the local estimation error signals are

ek (n) = dk (n) − uT
k (n)ψk (n − 1) � dk (n) − yk (n), (10)

with yk (n) being the local output, and μk (n) a step size. For
LMS, we have a constant step size μk (n) = μk , whereas for
NLMS μk (n) = μ̃k /[δ + ‖uk (n)‖2 ], with 0 < μ̃k < 2, with δ
a regularization factor to prevent division by zero.

A. Data Model and Definitions

We start by introducing several assumptions to make the anal-
ysis more tractable. In order to obtain the most general results,
during our analysis, we will delay the application of the different
assumptions as much as possible.

A1) The unknown parameter vector wo(n) follows a random-
walk model [35]. According to this widespread model, the opti-
mal solution varies in a nonstationary environment as

wo(n) = wo(n − 1) + q(n), (11)

where q(n) is a zero-mean, independent and identi-
cally distributed (i.i.d.) vector with autocorrelation matrix
Q = E{q(n)qT (n)}, independent of the initial conditions
ψk (0), wk (0), and of {uk (n′), vk (n′)} for all k and n′. Al-
though this model implies that the covariance matrix of wo(n)
diverges as n → ∞, it has been commonly used in the litera-
ture to keep the analysis of adaptive systems simpler [35]. For
Q = 0M all expressions in the subsequent analysis are particu-
larized for the stationary case.

A2) Input regressors are zero-mean and have covariance ma-
trix Rk = E{uk (n)uT

k (n)}. Furthermore, they are spatially in-
dependent, i.e.,

E{uk (n)uT

� (n)} = 0M , k 
= �.

This assumption is widely employed in the analysis of diffusion
algorithms and is realistic in many practical applications [4].
Furthermore, the noise processes {vk (n)} are assumed to be
temporally white and spatially independent,

E{vk (n)vk (n′)} = 0, for all n 
= n′,

E{vk (n)v�(n′)} = 0, for all n, n′ whenever k 
= �.

Additionally, noise is assumed to be independent (not
only uncorrelated) of the regression data u�(n′), so that
E{vk (n)u�(n′)} = 0M , for all k, �, n, and n′. As a result,
ψk (n − 1) is independent of v�(n) for all k and �. Since the
regressors are assumed spatially independent,ψk (n − 1) is also
independent of u�(n) for k 
= �. For k = �, this independence
condition also holds if the regressors are temporally uncorre-
lated.

A3) We will finally assume sufficiently small step sizes to
neglect the effects of the statistical dependence of ψk (n − 1)
and uk (n) for colored regressors. This assumption has also
been widely used in analyses of diffusion schemes [4], [5], [25],
[26], [30]. Furthermore, results obtained from the independence
assumption between ψk (n − 1) and uk (n) tend to match rea-
sonably well the real filter performance for sufficiently small
step sizes, even when the temporal whiteness condition on the
regression data does not hold (see e.g., [35]).
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To analyze adaptive diffusion strategies, it is usual to define
weight-error vectors, taking into account the local and combined
estimates of each node, i.e.,

ψ̃k (n) � wo(n) −ψk (n), (12)

w̃k (n) � wo(n) − wk (n), (13)

with k = 1, . . . , N .
For notational convenience, we collect all weight-error vec-

tors and products vk (n)uk (n) across the network into column
vectors:

w̃(n) = col{ψ̃1(n), · · · , ψ̃N (n), w̃1(n), · · · , w̃N (n)}, (14)

s(n) = col{v1(n)u1(n), v2(n)u2(n), · · · , vN (n)uN (n)},
(15)

where col{·} represents the vector obtained by stacking its en-
tries on top of each other. Note that the length of w̃(n) is equal
to 2MN , whereas the length of s(n) is MN . We also define
the (2MN)-length column vector

qa(n) = col{q(n),q(n), · · ·,q(n)}, (16)

and the following MN × MN block-diagonal matrices con-
taining the step sizes and information related to the autocorre-
lation matrices of the regressors:

M(n) = diag{μ1(n)IM , μ2(n)IM , · · · , μN (n)IM }, (17)

R(n) = diag{u1(n)uT

1 (n), · · · ,uN (n)uT

N (n)}, (18)

where diag{·} generates a block-diagonal matrix from its ar-
guments and IM is the M × M identity matrix. Finally, we
also define the following matrices containing the combination
weights:

C1 = diag{c11 , c22 , · · · , cN N }, (19)

C2 =

⎡

⎢⎢⎢⎣

0 c12 · · · c1N

c21 0 · · · c2N

...
...

. . .
...

cN 1 cN 2 · · · 0

⎤

⎥⎥⎥⎦ , (20)

and their extended versions

Ci � Ci ⊗ IM , i = 1, 2, (21)

where ⊗ represents the Kronecker product of two matrices.
As a measure of performance, we consider the steady-state

MSDk at each node and the steady-state NMSD, as defined in
(4).

B. Mean Stability Analysis

First, we present the mean convergence and stability analysis
of our scheme. To do so, we start subtracting both sides of
(7) and (9) from wo(n). Under Assumption A1, using (1) and

recalling that ckk +
∑

�∈N̄k
c�k = 1, we obtain

ψ̃k (n) − q(n) = Ak (n)ψ̃k (n − 1) − μk (n)vk (n)uk (n),

(22)

w̃k (n) − q(n) = ckkAk (n)ψ̃k (n − 1) +
∑

�∈N̄k

c�k w̃�(n − 1)

− ckkμk (n)vk (n)uk (n), (23)

where Ak (n) � IM − μk (n)uk (n)uT

k (n).
From (22) and (23), using definitions (14)–(21), and following

algebraic manipulations similar to those of [4], we obtain the
following equation characterizing the evolution of the weight-
error vectors:

w̃(n) − qa(n) = B(n)w̃(n − 1) − z(n), (24)

where

B(n) �
[B11(n) 0(M N )

B21(n) B22

]
,

B11(n) = I(M N ) − M(n)R(n),

B21(n) = CT

1 [I(M N ) − M(n)R(n)],

B22 = CT

2 ,

z(n) � [M(n)s(n) CT

1 M(n)s(n)]T .

Under Assumptions A2 and A3, all regressor vectors uk (n)
are independent of ψ̃�(n − 1) and w̃�(n − 1) for k, � =
1, 2, · · · , N . Furthermore, independence of the noise w.r.t. the
rest of variables implies that E{s(n)} = 0M and E{z(n)} =
0M . Thus, taking expectations on both sides of (24) and recall-
ing that E{qa(n)} = 02M N , we obtain

E{w̃(n)} = E{B(n)}E{w̃(n − 1)}. (25)

A necessary and sufficient condition for the mean stability of
(25) is that the spectral radius of E{B(n)} is less than one, i.e.,

ρ(E{B(n)}) = max
i

{λi} < 1,

where ρ(·) denotes the spectral radius of its matrix argument and
λi , with i = 1, 2, . . . , 2MN , are the eigenvalues of E{B(n)}
[4]. Since E{B(n)} is a block-triangular matrix, its eigenvalues
are the eigenvalues of the blocks of its main diagonal, i.e., the
eigenvalues of E{B11(n)} and E{B22} [38].

Focusing first on matrix E{B11(n)}, we notice that it is also
a block-diagonal matrix, so the step sizes need to be selected to
guarantee

ρ(E{B11(n)}) = max
1≤k≤N

ρ
(
IM − Rk

)
< 1, (26)

where

Rk � E {μk (n)uk (n)uT

k (n)} . (27)

For LMS, this matrix reduces to

Rk = μkE {uk (n)uT

k (n)} = μkRk (28)
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and for NLMS, we have

Rk = μ̃kE

{
uk (n)uT

k (n)
δ + ‖uk (n)‖2

}
. (29)

Condition (26) will be ensured for LMS if the step sizes μk

satisfy [35]

0 < μk <
2

λmax(Rk )
, for k = 1, 2, · · · , N, (30)

in terms of the largest eigenvalue of Rk . Similarly, Condition
(26) will be ensured for NLMS if the step sizes μ̃k satisfy [35]

0 < μ̃k < 2, for k = 1, 2, · · · , N. (31)

Conditions (30) and (31), which are well-known results for
the LMS and NLMS algorithms, respectively, guarantee that
the local estimators {ψk (n)} are asymptotically unbiased, i.e.,
E{ψ̃k (n)} → 0M as n → ∞ for all nodes of the network.

For the spectral radius of B22 = CT

2 , we can rely on the
following bound from [38]:

ρ(B22) ≤ ‖B22‖∞ = max
k

∑

�∈N̄k

|c�k |. (32)

A sufficient (but not necessary) condition to guarantee ρ(B22) ≤
1 is to keep all combination weights non-negative. In effect,
since the sum of all combiners associated to a node is one, using
non-negative weights we have

ρ(B22) ≤ max
k

∑

�∈N̄k

c�k = max
k

(1 − ckk ) ≤ 1. (33)

When combiners are learned by the network, non-negativity
constraints can be applied at every iteration to ensure mean sta-
bility. Although our derivations show that this is just a sufficient
condition, we should mention that in our previous simulation
work of [33], [34], where we allowed combination weights to
become negative, the network showed some instability prob-
lems that have been removed thanks to the application of these
constraints.

C. Mean-Square Performance

We present next a mean-square performance analysis, fol-
lowing the energy conservation framework of [35]. First, let Σ
denote an arbitrary nonnegative definite 2MN × 2MN matrix.
Different choices of Σ allow us to obtain different performance
measurements of the network [5].

Thus, computing the weighted squared norm on both sides of
(24) using Σ as a weighting matrix, we arrive at

w̃T (n)Σw̃(n) − w̃T (n)Σqa(n) − qT

a (n)Σw̃(n) + qT

a (n)Σqa(n)

= w̃T (n − 1)BT (n)ΣB(n)w̃(n − 1) + zT (n)Σz(n)

− 2zT (n)ΣB(n)w̃(n − 1). (34)

As before, independence of the noise terms in z(n)
with respect to all other variables implies that the last ele-
ment in (34) vanishes under expectation. Furthermore, under

Assumption A1, we can verify that

E{w̃T (n)Σqa(n)} = E{qT

a (n)Σw̃(n)} = E{qT

a (n)Σqa(n)}
= Tr(ΣQa), (35)

where Tr(·) stands for the trace of a matrix and

Qa � E{qa(n)qT

a (n)} = J(2N ) ⊗ Q,

being J(2N ) a 2N × 2N matrix with all entries equal to one.
Defining the matrices

S � diag
{

σ2
v1

E{μ2
1(n)u1(n)uT

1 (n)},

σ2
v2

E{μ2
2(n)u2(n)uT

2 (n)}, · · · ,

σ2
vN

E{μ2
N (n)uN (n)uT

N (n)}
}

, (36)

Z � E{z(n)zT (n)} =
[ S SC1

CT

1 S CT

1 SC1

]
, (37)

using (35), and taking expectations of both sides of (34), we
obtain

E{‖w̃(n)‖2
Σ} = E

{
‖w̃(n − 1)‖2

BT (n)ΣB(n)

}

+ Tr(ΣZ) + Tr(ΣQa), (38)

where ‖x‖2
Σ denotes the weighted squared norm xT Σx.

Using Assumption A3, we can replace the random matrix
B(n) by its steady-state mean value B = limn→∞ E{B(n)},
which is equivalent to replacing the matrix μk (n)uk (n)uT

k (n)
by its mean Rk , given by (28) for LMS or by (29) for NLMS.
Using this approximation, (38) reduces to

E{‖w̃(n)‖2
Σ} ≈ E

{
{‖w̃(n − 1)‖2

BT
ΣB

}

+ Tr(ΣZ) + Tr(ΣQa). (39)

Mean-Square Convergence: As in [5], the convergence rate
of the series is governed by [ρ(B)]2 , in terms of the spectral
radius of B. From Section IV-B, we can obtain a superior limit
for ρ(B), which is given by

ρ(B) ≤ max
{

max
k,i

[
1 − λi(Rk )

]
, max

k
(1 − ckk )

}
. (40)

Choosing the step size of the LMS (resp., NLMS) algorithm
into the interval (30) [resp., (31)] and imposing non-negativity
constraints to the combiners, ρ(B) ≤ 1 and the convergence
of limn→∞ E{‖w̃(n)‖2

Σ} is ensured. Furthermore, from the
superior limit (40), we can see that, in the worst case, our
diffusion scheme can converge with the same convergence
rate of the noncooperative solution, whose spectral radius is
maxk,i{1 − λi(Rk )} (considering that all the nodes are adapted
using LMS or NLMS). However, we show by means of simu-
lations that in practice this limit is very conservative and the
proposed diffusion scheme converges much faster than the non-
cooperative solution.

Steady-State MSD Performance: It it important to notice that
variance relations similar to (39) have often appeared in the
performance analysis of diffusion schemes [5]. Iterating (39)
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and taking the limit as n → ∞, we conclude that (see, e.g.,
[24])

lim
n→∞ E{‖w̃(n)‖2

Σ} ≈
∞∑

j=0

Tr[Bj
(Z + Qa)(BT

)jΣ]. (41)

To obtain analytical expressions for the steady-state MSD of the
network and of its individual nodes, we will replace Σ by the
following matrices

Γ �
[
0N M 0N M

0N M
1
N IN M

]
, (42)

Υk �
[
0N M 0N M

0N M Ek ⊗ IM

]
, (43)

where Ek is an N × N zero matrix, except in the element (k, k),
that is equal to one. Replacing Σ in (41) by either Γ or Υk , the
MSD performance of the network and of its individual nodes
can be expressed, respectively, by

NMSD(∞) ≈
∞∑

j=0

Tr[Bj
(Z + Qa)(BT

)jΓ], (44)

MSDk (∞) ≈
∞∑

j=0

Tr[Bj
(Z + Qa)(BT

)jΥk ]. (45)

Since B is lower triangular, matrix Bj
is given by

Bj
=

[
Bj

11 0(M N )

X̄ (j) Bj
22

]
, (46)

being

X̄ (j) =
j−1∑

k=0

Bk
22B21Bj−k−1

11 =
j−1∑

k=0

[CT

2 ]kCT

1
[
I(M N ) − L]j−k

,

(47)
where we have defined

L � lim
n→∞ E{M(n)R(n)} = diag{R1 , R2 , · · · ,RN }.

(48)
Replacing (46) and (37) respectively in (44) and (45), we arrive
at

NMSD(∞) ≈ 1
N

∞∑

j=0

Tr

[
X̄ (j)(S + Q)X̄ T (j)

+ 2(CT

2 )j (CT

1 S + Q)X̄ T (j)

+ (CT

2 )j (CT

1 SC1 + Q)Cj
2

]
, (49)

MSDk (∞) ≈
∞∑

j=0

Tr

[(
X̄ (j)(S + Q)X̄ T (j)

+ 2(CT

2 )j (CT

1 S + Q)X̄ T (j)

+ (CT

2 )j (CT

1 SC1 + Q)Cj
2

)
Ek ⊗ IM

]
, (50)

where Q = JN ⊗ Q. Note that the MN × MN matrix Q is
similar to matrix Qa , but has half its size.

If all the nodes of the network update their local estimates
with the LMS algorithm, the theoretical steady-state MSD can
be estimated by (49) and (50), recalling that matrices Rk , which
appear in X̄ (j), are given by (28) and that matrix S reduces to

S = diag
{
σ2

v1
μ2

1R1 , σ2
v2

μ2
2R2 , · · · , σ2

vN
μ2

N RN

}
. (51)

On the other hand, assuming NLMS adaptation, we
still have to obtain approximations for matrices Rk and
E{μ2

k (n)uk (n)uT

k (n)}. For this purpose, we assume:
A4) The number of coefficients M is large enough for each

element of the matrix uk (n)uT

k (n) to be approximately indepen-
dent from

∑M −1
l=0 |u(n − l)|2 . This is equivalent to applying the

averaging principle of [39], since for large M , ‖uk (n)‖2 tends to
vary slowly compared to the individual entries of uk (n)uT

k (n).
A5) The regressors uk (n), k = 1, 2, . . . , N are formed by a

tapped-delay line with Gaussian entries and the regularization
factor is equal to zero (δ = 0). This is a common assumption
in the analysis of adaptive filters and leads to reasonable ana-
lytical results [40]. Under A4 and A5, we obtain the following
approximations from [41]:

Rk ≈ μ̃k
Rk

σ2
uk

(M − 2)
, (52)

E{μ2
k (n)uk (n)uT

k (n)} ≈ μ̃2
k

Rk

σ4
uk

(M − 2)(M − 4)
. (53)

The model to compute the steady-state MSD of the network
and of its individual nodes can be summarized as follows: (i)
compute the matrices of the combination weights using (19)-
(21) and the matrix Q, according to the environment variation;
(ii) for LMS (resp., NLMS) adaptation, use (28) [resp., (52)
and (53)] in the computation of matrices S and X̄ (j), defined
respectively by (36) and (47); and finally, (iii) use these matrices
in (49) and (50).

V. NMSE-BASED ADAPTIVE COMBINERS

As shown in Section I, the implementation of adaptive com-
biners is crucial for heterogeneous networks. For instance, when
the nodes have different step sizes in the adaptation step, the
combiners should favor the diffusion of the estimates of the
fastest nodes during network convergence. However, the net-
work should favor the nodes with better SNR and smaller adap-
tation step size in steady state, as they produce lower steady-state
misadjustment.

In this section we present two strategies for learning the
combiners suitable for our Decoupled ATC scheme. These two
strategies are based on an approximate minimization of the net-
work Mean-Square Error at each step n as defined in (5). Since
every node only optimizes its own combination coefficients, this
is equivalent to minimizing MSEk (n) node-wise. As stated in
Section II-B, there are different well-known algorithms that can
be used to optimize MSEk (n) including gradient-based or LS
strategies. However, it should be remarked that due to the nature
of the problem, in particular because of the expected large cor-
relation among the solution estimates shared by the nodes, not
all adaptive algorithms to update c�k (n) would obtain a compet-
itive performance. In this work, we include two approaches to
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adapt the combination coefficients that have demonstrated their
benefits with respect to other schemes.

Finally, let us recall that we would like to satisfy the convexity
constraint of Section IV-B to guarantee stability (and also to fol-
low the criterion of other works in this field, e.g., [4], [25], [26],
[29], [30]). Since a direct application of the algorithms below
may give rise to values of c�k (n) outside range [0, 1], we will
enforce the combination parameters c�k (n) to remain in the de-
sired interval [0, 1] at each iteration. For simplicity, if any c�k (n)
results negative after its update, we simply set it to zero and then
rescale the remaining combination weights so that they sum up
to one. We would like to remark that more complex projection
rules could have been used to implement this constraint but, as
the proposed method shows a good performance, we leave as
future work the analysis and evaluation of alternative solutions.

A. Affine Projection Algorithm

In this section we present an Affine Projection Algorithm
(APA) for the stochastic minimization of the MSE in (5).

First, it is useful to define some notation. We stack the combi-
nation coefficients c�k (n) of node k, with � ∈ N̄k , in a length-N̄k

vector c̄k (n). Doing so, we can write

ckk (n) = 1 −
∑

�∈N̄k

c�k (n) = 1 − 1T

N̄k
c̄k (n). (54)

Then, defining y�k (n) = uT

k (n)w�(n − 1) and ỹ�k (n) =
y�k (n) − yk (n) with � ∈ N̄k , collecting all these differences
into a column vector ỹk (n), and using (54), MSEk (n) can be
rewritten as

MSEk (n) = E
{

[ek (n) − c̄T

k (n)ỹk (n)]2
}

. (55)

Applying the standard APA algorithm [35] to minimize this
cost function, we obtain a regularized affine projection algorithm
for the adaptation of c̄k (n):

c̄k (n) = c̄k (n − 1) + μc [εIN̄k
+ ỸT

k (n)Ỹk (n)]−1ỸT

k (n)×
[ek (n) − Ỹk (n)c̄k (n − 1)], (56)

where μc is a step size to control the adaptation of c̄k (n),
ε is a small regularization parameter to prevent division by
zero, Ỹk (n) is an L × N̄k matrix whose L rows corresponds
with the last L values of vector ỹk (n), ek (n) = [ek (n), ek (n −
1), · · · , ek (n − L + 1)]T , and IN̄k

represents the N̄k × N̄k

identity matrix, with N̄k the cardinal of N̄k .
This recursion requires the inversion of an N̄k × N̄k matrix

at each iteration, resulting in an attractive implementation if the
projection order L is larger than the number of neighbors of
node k, N̄k . Otherwise, if for any node N̄k > L, we can invoke
the matrix inversion lemma [35] to rewrite (56) as

c̄k (n) = c̄k (n − 1) + μcỸT

k (n)[εIL + Ỹk (n)ỸT

k (n)]−1×
[ek (n) − Ỹk (n)c̄k (n − 1)], (57)

which requires the inversion of an L × L matrix.
Equations (56) –or (57)– and (54), constitute the ε-APA al-

gorithm for adapting the combiners at each node. More details
about the derivation are provided in Appendix A.

B. Least-Squares Algorithm

In this section, we follow a Least-Squares approach similar
to the one in [33] and [34]. Instead of minimizing (5) using a
stochastic minimization algorithm, we replace MSEk (n) by the
following related cost function [35],

Jk (n) =
n∑

i=1

β(n, i)ě2
k (n, i), (58)

where β(n, i) is a temporal weighting window, and

ěk (n, i) = ek (i) − c̄T

k (n)ỹk (i) (59)

represents the error incurred by node k at time i when the outputs
of all nodes belonging to Nk are combined using the combiners
at time n.

Following a standard LS method to minimize this cost func-
tion, we obtain

c̄k (n) =
(
Pk (n) + εIN̄k

)−1 zk (n), (60)

where a small regularization constant ε is again introduced since
Pk (n) could be ill-conditioned [34]. Similarly to the case of
combination of multiple filters [42], Pk (n) can be interpreted
as the autocorrelation matrix of vector ỹk (n) while zk (n) would
be seen as the cross-correlation vector between ỹk (n) and ek (n).

For further details about the derivation of the LS algorithm,
please refer to Appendix B.

Temporal Weighting Window: The temporal weighting win-
dow β(n, i), in the cost function (58) and the computation of
Pk (n) and zk (n), deserves some discussion. In this paper, we
propose the use of an exponential weighting window,

β(n, i) = γn−i , (61)

where γ is a forgetting factor 0 < γ ≤ 1.
This contrasts with our choice in previous works [33], [34],

where we leaned towards a rectangular window, which provided
a good convergence but a worse steady-state performance than
standard ATC with adaptive combiners [30]. The reason for that
choice was the instability problems of affine combiners when
long windows were used. In this paper, as we use the more sta-
ble convex combiners (see Section IV-B) an exponential window
can be safely employed. This window has two remarkable ad-
vantages with respect to a rectangular window: 1) It is more
efficient in terms of memory and computation; and 2) it allows
a recursive implementation. In addition, as we show in the ex-
periments in the next section, the LS algorithm with exponential
window outperforms other state-of-the art approaches.

VI. SIMULATION RESULTS

In this section we present a number of simulation results
to illustrate the behavior of D-ATC and the proposed adaptive
combiners rules in stationary estimation and tracking scenarios.
In the simulations, we consider only the NLMS algorithm to
update the nodes due to its inherent advantages with respect
to LMS. Nevertheless, it should be remarked that we have car-
ried out experiments where nodes are updated with the LMS
algorithm obtaining similar conclusions.
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Fig. 4. (a) Network topology for the simulation experiments: orange shaded
nodes are adapted with μ̃k = 0.1 and the rest with μ̃k = 1. (b) noise power
σ2

v ,k at each node in the network.

Fig. 5. Comparison between empirical performance and the theoretical model
for the node steady-state MSD.

We simulate the 15-node network of Fig. 4(a), where all
the nodes employ NLMS adaptation. The nodes step sizes are
taken as μk ∈ {0.1, 1} as illustrated in Fig. 4. The input signals
uk (n) follow a multidimensional Gaussian with zero mean and
the same scalar covariance matrix, σ2

uIM , with σ2
u = 1. Unless

otherwise stated, the observation noise vk (n) at each node is
also Gaussian distributed with zero mean and variance σ2

v ,k

randomly chosen between [0, 0.4] as shown in Fig. 4(b). For
the stationary estimation problem, the parameter vector wo is a
length-50 vector with values uniformly taken from range [−1, 1].
As a tracking model, we use the one presented in (11).

First, we present a set of experiments with the aim to vali-
date the theoretical analysis of Section IV. Then, we compare
the behavior of our rules to state-of-the-art adaptive combina-
tion algorithms for standard ATC [30], both in stationary and
tracking scenarios.

A. Validation of the Theoretical Analysis for D-ATC

In the first place, we carry out some numerical simulations
to validate the analysis of Section IV. To do so, we compare in

TABLE II
SCENARIOS SIMULATED IN FIG. 5

Fig. 6. Comparison between the analysis and the simulation in a tracking
scenario with respect to the logarithm of Tr{Q}.

Fig. 5 the theoretical and empirical steady-state MSDk for the
nodes of a D-ATC scheme with Metropolis combiners [4] in the
stationary estimation scenario. Our objective in this section is
just to show that the analysis correctly predicts the steady-state
performance of each individual node, as well as the NMSD.
Although we consider just the case of Metropolis combination
rule, we have checked that other rules, e.g., uniform combin-
ers, would lead to similar conclusions about the accuracy of
the analysis. In Fig. 5, we plot the steady-state MSD for four
different scenarios where the step sizes μk and the noise vari-
ances σ2

v ,k have been varied from those in Fig. 4, according to
Table II. From Fig. 5 we can conclude that the matching be-
tween the analysis and the simulation is quite good, even for not
so small step sizes [scenarios (a) and (c)].

We have also studied the accuracy of the model in tracking
situations. In Fig. 6 we plot the steady-state NMSD for different
speeds of change, i.e., values of Tr{Q}. We can see that the
matching is also quite good, especially for fast changes. For
smaller Tr{Q} we observe a mismatch up to 2 dB, similarly to
the stationary scenario depicted in Fig. 5(a).

B. Stationary Performance of D-ATC With Adaptive
Combiners

Before comparing the performance of D-ATC and ATC with
adaptive combiners, we study in Fig. 7 the sensitivity of the
proposed combiner learning rules, APA and LS, with respect
to their settings. We observe that there is a trade-off between
convergence/reconvergence speed and steady-state performance
in the selection of these parameters. In fact, we can conclude
that the influences of different parameters are coupled among
them.

Regarding the forgetting factor γ in the LS rule, note that,
when it is correctly chosen [see Fig. 7(b)], we can obtain
a large steady-state enhancement hardly affecting the conver-
gence. This was not the case with the rectangular window [34],
where instability issues prevented us from using a very small
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Fig. 7. Parameter selection for D-ATC with (a) APA and (b) LS adaptive
combiners.

TABLE III
SIMULATION PARAMETERS

regularization constant, and limited the number of useful win-
dow sizes, causing degradation in the steady-state performance.

Next, we compare our D-ATC scheme with adaptive com-
biners, with other state-of-the-art ATC algorithms with adap-
tive combiners: 1) ATC with adaptive combiners proposed by
Takahashi et al. [25], and 2) a more recent approach by Tu et al.
[4], [30]. We also include a baseline network where the nodes
do not combine their estimates. The free parameters of all al-
gorithms are chosen to maximize the steady-state performance
while keeping a similar convergence rate and, for reproducibil-
ity, are shown in Table III. Fig. 8 shows the results for all the
mentioned schemes. Although we are more interested in the
heterogeneous case, Fig. 8(a) shows also a comparison for a
similar homogeneous network where all the step sizes μ̃k are
0.1 to show the suitability of adaptive combiners in general.

Fig. 8. Network MSD performance for a stationary estimation problem. A
zoom of the first 3000 iterations is provided for a more clear illustration of the
convergence properties of the algorithms.

If we compare the results in Fig. 8(a) and (b), a first conclusion
we can extract is that heterogeneous networks achieve a faster
initial convergence and after the change in the optimal solution
in the middle of the experiment (iteration 2.5 · 104). For the
homogeneous networks, it is interesting to notice that D-ATC
with LS adaptive combiners can obtain an additional gain in
steady state with respect to all other schemes, illustrating the
suitability of the network MSE as the optimization criterion to
update the combiners.

Focusing now on the heterogeneous case, in Fig. 8(b), we
can see that D-ATC with both adaptive rules (APA and LS)
significantly outperforms standard ATC both in steady state
and during the convergence (see the zoom of the first 3000
iterations for a more clear comparison among algorithms). The
combination of our adaptive rules and the decoupled scheme
seems to be more effective in this heterogeneous setup. Note that
adaptive rules for learning the combination weights for standard
ATC [25], [30], are derived for homogeneous networks, when
only the noise variance changes among the nodes. That explains
most of the gap between both approaches.

C. Tracking Performance of D-ATC With Adaptive Combiners

We compare in Fig. 9 the performance of D-ATC and ATC,
both with adaptive combiners, when tracking a time-varying
solution for two different values of Tr{Q}. The parameters of
these simulations are shown in Table III. Analyzing the results,
we can conclude that D-ATC outperforms both ATC techniques
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Fig. 9. Network MSD performance for a tracking problem: (a) fast variations,
Tr{Q} = 10−4 , (b) slow variations Tr{Q} = 10−8 .

in terms of convergence and steady state, both for the fast and
slow time-varying systems.

In conclusion, in all the presented experiments, the proposed
D-ATC diffusion scheme outperforms standard ATC, when both
schemes use adaptive rules to learn their combiners.

D. Networks With Uninformed Nodes

In this section, we consider a completely different kind of
heterogeneous networks. We follow [24] that implements a net-
work with both informed and uninformed nodes (i.e., with and
without access to local measurements). In [24], it was shown that
ATC networks with fixed combiners do not necessarily benefit
from an increased number of informed nodes. In this section we
show that our proposed scheme with adaptive combiners is able
to use additional data more efficiently, so that an increment in the
available information does not degrade network performance.

We consider again the network in Fig. 4 when we increase
the number of informed nodes (nodes that receive data and per-
form the adaptation step) from 1 to 15 nodes. In Fig. 10(a)
we show the steady-state NMSD for the standard ATC algo-
rithm with uniform combiners. In such figure, we observe the
counterintuitive result of [24]: An increment on the number of
informed agents in a network can deteriorate its overall perfor-
mance. However, when varying the number of informed nodes
in a D-ATC network with adaptive LS combiners, an increment
on the number of informed agents leads to improved perfor-
mance, since the combiners are able to modify their values to
exploit the new available information. This result further jus-
tifies the need of using adaptive combiners in heterogeneous
networks.

Fig. 10. Relative loss in terms of Network MSD performance for a stationary
estimation problem in a network with uninformed nodes for ATC with uniform
combiners (left) and D-ATC with LS combiners (right). Relative loss is measured
with respect to the NMSD of a fully informed network for either case (reference
NMSD levels are −23.5 dB for the ATC network with static combiners, and
−41.6 dB for the D-ATC LS scheme).

TABLE IV
TOTAL COMPUTATIONAL COST FOR THE ALGORITHMS AND CONFIGURATIONS

EMPLOYED IN THE EXPERIMENTS

E. Computational Cost

Finally, we have calculated the computational cost incurred by
all the algorithms and configurations evaluated experimentally
in this section, as a function of the number of products, sums,
divisions and comparisons per iteration.

As it can be seen in Table IV, the performance gains achieved
by our proposal have an associated increment in the compu-
tational burden with respect to that of the ATC with adaptive
combiners in [25] and [30]. This increment results more impor-
tant for the case of the APA rule with large projection order L
than for the case of both the LS algorithm and the APA rule with
small L, where the computational cost is on the same order of
magnitude than for [25] and [30]. This computational cost could
be a limitation in densely connected networks.

VII. CONCLUSIONS AND FUTURE WORK

Heterogeneous diffusion networks offer some additional flex-
ibility with respect to homogeneous networks in which all nodes
implement the same update rule using common parameters. In
this paper, we have presented a novel diffusion scheme that is
especially fitted to heterogeneous networks. Each node of our
decoupled ATC (D-ATC) scheme keeps a purely local estimate
of the solution vector, and calculates an improved combined
estimation using its local estimation and combined estimates
received from other nodes in the network. We have shown that,
if equipped with appropriate schemes for adapting the network
combiners, the proposed diffusion scheme can outperform ex-
isting ATC networks (both with fixed and adaptive combiners),
requiring only a slight increment in the computational cost.

This work opens a number of research lines worth exploring.
From our point of view, one of the most important is the analysis
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of asynchronous adaptation in networks. The decoupled nature
of D-ATC strategy would make it a good option in such a case.
Finally, it is also necessary to evaluate these schemes in the
resolution of real tasks. We expect that this contribution helps
to further develop the applicability of these networks.

APPENDIX A
AFFINE PROJECTION ALGORITHM DERIVATION

Consider the cost function defined in (55) and repeated here
for convenience

MSEk (n) = E
{

[ek (n) − c̄T

k (n)ỹk (n)]2
}

. (62)

Applying the regularized Newton’s method [35] to minimize
(62), we obtain

c̄k (n) = c̄k (n − 1) + μc [εIN̄k
+ Rỹk

]−1

× [Rek ,ỹk
− Rỹk

c̄k (n − 1)] (63)

where Rỹk
is the autocorrelation matrix of vector ỹk (n), and

Rek ,ỹk
is the cross-correlation vector between ỹk (n) and ek (n).

Replacing Rỹk
and Rek ,ỹk

by their approximations based on
averages over the L most recent values of ỹk (n) and ek (n) [35],
we obtain the update equation for c̄k (n) described in (56):

c̄k (n) = c̄k (n − 1) + μc [εIN̄k
+ ỸT

k (n)Ỹk (n)]−1ỸT

k (n)

× [ek (n) − Ỹk (n)c̄k (n − 1)].
(64)

APPENDIX B
LEAST-SQUARES ALGORITHM DERIVATION

We start from the cost function (58), where we rewrite

ěk (n, i) = ek (i) +
N̄k∑

�=1

c�k (n) [yk (i) − y�k (i)] . (65)

Taking now the derivatives of (58) with respect to each com-
bination weight cmk (n), with m = 1, 2, . . . , N̄k , we obtain

∂Jk (n)
∂cmk (n)

= 2
n∑

i=1

β(n, i)ěk (n, i) [yk (i) − ymk (i)] . (66)

Replacing (65) in (66), setting the result to zero, and after some
algebraic manipulations, we obtain

n∑

i=1

N̄k∑

�=1

β(n, i)c�k (n)ỹ�k (i)ỹmk (i) =
n∑

i=1

β(n, i)ek (i)ỹmk (i).

This defines for for each node k a system with N̄k equations,
introducing the usual matrix notation, reads

Pk (n)c̄k (n) = zk (n), (67)

where Pk (n) is a square symmetric matrix of size N̄k with
components

[Pk (n)]p,q =
n∑

i=1

β(n, i)ỹ(b̄( p )
k ,k)(i)ỹ(b̄( q )

k ,k)(i), (68)

with p, q = 1, 2, . . . , N̄k . We introduce the index b̄
(p)
k which is

the index of the p-th neighbor of k. In addition, zk (n) is a
column vector of length N̄k , whose pth element is given by

z
(p)
k (n) =

n∑

i=1

β(n, i)ek (i)ỹ(b̄( p )
k ,k)(i), (69)

for p = 1, 2, . . . , N̄k . Thus, the solution of the problem is ob-
tained from (67) using Tikhonov method [43], which leads to
(60).
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