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Abstract— In this paper we propose and evaluate a Neyman-
Pearson approach to detect and characterize heart-rate turbu-
lence after ventricular premature beats (VPB). For quantifi-
cation of the detection performance an evaluation dataset was
built based on real RR interval series. The ROC curves obtained
from the test set show the proposed method to outperform the
detection capability of the two parameters currently used to
quantify turbulence: turbulence onset and turbulence slope.

Index Terms— Heart rate turbulence, Neyman-Pearson,
Karhunen-Loève Transform, detection theory.

I. INTRODUCTION

Heart rate turbulence (HRT) denotes the typical pattern

of the heart rate (HR) subsequent to a ventricular premature

beat (VPB). The turbulence consists of an early heart-rate

acceleration followed by a deceleration [1]. The mechanisms

of this phenomenon are not completely understood, but it is

considered as a baroreflex response triggered by the blood

pressure drop induced by the VPB. Pharmacological studies

have shown that the main role in HRT is played by the

parasympathetic branch of the autonomic nervous system [2],

though recently a significant correlation between sympathetic

burst and HRT parameters has also been found [3].

Heart rate turbulence is currently assessed by two param-

eters: turbulence onset (TO) and turbulence slope (TS), both

obtained from the RR interval series or tachogram following

a VPB. Turbulence onset measures the relative change (usu-

ally negative) in the RR intervals immediately after the VPB,

while turbulence slope quantifies the rate of RR interval

increase following the initial heart rate acceleration. Absence

of HRT, identified by a non-negative TO or a low TS, has

been shown to be a powerful risk predictor in different

populations [1].

Recently, a new methodology has been delineated for HRT

characterization [4], [5]. There, an extended IPFM (integral

pulse modulation model) was proposed, in which the ef-

fective modulating signal was the sum of the background

HRV and the specific reaction to the VPB (i.e. the possible

HRT turbulence). This response was linearly modelled with

a Karhunen-Loève transform (KLT) expansion. Based on

this model, a statistical detection problem was posed, and

a GLRT detector (generalized likelihood ratio test) of the
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turbulence signal was derived under the white-Gaussian-

noise assumption. This detector outperformed the detection

ability of TS and TO in simulated signals, and proved to be

useful in dialysis patients.

In this work, we assess this concept in a validation dataset

constructed from real signals. Similar to [4], [5], we will

describe the HRT by using the IPFM modulating signal

together with a KLT-based linear model for characterizing the

HRT. From the characterization of the RR series according

to this model, we explore and evaluate a different approach

to discriminate between heart-rate signals with and without

turbulence.

II. DATASET

To assess the detection performance of any HRT measure-

ment, an annotated dataset is needed including a significant

number of signals with and without HRT. However, the lack

of a gold standard and the low signal-to-noise ratio make

it extremely difficult to manually annotate the RR interval

series following a single VPB as containing HRT or not. To

compensate the absence of annotated databases we created

an evaluation dataset with RR interval series obtained from

Holter recordings as indicated next.

A. LTST database.

The Long Term ST database (LTST) [6] contains 68 two-

lead and eighteen three-lead 24-hour ambulatory records with

significant ST events annotated by medical experts. These

records were sampled at 250 Hz with a 12-bit resolution.

The database [6]also provides automatic QRS annotations

including beat classification supervised by an expert Holter

technician.

B. Dataset construction.

Our approach relies on the assumption that Holter record-

ings with enough VPBs and a clear HRT pattern measured

by TS in the averaged tachogram present an HRT response

after every VPB. Thus, RR series around all the VPBs in

such records are included in the HRT class (S1). On the other

hand, records with few VPBs or with a blunted HRT in the

averaged tachogram were discarded as there is uncertainty

about the presence of HRT after the individual VPBs. To

overcome this problem, the class of non-HRT series (S0)
was created by including tachograms extracted from periods
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without any premature or ectopic beat, i.e., only containing

spontaneous heart rate variability (HRV).

All the VPBs through the 86 records were selected accord-

ing to the database annotations. Only VPBs preceded by at

least 10 normal beats and followed by at least 20 normal

beats were considered. VPBs were also discarded if the

coupling interval was ≥ 80 % or the compensatory pause was

< 120 % of the average RR in the 10 previous beats. After

applying those criteria, 64 records remained with suitable

VPBs, with only 38 records having more than 15 suitable

VPBs. Out of those 38 records, only 26 showed TS > 2.5

ms/beat in the averaged tachogram. All the tachograms for

the 5764 individual VPBs in those records were included in

class S1. For building class S0, we extracted 26577 32-beat

tachograms from the 10 patients who lacked VPBs. These

tachograms provide a characterization of local tachograms

without turbulence (or equivalently, a characterization of the

background HRV). One hundred tachograms from each class,

together with the class averages are shown in Fig. 1.
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(a) Tachograms in S1.

5 10 15 20 25 30
500

600

700

800

900

1000

1100

beat #

R
R

 (
m

s
)

(b) Tachograms in S0.

Fig. 1. Tachograms for the HRT (S1) and non-HRT (S0) classes. Thick
black lines represent the average in the dataset and mean turbulence can be
observed in (a). Intervals 11 and 12 correspond to the coupling interval and
compensatory pause in (a), and have been blanked in (b) since there are no
VPBs in S0.

III. METHODS

A. IPFM extension background

The IPFM model was originally introduced to generate a

series of occurence times for sinus beats from a modulat-

ing signal m(t) accounting for the autonomic influence on

the cardiac pacemaker, reflecting basic electrophysiological

properties of the sinoatrial node [7].

Recently, we have proposed an extended IPFM model in

order to account for the HRT phenomenon [4], [5]. The

extended model includes an additional feedback path which

accounts for HRT as an additive signal s(t) triggered by

the VPB-induced pressure drop, so that the actual mod-

ulating signal of the extended IPFM x(t) is the sum of

the background HRV and the feedback signal, i.e., x(t) =
m(t)+s(t). The response to the VPB s(t) was modelled as a

linear combination of several basis functions, obtained from

truncated basis of the KLT. The total modulating signal x(t)
after a VPB, which can be estimated from the RR interval

series, was considered as an observation of the response to

the VPB, considering the background modulating signal as

”observation noise”.

Thus, the first processing step was to estimate the modu-

lating signal x(t) for each individual tachogram in S0 and

S1 as described in [4], [5]. Then, the first 10 seconds of

the estimated x(t) after each VPB were evenly resampled at

2 Hz to obtain an N × 1 vector x (N = 21). This vector

can also be decomposed as the sum of the turbulence and

background HRV components: x = s+m. The modulating

vectors for the example signals in Fig. 1 are plotted in Fig.

2. Note that the shape of the average turbulence (red line) is

clearly displayed for class S1.
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(a) Modulating signals x(t) in S1.
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(b) Modulating signals x(t) in S0.

Fig. 2. IPFM modulating signals after the VPB for the HRT (S1) and non-
HRT (S0) datasets. Thick black lines represent the average in the dataset.

B. Signal model for HRT description

In this work, the HRT term for the l-th VPB sl is modelled

as a linear combination of r basis functions

sl = Bθsl (1)

where B = [b1, b2, . . . ,br] contains in its columns the

r basis functions and θsl is the r × 1 coefficient vector

associated with the l-th VPB. For simplicity, we will drop

the VPB index l in the notation in the rest of the paper.

The basis functions bi were obtained as the KLT basis

for the set of vectors xl belonging to the HRT class, S1.
The percentage of the projected energy of each class into

the subspace defined by the first r KLT basis functions is

shown in Fig. 3(a). Figure 3(b) shows the distribution of the

two classes in the first KL coefficients.
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Fig. 3. (a) Percentage of energy in S0 and S1 explained by the turbulence
KLT basis as a function of the basis dimension. (b) Mean ± 1 standard
deviation of the first KL coefficients for vectors in S0 and S1

The three first basis functions (plotted in Fig. 4) account

for 95% of the energy in the HRT class. Therefore, we will

use r = 3 as the linear model dimension.
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Fig. 4. First three functions of the KLT basis.

We can then formulate a detection problem where HRT is

either present (hypothesis H1) or not (hypothesis H0) in an

observed vector x:

H0 : x =m

H1 : x = Bθs +m.
(2)

C. Statistical methods for HRT detection.

In [4], [5], we used a GLRT detector assuming that θs is

an unknown deterministic vector and m is a random vector

distributed as a white multivariate Gaussianm ∼ N (0, σ2I),
with σ2 unknown. The resulting detection statistic T (x) is

proportional to the energy ratio of the projection of x into

the signal subspace (the subspace spanned by B) and its

projection to the orthogonal subspace (noise subspace). The

underlying assumption is that the background HRV does not

project well in the signal subspace and thus, the energy in

the signal subspace is higher if HRT is present.

However, Figure 3(a) shows that a 90% of the signal

energy in the non-HRT dataset S0 also lies in the first KLT

basis functions. Also, the GLRT detector, relying solely on

the energy of the projection, is invariant to the sign of the

response to the VPB, and therefore does not discriminate

physiological turbulences from non-physiological ones.

In this paper, we propose a Neyman-Pearson detector

within the reduced signal subspace as an alternative approach

for HRT detection. As the three-dimensional subspace de-

fined by the first three KLT basis functions accounts for

>90% of the energy in both subsets, we will focus on the

coefficients of x in that reduced subspace: θx = B
T
x. The

detection problem can be now formulated as,

H0 : θx = B
T
m = θm

H1 : θx = θs +B
T
m = θs + θm.

(3)

Modelling both the HRT and background HRV components

as correlated multivariate Gaussian random vectors with

means µ and 0 respectively, we have a detection problem

of the form
H0 : θx ∼ N (0,Σ0)

H1 : θx ∼ N (µ,Σ1),
(4)

where the parameters µ,Σ0,Σ1 can be estimated from a

labelled training set. It can be shown [8] that for such a

problem, the detection statistic maximizing the probability

of detection PD for a given probability of false alarm PFA
(Neyman-Pearson criterion) is given by the likelihood ratio

L(x)=
p(x;H1)

p(x;H0)
=
|Σ0|

1

2 exp(− 1
2
(θx − µ)

T
Σ
−1

1
(θx − µ))

|Σ1|
1

2 exp(− 1
2
θT
x
Σ
−1

0
θx)

(5)

taking the logarithm and discarding constant terms, we obtain

the equivalent detection statistic,

ℓ(x) = θT
x
Σ
−1

0
θx − (θx − µ)

T
Σ
−1

1
(θx − µ). (6)

It must be noted that Σ0 and Σ1 are not explicitly related to

each other in equations (4) and (6), and therefore the model,

and, consequently, the detection statistic (6) are general and

do not assume additivity of HRT and HRV.

D. Evaluation

To evaluate the proposed approach as well as the param-

eters TO and TS, each of the two classes: S0 and S1, was

divided in two halves: the first half (S0ts and S1ts) was used

as test set while the second half (S0tr and S1tr) was used

as training set to estimate the model parameters.

IV. HRT DETECTION RESULTS

The parameters µ,Σ0,Σ1 were estimated as the sample

mean vector and sample covariance matrices of vectors θx =
B
T
x in datasets S0tr and S1tr.

Figure 5(a) shows the scatterplot of the vectors x ∈
S0,S1 in the subspace defined by the first 3 KL basis

functions. Each point represents the RR interval series after

a single VPB. A wide overlap can be observed between the

two datasets. Note that the detection statistic (6) provides

a quadratic separation surface between the two groups.

Figure 5(b) shows the ROC curves of the proposed detector,

as well as the TO and TS parameters in the test set.
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Fig. 5. (a) Scatterplot of θx and (b) ROC curves for statistic ℓ(n), TO
and TS for individual VPBs in the test set.

Figures 6(a) and 7(a) show that the groups become more

separable when the series for 10 or 100 consecutive VPBs

are averaged, as it is usually done in HRT analysis. The ROC

curves for averaged series are shown in Fig. 6(b) and 7(b).

Note that the model parameters have not been reestimated

for averaged series (i.e., the parameters in (6) were computed

using the series for individual VPBs in the training set).
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Fig. 6. (a) Scatterplot of θx and (b) ROC curves for statistic ℓ(n), TO
and TS for averages of 10 VPBs in the test set.
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Fig. 7. (a) Scatterplot of θx and (b) ROC curves for statistic ℓ(n), TO
and TS for averages of 100 VPBs in the dataset.

V. DISCUSSION AND CONCLUSION

A. Models and methods.

In this paper, we have proposed and evaluated a new

methodology for HRT characterization. The method is based

on the representation of the IPFM modulating signal after

a VPB in the subspaced defined by the most relevant KLT

basis functions for signals with HRT.

To characterize the HR signals when HRT is present and

when it is absent, we have created a labelled dataset of RR

interval series from real Holter ECG signals as described in

Section II, thus circumventing the need for simulation.

Figure 3 shows that the background HRV, which can be

understood as the noise term in the model of eq. (2), is also

quite well represented in the signal subspace. Due to this

overlap, a subspace energy detector is suboptimal.

Therefore, we have focused on the signal subspace (as

a good representation for both groups of signals) and have

designed a Neyman-Pearson detector modelling both datasets

as multivariate Gaussian with general and possibly different

covariance matrices (eq. (4)). Note that the signal model (4)

assumed this work is quite general and may be valid even

if the interaction between background HRV and HRT is not

additive.

B. HRT detection performance.

For individual VPBs, fixing PFA = 0.1 (10% of abnormal

series, i.e., series without turbulence, would be considered

as normal), the PD is 0.3 for the proposed detector, 0.25

for TO and 0.15 for TS. When averaging 10 consecutive

VPBs, PD attains 0.76, 0.66 and 0.4 respectively for the

same PFA. If 100 VPBs are available, the Neyman-Pearson

detector outperforms TO and TS, obtaining almost perfect

discrimination.

Therefore it can be concluded that the proposed model-

based detector can discriminate between series with and

without HRT better than the commonly used TO and TS

parameters, making possible the analysis of HRT with a

reduced number of VPBs. This results encourage further

evaluation in clinical datasets to determine whether this

performance improvement results in better prediction of

cardiac risk.
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